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Abstract. Let G be a group which has a finite number hn(G) of irreducible linear repre-

sentations in GLn(C) for all n ≥ 1. Let ζ(G, s) =
P

∞

n=1
hn(G)n−s be its representation zeta

function.

First, in case G = H ≀X Q is a permutational wreath product with respect to a permutation

group Q on a finite set X, we establish a formula for ζ(G, s) in terms of the zeta functions of
H and of subgroups of Q, and of the Möbius function associated with the lattice ΠQ(X) of

partitions of X in orbits under subgroups of Q.
Then, we consider groups W (Q,k) = (· · · (Q ≀X Q) ≀X Q · · · ) ≀X Q which are iterated wreath

products (with k factors Q), and several related infinite groups W (Q), including the profinite

group lim←−k
W (Q, k), a locally finite group limk W (Q, k), and several finitely generated dense

subgroups of lim←−k
W (Q, k). Under convenient hypotheses (in particular Q should be perfect),

we show that hn(W (Q)) < ∞ for all n ≥ 1, and we establish that the Dirichlet series

ζ(W (Q), s) has a finite and positive abscissa of convergence s0 = s0(W (Q)). Moreover,
the function ζ(W (Q), s) satisfies a remarkable functional equation involving ζ(W (Q), es) for

e ∈ {1, . . . , d}, where d = |X|. As a consequence of this, we exhibit some properties of the
function, in particular that ζ(W (Q), s) has a singularity at s0, a finite value at s0, and a

Puiseux expansion around s0.

We finally report some numerical computations for Q = A5 and Q = PGL3(F2).

1. Introduction

Let G be a group. We denote by Ĝ the set of equivalence classes of irreducible linear
representations of G in complex vector spaces of finite dimension; in case G is a topological

group, we assume that the representations are continuous. The set Ĝ is called here (and
somewhat abusively) the dual of G. For n ≥ 1, let hn(G) ∈ {0, 1, 2, . . . ,∞} denote the

number of π ∈ Ĝ of degree deg π = n. The group G is rigid if hn(G) <∞ for all n ≥ 1.

For example, an infinite cyclic group is not rigid, since h1(Z) = ∞. Rigid groups
include finite groups, compact semisimple Lie groups (as a consequence of Weyl’s formula
for the dimensions of their irreducible representations), and many arithmetic groups (see
[LaLu–08]).
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2 REPRESENTATION ZETA FUNCTIONS OF WREATH PRODUCTS

The representation zeta function of a rigid group G is the Dirichlet series

(1.1) ζG(s) =
∑

π∈ bG

(deg π)−s =
∑

n≥1

hn(G)n−s .

Whenever convenient, we write ζ(G, s) instead of ζG(s). For example, ζ(SU(2), s) is the
Riemann zeta function since hn(SU(2)) = 1 for any n ≥ 1.

On the one hand, this function captures a very small part only of the representation
theory of G; when G is finite, it is just a way to organise the information contained in
the degree pattern of G, which is the list of the integers deg π, including multiplicities (see
[Hupp–98]). On the other hand, ζG(s) happens to be strongly related to several interesting
questions, as shown by numerous articles including [Zagi–96], [LiSh–05], and [LaLu–08].
As far as we know, the first appearance of these zeta functions is in [Witt–91], where
Formula (4.72) relates the evaluation at 2g− 2 of ζG(s) to the volume of the moduli space
of flat connections of G–principal bundles over Σg, where G is a compact, simple, simply
connected Lie group and Σg an orientable closed surface of genus g ≥ 2.

Some elementary facts on representation zeta functions are collected in Section 9. The
final Section 10 contains a remark concerning the “unitary variation” of representation
zeta functions and a question about a possible strengthening of Kazhdan’s Property (T).

The aim of the work reported here is to exhibit remarkable properties of these zeta
functions for groups which are wreath products, and in particular for groups G which are
isomorphic to some wreath products with themselves, namely of the form G ∼= G ≀X Q.

2. Wreath products with a finite permutation group

Let H be a topological group and let Q be a finite group acting on a finite set X . Let

(2.1) G = H ≀X Q = B ⋊ Q, with B + HX ,

denote the corresponding wreath product. Here, HX denote the group of all applications
from X to H, with pointwise multiplication, and ⋊ indicates the semi–direct product with
respect to the natural action of Q on B, given by (qb)(x) = b(q−1x) for q ∈ Q, b ∈ B, and
x ∈ X . The topology on B ⋊ Q is that for which B = HX has the product topology and
is an open subgroup.

Our first goal is to revisit part of the representation theory of wreath products. This
is a classical subject: see among others [Spec–33], [Kerb–71] (which contains historical
comments on wreath products and their representations), and [Hupp–98, § 25]; let us also
mention the theory of iterated wreath products which goes back to Kaloujnine [Kalo–45,
Kalo–48] and his students. As a consequence, an important part of what follows consists
of variations on standard themes. This holds in particular for our first result, before the
statement of which we need to define the appropriate Möbius function.

Any subgroup S of Q gives rise to a partition of X in S–orbits; we denote by ΠQ(X)
the lattice of all partitions of X of this kind, where, for P, P ′ ∈ ΠQ(X), we have P ≤ P ′

if P is a refinement of P ′ (namely if every block of P is contained in a block of P ′). For a
partition P = (P1, . . . , Pℓ) in ΠQ(X), its stability subgroup is the corresponding subgroup

(2.2) QP = {q ∈ Q | q(P1) = P1, . . . , q(Pℓ) = Pℓ}

of Q. The smallest partition 0̂, that for which all blocks are singletons, has stability
subgroup the subgroup of Q of trivially acting elements (the one–element subgroup {1} if
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the action is faithful), and the largest partition 1̂, that for which the blocks are the Q–

orbits, has stability subgroup Q (so that 1̂ has just one block if Q acts transitively on X).
We denote by µX the Möbius function of the lattice ΠQ(X); recall that the domain of µX

is ΠQ(X)2, that µX(P, P ′′) = 0 unless P ≤ P ′′, that µX(P, P ) = 1 for all P ∈ ΠX(Q),
and that

(2.3) µ(P, P ′′) = −
∑

P ′∈ΠQ(X)

P≤P ′<P ′′

µ(P, P ′) if P < P ′′.

We refer to [Stan–97]; see in particular his Example 3.10.4 for the lattice of all partitions
of X , which is our ΠQ(X) for Q the group of all permutations of X .

Our first result is the following consequence of Clifford’s theory, proven in Section 4.

1. Theorem. Let H be a topological group, let Q be a finite group acting on a finite set
X, and let H ≀X Q be the corresponding permutational wreath product, as above. Then
H ≀X Q is a rigid if and only if H is rigid. Moreover, when this is the case, we have

(2.4)

ζ(H ≀X Q, s) =
∑

P∈ΠQ(X)

[Q : QP ]−1−sζQP
(s)

∑

P ′=(P ′
1,...,P ′

ℓ)≥P

µX(P, P ′) ζH(|P ′
1|s) · · · ζH(|P ′

ℓ|s)

(see also Formula (8.1) below).

For example, when Q is the permutation group of three objects acting on {1, 2, 3}, we
have

(2.5)

ζ(H ≀3 S3, s) = 6−1−s
(
ζH(s)3 − 3ζH(s)ζH(2s) + 2ζH(3s)

)

+ 3× 3−1−s × 2 (ζH(s)ζH(2s)− ζH(3s))

+
(
2 + 2−s

)
ζH(3s)

= 6−1−sζH(s)3 +
(
− 6−s/2 + 2× 3−s

)
ζH(2s)ζH(s)

+
(
6−s/3− 2× 3−s + 2−s + 2

)
ζH(3s).

In particular, for the Weyl group C2 ≀3 S3 of type B3 and of order 48, Formula (2.5)
specialises to

(2.6) ζ(C2 ≀3 S3, s) = 4 + 2× 2−s + 4× 3−3,

so that we recover the well–known degree pattern 1, 1, 1, 1, 2, 2, 3, 3, 3, 3. For other special-
isations, see Sections 4 and 8.

3. Iterated wreath products

A finite group Q acting on a finite set X gives rise to a tower of iterated wreath products

(3.1) W (Q, 0) = {1}, W (Q, 1) = Q, . . . , W (Q, k + 1) = W (Q, k) ≀X Q, . . . ;
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observe that

(3.2) |W (Q, k)| = |Q|(dk−1)/(d−1).

Recall the associativity of wreath products: given two finite groups Q, R acting respectively
on two finite sets X, Y , there is a natural isomorphism

(3.3)
(
H ≀X Q

)
≀Y R = H ≀(X×Y )

(
Q ≀Y R).

In particular, we also have wreath product decompositions

(3.4) W (Q, k + 1) = Q ≀Xk W (Q, k)

and corresponding natural split epimorphisms

(3.5) W (Q, k + 1) −→ W (Q, k),

which give rise to a profinite group

(3.6) W prof(Q) = lim←−
k

W (Q, k).

For example, if Q = Sd is the symmetric group acting in a standard way on {1, . . . , d},
then W prof(Sd) is the full automorphism group of the infinite d–ary regular rooted tree
(more on these trees below in Section 7). Groups of this kind are far from being rigid in
general: for example,

(3.7) hn(W prof(Cp)) =

{∞ if n = pe for some e ≥ 0,

0 otherwise,

and hn(W prof(Sd)) ≥ hn(W prof(C2)) for all d ≥ 2 and n ≥ 1.
The situation is radically different if Q is perfect. More precisely, and this is the main

purpose of this paper, our goal is to show that the representation Dirichlet series of the
group W prof(Q) has an abscissa of convergence s0 = s0(W

prof(Q))} > 0, and that the
resulting function, holomorphic in the half plane {Re(s) > s0}, has remarkable properties.

2. Theorem. Let Q be a finite group acting transitively on a finite set X of size d ≥ 2.
The following properties are equivalent:

(i) the finite group Q is perfect,
(ii) the profinite group W prof(Q) is rigid.

3. Theorem. Let Q be as in the previous theorem and assume that Properties (i) and (ii)
hold. Then the abscissa of convergence s0 of ζ(W prof(Q), s) is a finite positive number,
and the function ζ(W prof(Q), s) has a singularity at s0 with a Puiseux expansion of the
form

(3.8) ζ(W prof(Q), s) =

∞∑

n=0

an(s− s0)
n
e

for some integer e with 2 ≤ e ≤ |X |.
In the situation of Theorem 3, additional information is contained in Proposition 17.
Moreover, we can replace W prof(Q) by various groups having the same representation

zeta function, in particular a locally finite group W locfin(Q) and a finitely generated group
Wfingen(Q); see Section 7.

Let us particularise the situation of Theorems 2 and 3 to the smallest nontrivial perfect
finite group, namely to the alternating group A5 of order 60.
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4. Example. For Q = A5 acting in the canonical way on a set of d = 5 elements, the
representation zeta function ζ(s) = ζ(W prof(A5), s) satisfies the functional equation

(3.9)

ζ(s) = 60−1−s
(
ζ(s)5 − 10ζ(s)2ζ(3s)− 15ζ(s)ζ(2s)2

+ 30ζ(2s)ζ(3s) + 30ζ(s)ζ(4s)− 36ζ(5s)
)

+ 15× 30−1−s × 2×
(
ζ(s)ζ(2s)2 − 2ζ(2s)ζ(3s)− ζ(s)ζ(4s) + 2ζ(5s)

)

+ 10× 20−1−s × 3×
(
ζ(s)2ζ(3s)− ζ(2s)ζ(3s)− 2ζ(s)ζ(4s) + 2ζ(5s)

)

+ 10× 10−1−s
(
2 + 2−s

) (
ζ(2s)ζ(3s)− ζ(5s)

)

+ 5× 5−1−s
(
3 + 3−s

) (
ζ(s)ζ(4s)− ζ(5s)

)

+
(
1 + 2× 3−s + 4−s + 5−s

)
ζ(5s).

Then numerical computations show that

(3.10)
ζ(s) ≈ 4.186576086287− 6.740797357 (s− s0)

1
2

+ 5.6535295(s− s0)− 1.421 (s− s0)
3
2 + · · ·

near

(3.11) s0 ≈ 1.1783485957546400082.

Formula (3.9) makes it easy to obtain the first “few” terms of ζ(W prof(A5), s) from a
computer:

(3.12)
ζ(s) = 1 + 2× 3−s + 4−s + 5−s + 6× 15−s + 3× 20−s + 3× 25−s

+ 2× 45−s + 60−s + 19× 75−s + 4× 90−s + 9× 100−s + · · ·

Indeed, if we agree that

[1, 1], [3, 2], [4, 1], [5, 1], [15, 6], [20, 3], [25, 3], [45, 2], [60, 1], [75, 19], [90, 4], [100, 9]

is a shorthand for the 12 first terms of the right–hand side of (3.12), the terms of ζ(s) for
n ≤ 104 are:

[1, 1], [3, 2], [4, 1], [5, 1], [15, 6], [20, 3], [25, 3], [45, 2], [60, 1], [75, 19],

[90, 4], [100, 9], [125, 9], [160, 2], [180, 5], [225, 12], [240, 6], [243, 2], [250, 2], [270, 4],

[300, 12], [320, 1], [375, 60], [400, 3], [405, 6], [450, 12], [500, 28], [540, 2], [625, 27], [640, 2],

[675, 2], [729, 4], [800, 6], [810, 4], [900, 52], [972, 2], [1024, 1], [1080, 4], [1125, 55], [1200, 54],

[1215, 16], [1250, 8], [1280, 4], [1350, 20], [1440, 4], [1500, 81], [1600, 12], [1620, 12], [1875, 189], [2000, 27],

[2025, 24], [2160, 7], [2250, 52], [2400, 4], [2430, 6], [2500, 94], [2700, 30], [3000, 2], [3072, 2], [3125, 85],

[3200, 6], [3375, 18], [3600, 20], [3645, 16], [3750, 2], [3840, 13], [4000, 24], [4050, 40], [4096, 1], [4320, 8],

[4500, 339], [4800, 4], [4860, 10], [5120, 4], [5400, 48], [5625, 225], [5760, 4], [6000, 333], [6075, 92], [6250, 30],

[6400, 18], [6480, 8], [6750, 92], [7200, 36], [7500, 442], [8000, 75], [8100, 106], [8640, 3], [9000, 12], [9375, 603],

[9600, 20], [9720, 2], [10000, 165]

There are 2752 non-trivial coefficients of degree ≤ 1012, and it would be easy to extend
the computations further.
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4. Proof of Theorem 1, and examples involving small groups Q

The proof of Theorem 1 is a simple application of Arthur Clifford’s theory [Clif–37]

which, in particular, provides a description of the dual Ĝ of a group G given as an extension

(4.1) 1 −→ B −→ G −→ Q −→ 1

with finite quotient Q. Let us recall this description in our case, which is simpler than the
general case in two respects: the sequence splits, G = B ⋊ Q, and the representations of
the subgroups of Q which are involved are linear (rather than, more generally, projective).
Clifford’s description of an irreducible representation of G = H ≀X Q has two ingredients.

The first ingredient is a Q–orbit in B̂, represented by some irreducible representation ρ.

Since B = HX , the dual B̂ can be identified with (Ĥ)X , and ρ can be written uniquely

as an outer tensor product ⊠x∈Xρx, with ρx : H −→ GL(Vx) in Ĥ for each x ∈ X . The
stability subgroup of ρ is the subgroup

(4.2) Qρ = {q ∈ Q | qρ ∼ ρ} ,

where ∼ indicates equivalence of representations. We have

(4.3) Qρ = QPρ
,

where the right–hand side is defined by (2.2), and where the partition Pρ is that for which
x, y ∈ X are in the same block if and only if ρx ∼ ρy. Moreover, since the action of Q on

B̂ = (Ĥ)X is induced by the action of Q on X , the representation ρ = ⊠x∈Xρx of B in the
vector space ⊗x∈XVx extends to a representation ρ′ of B ⋊ Qρ in the same space, defined
by ρ′(b, s) = ρ(b) for all b ∈ B and s ∈ Qρ.

The second ingredient is an irreducible representation σ ∈ Q̂ρ. We view it as an irre-
ducible representation σ′ of B ⋊ Qρ, of which the group Qρ is a quotient, so that ρ′ ⊗ σ′

is also an irreducible representation of B ⋊ Qρ. Denote by

(4.4) πρ,σ = IndG
B⋊Qρ

(ρ′ ⊗ σ′)

the induced representation, and observe that

(4.5) deg πρ,σ = [G : B ⋊ Qρ] deg ρ deg σ .

5. Proposition (Clifford). With the notation above, the representation πρ,σ of G =
H ≀X Q is irreducible, and any irreducible representation of G is of this form.

In other words, the dual Ĝ is fibred (as a set) over the orbit space Q\B̂; the fibre over

an orbit represented by ρ ∈ B̂ is the dual Q̂ρ.
In particular, G is rigid if and only if H is rigid.

[The general case of a group extension is more complicated, since ρ′ is a projective
representation of Gρ + {q ∈ Q | qρ ∼ ρ} which need not be linear. One has to choose σ
as a projective representation of Qρ such that the class of ρ′ in H2(Gρ,C

∗) is minus the
pull–back of the class of σ in H2(Qρ,C

∗). In our particular case, Gρ = H ⋊ Qρ. Yet there
is a formulation of the proposition which carries over to the general case of (4.1).]
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We are now ready to check the formula of Theorem 1.

Consider a partition P = (P1, . . . , Pj) in ΠQ(X). Let B̂≤
P be the subset of B̂ consisting

of those ⊠x∈Xρx for which ρx ∼ ρy as soon as x, y are in the same block of P . We have a
product formula

∑

ρ=(ρx)x∈X∈ bB
≤
P

deg
(
⊠x∈Xρx

)−s
= ζH(|P1|s) · · · ζH(|Pj|s).

Let B̂=
P be the subset of B̂≤

P consisting of those ⊠x∈Xρx for which ρx ∼ ρy if and only if
x, y are in the same block of P . By the defining property of the Möbius function of ΠQ(X),
we have

∑

ρ=(ρx)x∈X∈ bB=
P

deg
(
⊠x∈Xρx

)−s
=

∑

P ′=(P ′
1,...,P ′

ℓ)≥P

µX(P, P ′)ζH(|P ′
1|s) · · · ζH(|P ′

ℓ|s).

It follows that the contribution to ζG(s) of the representations πρ,σ, with ρ ∈ B̂=
P and

σ ∈ Q̂P (recall that QP has been defined in (2.2)), is
∑

ρ∈QP \ bB=
P ,σ∈cQρ

deg π−s
ρ,σ = [Q : QP ]−1−sζQP

(s)
∑

P ′≥P

µX(P, P ′)ζH(|P ′
1|s) · · · ζH(|P ′

ℓ|s),

where P ′ = (P ′
1, . . . , P

′
ℓ). The factor [Q : QP ]−s is due to the induction from B ⋊QP to G,

which multiplies the degrees of representations by [Q : QP ]; as we have to count only one

ρ by Q–orbit in B̂, or more precisely here one ρ by QP –orbit in B̂=
P , there is an extra

factor [Q : QP ]−1 on the right–hand side. A summation over P ∈ ΠQ(X) gives rise to the
formula of Theorem 1.

In general, computing the Möbius function of a lattice, for example of ΠQ(X), is a
tedious problem; but special cases can be worked out. For example, when the finite group
Q is abelian and acts on itself (X = Q) by multiplications, the computation of µX goes
back to [Dels–48].

Let us consider here some easy specialisations of Theorem 1. For an integer d ≥ 2, we
denote by Id the finite set {1, . . . , d}, by Cd the cyclic group of order d acting on Id by
cyclic permutations, by Sd the symmetric group of Id, and by H ≀d · · · the corresponding
wreath products. We denote by µ the usual Möbius function of elementary number theory.

6. Proposition. With the notation above we have for an integer d ≥ 2:

(4.6) ζ(H ≀d Cd, s) =
∑

e|d

(
d

e

)−1−s

e
∑

fwith e|f |d

µ

(
f

e

)
ζH(fs)m/f .

In particular, if m = p is prime, the summation has three terms:

(4.7) ζ(H ≀p Cp, s) = p−1−s
(
ζH(s)p − ζH(ps)

)
+ pζH(ps) .

If m = 4, the summation has five terms

(4.8)
ζ(H ≀4 C4, s) = 4−1−s

(
ζH(s)4 − ζH(2s)2

)

+ 2−s
(
ζH(2s)2 − ζH(4s)

)
+ 4ζH(4s) .



8 REPRESENTATION ZETA FUNCTIONS OF WREATH PRODUCTS

For the permutation group on three objects, we have

(4.9 = 2.5)
ζ(H ≀3 S3, s) = 6−1−sζH(s)3 +

(
− 6−s/2 + 2× 3−s

)
ζH(2s)ζH(s)

+
(
6−s/3− 2× 3−s + 2−s + 2

)
ζH(3s).

For the permutation group on four objects, we have

(4.10)

ζ(H ≀4 S4, s) =

24−1−s
(
ζH(s)4 − 6ζH(s)2ζH(2s) + 8ζH(s)ζH(3s) + 3ζH(2s)2 − 6ζH(4s)

)

+ 6× 12−1−s × 2×
(
ζH(s)2ζH(2s)− 2ζH(s)ζH(3s)− ζH(2s)2 + 2ζH(4s)

)

+ 4× 4−1−s(2 + 2−s) (ζH(s)ζH(3s)− ζH(4s))

+ 3× 6−1−s × 4
(
ζH(2s)2 − ζH(4s)

)

+
(
2 + 2−s + 2× 3−s

)
ζH(4s).

Remark. The reader will have no problem to guess Formula (8.3) for ζ(H ≀5 A5, s) from
Formula (3.9).

Proof. For an integer d ≥ 2, the subgroups of the cyclic group Cd of order d are in one–to–
one correspondence with the positive divisors of d. If Cd acts on itself by multiplication,
X = Cd, the orbits of a subgroup Ce of Cd, with e|d, are of the form (j, j+d/e, j+2d/e, ....).
If e, f are positive divisors of d, the partition P into orbits of the subgroup Ce is a refinement
of the Partition P ′ in the orbits of the subgroup Cf if and only if e|f , or equivalently if and
only if Ce ≤ Cf ≤ Cd. When this is the case, µX(P, P ′) = µ(f/e), with µ the standard
Möbius function. Thus Formula (4.6) for ζ(H ≀X Cd, s) is indeed a particular case of the
formula of Theorem 1.

If m = p is prime, observe that the summation in (4.6) has only three terms:

(d, f) = (1, 1), (1, p), (p, p),

and (4.7) follows.
If m = 4, there are five terms:

(d, f) = (1, 1), (1, 2), (2, 2), (2, 4), (4, 4),

and (4.8) follows; the pair (d, f) = (1, 4) does not contribute, because µ(4) = 0.
For Q = S3 acting on I3 = {1, 2, 3}, the lattice ΠQ(I3) consists of five partitions: the

partition 0̂ in singletons, three partitions P (j) in the singleton {j} and a block of size two,

j = 1, 2, 3, and the partition 1̂ in one block. The values of the Möbius function µX are
given by the following table

µ(0̂, 0̂) = 1 µ(0̂, P (j)) = −1 µ(0̂, 1̂) = 2

µ(P (j), P (j)) = 1 µ(P (j), 1̂) = −1

µ(1̂, 1̂) = 1.

[Observe that the subgroups of S3 of the form (S3)P for some P ∈ ΠS3
(I3) are the sub-

groups of order 1, 2, and 6, but not the subgroup of order 3; indeed, the stability subgroup



REPRESENTATION ZETA FUNCTIONS OF WREATH PRODUCTS 9

of the orbits of the subgroup of order 3 is the whole group S3.] The left–hand side of
Formula (2.4) specialises to

6−1−s
(
ζH(s)3 − 3ζH(s)ζH(2s) + 2ζH(3s)

)

+ 3× 3−1−s × 2
(
ζH(s)ζH(2s)− ζH(3s)

)

+ (2 + 2−s)ζH(3s),

namely to (4.9) after minor reorganisation.
Let us finally check Formula (4.10). The lattice ΠS4

(I4) has

— 1 partition with blocks of size 1, 1, 1, 1,
— 6 partitions with blocks of size 2, 1, 1,
— 4 partitions with blocks of size 3, 1,
— 3 partitions with blocks of size 2, 2,
— 1 partition with one block of size 4,

namely altogether 15 partitions. We leave it to the reader to compute the Möbius function.
The summation in (4.10) has 5 + 4 + 2 + 2 + 1 = 14 terms, more precisely:

Terms with (S4)P = {1}, and therefore with ζ(S4)P
(s) = 1, contribute

24−1−s
(
ζH(s)4 − 6ζH(s)2ζH(2s) + 8ζH(s)ζH(3s) + 3ζH(2s)2 − 6ζH(4s)

)
.

Terms with (S4)P
∼= S2 (fixing two of the four points of I4), and therefore with ζ(S4)P

(s) =
2, contribute

6× 12−1−s × 2×
(
ζH(s)2ζH(2s)− 2ζH(s)ζH(3s)− ζH(2s)2 + 2ζH(4s)

)
.

Terms with (S4)P
∼= S3, and therefore with ζ(S4)P

(s) = 2 + 2−s, contribute

4× 4−1−s(2 + 2−s) (ζH(s)ζH(3s)− ζH(4s)) .

Terms with (S4)P
∼= S2 × S2 contribute

3× 6−1−s × 4
(
ζH(2s)2 − ζH(4s)

)
.

The term with (S4)P = S4 contributes
(
2 + 2−s + 2× 3−s

)
ζH(4s).

�

5. Reminder on representations of profinite groups

Concerning representations of profinite groups, Claim (i) in the following proposition1

is well–known, but we did not find any convenient reference. Claim (ii) is a straightfor-
ward consequence of the definitions (and is a particular case of, for example, [Wils–98,
Proposition 1.2.1]).

If G is a profinite group (or more generally a compact group, for example a finite group!),
recall that any representation of G in a Hilbert space is unitarisable (representations are
continuous, unless explicitly stated otherwise).

1We are grateful to Bachir Bekka for showing to us his personal notes on this.
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7. Proposition. Let G be a profinite group.
(i) Let π : G −→ U(H) be an irreducible unitary representation of G in a Hilbert

space H. Then π factors through a finite quotient of G.
(ii) Assume that G = lim←−Fn is an inverse limit of a system (pn,n−1 : Fn −→ Fn−1)n≥1

of finite groups and epimorphisms (here indexed by integers). If F is a finite group and
p : G −→ F a continuous epimorphism, then there exists an integer n such that p is the
composition of the canonical epimorphism pn : G −→ Fn and some epimorphism Fn −→ F .

Proof. Recall that a profinite group is a compact topological group in which every neigh-
bourhood of 1 contains an open normal subgroup (a subgroup of a compact group which
is open is necessarily of finite index). Equivalently, a profinite group is an inverse limit of
finite groups.

(i) Since irreducible representations of compact groups are finite dimensional (see for
example [Robe–83, Corollary 5.8]), H is finite dimensional; we can assume that H 6= {0}.

Consider a nonzero vector ξ ∈ H. Since π is continuous at 1, there exists a neighbour-
hood U of 1 in G such that

‖π(g)ξ − ξ‖ < 1 for all g ∈ U.

Since G is profinite, U contains a normal subgroup N of finite index. Thus

‖π(g)ξ − ξ‖ < 1 for all g ∈ N.

This implies that η +
∫

N
π(n)ξdn (with dn the Haar measure on N of mass one) is a

non–zero N–invariant vector, and in particular that the space HN of N–invariant vectors
is not {0}.

Since N is normal, the space HN is π(G)–invariant. Since π is irreducible, HN = H; in
other words, π factors through G/N .

(ii) Since the kernel of p is closed and of finite index, it is also open. It follows from the
definition of the topology of lim←−Fn that ker p contains ker pn for some n, and the claim
follows. �

8. Corollary. Let Q be a finite group acting on a finite set X, as in Section 2. We have

(5.1) hn(W (Q, k + 1)) ≥ hn(W (Q, k))

for all n ≥ 1, k ≥ 0, and

(5.2) hn(W prof(Q)) = lim
k→∞

hn(W (Q, k)) ∈ {0, 1, 2, . . . ,∞}

for all n ≥ 1.
Moreover, hn(W prof(Q)) = 0 unless n is of the form pe1

1 . . . per
r , where p1, . . . , pr are the

prime factors of the order of Q; and the same holds for hn(W (Q, k)) for all k ≥ 0.

Proof. The inequalities follow from (3.5), and the equality follows from Proposition 7. The
last statement follows from (3.2) and from the general fact according to which the degrees
of the irreducible representations of a finite group divide the order of this group. �
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9. Particular case. For d ≥ 2, any irreducible representation of the group W prof(Sd) of
automorphisms of the d–ary tree factors through W (Sd, k), for some k ≥ 0.

Similarly, any irreducible representation of the group W prof(Cd) of d–adic automor-
phisms of the d–ary tree factors through W (Cd, k), for some k ≥ 0.

In the case of Q = Cp cyclic of prime order p, we can be more specific. For a finite p–

group H, let pδmax(H) denote the maximum of the degrees of the irreducible representations
of H. A first rather straightforward consequence of Formula (4.7) is

(5.3) δmax (W (Cp, k)) =





2k−2 + 2k−3 − 1 if p = 2 and k ≥ 3,

0 [respectively 1] if p = 2 and k = 1 [respectively k = 2],

1 + p + · · ·+ pk−2 if p ≥ 3 and k ≥ 2.

A second consequence of (4.7), using slightly more calculus, is that

(5.4) lim
k→∞

hpj (W (Cp, k)) = ∞ for all j ≥ 0

and that the degree set of W (Cp, k) is

(5.5) cd (W (Cp, k)) =
{
pj | 0 ≤ j ≤ δmax (W (Cp, k))

}
.

Formula (3.7) for hn(W prof(Cp)) follows.
Recall that the degree set of a finite group G is defined by cd(G) = {n ∈ N | hn(G) > 0}.

About (5.5), let us recall that the possible degree sets of finite p–groups are known; indeed,
by a theorem of Isaacs, any finite subset of N of the form

{pej | 0 ≤ j ≤ m} with e0 = 0 < e1 < · · · < em

is such a set [Hupp–98, p. 352]. Much less seems to be known about the degree sets of
more general finite groups; see in particular [Hupp–98, Remarks 24.5 and § 27]. Possible
degree patterns (namely possible representation zeta functions of finite groups) are even
more mysterious [Hupp–98, § 6].

Observe that W prof(Cd) also has non–continuous unitary representations. For example,
it can be seen that the abelianisation of W prof(Cd) is isomorphic to the direct product∏

k≥1 Cd of infinitely many copies of Cd. Given any free ultrafilter ω on N and a character

χ 6= 1 of Cd, the composition of the abelianisation W prof(Cd) −→
∏

k≥1 Cd with the ω–limit∏
k≥1 Cd −→ C∗, (ck)k≥1 7−→ limω χ(ck) is a discontinuous character W prof(Cd) −→ C∗.

6. Proof of Theorems 2 and 3

Let Q be a finite group acting on a finite set X of size d ≥ 2. In this long section, we
shall denote by W (Q) the profinite group denoted by W prof(Q) in Section 3. We will first
prove Theorem 2:

— W (Q) is rigid if and only if Q is perfect;

and then Theorem 3, namely, in case Q is perfect, that:

— the Dirichlet series ζ(W (Q), s) has a finite abscissa of convergence, say s0 =
s0(W (Q)), see Proposition 15,

— s0 > 0, see Proposition 16,
— ζ(W (Q), s) has near s0 a Puiseux expansion of the form

∑∞
n=0 an(s − s0)

n/e, for
some e ≤ d, see Proposition 17.
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10. Observation. (i) For two integers n ≥ 2 and d ≥ 2, we have

(6.1)
[

d
√

n
]
≤ n

2
.

(ii) For a pair of integers e, f such that 0 ≤ f ≤ e and a prime p, we have

(6.2)
2 + e

(2 + e− f)pf





= 1 if f = 0,

≤ 3

4
if f ≥ 1.

Proof. (i) If n ≥ 3 and d ≥ 3, the inequality follows from 2d ≤ 8×2d−3 < 9×nd−3 ≤ nd−1.
If n ≥ 4 and d = 2, ditto from

√
n ≤ n

2
. If n = 3 and d = 2, then [

√
n] = 1 < 1.5 = n

2
. If

n = 2 and d ≥ 2, then [ d
√

n ] = 1 ≤ n
2
.

(ii) If f = 0, the equality is obvious. If f = 1 (so that e ≥ 1), we have

2 + e

(1 + e)p
≤

3
2 (1 + e)

(1 + e)p
≤ 3

4
.

If f = 2 (so that e ≥ 2), we have

2 + e

ep2
≤ 2

p2
≤ 1

2
.

If f ≥ 3 and f ≤ 3
4
e, we have

2 + e

(2 + e− f)pf
≤ 2 + e

(2 + 1
4e)8

≤ 1

2
.

If f ≥ 3 and f ≥ 3
4e, we have

2 + e

(2 + e− f)pf
≤ 2e

2× 23e/4
≤ 3

4
.

�

For all positive ν ∈ R and k ∈ N, set

hν,k =

{
hn(W (Q, k)) if ν = n ∈ N,

0 if ν /∈ N,
and hν =

{
hn(W (Q)) if ν = n ∈ N,

0 if ν /∈ N.

(Values for ν /∈ N will only occur in Lemma 14.) We write d for |X |.
In all what follows, we assume that d ≥ 2, that Q acts transitively on X . (The transitiv-

ity hypothesis could most likely be weakened, however arbitrary actions – and in particular
points of X fixed by Q – would introduce unnecessary complications.)
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11. Lemma. Assume that the group Q is perfect and acts transitively on a set X of size
d ≥ 2. For any n ≥ 1, we have

(6.3) hn = hn,ℓ = hn,k for all ℓ ≥ k and k > log2 n.

Proof. Step one. If Q is perfect, then W (Q, k) is also perfect, so that h1,k = 1 for all
k ≥ 1. Hence, the lemma holds for n = 1.

Step two. From Clifford’s theory applied to W (Q, k + 1) = W (Q, k) ≀X Q, we see that
any irreducible representation π of W (Q, k + 1) of degree n is of the form.

(6.4) π = πρ1,...,ρd;σ = Ind
W (Q,k)X

⋊Q=W (Q,k+1)
W (Q,k)X

⋊QP
(ρ1 ⊠ · · ·⊠ ρd ⊠ σ) ,

where (ρ1, . . . , ρd) is a d–uple of irreducible representations of W (Q, k), where P is the
partition of X for which ρi ∼ ρj if and only if i, j are in the same block of P , and where
σ is an irreducible representation of QP (compare with (4.4)). Set

f = [W (Q, k + 1) : W (Q, k)X
⋊ QP ] deg σ = [Q : QP ] deg σ

and distinguish two cases.
In the first case, f = 1. Thus, on the one hand [Q : QP ] = 1, and therefore ρ1 = · · · = ρd,

and on the other hand deg σ = 1. Hence

(6.5) n = deg πρ1,...,ρ1;1 = (deg ρ1)
d or deg ρ1 = d

√
deg π = d

√
n.

In the second case, f ≥ 2. Hence

n = deg πρ1,...,ρd;σ ≥ 2 deg(ρ1) · · ·deg(ρd) ≥ 2 deg(ρi)

namely

(6.6) deg(ρi) ≤
n

2
∀i ∈ {1, . . . , d}.

By (6.1),

deg ρi ≤
[n
2

]
∀i ∈ {1, . . . , d}

in the two cases.

Step three. Let us show that the lemma holds for n < 2m, by induction on m. Since the
case m = 1 is covered by Step one, we can assume that m > 1 and that the lemma holds
up to m− 1. Step two shows that there exists a formula of the type

(6.7) hn,ℓ = F
(
h1,ℓ−1, . . . , h[n/2],ℓ−1

)

where F is an expression independent of ℓ. Since [n/2] < 2m−1, we have

h1,ℓ−1 = h1,k−1, . . . , h[n/2],ℓ−1 = h[n/2],k−1

for ℓ−1 ≥ k−1 and k−1 > m−1, by the induction hypothesis. It follows from (6.7) that

hn,ℓ = hn,k for all ℓ ≥ k and k > log2 n

whenever < 2m, and this completes the induction step. �
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12. Proof of Theorem 2.

If Q is perfect, then W (Q) is rigid by the previous lemma.
Assume Q is not perfect. It is known that the abelianisation of W (Q, k) is isomorphic

to the direct sum of k × |Q\X | copies of the abelianisation of Q. (See [BORT–96, § 4.4,
p. 145] for a more general result, since there the action of Q on X need not be transitive.)
In particular,

h1(W (Q)) ≥ h1

( ∞⊕

j=1

(Q/[Q, Q])j

)
= ∞

(where each (Q/[Q, Q])j denotes a copy of Q/[Q, Q]), and W (Q) is not rigid. �

We now proceed to prove Theorem 3.

13. Lemma. There exists a constant t0 ≥ 0 with the following property. For any pair of
integers d ≥ 1 and g ≥ 0, we have

(6.8)
∑

g1,...,gd≥0
P

d
i=1

gi=g

(
1 + g

2

(1 + g1

2 ) · · · (1 + gd

2 )

)t

≤ 4d−1 for all t ≥ t0.

More precisely, any t0 such that

(6.9) 1 + 2

(
5

6

)t0

+
∞∑

h=3

(
2

1 + h
2

)t0

≤ 2

is suitable.

Proof. with root singularities For d = 1, the lemma holds with t0 = 0. We assume from
now on that d ≥ 2, and we proceed by induction on d, assuming that the lemma holds
up to d − 1. For g = 0 and g = 1, the inequality reduces respectively to 1 ≤ 4d−1 and
d ≤ 4d−1, so that t0 = 0 is again suitable; we can assume therefore that g ≥ 2.

The left–hand side of (6.8) can be written as

(6.10)

g∑

g1=0

(
1 + g

2

(1 + g1

2 )(1 + g−g1

2 )

)t ∑

g2,...,gd≥0
P

d
i=2

gi=g−g1

(
1 + g−g1

2

(1 + g2

2
) · · · (1 + gd

2
)

)t

,

where the second summation is bounded by 4d−2, by the induction hypothesis. If g = 2,

the first sum is 2 +
(

8
9

)t
, and in particular is bounded by 4, so that we can assume now

that g ≥ 3.
The summation on g1 from 0 to g in (6.10) is bounded by twice the summation on g1

from 0 to [g/2], namely by

2



1 +

(
1 + g

2
3
2 (1 + g−1

2 )

)t

+

(
1 + g

2

2(1 + g−2
2 )

)t

+

[g/2]∑

g1=3

(
1 + g

2

(1 + g1

2
)(1 + g−g1

2
)

)t


 .
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Since g ≥ 3, we have firstly

1 +
g

2
≤ 5

8
+

g

8
+

g

2
=

5

6
× 3

2

(
1

2
+

g

2

)
and therefore

1 + g
2

3
2
(1 + g−1

2
)
≤ 5

6
.

We have secondly
1 + g

2

2(1 + g−2
2

)
=

1

g
+

1

2
≤ 5

6
.

And we have thirdly (recall that g1 ≤ g/2)

1 +
g

2
≤ 1 + (g − g1) < 2

(
1 +

g − g1

2

)
so that

1 + g
2

(1 + g1

2 )(1 + g−g1

2 )
<

2

1 + g1

2

.

Hence, the left–hand side of (6.8) is bounded by

2×



1 + 2

(
5

6

)t

+
∞∑

h=3

(
2

1 + h
2

)t


× 4d−2,

namely by 2× 2× 4d−2 = 4d−1 if t is large enough, as was to be shown. �

Here as in Corollary 8, we denote by p1, . . . , pr the prime factors of |Q|. Observe that
they also include the prime factors of the degree of any irreducible representation of one
of the groups W (Q, k) or W (Q).

14. Lemma. There exists a constant t1 ≥ 0 with the following property. For any n ≥ 1,
with prime decomposition n = pe1

1 · · · per
r (e1, . . . , er ≥ 0), we have

(6.11) hn,k ≤
(

n

(1 + e1

2 ) · · · (1 + er

2 )

)t

for all t ≥ t1 and k ≥ 0.

More precisely, any t1 such that

(6.12) |Q| |X ||X| 4r(d−1)|Q|
(

3

4

)t1

≤ 1 and t1 ≥ t0

(with t0 as in Lemma 13) is suitable.

Proof. Step one. For an integer n ≥ 1 and e1, . . . , er as above, set

hn =

(
n

(1 + e1

2 ) · · · (1 + er

2 )

)t

,

so that we wish to show that hn,k ≤ hn for all k ≥ 0. For ν ∈ R, ν > 0, ν /∈ N, it is

convenient to set hν = 0, so that we have obviously hν,k = hν ∀k ≥ 0.

If k = 0, we distinguish two cases: if n = 1, then h1,0 = 1 and h1 = 1 (the last equality

for all t), so that hn,0 = hn; if n ≥ 2, then hn,0 = 0 and again hn,0 ≤ hn. We assume from
now on that the lemma is proven for some k ≥ 0, and we will show by induction that it
holds also for k + 1.
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The irreducible representations of W (Q, k + 1) of the first type, see (6.5) in the proof
of Lemma 11, contribute to hn,k+1 by

h
(i)
n,k+1 = hn1/d,k

(recall that hn1/d,k = 0 if n1/d is not an integer). The representations of the second type,
see (6.6) in the proof of Lemma 11, contribute to hn,k+1 by

h
(ii)
n,k+1 ≤

( ∑

P∈ΠQ(X)

∑

σ∈dQP

)′ ∑

n1,...,nd≥1,
Qd

i=1
ni=

n
(deg σ)[Q:QP ]

hn1,k · · ·hnd,k

where the prime in (
∑

P

∑
σ)

′
indicates that the pair (P, σ) = (1̂, 1) does not occur.

Observe that deg σ is a divisor of |QP |, so that [Q : QP ] deg σ is a divisor of |Q|. If we
introduce the constant

K = number of pairs (P, σ), with P ∈ ΠQ(X), σ ∈ Q̂P , and (P, σ) 6= (1̂, 1),

it follows that

(6.13) hn,k+1 = h
(i)
n,k+1 + h

(ii)
n,k+1 ≤ hn1/d,k + K

∑

2≤f≤|Q|
f|n

∑

n1,...,nd≥1
Qd

i=1
ni=n/f

hn1,k · · ·hnd,k.

Observe that the number of choices for P is strictly bounded by |X ||X| and that the number
of choices for σ is bounded by |Q|, so that K + 1 ≤ |Q||X ||X|.

Step two. In the last sum of Inequality (6.13), any ni which occurs, namely any ni such
that hni,k 6= 0, is a product of the pj ’s. We repeat the definition of the exponents ej , and
we define exponents ei,j , fj by

(6.14) n =
∏

1≤j≤r

p
ej

j , ni =
∏

1≤j≤r

p
ei,j

j for i = 1, . . . , d, f =
∏

1≤j≤r

p
fj

j .

We use the induction hypothesis to bound the first term of (6.13):

hn1/d,k ≤ hn1/d · · · hn1/d hn1/d/pj
,

where we have d − 1 factors hn1/d and one factor in which j is such that pj divides n (in
case there does not exist any such j, we have hn1/d,k = 0). We use again the induction
hypothesis to bound the second term of (6.13), and we collect terms to obtain

hn,k+1 ≤ (K + 1)
∑

2≤f≤|Q|
f|n

∑

n1,...,nd≥1

f
Q

d
i=1

ni=n

hn1
· · ·hnd

.
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Using the definition of the hni
and reordering the terms, we have

hn,k+1 ≤ (K + 1)
∑

2≤f≤|Q|
f|n

∑

n1,...,nd≥1

f
Qd

i=1
ni=n

(
n1

(1 +
e1,1

2 ) · · · (1 +
e1,r

2 )

)t

· · ·
(

nd

(1 +
ed,1

2
) · · · (1 +

ed,r

2
)

)t

= (K + 1)
∑

2≤f≤|Q|
f|n

∑

n1,...,nd≥1

f
Q

d
i=1

ni=n

d∏

i=1

(
ni

)t r∏

j=1

(
1

1 +
ej

2

)t

(
1 + e1

2

(1 +
e1,1

2 ) · · · (1 +
ed,1

2 )

)t

· · ·
(

1 + er

2

(1 +
e1,r

2 ) · · · (1 +
ed,r

2 )

)t

= (K + 1)

(
n∏r

j=1(1 +
ej

2 )

)t ∑

2≤f≤|Q|
f|n

1

f t

∑

n1,...,nd≥1

f
Q

d
i=1

ni=n

(
1 + e1

2

(1 +
e1,1

2 ) · · · (1 +
ed,1

2 )

)t

· · ·
(

1 + er

2

(1 +
e1,r

2 ) · · · (1 +
ed,r

2 )

)t

where the term

(
n

Qr
j=1(1+

ej
2 )

)t

is precisely hn. We replace now a sum of products by a

product of sums, and we obtain

hn,k+1 ≤ (K + 1) hn

∑

2≤f≤|Q|
f|n

1

f t
×




∑

e1,1,...,ed,1≥0
P

d
i=1

ei,1=e1−f1

(
1 + e1

2

(1 +
e1,1

2 ) · · · (1 +
ed,1

2 )

)t


×

· · · ×




∑

e1,r,...,ed,r≥0
P

d
i=1

ei,r=er−fr

(
1 + er

2

(1 +
e1,r

2 ) · · · (1 +
ed,r

2 )

)t




= (K + 1) hn

∑

2≤f≤|Q|
f|n


 1 + e1

2(
1 + e1−f1

2

)
pf1

1




t

· · ·


 1 + er

2(
1 + er−fr

2

)
pfr

r




t

×




∑

e1,1,...,ed,1≥0
Pd

i=1
ei,1=e1−f1

(
1 + e1−f1

2

(1 +
e1,1

2
) · · · (1 +

ed,1

2
)

)t


×

· · · ×




∑

e1,r,...,ed,r≥0
Pd

i=1
ei,r=er−fr

(
1 + er−fr

2

(1 +
e1,r

2
) · · · (1 +

ed,r

2
)

)t


 .



18 REPRESENTATION ZETA FUNCTIONS OF WREATH PRODUCTS

Each of the r terms
1+

e1
2

(1+ e1−f1
2 )p

f1
1

, . . . ,
1+ er

2

(1+ er−fr
2 )pfr

r
above is bounded by 1, and at least

one of them is bounded by 3
4

(see Observation 10.ii). Each of the next r sums over d–uples

of e⋆,⋆’s is bounded by 4d−1, by Lemma 13. It follows that

hn,k+1 ≤ hn (K + 1) 4r(d−1)
∑

2≤f≤|Q|
f|n

(
3

4

)t

≤ hn (K + 1) 4r(d−1)|Q|
(

3

4

)t

.

For t large enough, this shows that

hn,k+1 ≤ hn

and ends the induction argument. �

15. Proposition. Let Q be a perfect finite group acting transitively on a finite set X with
at least two points. Then the representation zeta function ζG(s) has a finite abscissa of
convergence, say s0(W (Q)).

Moreover, the function ζG(s), which is holomorphic in the half–plane defined by Re(s) >
s0(W (Q)), has a singularity at s0(W (Q)).

Proof. It is elementary to check that h(W (Q)) =
∑∞

n=1 hn(W (Q)) =∞ (if necessary, see
the first step of the proof of the next proposition, which is independent of the present
proof).

For any rigid group G such that h(G) =∞, namely such that the Dirichlet series ζG(s)
diverges at s = 0, it is a classical result (see e.g. Theorems 7 and 10 in [HaRi–15]) that the
abscissa of convergence of ζG(s) is given by

(6.15) s0(G) = lim sup
n→∞

ln
(∑n

j=1 hj(G)
)

lnn

and that s0(G) is a singular point of the function ζG(s). Hence, by Lemma 14, and using
the notation hn of the proof of Lemma 14:

s0(W (Q)) ≤ lim sup
n→∞

ln
(∑n

j=1 hj

)

lnn

≤ lim sup
n→∞

1

lnn
ln




e1∑

d1=0

· · ·
er∑

dr=0

(
n

(1 + d1

2 ) · · · (1 + dr

2 )

)t



≤ lim sup
n→∞

1

lnn
ln


∑

d | n

nt


 ≤ lim sup

n→∞

1

lnn
ln
(
n× nt

)

≤ t + 1

where e1, . . . , er are defined in terms of n as in Lemma 14. Observe that, at this stage, the
only clear bounds are 0 ≤ s0(W (Q)) <∞. �
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16. Proposition. In the situation of the previous proposition (Q perfect acting transitively
on X, with d = |X | ≥ 2), we have

(6.16) s0(W (Q)) > 0.

Proof. Step one: there exist infinitely many values of n such that hn(W (Q)) ≥ 1.
Indeed, since Q = W (Q, 1) is perfect and not reduced to {e}, there exists n ≥ 2 such

that hn(Q) ≥ 1. Let k ≥ 1 be such that hn(W (Q, k)) ≥ 1 and let ρ1 be an irreducible
representation of W (Q, k) of dimension n. The nd–dimensional representation πρ1,...,ρ1;1,
as in (6.4), contributes to hnd(W (Q, k + 1)) ≥ 1. Continue with nd in lieu of n.

Step two: there exist infinitely many values of n for which hn(W (Q)) ≥ 2.
Let N ≥ 2 be an integer. By Step one, there exist k ≥ 1 and irreducible representations

ρ1, . . . , ρd of W (Q, k) of pairwise distinct degrees, all at least N . Since Q is perfect, and
therefore strictly contained in the symmetric group of X , the action of Q is not d times
transitive. Hence there exists a permutation τ of X such that

ρ1, . . . , ρd and ρτ(1), . . . , ρτ(d)

are not in the same orbit of Q acting on
(
Ŵ (Q, k)

)d

. It follows that the irreducible

representations

Ind
W (Q,k+1)
W (Q,k)X (ρ1 ⊠ · · ·⊠ ρd) and Ind

W (Q,k+1)
W (Q,k)X

(
ρτ(1) ⊠ · · ·⊠ ρτ(d)

)

of W (Q, k + 1), which are both of degree |Q|
∏d

i=1 deg ρi (a degree > Nd), are not equiva-
lent. The claim of Step two follows.

Step three: For any positive integer B, there exist infinitely many values of n for which
hn(W (Q)) ≥ B.

We proceed by induction on B (see Step two for B = 2). Suppose that Step three
has been shown for some value B0 ≥ 2. Let N ≥ 2 be an integer. By the induction
hypothesis, there exist integers k ≥ 1 and n1, . . . , nd such that N < n1 < · · · < nd and
hni

(W (Q, k)) ≥ B0, i = 1, . . . , d. For each i, choose hni
(W (Q, k)) pairwise inequivalent

irreducible representations ρi,j of W (Q, k) of degree ni. The irreducible representations

Ind
W (Q,k+1)
W (Q,k)X (ρ1,j1 ⊠ · · ·⊠ ρd,jd

) , 1 ≤ ji ≤ hni
(W (Q, k)) (i = 1, . . . d)

of W (Q, k+1) are pairwise inequivalent, all of the same degree, which is |Q|
∏d

i=1 ni > Nd,

and there are
∏d

i=1 hni
(W (Q, k)) ≥ (B0)

d of them.

Step four: Set K = d

√
1

d! 2d . Let n ≥ 1 be such that hn(W (Q)) ≥ min{2d, 2
K }. Then

h|Q|nd(W (Q)) ≥
(
K hn(W (Q))

)d

.

Observe that the existence of the integer n involved in the claim of Step four follows
from Step three. Let k ≥ 1 be such that there exist pairwise inequivalent irreducible
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representations ρ1, . . . , ρh(n) of W (Q, k) of dimension n, where we have written h(n) for
hn(W (Q)). Any choice of d distinct representations ρj1 , . . . , ρjd

among ρ1, . . . , ρh(n) pro-
vides an irreducible representation

Ind
W (Q,k+1)
W (Q,k)X (ρj1 ⊠ · · ·⊠ ρjd

)

of W (Q, k+1) of dimension |Q|nd. Different choices provide nonequivalent representations,

and there are
(
h(n)

d

)
≥ (h(n)/2)d

d!
= (Kh(n))d such choices.

Step five: end of proof.

Choose B such that d
d−1

lnK + lnB > 0. By iteration of the inequality shown in Step
four, for some m ≥ 2, we have

h(m) ≥ B, h(|Q|md) ≥ (Kh(m))d,

h(|Q|1+dmd2

) ≥
(
K(Kh(m))d

)d
= Kd+d2

h(m)d2

, . . .

and more generally

h
(
|Q|(dt−1)/(d−1)mdt

)
≥ Kd(dt−1)/(d−1) Bdt

for any integer t ≥ 1.

Hence

s0(W (Q)) = lim sup
n→∞

ln
(∑n

j=1 h(j)
)

lnn

≥ lim sup
t→∞

ln
(
h
(
|Q|(dt−1)/(d−1)mdt))

ln
(
|Q|(dt−1)/(d−1)mdt

)

≥ lim sup
t→∞

ln
(
Kd(dt−1)/(d−1)Bdt

)

ln
(
|Q|(dt−1)/(d−1)mdt

)

= lim sup
t→∞

ddt−1
d−1

lnK + dt lnB
dt−1
d−1

ln |Q|+ dt lnm

=
d

d−1 lnK + lnB
1

d−1
ln |Q|+ lnm

and the last fraction is positive by the choice of B. �

We concentrate briefly on the group Q = A5 to introduce the next proposition. Consider
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the polynomial Ψ ∈ Q[X1, X2, X3, X4, X5, Y1, Y2, Y3] defined by

(6.17)

Ψ(X1, X2, X3, X4, X5, Y2, Y3, Y5) =

1

60
Y 2

2 Y3Y5

(
X5

1 − 10X2
1X3 − 15X1X

2
2 + 30X2X3 + 30X1X4 − 36X5

)

+ Y2Y3Y5

(
X1X

2
2 − 2X2X3 −X1X4 + 2X5

)

+
3

2
Y 2

2 Y5

(
X2

1X3 −X2X3 − 2X1X4 + 2X5

)

+ Y2Y5 (2 + Y2)
(
X2X3 −X5

)

+ Y5 (3 + Y3)
(
X1X4 −X5

)

+
(
1 + 2Y3 + Y 2

2 + Y5

)
X5.

Since W (A5) ≀5 A5
∼= W (A5), the representation zeta function ζ(s) = ζ(W (A5), s) is a

solution of the equation

(6.18) Ψ
(
ζ(s), ζ(2s), ζ(3s), ζ(4s), ζ(5s), 2−s, 3−s, 5−s

)
− ζ(s) = 0

(compare with (3.9)).
Let X∗ stand for {X2, X3, X4, X5} and Y∗ for {Y2, Y3, Y5}; we can also write

Ψ(X1, X∗, Y∗) =

5∑

i=0

ai(X∗, Y∗)X
5−i
1 ,

with

a0(X∗, Y∗) =
1

60
Y 2

2 Y3Y5, a3(X∗, Y∗) = −1

6
X3Y

2
2 Y3Y5 +

3

2
X3Y

2
2 Y5, . . .

(it happens that a1(X∗, Y∗) = a2(X∗, Y∗) = 0, but this does not play any role in the
argument below). Let R denote the ring of holomorphic functions in the half–plane of
inequation Re(s) > 1

2
s0(W (A5)). Since the Dirichlet series for ζ(2s), . . . , ζ(5s) converge

when Re(s) > 1
2s0(W (A5)), we can view a0, . . . , a5 as elements of R and Ψ(...) as a one

variable polynomial Φ(X1) in the ring R[X1]; then Φ(X1)−X1 has a discriminant

(6.19) ∆ + Disc(Φ(X1)−X1) = a8
0

∏

1≤i<j≤5

(αi − αj)
2 ∈ R,

where α1, . . . , α5 are the roots of the equation
∑5

i=0 aiX
5−i
1 − X1 = 0 in an appropriate

extension of the field of fractions of R (for discriminants, see e.g. [Bour–81, chapitre IV, § 6,
no 7, proposition 11]). We can evaluate ∆ at s0 + s0(W (A5)), to find its value ∆(s0) ∈ C;
observe that, in particular, ∆ is a function which is holomorphic in a neighbourhood of s0.

17. Proposition. Let Q be a perfect group acting transitively on a set X with d ≥ 2 points,
as in Propositions 15 and 16. Let ∆ be the holomorphic function defined for Re(s) > 1

2
s0

as above.
(i) We have ∆(s0) = 0, so that s0 is a zero of the function ∆ ∈ R.



22 REPRESENTATION ZETA FUNCTIONS OF WREATH PRODUCTS

(ii) When s→ s0 by real values, with s > s0, the limit lims→s0
ζ(s) exists and is finite.

(iii) Near s0, the function ζ(s) has a Puiseux expansion of the form

(6.20) ζ(s) =
∞∑

n=0

an(s− s0)
n/e,

where e is an integer such that 2 ≤ e ≤ d.
(iv) The function ζ(s) extends as an analytic function with only root singularities in the

half–plane defined by Re(s) > 0.

Proof. (i) If s0 were not a zero of ∆, we could extend holomorphically ζ to the left of s0,
in contradiction with the definition of s0 and the classical result used in the proof of
Proposition 15, that s0 is a singular point.

(ii) As ζ(s) near s0 satisfies a polynomial equation with all coefficients bounded and the
top coefficient bounded away from zero, it has a finite limit when s→ s0.

(iii) This is standard in the theory of Puiseux expansions. Note however that we have to
apply Puiseux theory to a polynomial Φ(X1)−X1 in R[X1], with R a ring of holomorphic
functions (or a ring of germs of such functions) and not just the polynomial ring R = C[z];
see [BrKn–86, p. 329]. One way to argue is to use a result2 by Levinson according to
which a germ of analytic plane curve is analytically isomorphic to a germ of algebraic
plane curve; in other words, up to an analytic change of coordinates in the plane, any
analytic curve can be locally described by an equation of the form f(z, X1) = 0, with
f ∈ C[z, X1] a polynomial; see [BrKn–86, p. 358]. Thus, we can indeed apply the theory
of Puiseux expansions [BrKn–86, in particular p. 386].

Since the polynomial Φ(X1)−X1 ∈ R[X1] is of degree d, the function ζ has around s0

a Puiseux expansion in powers of (s− s0)
1/e for some e ≤ d.

(iv) From Theorem 1 and the isomorphism W (Q) ≀X Q ∼= W (Q), we obtain a func-
tional equation which is polynomial of degree d in ζ(W (Q), s), with coefficients involv-
ing ζ(W (Q), 2s), . . . , ζ(W (Q), ds), and functions which are holomorphic in the half–plane
Re(s) > 0 (see (6.18) for our standard particular case). It follows that ζ(W (Q), s) has
successive algebraic extensions to half–planes Re(s) > 1

2
s0, Re(s) > 1

4
s0, . . ., and indeed

to the half–plane Re(s) > 0. �

The proof of Theorem 3 is now complete.

18. Question. Is the imaginary axis a natural frontier of the function ζ(s) of Proposi-
tion 17?

More precisely: is it true that, for any curve in the half–plane {Re(s) > 0} avoiding
the singularities and ending on the imaginary axis, the function ζ(s) does not extend
holomorphically up to the end point?

Numerical estimates. A numerical estimate for s0 = s0(W (Q)) when Q = A5 acts on
X = I5 is given in (3.11). The first terms3 of the Puiseux expansion of ζ(W (A5), s) near
s0 are as in (3.10); in particular, e = 2.

A few numerical experiments suggest a positive answer to Question 18. In the case of
W (A5), it seems that the discriminant of Φ(X1)−X1 vanishes at s0 and two other places

(6.21) s′0 ± it′0 ≈ 0.8973038819± 0.0264098303 i.

2We are grateful to Claude Weber for telling us about this.
3We are grateful to Don Zagier for having computed these terms for us.
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A small program was written to do the following: a small complex step ǫ is chosen, for
instance 0.001 + 0.0001i, and an integer N large enough so that Re(Nǫ) > 2 is chosen.

The values of ζG(s) at s = ǫ, 2ǫ, . . . , Nǫ will be approximated by numerical values
zn. These are computed in decreasing order zN , zN−1, . . . , z1. If Re(nǫ) > 2, then zn is
computed using the first 1012 terms of the power series. Otherwise, the program ensures
that z2n, . . . , z5n are computed, and obtains a polynomial functional equation for zn, with
five roots; the root closest to zn+1 is chosen as approximation for zn.

If one plots in 3-space the points (Re(ǫ)n, Re(zn), Im(zn)), one sees discrete approxima-
tions of continuous curves, that approximate ζG(s) along radial lines R+ǫ. The following
remarks can be made empirically:

— these curves remain bounded as Re(ǫ)n→ 0;
— they are smooth except when ǫ is a real multiple of s0 or s′0 ± it′0;
— for ǫ a real multiple of 1 + i, one sees as Re(ǫ)n → 0 a spiral with non-vanishing

radius and faster and faster winding;
— other random values of ǫ indicate either convergence, or oscillation, or spiralling.

19. Remark. Let G be a connected compact Lie group which is semisimple and simply
connected; denote by ℓ its rank and by κ = 1

2
(dim(G)− ℓ) the number of positive roots of

the Lie algebra Lie(G)⊗R C. By Hermann Weyl’s theory, there exists a polynomial P of
degree κ in ℓ variables such that

ζ(G, s) =
∑

n1,...,nℓ≥0

P (n1, . . . , nℓ)
−s.

For example, if G is simple of rank ℓ = 2, we have [Hump–72, Page 140]

ζ(SU(3), s) =

∞∑

m1=0

∞∑

m2=0

(1

2
(m1 + 1)(m2 + 1)(m1 + m2 + 2)

)−s

= 1 + 2 · 3−s + 2 · 6−s + 8−s + 2 · 10−s + 4 · 15−s + 2 · 21−s + 2 · 24−s

+ 27−s + 2 · 28−s + 2 · 35−s + 2 · 36−s + 2 · 42−s + 2 · 45−s + 2 · 48−s

+ 2 · 55−s + 2 · 60−s + 2 · 63−s + 64−s + 2 · 66−s + · · · · · · · · ·

ζ(Spin5(C), s) =
∞∑

m1=0

∞∑

m2=0

(1

6
(m1 + 1)(m2 + 1)(m1 + m2 + 2)(2m1 + m2 + 3)

)−s

ζ(G2, s) =
∞∑

m1=0

∞∑

m2=0

( 1

120
(m1 + 1)(m2 + 1)(m1 + m2 + 2) ×

(m1 + 2m2 + 3)(m1 + 3m2 + 4)(2m1 + 3m2 + 5)
)−s

.

20. Theorem (Weyl, Mellin, and Mahler). Let G be a connected compact Lie group
which is semisimple and simply connected, and let ℓ, κ be as above.

The abscissa of convergence of ζ(G, s) is ℓ
κ and ζ(G, s) extends to a meromorphic func-

tion in the whole complex plane. Moreover the poles of ζ(G, s) are all simple and at rational
points of the real axis; in particular, the largest singularity s0(G) = ℓ

κ is a simple pole of
ζ(G, s).
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References. This theorem4 is a straightforward consequence of several classical results.
More precisely, given the formula of Weyl for the dimensions of the irreducible represen-
tations of G, it becomes a particular case of Satz II in [Mahl–28], where the more general
case of

∑
m1,...,mℓ≥0 P1(m1, . . . , mℓ)P2(m1, . . . , mℓ)

−s is considered.

See also [LaLu–08, Theorem 5.1], as well as other results on Dirichlet series of related
form in [Sarg–84]. �

A comparison with Proposition 17 shows how different representation zeta functions
can be from each other.

7. Locally finite groups and finitely generated groups acting on rooted trees

Besides the group W prof(Q) defined in (3.6), we have also natural injections

(7.1) W (Q, k) −→ W (Q, k + 1),

(see (3.5)) and therefore a corresponding locally finite group

(7.2) W locfin(Q) =
⋃

k≥1

W (Q, k).

For integers d ≥ 2 and k ≥ 0, let Td(k) denote the d–ary rooted tree of height k;
its vertices are the finite words in Id = {1, 2, . . . , d} of length at most k, and any word
w of length between 0 (the empty word) and k − 1 is adjacent to the k words wx, for
x ∈ {1, . . . , d}. We denote by Td the infinite d–ary rooted tree, in which the subtree
induced by the vertices at distance at most k from the root is precisely Td(k).

The particular case of (3.1) and (3.6) in which Q is the symmetric group Sd acting in
the standard way on the set Id + {1, 2, . . . , d} provide the full automorphism groups of
these trees:

(7.3) W (Sd, k) = Aut (Td(k)) and W prof(Sd) = Aut (Td) .

The case of Q = Cd acting by cyclic permutations on Id gives rise to the so–called group of
d–adic automorphisms of Td. Observe that, for p a prime, W (Cp, k) is a p–Sylow subgroup
of W (Sp, k), and W (Cp) is a p–Sylow subgroup of W (Sp).

For simplicity, we assume from now on that Q acts faithfully on the set X of size d ≥ 2,
identified to Id. The groups defined by (3.1) and (3.6) are therefore naturally groups of
tree automorphisms:

(7.4) W (Q, k) ⊂ Aut (Td(k)) and W prof(Q) ⊂ Aut (Td) .

The epimorphism W (Q, k +1) −→ W (Q, k) of (3.5) is the restriction to Td(k) of automor-
phisms of Td(k + 1), and the epimorphism W (Q, k) −→ Q corresponding in an analogous
way to (3.1) is the restriction to X of automorphisms of Td(k), where X is identified with
the set of leaves of Td(1).

Moreover, corresponding to the splitting which appears in (3.5), we may extend “rigidly”
automorphisms of Td(k) to automorphisms of Td(ℓ), ℓ > k, and of Td; otherwise written:

(7.5) W (Q, k) ⊂ W (Q, k + 1) ⊂ · · · ⊂ W locfin(Q) ⊂ Aut (Td) .

4We are grateful to Olivier Mathieu who first made one of us aware of this.



REPRESENTATION ZETA FUNCTIONS OF WREATH PRODUCTS 25

It follows that the group defined by (7.2) is also a group

(7.6) W locfin(Q) ⊂ Aut (Td)

of tree automorphisms.
There are other interesting dense subgroups of W prof(Q), and in particular finitely

generated groups which play an important role in various questions (see e.g. [Bart–03b],
[Neum–86], and [Wils–04]) as the examples below show. Assume furthermore that Q is
2–transitive on X, and fixes two elements of X , written 1 and 2 in (7.9) below. Let

(7.7) Wfingen(Q) = 〈Q, Q〉 ⊂ Aut (Td)

be the group of automorphisms of Td generated by two copies of Q. An element q in the
first copy Q acts on Td as follows, with (x1, . . . , xk) a typical vertex of Td:

(7.8) q(x1, x2, x3, . . . , xk) = (q(x1), x2, x3, . . . , xk)

for all k ≥ 0 and x1, . . . , xk ∈ X . An element q of the second copy Q acts on Td by

(7.9) q(x1, x2, . . . , xk) =





(x1, . . . , xj, q(xj+1), xj+2, . . . , xk)

if x1 = · · · = xj−1 = 1, xj = 2,

(x1, . . . , xk) otherwise,

for all k and x1, . . . , xk as above.
We now assume furthermore that Q is generated by

⋃
x6=y∈X (StabQ(x) ∩ StabQ(y))

′
,

where the prime indicates a commutator subgroup; this holds for example if Q is simple
and StabQ(x)∩ StabQ(y) is not Abelian. The case Q = A6 and X = I6 was considered by
Peter Neumann in [Neum–86]. We define a finitely generated group

(7.10) WPN (Q) = 〈ω(x, q) | x ∈ X, q ∈ StabQ(x)〉 ⊂ Aut(Td)

where the generators ω(x, q) are defined by

(7.11) ω(x, q)(x1, x2, . . . , xk) =





(x1, . . . , xj, q(xj+1), xj+2, . . . , xk)

if x1 = · · · = xj = x, xj+1 6= x,

(x1, . . . , xk) otherwise.

21. Proposition. Let Q be a perfect finite group acting faithfully and transitively on a
finite set X of size d ≥ 2. Let W be one of the groups

W prof(Q), W locfin(Q), Wfingen(Q), WPN (Q)

(with hypotheses on the action of Q on X as above for the groups Wfingen(Q) and WPN(Q)).
Then W is perfect, residually finite, and isomorphic to its own permutational wreath

product with Q:
W ∼= W ≀X Q.

Proof. These groups are perfect because they are generated by perfect subgroups, and are
residually finite because they are all subgroups of the profinite group W prof(Q).
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It remains to establish the isomorphism; it comes from the natural inclusion of W prof(Q)
as the first factor in the base of W prof(Q) = W prof(Q) ≀X Q. The isomorphism is clear
for the first two examples. For Wfingen(Q), see [Bart–03a, Proposition 3.7] or [Bart–03b,
Proposition 2.2]. For WPN (Q), we argue as follows.

Consider q, r ∈ StabQ(x) ∩ StabQ(y). Then [ω(x, q), ω(y, r)] acts as [q, r] on Td as
in (7.8). By our hypothesis, W (Q)PN contains the whole of Q acting as in (7.8). It then
follows that W (Q)PN contains ω(x, q)q−1 (where q−1 acts as in (7.8)), which maps to
(1, . . . , ω(x, q), . . . , 1)1 through the embedding WPN (Q) → WPN (Q) ≀X Q. We conclude
that this embedding is an isomorphism. This is in essence the argument given by Neumann
in [Neum–86, pp. 307 sqq]. �

22. Proposition (P. Neumann). Let G be a perfect, residually finite group isomorphic
to G ≀X Q. Then G is just infinite.

More precisely, any homomorphism G → H with non-trivial kernel factors as G →
W (Q, k)→ H for some k ∈ N.

Reference. This is part of [Neum–86, Theorem 5.1]. The homomorphism G −→ W (Q, k)
is obtained as

G −→ G ≀X Q −→ (G ≀X Q) ≀X Q) = G ≀X2 W (Q, 2) −→ · · ·
−→ G ≀Xk W (Q, k) −→ W (Q, k).

�

23. Proposition. In the situation of Proposition 22, there exists for any integer n ≥ 1
an integer k(n) ≥ 0 with the following property:

Any finite dimensional representation G −→ GLn(C) factors through W (Q, k(n)); in
particular hn(G) <∞ for all n ≥ 1. More precisely,

hn(G) = max
k∈N

hn(W (Q, k)) < ∞.

Proof. Let ρ : G → GLn(C) be a representation. In view of Proposition 22, it suffices to
show that ρ is not faithful.

Since G ∼= G ≀X Q, the group G contains for all ℓ ∈ N a finite subgroup isomorphic

to QXℓ

, and a fortiori a subgroup isomorphic to (Z/pZ)ℓ, where p is a prime which divides
the order of G. By the representation theory of finite abelian groups, the image of (Z/pZ)ℓ

by ρ is up to conjugation a diagonal p–subgroup of GLn(C), so that the order of this image
is at most pn; it follows that ρ has a non–trivial kernel N .

The proof of Proposition 22, see [Neum–86, Lemma 5.2], actually shows that, if N is a
normal subgroup of G with non-trivial image in W (Q, k), then N contains the kernel of
the map G→W (Q, k). �

Remark. This gives another proof of (5.2) in Corollary 8 for W prof(Q).

From the previous propositions, we deduce finally:

24. Theorem. In the situation of Proposition 21, the groups

W prof(Q), W locfin(Q), Wfingen(Q), WPN (Q)

are rigid and have the same representation zeta function ζ(W prof(Q), s), that which is the
object of Theorem 2, Theorem 3, and Section 6.
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8. Comments on numerical computations

The way chosen to write Formula (2.4) in Theorem 1 shows clearly the inclusion–
exclusion ingredient of its proof. However, it is not optimal for numerical computations,
because evaluations of ζH(· · · ) are much more expensive to compute that any other term,
so that the number of occurrences of these ζH(· · · ) should be kept minimal, as in the
second way of writing below.

(8.1 = 2.4)

ζ(H ≀X Q, s) =
∑

P∈ΠQ(X)

[Q : QP ]−1−sζQP
(s)

∑

P ′=(P ′
1,...,P ′

ℓ)≥P

µX(P, P ′) ζH(|P ′
1|s) · · · ζH(|P ′

ℓ|s)

=
∑

P ′=(P ′
1,...,P ′

ℓ)∈ΠQ(X)

ζH(|P ′
1|s) · · · ζH(|P ′

ℓ |s)

∑

P≤P ′

µX(P, P ′) [Q : QP ]−1−sζQP
(s).

We used GAP [GAP4] to produce specialisations of Formula (8.1), namely to produce
Formulas (4.6) to (4.10), as well as (8.3), (8.4), and (8.6) below. For small groups, they
also have or could have been produced by hand, by enumerating all subgroups S of Q;
computing the partition P of X they induce; computing the stabilizer QP of P ; and keeping
those pairs (S, P ) for which S = QP .

It turned out to be much faster, for the examples we considered, to enumerate all
partitions P of X ; to compute their stabilizer QP ; to compute the partition P ′ of X
induced by QP ; and to keep those (QP , P ) for which P = P ′.

All these commands (enumerating partitions, computing stabilizers, comparing groups)
are simple instructions in GAP.

It is then straightforward, using the offspring of (8.1), to compute the zeta function
ζ(W (Q, k), s) for small k, as a polynomial in p−s

1 , . . . , p−s
r .

We describe now how numerical estimates as those in (3.10) and (3.11) were obtained.
We concentrate specifically on Q = A5 in this section; the same method works mutatis
mutandis for other examples.

We stress that our goal is not to prove formal enclosures for the numerical constants
s0, ζ(W (Q), s0), . . . , but rather to obtain good approximations of their decimal expan-
sion, so as to check (e.g. in Plouffe’s Inverter http://pi.lacim.uqam.ca) whether these
constants already appeared in mathematics. We were unsuccessful with the examples we
considered.

First, a large number N , say 1015, is chosen; and the degree-(≤ N) truncations Pk(s) of
ζ(W (Q, k), s) are computed. By Corollary 8, the sequence (Pk)k≥0 is eventually constant,
with limit P ; and P is the degree-(≤ N) truncation of ζ(W (Q), s).

We noted experimentally, by varying N between 1010 and 1015, that ζ(W (Q), s) is very
well approximated by P (s) when s > s0 + 1; for example, again for Q = A5, the value at
s = 2.1 of P (s) differs only at its ath digit when comparing N = 10a and N = 10a+1.

This is supported by the following heuristic. We know that the series ζ(W (Q), s) con-
verges at s0 + ǫ for all ǫ > 0, so its general term hnn−s0−ǫ is bounded; say, for simplic-
ity, bounded by 1. We also assume, somewhat crudely, that the tail

∑
n>N hnn−s0−ǫ is

http://pi.lacim.uqam.ca
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bounded by 1. Therefore, for s > s0 + 1, the error ζ(W (Q), s)− P (s) is bounded by

∑

n>N

hnn−s0−ǫ−1 < N−1
∑

n>N

n−s0−ǫ - N−1.

For our choice of N , we may therefore expect P (s) to approximate ζ(W (Q), s) accurately
to 15 digits.

We will soon see that s0 > 1, and we will only evaluate the Dirichlet polynomial P at
es for s ≈ s0 and e ≥ 2. All our estimations will then be accurate to about 15 digits.

Our first goal is to estimate s0(W (Q)). For this, in (6.17) and as in (6.19), we replace
X2, . . . , X5 by P (2s), . . . , P (5s) respectively, and we replace each Yj by j−s, yielding a
degree–d polynomial Φ in X = X1 whose coefficients are Dirichlet polynomials in s.

It is computationally impractical to evaluate algebraically the discriminant ∆(s), so we
resort to another trick: we first find an enclosure [l0, u0] for s0, such that the number of
real roots of Φ(X)−X differs at s = l0 and at s = u0. We then repeatedly compute the
number of real roots of Φ(X)−X at mi + (ui + li)/2, and set [li+1, ui+1] + [li, mi] if the
number of real roots at mi equals that at ui, and set [li+1, ui+1] + [mi, ui] otherwise. The
enclosure’s width is halved at each step, so after 50 or so iterations, for our choice of N ,
we have found a good approximation of s0.

Note that, at s = s0, the equation Φ(X)−X has a multiple root; let t + 1 be its mul-
tiplicity. We assume for simplicity that t = 1, which is the only case we have encountered
in our numerical experiments.

We next set s = s0 in Φ(X), and obtain a0, the first term in the Puiseux series of
ζ(W (Q), s) near s0, see (6.20). We then compute for i = 0, 1, . . . the coefficient ai+1 as the
average of (Φ(X)− a0 − · · · − ai(s− s0)

i/2)/(s− s0)
(i+1)/2 over s very near s0.

We have obtained in this manner a Puiseux expansion

(8.2) ζ(W (Q), s) ≈ a0 + a1

√
s− s0 + a2(s− s0) + · · ·

for ζ(W (Q), s) near s0; see (3.10) and (3.11) for the actual numbers, for the case of A5

acting on I5. Let us now consider a few other examples.

The group A5 of order 60 is the smallest nontrivial perfect finite group. As above, we
denote a wreath product with respect to its natural action on {1, 2, 3, 4, 5} by H ≀5 A5. We
can also view A5

∼= PSL2(F5) as acting on the projective line over the Galois field of order
five, and we use the notation ≀6 for this wreath product.

The next smallest finite simple group is PGL3(F2), which is equal to GL3(F2) and has
order 168. It has a natural action on the projective plane with 7 points. We denote a
wreath product with respect to this action by H ≀7 PGL3(F2).

Let us write down the particular cases of Formula (8.1) corresponding to these actions,
and some results of numerical computations.
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25. Proposition. With the notation described above, we have
(8.3)
ζ(H ≀5 A5, s) = 60−1−sζH(s)5

+
(
20−1−s × 30− 60−1−s × 10

)
ζH(s)2ζH(3s)

+
(
30−1−s × 30− 60−1−s × 15

)
ζH(s)ζH(2s)2

+
(
5−1−s

(
3 + 3−s

)
5− 20−1−s × 60− 30−1−s × 30 + 60−1−s × 30

)
ζH(s)ζH(4s)

+
(
10−1−s

(
2 + 2−s

)
10− 20−1−s × 30− 30−1−s × 60 + 60−1−s × 30

)
ζH(2s)ζH(3s)

+
(
1 + 2× 3−s + 4−s + 5−s − 5−1−s

(
3 + 3−s

)
5− 10−1−s

(
2 + 2−s

)
10

+ 20−1−s × 60 + 30−1−s × 60− 60−1−s × 36
)
ζH(5s)

and
(8.4)

ζ(H ≀6 PSL2(F5), s) = 60−1−sζH(s)6

+
(
30−s − 60−s

4

)
ζH(s)2ζH(2s)2

+
(
2 · 6−s + 2 · 12−s − 2 · 30−s +

2

5
· 60−s

)
ζH(s)ζH(5s)

+
(4

3
· 15−s − 30−s +

60−s

6

)
ζH(2s)3

+
(
2 · 10−s + 20−s − 2 · 30−s +

60−s

3

)
ζH(3s)2

+
(
1 + 2 · 3−s + 4−s + 5−s − 2 · 6−s − 2 · 10−s

− 2 · 12−s − 4

3
· 15−s − 20−s + 4 · 30−s − 2

3
· 60−s

)
ζH(6s).

For comparison with (6.10), the Dirichlet series ζ(W (PSL2(F5)), s) converges for

(8.5) Re(s) > s0(W (PSL2(F5))) ∼ 1.13333324(7),

again with a Puiseux expansion in
√

s− s0.
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We have next
(8.6)

ζ(H ≀7 PGL3(F2), s) =

(
168−s

168

)
ζH(s)7

+

(
84−s

2
− 168−s

8

)
ζH(s)3ζH(2s)2

+

(
2

3
42−s − 84−s

2
+

168−s

12

)
ζH(s)3ζH(4s)

+

(
2

3
42−s − 84−s

2
+

168−s

12

)
ζH(s)ζH(2s)3

+

(
4× 21−s − 3× 42−s +

84−s

2

)
ζH(s)ζH(2s)ζH(4s)

+

(
2× 28−s + 56−s − 2× 84−s +

168−s

3

)
· ζH(s)ζH(3s)2

+

(
2× 7−s + 14−s − 2× 21−s − 2× 28−s +

42−s

3
− 56−s + 2× 84−s − 168−s

3

)

(ζH(s)ζH(6s) + ζH(3s)ζH(4s))

+
(
1 + 2× 3−s + 6−s − 3× 7−s + 8−s − 2× 14−s + 2× 28−s + 42−s + 56−s

− 2× 84−s +
2

7
× 168−s

)
ζH(7s).

Moreover ζ(W (PGL3(F2)), s) converges for

(8.7) Re(s) > s0(W (PGL3(F2))) ∼ 1.112156628,

again with a Puiseux expansion in
√

s− s0.

9. Some special values of representation zeta functions

Let us record a few general facts about representation zeta functions. If G is a rigid
group, observe that

(9.1) ζ(G, 0) =
∑

n≥1

hn(G) = |Ĝ| + h(G)

is the number (possibly infinite) of equivalence classes of irreducible representations of G.
These functions are well adapted to direct products: if G and H are two rigid groups,

we have

(9.2) ζ(G×H, s) = ζ(G, s)ζ(H, s).

When G is finite, h(G) is the class number of G (= its number of conjugacy classes). In
this case, observe also that the number of representations of dimension 1 is

(9.3) lim
s→∞,s>0

ζG(s) = h1(G) = |G/[G, G]|,
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and that

(9.4) ζG(−2) = |G|.

If G is a finite p–group, ζG(s) is a polynomial in p−s.

Let G be a finite group such that 1
|G|

∑
g∈G trace(π(g2)) = 1 for all π ∈ Ĝ, namely such

that all π ∈ Ĝ can be realised over R; then we have

(9.5) ζG(−1) = ♯
{
s ∈ G | s2 = 1

}
.

See for example [Serr–98, Section 13, Exercise 3] or [BeZh–98, Chapter 4, Theorems 13
and 14]. Groups for which (9.5) holds include the dihedral groups Dn for which

ζ(D2n+1,−1) = 2n + 2 and ζ(D2n,−1) = 2n + 2,

the symmetric groups Sn (see e.g. [CuRe–62, § 28]), the alternating groups An when
n ∈ {5, 6, 10, 14} (and for no other n ≥ 3), the projective linear groups PSL2(Fq) when
q is either a power of 2 or of the form 4k + 1; see5 [Feit–83, Theorem 6.1]. Observe that
(9.5) cannot hold if G is of non–trivial odd order.

If we set h(k) + h (W (C2, k)), the sequence (h(k))k≥0 appears as Number A006893 in

[S–EIS], where it is described as counting trees of a kind which can be put in bijective
correspondence with the conjugacy classes of W (C2, k):

h(0) = 1, h(1) = 2, h(2) = 5, h(3) = 20, h(4) = 230, h(5) = 26 795, . . .

10. A unitary variation
and a question on some strengthening of Property (T)

Let G be a topological group. For all n ≥ 1, denote by un(G) the number (up to
equivalence) of irreducible unitary representations of G in the Hermitian space Cn. If
un(G) <∞ for all n ≥ 1, set

ζ
(u)
G (s) =

∑

n≥1

un(G)n−s.

Of course, ζ
(u)
G (s) = ζG(s) if G is compact, and in many other cases, but not always;

indeed, there are groups which are not rigid but are such that un(G) < ∞ for all n ≥ 1;
we show below that

Γ = SL3(Z[X ])

is such an example.
Define for any complex number z ∈ C the 3–dimensional representation

πz : Γ −→ GL3(C), g 7−→ g(z)

where g(z) denotes the result of evaluating X at z. As the restriction of πz to SL3(Z) is
the tautological 3–dimensional representation of SL3(Z), the representation πz is clearly

5We are grateful to Alexander Zaleskii for information about Schur indices.
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irreducible. By computing the character at a well–chosen element, for example by com-
puting

trace


πz




1 + X −X 0
1 1 0
0 0 1




 = trace




1 + z −z 0
1 1 0
0 0 1


 = 3 + z,

we see that the uncountably many representations πz are pairwise non–equivalent. Hence
h3(Γ) =∞, and in particular Γ is not rigid.

Yet Γ has Kazhdan’s Property (T), by a recent result of Leonid Vaserstein [Vase]; see
also [Shal–06]. It is known that un(Γ) < ∞ for any finitely generated group Γ which has
Kazhdan’s Property (T); see Proposition IV of [HaRV–93], which builds up on Propositions
2.5 and 2.6 of [Wang–75], equivalently on Corollary 2 of [Wass–91]. In other words,
Property (T) implies “unitary rigidity”.

Summing up, ζ
(u)
Γ (s) is well defined, and ζΓ(s) is not. There are several strengthenings

of Kazhdan’s Property (T), some already existing and probably some more to come. For
countable groups, will one of them imply bona fide rigidity?

References

Bart–03a. L. Bartholdi, Endomorphic presentations of branch groups, J. of Algebra 268 (2003), 419–

443.

Bart–03b. L. Bartholdi, Un groupe de Wilson de croissance exponentielle non–uniforme, C.R. Acad.

Sci. Paris, Sér. I 336 (2003), 549–554.

BeZh–98. Ya.G. Berkovich and E.M. Zhmud’, Characters of finite groups. Part I, Translations of math.
monographs, Vol. 172, Amer. Math. Soc., 1998.

BORT–96. H. Bass, M.V. Otero–Espinar, D. Rockmore, and C. Tresser, Cyclic renormalisation and

automorphism groups of rooted trees, Lecture Notes in Mathematics, 1621, Springer, 1996.
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