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Preface

Spheres are most elementary compact spaces, but the siogdéian of counting essential maps
between spheres turned out to be a landmarking problem.ctngeogress in algebraic topology might
be measured by its impact on this question. Topologists warthe problem of describing the homotopy
groups of spheres for around 80 years and still there is i&faetbry solution in sight. Many approaches
were developed, a distinguished one is the Adams spectraésee

EZ’ E3’ E49 e
converging to homotopy groups of spheres. Adams computeBbtiterm and showed that

E; = Exty (F, F)

is algebraically determined by Ext-groups associated ¢oSteenrod algebra/. Hence E is an upper
bound for homotopy groups of spheres which is given by anbasje resolution of the prime field = Fp,
over the algebraz. The Steenrod algebrd is in fact a Hopf algebra with wonderful algebraic propestie
Milnor showed that the dual algebra
o, = Hom(<7, F)

is a polynomial algebra. Topologically the Steenrod algebithe algebra of primary cohomology opera-
tions.

In the book [3] the pair algebr& of secondary cohomology operations is computed which kesic
the known algebraic structure of the Steenrod algebra deratbly. The pair algebr# is given by an
exact sequence

] q

sof B Bo . (*)

Here %4, is the free associative algebra o= Z/p?Z generated by the Steenrod operations which also
generate’ andq is the identity on generators. Moreover there is a multgtlan map

m: BoQ%B, & $B1 KBy — %

and a diagonal map
A PB — (%0@331 @331@%0)/ ~

such thatz = (%, m, A) is a “secondary Hopf algebra”, see [3], inducing the Hoggdlra structure of the
Steenrod algebra/.

Adams computed those special values difedtentialsd ;) in E; which are related to the Hopf invariant
1 problem. In the book of Ravenel [16] one finds a list of affetientials up to degree 60 which, however,
are tentative in degrees46. Corrections of publishedféiérentials in low degrees were made by Bruner
[10]. An explicit method for the computation of thefidirentiald) in general, however, has not been
achieved in the literature. This is done in the present paper

We show that the dierentiald;) and the EB-term can be completely computed by the formula

Es = Ext»(G*, G¥)

where the secondary Ext-groups xre given by an algebraic secondary resolution associatée pair
algebraz. The computation of Eyields a new algebraic upper bound of homotopy groups ofrrgshe
improving the Adams bound given by E

In order to do explicit computations of the new boungddie has to carry out two tasks. On the one
hand one has to describe the algebraic structure of the dapoRopf algebraz explicitly by equations
which a computer can deal with in an easy way. On the other baadhas to choose a secondary resolution
associated t&7 by solving inductively a system of explicit equations detared by%.

\



Vi PREFACE

In the first part (chapters 1, 2, 3) of this paper we descrilkealjebra which yields the secondary
resolution associated t& and which determines theftirentiald) on E by the resolution. In the second
part (chapters 4, 5, 6, 7, 8) we study the algebraic proasfié? and of the dualization of. In particular
we show that the results of Milnor on the dual Steenrod alyeiirhave secondary analogues. For the
dualization of%Z we proceed as follows. The projectign %, -» < in (+) above admits a factorization

q: Bo—» Fo» A
where. %, = %, Q F is the free associative algebra olfee Z/pZ generated by the Steenrod operations.
Now let
R% = kernel(%, — <)
R4 = kernel(%y — &).
Then one has an exact sequenc&-okctor spaces
o > Rz®F » Rg
which can be dualized by applying the functor Heyif). Moreover the exact sequenceffector spaces
XA > B1OF » Rg®F

can be dualized by Hom(F). The main results of this work describe in detail the miittgtion in %
and the diagonal iZ on the level of#; ® F and on the dual Hon#1, F). In this way we obtain explicit
formulee describing the algebraic structure’®find of the dual ofZ. of course the dual o2 determines
2 and vice versa.

We use these formulee for computer calculations of the seagndsolution associated & and we
derive in this way the dierentialsd;) on E. In section 3.2 we do such computations up to degree 40 in
order to confirm the algebraic equations achieved in the [@plOur goal is to compute £up to degree
210 as this was done for,Bby Nassau [15]. An #ective computer implementation of Eelies on the
computation of the dual o in section 8.3 below.



CHAPTER 1

Secondary Ext-groups associated to pair algebras

In this chapter we introduce algebraically secondary Ertigs Exg over a pair algebr8. In [4] we
already studied secondary Ext-groups in an andditive tcatégory which yield the Ext-groups Exas a
special case if one considers the track categorg-afodules. In chapter 3 we shall see thet thetdtm
of the Adams spectral sequence is given by secondary Exipgrover the pair algebr#@ of secondary
cohomology operations.

1.1. Modulesover pair algebras

We here recall from [3] the notion of pair modules, pair algeh and pair modules over a pair alge-
braB. The categonB-Mod of pair modules oveB is an additive track category in which we consider
secondary resolutions as defined in [4]. Using such secgndaolutions we shall obtain the secondary
derived functors Extin section 1.3.

Let k be a commutative ring with unit and Idtod be the category df-modules and-linear maps.
This is a symmetric monoidal category via the tensor produeB overk of k-modulesA, B. A pair of
modules is a morphism

(1.1.1) X = (x1 2 xo)

in Mod. We writero(X) = kerd andr1(X) = cokerd. A morphism f: X — Y of pairs is a commutative
diagram

X]_LY]_

Xo —> Yo
Evidently pairs with these morphisms form a categ6#3.: (M od) and one has functors
o, 71 - =%2(M0d) — Mod.

A pair morphism is called aeak equivalenci it induces isomorphisms oy andrn;.

Clearly a pair inMod coincides with a chain complex concentrated in degrees Aafdr two pairs
X andY the tensor product of the complexes corresponding to themrisentrated in degrees in 0, 1 and
2 and is given by

X19Y1 i X1®Yo ® Xo®Y1 ﬂ—0> Xo®Yo
with dp = (0®1,1®0) andd; = (-1® 49,9 ® 1). TruncatingK ® Y we get the pair

X®Y = ((xév)l _ cokerpy) > Xo® Yo = (xév)o)
with 9 induced bydo.

(1.1.2) Remark. Note that the full embedding of the category of pairs inte tategory of chain
complexesinduced by the above identification has a lefiiaidjo given by truncation: for a chain complex

C-= ( N RN LN = TSN )
one has

Tr(C) = (coker@l) i Co),

1



2 1. SECONDARY Ext-GROUPS ASSOCIATED TO PAIR ALGEBRAS

with 6_0 induced bydy. Then clearly one has
XY = Tr(X®Y).

Using the fact that Tr is a reflection onto a full subcategong easily checks that the categd#.; (M od)
together with the tensor produgtand unitk = (0 — k) is a symmetric monoidal category, and Tr is a
monoidal functor.

We define the tensor produkt B of two graded modules in the usual way, i. e. by
AeB)" =P A B!
i+j=n

A (graded) pair modulés a graded object af/Z.;(Mod), i. e. a sequenck¥” = (9 : X — XJ) of pairs
in Mod. We identify such a pair modul€ with the underlying morphism of degree 0 between graded
modules

a
X = (xl 2, xo).
Now the tensor produdt®Y of graded pair moduleX, Y is defined by
(1.1.3) xaY)" = (P x'avl.
i+j=n

This defines a monoidal structure on the category of gradedrmadules. Morphisms in this category are
of degree 0.

For two morphismd, g : X — Y between graded pair moduleshamotopy H: f = gis a morphism
H : Xo — Y; of degree 0 as in the diagram

9
(1.1.4) al /,:0/ la
Xo —=< Yo,

Y%

satisfyingfo — go = dH andf; — g1 = Hd.
A pair algebra Bis a monoid in the monoidal category of graded pair modulét, mwultiplication

u: BB — B.

We assume thd is concentrated in nonnegative degrees, thBf'is 0 forn < 0.
A left B-modulds a graded pair modulél together with a left action

u:BaM —» M
of the monoidB on M.
More explicitly pair algebras and modules over them can Iserileed as follows.

(1.1.5) DeriniTiON. A pair algebra Bis a graded pair
0:B1 — By

in Mod with B} = Bj = 0 forn < 0 such thaBy is a graded algebra Mod, B is a gradedB,-Bo-bimodule,
andd is a bimodule homomorphism. Moreover fary € B; the equality

A(x)y = x0(y)
holds inB;.
It is easy to see that there results an exact sequence ofifBad®-bimodules
0-mB— Bli By - mB—0

where in factrgB is ak-algebra,m;B is a ngB-moB-bimodule, andBy — mp(B) is a homomorphism of
algebras.



1.1. MODULES OVER PAIR ALGEBRAS 3

(1.1.6) Dernirion. A (left) moduleover a pair algebr® is a graded paiM = (0 : M1 — Mp) in Mod
such thatM; andMjg are leftBp-modules and is By-linear. Moreover @8p-linear map

/IZ Bl®Bo Mo —» My

is given fitting in the commutative diagram

B ®g, M1 180 B1 ®g8, Mg

”l/ l“

My = M,

whereu(b® m) = d(b)mfor b € By andme M3 U M.

For an indeterminate elemerbf degreen = || let B[x] denote theB-module withB[X]; consisting
of expressiondx with b € B;, i = 0,1, with bx having degredb| + n, and structure maps given by
d(bx) = d(b)x, u(b' ® bxX) = (b’b)x andu(b’ ® bx) = (b’b)x.

A free Bmodule is a direct sum of several copies of modules of tha 8], with x € | for some set
| of indeterminates of possiblyfiierent degrees. It will be denoted

Bll] = P BIX.
Xel

For a leftB-moduleM one has the exact sequenceBgfmodules
0-»mM—->M; > Mg—agM -0

wherergM andr;M are actuallyroB-modules.

Let B-Mod be the category of left modules over the pair algdbrdlorphismsf = (fp, f1)) : M — N
are pair morphisms which am-equivariant, that idg and f; are By-equivariant and compatible witla —
above, i. e. the diagram

B, ®B, Mo —H> My
l®f0l lfl
By ®g, No ——— N;

commutes.
For two such map$,g: M — NatrackH : f = gis a degree zero map

(1.1.7) H:Mo— Ny

satisfyingfo — go = 0H andf, — g1 = Ho such thaH is Bp-equivariant. For tracksl : f = g, K:g=h
their compositiorKoH : f = hisK + H.

(1.1.8) RorosrTioN. For a pair algebra B, the category Btod with the above track structure is a
well-defined additive track category.

Proor. For a morphisnf = (fo, f1) : M — N betweenB-modules, one has
Aut(f) = {H € Homg,(Mo, N1) | 0H = fo — fo, HO = 1 — f1} = Hom g(moM, 71N).

Since this group is abelian, by [6] we know ti& od is a linear track extension of its homotopy category
by the bifunctoD with D(M, N) = Homy, g(7oM, 71N). It thus remains to show that the homotopy category
is additive and the bifunctdd is biadditive.

By definition the set of morphism#/, N] between object, N in the homotopy category is given by
the exact sequence of abelian groups

Homg, (Mo, N;) = Homg(M, N) - [M, N].
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This makes evident the abelian group structure on the has{ideN]. Bilinearity of composition follows
from consideration of the commutative diagram

HomBO(Mo, N1)®H0mB(N, P) (&) HomB(M, N)®HOI’T’BO(N0, Pl) —H> HomBO(Mo, Pl)

l l

Homg(M, N) ® Homg(N, P) Homg(M, P)
IMN]J®[NPl = = = === — == —— — >[M, P]

with exact columns, whergHeg + foK) = g1H + K fo. It also shows that the funct@&Mod — B-Mod.

is linear. Since this functor is the identity on objectspitdws that the homotopy category is additive.
Now note that both functorsg, 71 factor to define functors oB-Mod.. Since these functors are

evidently additive, it follows thab = Homy,g(70, 711) is a biadditive bifunctor. O

(1.1.9) Lemma. If M is a free B-module, then the canonical map
[M, N] - Hom,roB(ﬂ'oM,ﬂoN)
is an isomorphism for any B-module N.

Proor. Let (g)iel be a free generating set fit. Given arg(B)-equivarianthomomorphisin: 7opM —
moN, define its lifting f to M by specifyingf(g)) = n;, with n; chosen arbitrarily from the clasg[gi]) =
[ru].

To show monomorphicity, givefi : M — N such thatrof = 0, this means that ify c im 9, so we
can chooséH(gi) € N; in such a way thadH(g;)) = fo(g). This then extends uniquely toBy-module
homomorphisnH : My — N; with dH = fy; moreover any element dfl; is a linear combination of
elements of the formb,g; with by € By, and for these one has$o(b1g)) = H((b1)agi) = d(b1)H(gi). But
f1(b19)) = b1 fo(g) = b1oH(g) = d(b1)H(gi) too, soHa = f;. This shows thaf is nullhomotopic. O

1.2. X-structure

(1.2.1) Dervimion. Thesuspensio@lX of a graded objeck = (X")nez is given by degree shiftyX)" =
anl

LetX : X — XX be the map of degree 1 given by the identityXIfs a leftA-module over the graded
algebraA thenXX is a leftA-module via
(1.2.2) a-2x = (-1)¥%(a- x)
fora € A, x € X. On the other hand iK is a right A-module thenXx) - a = X(x - a) yields the right
A-module structure oBX.

(1.2.3) DerintTion. A X-moduleis a graded pair modul = (9 : X; — Xp) together with an isomor-
phism

o mX = ZroX
of gradeck-modules. We then cadt aX-structureof X. A X-map betweeZ-modules is a magp between
pair modules such that(r,f) = Z(nof)o. If X is a pair algebra then 2structure is an isomorphism of
moX-moX-bimodules. IfX is a left module over a pair algebBathen ax-structure ofX is an isomorphism
o of left mgB-modules. Let
(B-Mod)* c B-Mod
be the track category &-modules withz-structure and&-maps.

(1.2.4) Lemma. Suspension of a B-module M has(fiy?.2)the structure of a B-module atiM has a
X-structure if M has one.

Proor. Giveno : 1M = XrgM one defines &-structure orEM via

TEM = 1M 25 S570M = S10EM.
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Hence we get suspension functors between track categories

B-Mod ——=— B-Mod

T |

(B-Mod)* —— (B-Mod)®.

(1.2.5) Lemma. The track categoryB—Mod)* is L-additive in the sense ¢4], with L. = X7, or as
well R-additive, withR = X.

Proor. The statement of the lemma means that the bifunctor
D(M, N) = Aut(Om,n)
is either left- or right-representable, i. e. there is anadudctorL, respectivelyR of (B-Mod)* and a
binatural isomorphisnd(M, N) = [LM, NJ, resp.D(M, N) = [M, RN].

Now by (1.1.7), atrack in Aut(@n) is aBo-module homomorphisid : Mg — Nj with 9H = H3 = 0;
hence

D(M, N) = Homy,g(moM, 711N) = Homy,g(moX ™M, 7oN) = Homy,g(moM, 7o=N).

(1.2.6) Lemma. If B is a pair algebra withz-structure then each free B-module has-atructure.

Proor. This is clear from the description of free modulesin 1.1.6. O

1.3. The secondary differential over pair algebras

For a pair algebrd with a X-structure, for &-moduleM over B, and a moduléN over B we now
define thesecondary djerential

d(z) : EXI;:OB(H()M,HON) — EX ;’é(ﬂ'oM,ﬂlN).

Hered2) = d)(M, N) depends on thB-modulesM andN and is natural it andN with respect to maps
in (B-Mod)>. For the definition ofl>) we consider secondary chain complexes and secondarytiesslu
In [4] such a construction was performed in the generalitpofarbitrarylL-additive track category. We
will first present the construction k) for the track category of pair modules and then will indidabey
this construction is a particular case of the more gene#on discussed in [4].

(1.3.1) DxriniTiON. FoOr a pair algebr8, asecondary chain complex )Nh B-Mod is given by a diagram
of the form

Oni1 On-11

Mn2,1 Mn1,1 Mn-1,1
" y
Mn+20 " Mn+10 < Mn-10
n+1,0 n-1,0

where eactM,, = (0n : Mp1 — Myp) is aB-moduIe, each, = (dno,dn1) is @ morphism irB-Mod, each
H, is Bo-linear and moreover the identities

dn,Odn+l,0 = 6an

dn,1dn+1,1 = Hnons2
and

HndnJrZ,O = dn,lHn+l

hold for alln € Z. We thus see that in this case a secondary complex is the samgraded version of a
multicomplexsee e. g. [13]) with only two nonzero rows.
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One then defines thietal complexTot(M,) of the form
(dn—l.o _anfl ) (dn,O _an )

Hn2 —Gn-21 Hn1 —Oh-11
e e Mp10® Mp2p e——————— Mpo®Mnp11 «————— Mny10® Mpy « ...
Cycles and boundaries in this complex will be called secondgcles, resp. secondary boundaries of
M.. Thus a secondamy-cycle in M, is a pair €,y) with ¢ € My, ¥ € Mn_11 such thatl,_10C = dn-1v,
Hn-2C = dn—21y and such a cycle is a boundaffythere exisb € My,10 andB € Mp 1 with ¢ = dnob + 9,83
andy = Hn_1b+dn-118. A secondary comple, is calledexactif its total complex is, that is, if secondary
cycles are secondary boundaries.

Let us now consider a secondary chain compiexin B-Mod. It is clear then that

700n+1 70 7o0h-1
moM. : e > M2 —= 1oMpr1 — oMy —— oMpg — ...

is a chain complex ofpB-modules. The next result corresponds to [4, lemma 3.5].

(1.3.2) RorosiTion. Let M, be a secondary complex consistingd®modules an&-maps between
them. Ifro(M,) is an exact complex then Ms an exact secondary complex. Conversely;o¥, is
bounded below then secondary exactness piniplies exactness atM..

Proor. The proof consists in translating the argument from thdaayuaus general statement in [4] to
our setting. Suppose first thagM, is an exact complex, and consider a secondary cycld € Mno ®
Mn-11, i. €. one hasl_10C = dn-1y andHp_2€ = dn_21y. Then in particularg] € 7oM, is a cycle, so there
exists p] € moMn.1 With [c] = mo(dn)[b]. Takeb € [b], thenc — dnob = §,8 for someB € My,11. Consider
6= V_Hn—lb_dn—l,l,B- One hag 16 = an—ly_an—lHn—lb_an—ldn—l,lﬂ = dn—l,OC_dn—l,Odn,Ob_dn—l,Oan.B =
0, so thats is an element ofryM,,. Moreoverd,_216 = On-21y — dh—21Hn-1b — dn-210dn-118 = Hn_2C —
Hn-2dnob—Hn—20r8 = 0, i. €.§ is a cycle i1 M,. Since by assumptiomyM, is exact, taking into account
theZ-structurer; M, is exact too, so that there exigiss 71Mp with 6§ = dn-1.1%. Define,é =B +y. Then
0n.ob+3n8 = dnob+8,8 = csincey € kerd,. Moreoverd, 118 = d_118+0n_11¢ = dn_118+6 = y—Hn_1b,
which means thaty(y) is the boundary oft{, 5). ThusM, is an exact secondary complex.

Conversely suppodd, is exact, andoM, bounded below. Given a cycle][e mo(Mpy), represent it by
ac e Mpo. Thenmod,-1[c] = 0 impliesdn-10C € im -1, SO there is & € Mp_1.1 such that,_1 o€ = dn-1y.
Considemw = dn_21y — Hn-2C. One hagi ow = On-20n-2,1Y — On-2Hn-2C = dn_2,00n-1Y — dn-2,00n-1,0C = O,

i. e. wis an element of1Mp_,. Moreoverd,_3 1w = dn-310n-21y — dh-31Hn-2C = Hn_39n-1y — Hn—30noC =
0, sow is an-2-dimensional cycle irr; M,. Using thex-structure, this then givess-3-dimensional cycle
in moM.. Now sincergM, is bounded below, we might assume by induction that it is €xadimension
n — 3, so thatw is a boundary. That is, there existse 71Mp_; with dp_210 = w. Definey = y — a;
then one hash_21y = dn-21y — dh—21@ = On-21yY — w = Hp_2C. Moreoverd,_1y = dn-1y = dn-1,0C Since
a € ker(@)n—1. Thus €,¥) is a secondary cycle, and by secondary exactness,dhere exists a pair
(b, B) with ¢ = dnob + dn8. Then E] = np(dn)[b], i. €. cis a boundary. O

(1.3.3) DxriniTioN.  Let B be a pair algebra witl-structure. Asecondary resolutionf a -module
M = (0 : M1 — Mg) overB is an exact secondary complEx in (B—-Mod)* of the form

Fa1 — 25 For — 25 Fyy —s o —2 5 My 0 0
Fao —— F20 —— F10 —— Foo — = Mo 0 0
20 10 00

where eacliF, = (8, : Fn1 — Fro) is a freeB-module.

It follows from 1.3.2 that for any secondary resolutienof a B-moduleM with Z-structuresoF. will
be a free resolution of theyB-modulergM, so that in particular one has

ExﬂOB(noM, U) = H"Hom(moF., U)

for all n and anyroB-moduleU.
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(1.3.4) xrintTion. Given a pair algebr8 with X-structure, &-moduleM overB, a moduleN overB
and a secondary resolutién of M, we define thesecondary dferential

d(z) EXI;:OB(ﬂ'oM moN) — EXI;: (7r0M m1N)

in the following way. Suppose given a clas$ E ExﬂOB(nOM,nON). First represent it by some element
in Hom,,g(moFn, 7oN) which is a cocycle, i. e. its composite witta(d,) is 0. By 1.1.9 we know that the
natural maps

[Fn, N] - HOIT],TOB(ﬂ'()F,ﬂ'oN)
are isomorphisms, hence to any such element correspondsiatdyy class in f,, N] which is also a

cocycle, i. e. value ofd,, N] on itis zero. Take a representative n@apF, — N from this homotopy class.
Thencd, is nullhomotopic, so we can findBy-equivariant magH : Fn,10 — Nj such that in the diagram

Ons11 On1 c
Fni21 — Fni11 Fn1

Ons2
an+1 an
F
o n0 %

I:n+20 d—> Fn+10
n+1,0

one hasodnp = dH, ¢1dn1 = Haneq anddcy = codn. Then takingl’ = ciHp — Hdyi10 0ne hasil' = 0,
['dni2 = 0, sol” determines a map : cokerdn, o — kera, i. e. fromagFn,2 to 1yN. Moreovel p(dn:2) =
0, soitis a cocycle in Hormg(F.), 71N) and we define

deld] = [T] € Ext¥Z(moM, m:N).

(1.3.5) DerNimion. Let M andN be B-modules with=-structure. Then also all thB-modulesz*M,
XN haveZ-structures and we get by 1.3.4 the secondaffgdintial

d(z)(M,ZkN)

Ext) g(moM, moZ*N) EXt*3(moM, n12¥N)

Ext) g(moM, Z1oN) Ext2(moM, 2K 1oN).

In case the composite

EXt™2(moM, 2 LroN) S ExXt?. 5 (roM, Z¥moN) > EX*2(oM, T 17oN)
vanishes we define tteecondanExt-groupsto be the quotient groups
Exty(M, N)¥ := kerd/imd.

(1.3.6) Tueorem. For a Z-algebra B, a B-module M witl-structure and any B-module N, the sec-
ondary dfferential d) in 1.3.4 coincides with the secondaryfdiential

dp) : EXt)(M, N) — ExtI*2(M, N)
from [4, Section 4]as constructed for th&-additive track categoryB—Mod)* in 1.2.5, relative to the
subcategonp of free B-modules with = b...

Proor. We begin by recalling the appropriate notions from [4]. feh@condary chain complex&s=
(An, dn, dn)nez are defined in arbitrary additive track categ@y They consist of objects,,, morphisms
dn : Anr1 — An and tracky, @ dydner = Oa, A, N € Z, such that the equality of tracks

6ndn+2 = dn(5n+1

holds for alln. For an objeci, an X-valuedn-cycle in a secondary chain complé&x is defined to be a
pair (C,y) consisting of a morphism : X — A, and a tracky : d,_-1¢c = Oxa,, such that the equality of
tracks

On-2C = Un—2y
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is satisfied. Such a cycle is calledaundaryif there exists a map : X — Ay,p and atrack3 : ¢ = db
such that the equality
¥ = 6n-1b00y_18

holds. A secondary chain complex is callégxact if everyX-valued cycle in it is a boundary. Similarly it
is calledb-exact if it is X-exact for every objecX in b, whereb is a track subcategory &. A secondary
b-resolution of an objecA is ab-exact secondary chain compléx with A, = 0 forn < -1, A_; = A,
A, € b for n # -1, the last diferentials will be then denotetl; = € : Ag = A, 6_1 = € : edyg — 0a, 4 and
the pair €, €) will be calledaugmentatiorof the resolution. It is clear that any secondary chain cempl
(A, d., 8.) in B gives rise to a chain comple®d( [d.]), in the ordinary sense, in the homotopy category
B.. of B. Moreover ifB is Z-additive, i. e. there exists a functbrand isomorphisms Aut(Q,) = [ZX, Y],
natural inX, Y, thenb-exactness ofA., d., §.) impliesb.-exactness ofA., [d.]) in the sense that the chain
complex of abelian groupsX[ (A., [d.])] will be exact for eachX € b. In [4], the notion ofb.-relative
derived functors has been developed using $uchesolutions, which we also recall.

For an additive subcategoay= b. of the homotopy catego®.., thea-relative left derived functors
L2F, n > 0, of a functorF : B. — &/ from B.. to an abelian category’ are defined by

(LAF)A = Ha(F(A.)),

whereA, is given by anya-resolution ofA. Similarly, a-relative right derived functors of a contravariant
functorF : B2 — 7 are given by

(REF)A = H"(F(A.)).
In particular, for the contravariant functér= [_, B] we get thea-relative Ext-groups

Exti(A. B) := (R3[-. B)A = H"([A.. B])

for any a-exact resolutiorA, of A. Similarly, for the contravariant functor Aut(g) which assigns to an
objectA the group Aut(Q@ g) of all tracksa : Oag = 0Oa g from the zero mag\ — = — Bto itself, one gets
the groups ob-derived automorphisms

Aut’(A, B) := (R Aut(0_g))(A).

Itis proved in [4] that under mild conditions (existence afubset of such that every object afis a
direct summand of a direct sum of objects from that subset)yesbject has aa-resolution, and that the
resulting groups do not depend on the choice of a resolution.

We next recall the construction of the secondafiedential from [4]. This is the map of the form

d) : EXt(A, B) — Aut}(Oag);

it is constructed from any seconddmyresolution A,, d., é., €, €) of the objectA. Given an element] €
Ext)(A, B), one first represents it by ancocycle in [A.,[d.]), B], i. e. by a homotopy clas<] € [An, B]
with [cdy] = 0. One then chooses an actual representativd, — B of itin B and a tracky : 0 = cd,.

It can be shown that the composite trdck= cdnoydn.1 € Aut(Op,,,s) satisfiesI'd,.1 = 0, so it is an
(n + 2)-cocycle in the cochain complex AuifQa.).8) = [(ZA., [2d.]), B], so determines a cohomology
classd(2)([c]) = [I'] € ExtI*?(ZA, B). It is proved in [4, 4.2] that the above construction doesindeed
depend on choices.

Now turning to our situation, it is straightforward to verthat a secondary chain complex in the sense
of [4] in the track category-Mod is the same as the 2-complex in the sense of 1.3.1, and thawthe
notions of exactness coincide. In particular then the matiaf resolution are also equivalent.

The track subcategory of free modules is generated by coproducts from a singlecobg® b..-
resolutions of anyB-module exist. In fact it follows from [4, 2.13] that arBmodule has a secondary
b-resolution too.

Moreover there are natural isomorphisms

Aut(Ovn) = Hom, g(moM, 71N).

Indeed a track from the zero map to itself iBgmodule homomorphisrial : Mg — N; with 6H = 0,
Ho = 0, soH factors throughMg - 7oM and overriN > Nj.
Hence the proof is finished with the following lemma. O
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(1.3.7) Lemma. For any B-modules M, N there are isomorphisms
Ext}(M, N) = Ext] 5(70M, 1oN)
and
(Ra(Homy,g(mo(-), 71N)))(M) = EXI;?OB(HOM,nlN).

Proor. By definition the groups E4M, N), respectively (R(Homg,(o(-), 71N)))(M), are cohomol-
ogy groups of the complexX, N], resp. Homg(o(F.), 71N), whereF, is somea-resolution ofM. We
can choose foF, some secondany-resolution ofM. ThenngF, is a freergB-resolution ofrgM, which
makes evident the second isomorphism. For the first, justimcddition that by 1.1.9H., N] is isomor-
phic to Homg, (mo(F.), 7oN). O






CHAPTER 2

The pair algebra % of secondary cohomology oper ations

The algebraz of secondary cohomology operations is a pair algebraXskructure which as a Hopf
algebra was explicitly computed in [3]. In particular theltiplication mapA of % was determined in [3]
by an algorithm. In this chapter we recall the topologicdindton of the pair algebra# and the definition
of the multiplication mapA. The main results of this work will provide methods for thergmutation ofA
or its dual multiplication map\.. In terms ofA we express the secondary Ext-groupsZxier the pair
algebraz. This yields the computation of the;erm of the Adams spectral sequence in the next chapter.

2.1. Thetrack category of spectra

In this section we introduce the notion of stable maps andestaacks between spectra. This yields
the track category of spectra. See also [3, section 2.5].

(2.1.1) DerintTION. A spectrum Xs a sequence of maps
X QX1 i €Z

in the categoryfop* of pointed spaces. This is &spectrum ifr is a homotopy equivalence for all
A stable homotopy class :fX — Y between spectra is a sequence of homotopy classe§X;, Yi]
such that the squares

Xi#Yi

\Lr lr
in+1

QXiy1 —— QViy1

commute inTop*.. The categonBpec consists of spectra and stable homotopy classes as mophism
full subcategonQ-Spec consisting ofQQ-spectra is equivalent to the usual homotopy category oftspe
considered as a Quillen model category.

A stable map f= (f;, f)i : X — Y between spectra is a sequence of diagrams in the track catego

[Top*] (i € Z)

fi

X Yi

l iy l

QX1 TH? Qi1
Obvious composition of such maps yields the category

[Speclo -

It is the underlying category of a track categdqi§pec] with tracks { : f = g) € [Spec], given by
sequences

Hiifi=>gi

11
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of tracks inTop* such that the diagrams

g

R T

X ﬁ ¥
r ﬁ/ﬂ r
in+
Qxi+l - QYHl
Qgi+1

paste tagi. This yields a well-defined track categdf$pec]. Moreover

[Spec].. = Spec

is an isomorphism of categories. LEX, Y] be the groupoid of morphism$ — Y in [Spec], and let
[X, Y]]g be the set of pairsf(H) wheref : X - Yisamap andH : f = Ois atrack in[Spec], i. e. a
stable homotopy class of nullhomotopies for

For a spectrunX let =X be theshifted spectrurwith (X*X),, = X,.x and the commutative diagram

E*X)n ——= QE* X1

Xnsk — Q(xn+k+1)

definingr for =XX. Amapf : Y — XX is also called a map of degree Krom Y to X.

2.2. Thepair algebra % and secondary cohomology of spectra asa %-module

The secondary cohomology of a space was introduced in [Bpad®.3]. We here consider the corre-
sponding notion of secondary cohomology of a spectrum.
LetF be a prime field® = Z/pZ and letZ denote the Eilenberg-Mac Lane spectrum with

Z" = K(F,n)

chosen as in [3]. Herg" is a topologicalf-vector space and the homotopy equivaleAte— Q7" is

F-linear. This shows that for a spectruithe setq X, Z"Z]]O and X, Z"Z]]i, of stable maps and stable
O-tracks repectively, arB-vector spaces.

We now recall the definition of the pair algebsé = (0 : %1 — o) of secondary cohomology
operations from [3]. LeG = Z/p?Z and let

o =To(Ew)

be theG-tensor algebra generated by the subset

Sq ,Sq 9 eee for p = 2,
E., = { }
S ,B,ﬂ ,ﬂ ,} fOI‘Oddp
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of the modp Steenrod algebra/. We define#; by the pullback diagram of graded abelian groups
P4

P, — 12,2219

.
(2.2.1) al 2
%0 —>S [[Z, E*Z]]()

o

in which the right hand column is an exact sequence. Here wesehfora € E., a stable mam(a) :
Z — Y7 representingr and we defines to be theG-linear map given on monomiads - - - a, in the free
monoid MonE.,) generated b¥ ., by the composites

S(@1---an) = S(a1) - - - S(an)-

Itis proved in [3, 5.2.3] thas defines a pseudofunctor, that is, there is a well-definedt trac

I': s(a-h) = s(a)o s(b)

for a, b € %, such that for anw, b, ¢ pasting of tracks in the diagram

sabo)
o M
o sb) T
o
fabq)

yields the identity track. Now4; is a %y-%o-bimodule by defining
a(b,2) = (a-b,ae 2

with a e zgiven by pasting(a)zandr". Similarly
(b,2a=(b-a,zea)

wherez e a is obtained by pastingqa) andI’. Then it is shown in [3] that® = (0 : 1 — %) is a
well-defined pair algebra withp% = <7 andX-structurer; 4 = .o/
For a spectrunX let
H(X)o = %o [X.Z°Z],
be the free,-module generated by the graded [B§tX*Z],. We definesZ’(X), by the pullback diagram

YH*X
H(X)y — [X,2°Z1%
.l

| a

H(X)o —— [X,2*Zo

H*X
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wheres is the G-linear map which is the identity on generators and is defimeavordsa; - - - a, - u by
the composites(a;) - - - S(an)S(u) for g as above and € [X,X*Z]p,. Againsis a pseudofunctor and with
actionse defined as above we see that the graded pair module
a
HX) = (AKX 5 2#(X0)

is a #-module. We call’Z(X) the secondary cohomologyf the spectrunX. Of courses#Z(X) has a
X-structure in the sense of 1.2.3 above.

(2.2.2) xampLE. LetG* be theZ2-module given by the augmentatiost — G* in [3]. Recall thatG*
is the pair

GF = (]F osF S G)
with dJz the inclusion nad|yz = 0. Then the sphere spectr@fiadmits a weak equivalence @f-modules
#(S% = G~
Compare [3, 12.1.5].



CHAPTER 3

Computation of the Ez-term of the Adams spectral sequence asa
secondary Ext-group

We show that the &term of the Adams spectral sequence (computing stable majsX},) is given
by the secondary Ext-groups
Ea(Y, X) = Extz (X, ).

Here# X is the secondary cohomology of the spect®mwhich is theZ-moduleG* if X is the sphere
spectrunSP. This leads to an algorithm for the computation of the group

Es(S°, S°) = Exts(G*, G%)
which is a new explicit approximation of stable homotopyupse of spheres improving the Adams approx-
imation
Ex(S°, S% = Ext, (F, F).

An implementation of our algorithm computed(8°, S°) by now up to degree 40. In this range our results
confirm the known results in the literature, see for exantpdeiook of Ravenel [16].

3.1. The Es-term of the Adams spectral sequence

We now are ready to formulate the algebraic equivalent oEgaerm of the Adams spectral sequence.
Let X be a spectrum of finite type anda finite dimensional spectrum. Then for each priphere is a
spectral sequence, E E.(Y, X) with
E. = [Y,ZX]p
E; = Exty (H*X, H*Y).
(3.1.1) Tueorem. TheEs-termEz = E3(Y, X) of the Adams spectral sequence is given by the secondary

Extgroup defined in 1.3.5
E3 = Extg(2* X, 27Y).

(3.1.2) GrorLary. If X and Y are both the sphere spectrum we get
E3(S°, S = Extx(G*, G*).
Since the pair algebr# is computed in [3] completely we see thaf(&°, S°) is algebraically deter-

mined. This leads to the algorithm below computing®®, S°).
The proof of 3.1.1 is based on the following result in [3]. Gmler the track categories

b c [Spec]

b’ c (Z-Mod)*
where[[Spec] is the track category of spectra in 2.1.1 asé(M od)* is the track category af-modules
with Z-structure in 1.2.3 with the pair algeh#é defined by (2.2.1). Leb be the full track subcategory of
[Spec] consisting of finite products of shifted Eilenberg-Mac Lapectraz¥Z*. Moreover leth’ be the

full track subcategory of#—Mod)* consisting of finitely generated fre®-modules. As in [4, 4.3] we
obtain for spectr, Y in 3.1.1 the track categories

{Y, X}b c [[Spec]
b'{(AX, Y} C (B-Mod)*

15
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with {Y, X}b obtained by adding tb the objectsX, Y and all morphisms and tracks frapX, Z], [, Z] for
all objectsZ in b. It is proved in [3, 5.5.6] that the following result holds iwh shows that we can apply
[4,5.1].

(3.1.3) Tueorem [3]. There is a strict track equivalence
(Y. X}0)*P — 42X, Y},
m]

Proor or 3.1.1. By the main result 7.3 in [4] we have a description efdifferentialdy) in the Adams
spectral sequence by the following commutative diagram

d
EXthe(X, )™ ———2— ExtB2(X, V)™
EXtT, (H*X, HY)™ — %% Exh2(HeX, HeY)™3

wherea = b.. On the other hand theftierentiald,) defining the secondary Ext-group EXtZ°X, 52°Y)
is by 1.3.6 given by the commutative diagram

EXt, (JX, AY)" —— EXA(AX, AY)™1

Ext), (H*X, H*Y)™ —— Ext2(H*X, H*Y)™1

wherea’ = b.. Now [4, 5.1] shows by 3.1.3 that the top rows of these diagraaincide. O

3.2. Thealgorithm for the computation of di;) on Ext,, (F, F) in termsof the multiplication maps

Suppose now given some projective resolution of thedéfinoduleF. For definiteness, we will work
with the minimal resolution

(3.2.1) Fe o (@) « o (6 In>0) « o/ (3% |1i-jl#1) « ...

whereg?, d > m, is a generator of therth resolving module in degrese Sometimes there are more than
one generators with the sanmeandd, in which case the further ones will be denoted ¢}y, "o, - - -.

These generators and values of th&edential on them can be computefileetively; for example,
d(g?") = S’ g3 andd(gl) = Sq' g™} moreover e. g. an algorithm from [9] gives

m-1’
d(g3) = S g7 + SFg?
d(g5) = Sof' gy + S S ¢f + Sq' 9]
d(g3) = S & + (Sdf + So Sqf)gs
d(g9) = Sf g; + (S + S S)g? + Sof o
d(g;%) = (S + S S SA")gf + (S& S + Scf Sf) g + Sef of
d(g3°) = (Sq*+ S¢ S Sq + S S Sf)gf + (S + So S + Sef Sf)gf

d(g9 = Sq* g5 + S g; + Sa' 65

d(93%) = S g3 + (ST + Sof* S)g3 + S 03

d(g3") = (S + Scf S Sa)g + Sf g3 + Sof S of

d(g3’) = S g3 + (S& S + S SA)g5 + (S + SG Sq')g + ST g5 + S g3

)
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d(gz") = S g + (ST + S Sof)gf + St g3°

d(g3) = SP S g + (Sq + Sof S Sa')g§ + SF S g3’ + Sef g3
d(gs) = S gy + Sof Sq' gjt

d(ge®) = Sa? gy + S St gi* + S g

M%%— Sq g2 + Sef g

>

etc.
By understanding the above formulagerally (i. e. by applyingy degreewise to them), each such
resolution gives rise to a sequencez@fmodule homomorphisms

(3.2.2) G* — B(g) — B(& In>0) — B(d 2+2 )i~ j # 1)

which is far from being exact — in fact even the compositesafsecutive maps are not zero. In more
detail, one has commutative diagrams

2G <~—— R%,q8 0
G~ A 0
in degree 0,
(0»5) 0 g) 1
T RLO%® o705 <—— ‘@gl<—(E<—m
in degree 1,
1 <8 ) 1 1 2 0n1 g) 2
(E<— R, 00 © /gy ~— ( 2% © Roggl) ® 7 gy R, 95 (E
0 B ————— Bl @ B ———— B ~—0
in degree 2, ...
( i i i i
0<~—R gOGB.!an 1 @2'<n 2 2 ®@2'<n 1%n 1- 292
L l d l i o
0 230 D2 #5201

in degreen, etc.
Our task is then to complete these diagrams into an exachdaop complex via certain (degree
preserving) maps

R
om = ((;,) Po (G2 | ) = Rz ® ) (gh I ).

Now for these maps to form a secondary complex, according3d 1 one must havés = dodo,
60 = di1dy, andd;§ = 6dp. One sees easily that these equations together with théeetwent that be left
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ABo-module homomorphism are equivalent to

(3.2.3) 6% = dd,
(3.2.4) 57 (bg) = n(b)5” (@) + A(x(b), dd(g)),
(3.2.5) ds“ =64,

for b € Ay, g one of thegy, andA(a, rg) := A(a,r)gfora e <7, r € Rg. Hences is completely determined
by the elements

(3.2.6) 5 (o) € € o™ (dk)
k

which, to form a secondary complex, are only required tesBati
d‘srff(gﬂnz) = 5rﬁld(ggnz)’
where on the righ§” , is extended ta%, (g;‘nﬂ) via 3.2.4. Then furthermore secondary exactness must
hold, which by 1.3.1 means that the (ordinary) complex
— B0 (G 1) ® Rz © 27) (G o) — Bo (G © (Res @ 27) (Ghy 1) — Do (Ginea) @ (R © T7) (G

with differentials

drml im»Ll 0 . % « * * *
(dm;:ngwl d(r)n d(,)n) T Bo <gm+2> ® Ry <gm+1> N4 <gm+l> — %o <gm+l> ® R <gm> &L <gm>
is exact. Then straightforward checking shows that one Gannate R from this complex altogether, so
that its exactness is equivalent to the exactness of a srualteplex

B0 (U 1) @ T (U, o) — Bo(Grn) @ T (Ui 1) — B (Ghyr) ® T (G —
with differentials
(% ) Bo(Unea) @ (Ginir) = Bo(Ghner) @ T (G
Note also that by 3.2.4” factors through to give
S (Ghnra) = T (G-
It follows that secondary exactness of the resulting comiglequivalent to exactness of theapping cone

of thisé, i. e. to the requirement thatis a quasiisomorphism. On the other hand, the compiéxd:), d.)
is acyclic by construction, so any of its self-maps is a gaasiorphism. We thus obtain

(3.2.7) Tueorem. Completions of the diagram 3.2.2 to an exact secondary osagk in one-to-one
correspondence with magg, : «/ <g;‘n+2> — X7 (g}, satisfying

(3.2.8) dog = odg,
with §(ag) for a € o7 defined by

6(ag) = a5(g) + A(a, ddg
where Aa, rg) forr € Rz is interpreted as £, r)g.

m]
Later in chapter 9 we will need to dualize the m@agor this purpose it is more convenient to refor-
mulate the conditions in 3.2.7 above in terms of commutatigsgrams.

Let
Wp = @ w;

0
denote the free gradeégtmodule spanned by the generatg%sso that we can write

Zo(dy | 4> 0) = Zo®W,.
The diferential in thez-lifting of (3.2.1), beingZ-equivariant, is then given by the composite

1ed mol
%0®Wp+1 — %o@%()@wp —_— %o@Wp,
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where
d: Wp+1 - %o@Wp

is the restriction of this dierential to the generators. As a linear operator, this given by the same
matrix as the one giving the operator of the same name inl(3i2e. it is obtained by applying the map
componentwise to the latter.

Moreover let us denote

so that similarly to the above theftiirential of (3.2.1) itself can be given by the same formuléh v in
place of%, and ¥}, in place of#,. Then by 3.2.7 the whole mafjis determined by its restriction

67 V2 = T @V,
(cf. (3.2.6)). Indeed 3.2.7 implies thais given by the sum of the two composites in the diagram

7 @A @V,

M%

o ® Rz ® Vp
Here we sep = dd® F, where the magpd is the composite
d led mel
Wp+2 - %()@Wp_ﬂ — %0®%0®Wp — 330®Wp

whose image, as we know, lies in

In other words, there is a commutative diagram

By ® Wp+1 1ed Bo® By ® Wp
/ m
Wp+2 - HBo ® WP
(3.2.10) i T
dd” =~
S
A

Then in terms of the above diagrams¥ector spaces, the condition of 3.2.7 can be expressed as
follows:

(3.2.11) @rorLaRY. Completions of 3.2.2 to a secondary resolution are in orerte correspondence
with sequences of maps

67 Voo > ZA ®Vp, p=0
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making the diagrams below commute, witdefined by(3.2.10)

S ®Vpy 2 S @ o/ @V,
(3.2.12) Vpis 7 ®Rz®Vy 22~ 3/ 0V,

M@sz—)%@&%@vp
186

P

]

We can use this to construct the secondary resolution ingiyt Just start by introducing values of
6 on the generators as expressions with indeterminat@cieats; the equation (3.2.8) will impose linear
conditions on these céiicients. These are then solved degree by degree. For examplegree 2 one
may have

5(g3) = m5(Sd) Sd' 6§
for someng(Sql) € . Similarly in degree 3 one may have

5(g3) = n3(Sa) Sq g} + n3(1)gi.
Then one will get

do(gd) = 73(Sqh) Sot d(g}) + n3(1)d(g?) = n3(Sd") Sq* S g3 + n3(1) SF 9 = n3(1) SF o
and

6d(g3) = 6(Sqt g3)
= Sq' 6(g5) + A(ST, dd(g3)) = n5(Sa") Sat Sat g + A(Sd, d(Sd g1)) = A(ST, Sq' Sq' g9) = 0;

thus (3.2.8) forces3(1) = 0.

Similarly one putsi(g%) = Ym 2<a<d-1 Xanm(@adh ,, with a running over a basis in/9--%, and
then substituting this in (3.2.8) gives linear equationgr@numberg?(a). Solving these equations and
choosing the remainings arbitrarily then gives values of theftérentials in the secondary resolution.

Then finally to obtain the secondanyiirential

dp) : Ext), (F,F)™ — Ext’*(F, F)™?!

from thisé§, one just applies the functor Hopg_, F) to the initial minimal resolution and calculates the map
induced bys on cohomology of the resulting cochain complex, i. e. ot {# ). In fact since (3.2.1) is
a minimal resolution, the value of Hay(_, F) on it coincides with its own cohomology and is fRe/ector
space of those linear map#g (g;) — F which vanish on all elements of the forag; with a of positive
degree.

Let us then identify EXt, (F, F) with this space and choose a basis in it consisting of elésradn
defined as the maps sending the genemgftdo 1 and all other generators to 0. One then has

(de) (@) (g = Gro(gm).
The right hand side is nonzero precisely wigdrappears irzﬁ(gﬁ;) with codficient 1, i. e. one has

(3.2.13) do@m = Y = o

g4, appears id(gh?

For example, looking at the table of valuessdielow we see that the first instance afappearing
with codficient 1 in a value o6 on a generator is

5(g5") = 91° + Sa? g} + SqOSdf gf + (S’ S¢ S + S S + S Scf)gy.
This means
d)(@7°) = 857
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and moreoved (%) = 0 for all g4, with d < 17 (one can check all cases for each gidlesince the number
of generatorgd, for each giverd is finite).

Treating similarly the rest of the table below we find thatdindy nonzero values afz) on generators
of degree< 40 are as follows:

d(z)(@f = @%7
d(2)(@41) = ggz
w) -0
d(2)(9§ ) = 9
d(z)(gzo = 981
d<2)(9§1) = 9%5
d<2)(9§2) =8
d(2)(9§3) = 9{‘
§<2>§9£§ )
2)\9 =g
do(E3) =G
d(2)(9§4) = 9%3
d(Z)(gga) = gg
do)(@) =055

These data can be summarized in the following picture, tbofirening calculations presented in Ravenel’s
book [16].

L @:;2\::;

BESSESEESESEEPEESEBE\IA\ S\

SSTEISERLISE: 1 ST TR SR T
[ ] [ BN BN ) @.-f... -------- @Cb [ N )

3.3. Thetable of values of the differential ¢ in the secondary resolution for G*

The following table presents results of computer calcatatiof the diferentials. Note that it does
not have invariant meaning since it depends on the choived/id in determination of the multiplication
mapA, of the resolution and of those indeterminateficntsi?,(a) which remain undetermined after the
conditions (3.2.8) are satisfied. The resulting secondidfgréntiald,) however does not depend on these
choices and is canonically determined.
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5gd) =0
503 =0
5(9%) =0
6(94) =0
6(92) =0
5(95) =0
5(95) = Sdf' gt
5(96) =0
5(g)) =0
5@ =0
5(gg) =0
8(g) =0
5(gy) =0
5a) =0
6(93%) = (Sd' S Sqt + S )g?
+Scf gt

§(01) =0
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5(93h
B(erw)
o017

(939
é(9r9)

5(953)

s(93
5(gt?
5(15

5(93°)
(9%

(980

6(917

sl =

(98"

590 =

6(93)

(938

(g%

5(9;

(929

= (S Sd' + Sf)g?
+ S S gt

=S g

+Sd S g5

-0

= Sq S o
-0

= Sd' g8

+(Sq + S S¢P)g}

+(Sf + Sf Sf)g;

+(Sd S + S S + Sq9) g3
=0

= Sof Sof Sot o
+(Sqf SAf + Sof Sef) gl
-0

=0

+Sq? gy

+ S0 Sdf ¢?

+(Sq Soft St + S0 ScP + St Sef)gl
= (S + Sd* Sa)gzt

+(Sq'? + St Sf) gy

=0
= (Sq* sd + S Sof* S Sql)gg

+(Sq0Soff St + Sa SoP + S Scft + St Sf + St gt
= (S Sqt + Sq)g3°

+(ScP S + Sof sé +ScP)gd

+Scf Sof o3

+(SA° S Sat + S+ SA S + St Sl gh

+(Sq Soft S + SA'° + St S + St SI) g

= S¢f Sqt g2t

=Sd' g

+(Sq°+ Sd Sef) g}

+ St S g

+(Sq* Scf Sot + S Sat + S Soff S + S0 ScP Sot) g
+(Sq* Sef + S0 Sof S + Sq? Sof) g2

= Sq g3’

+Scf Sof g2

+Sq S Sqf gt

(S Sf + Syl

+(Sc Sef + S Sa)o

+(Sq® Scf + S0 SeP + Sot* + Sq Sof) g3

23
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5(930)
(g3 °)
5(92°)

6('g2°)

5(92°)

(95"

(93

(95"

(%2

(922

6('93?)

(929

5(0g) =

5(9%?

=0
= (Sq"°+ S Sdf* S¢f)gt
+(Sq? S + St S + St S g
+(Sq* S St + SA° Scf + St + S Scf) g
= S¢f S St g
+(Sq Sq' + Scf)gs*
+(Sq0Se? + Scf S Sat + Sgt3 + Satt S¢f) gl
+(Sq® S + SAO Sof S + St S + Sa? Scf) g
= S Sqf g3?
+Sq Scf g10
+(Sa? Sqt + St S + S Sof S + S0 S S + SaH S g
+(Sq** SF + S S + St S¢ + St + Sat? Sf) gl
= (Scf Sof + Scf)gyt
+(SA® Sof + Sot® + Sott Sof) gl

= (S¢°S¢’ S¢ + S¢7Sq' + S¢” S
+(§$38q4 Sef + So° Sof + St SeP + Sat’ St + St g}

= o5’

+(Sq°+ S¢S g3’

+(SqP S + S S8

+(Sq° + S SF + Sqf Se)g3

+(Sq3 S Sqt + Sqt? S St + ScfL2 Sd + SP Sof S¢f Sq + Sq'° St Scf) g
+(SA® Sef + S Sef + Sot° S g

= (Sq +S¢ Sq)g;?

+(Sq + Sd Szt

+ St s g

=Sq’gf

+(SA® SF Sqt + Sq2 Scf + S Sof Sof St + S Scf S ) g
+(Sq®SeP St + SA7 S + S¥ Sef + St Soff Sf) gt
= Sdf g’

+ Sq‘Ll 10

+(Sq? + Sc? Sloglex

+(SP S + Sq13 + ng Sd* Sqt)gB

+Sg?Sdf g2

+Sq° S g

+(Sq3 sdft qu + S+ S Scf + S SeP) g’
=S¢ Sqt g8

+(Sd’ sdf + Sq9)a3

+(Sd’ Sof + Sqt® + Sg? Sqt) g8

+(Sq'®+ Sa® scP)g3

+(Sq° S¢F + S° S + S Sof + Sott St Sep) gl
+(SA SEP + St + Sot’ Sef)g2

= (Sq S¢f + S¢f S¢F St + Scf Scf)g3?

+Sq2git + (S Sf + S S + St il
+(Sq* Sq + Sqt* S Sat + Sq? Scf + Sqt3 ScP) gl
+ Sq13sq5 e

+(Sd5 S¢ + Scf + Sq Sq')gl?

+Sqgit

+(Sq'® Sq4 +Sq° Sef + Sq ) gl

= (So®sq’ + Sq Sf + Sq'%)g2



CHAPTER 4

Hopf pair algebrasand Hopf pair coalgebrasrepresenting the
algebra of secondary cohomology operations

We describe a modificatiogg™ of the algebraZ of secondary cohomology operations in chapter 2
which is suitable for dualization. The resulting objegt and the dual objecBr will be used to give an
alternative description of the multiplication ma&pand the dual multiplication mag.. All triple Massey
products in the Steenrod algebra can be deduced #8nor %x and fromA andA..

We first recall the notions of pair modules and pair algelm@s fchapter 1 and give the corresponding
dual notions. Next we define the concept\dfalgebras andN-coalgebras, wher® is a folding system
andN an unfolding system. AmM-algebra is a variation on the notion of g]{algebra from [3]. We
show that the algebr# of secondary cohomology operations gives rise to a coma#@Bith the monoidal
category ofM-algebras, and we describe the dual obj#et which is a monoid in the monoidal category
of N-coalgebras.

In chapter 6 we study the algebraic obje#€ and %= in terms of generators. This way we obtain
explicit descriptions which can be used for computationgdrticular we characterize algebraically mul-
tiplication mapsA, and comultiplication mapa¥ which determine™ and %= completely, see sections
8.1, 8.2, 8.3. For the dual objeéfr the inclusion of polynomial algebrag, c .%. will be crucial. Here
o7, is the Milnor dual of the Steenrod algebra a#d is the dual of a free associative algebra.

4.1. Pair modulesand pair algebras

Let k be a field (usually it will be actually a prime field = F, = Z/pZ for some primep) and let
Mod be the category of finite dimensiorlaimodules (i. e.k-vector spaces) aridlinear maps. This is a
symmetric monoidal category via the tensor produeB overk of k-modulesA andB. A pair moduleis
a homomorphism

4.1.1) X = (x1 2 xo)

in Mod. We write rp(X) = cokerd andx(X) = kerd. A morphism f: X — Y of pair modules is a
commutative diagram

f
X; ——=Y1

(')l l[)
Xo —2> Yo
Evidently pair modules with these morphisms form a catedbog.. and one has functors
g, 1 - Mod, — Mod.

A morphism of pair modules is calledveeak equivalenci it induces isomorphisms oy andrn;.

Clearly a pair module is the same as a chain complex contedtimdegrees 0 and 1. For two pair
modulesX andY the tensor product of the complexes corresponding to themrisentrated in degrees in
0, 1 and 2 and is given by

0 0
(4.1.2) X1®Y1 — X1®Yo ® Xo®Y1 — Xo®Yo
with dg = (0®1,1® 9) andd; = (’I,lg’). Truncating this chain complex we get the pair module

XBY = ((x@T\ol — coker@h) 5 Xo ® Yo = (X<§Y)0)

25



26 4. HOPF PAIR ALGEBRAS AND HOPF PAIR COALGEBRAS

with 9 induced bydo. B
Clearly one hago(X®Y) = mo(X) ® mo(Y). We will also need the following

(4.1.3) Lemma. For any pair modules X, Y there is a natural isomorphism
ﬂl(X§Y) = 11(X)@7o(Y) & mo(X)@m1(Y).

Proor. By the Kiinneth formulagy(X)®mo(Y) @ mo(X)®m1(Y) is isomorphic to the middle homology
of the complex (4.1.2) above. But it is clear that for any hamophismsi; : P — Q, do : Q —» Rwith
0001 = 0 the homology kefig/ im 91 is isomorphic to the kernel of the induced map cobgr> R. In our
case this kernel is precisety(X®Y). O

We next consider the categdWod of gradedmodules, i. e. graded objectslihod (gradedk-vector
spaceA = (A")nz with upper indices, which in each degree have finite dimersiBor graded modules
A, B we define their graded tensor prodéct B in the usual way, i. e. by

(AeB) = AsB.
i+j=n
This tensor product has an interchange
(4.1.4) Tas A®B SBRA

given on homogeneous elementsThyp (a® b) = (—1)%€90)degb)p g g,

A graded pair modulés a graded object dflod., i. e. a sequenck" = (0" : X] — X{) withn e Z
of pair modules. We can also identify such a graded pair meoxulith the underlying morphism of
degree 0 between graded modules

X = (X % %).
Now the tensor produ¢t'®Y: of graded pair moduleX, Y" is defined by
(4.1.5) xaY) = P xaY!.
i+j=n

This defines a monoidal structure on the cateddnd, of graded pair modules, with morphisms maps of
degree 0. Agai® is symmetric.

For two morphismg, g : X — Y between graded pair moduledhyamotopy H: f = gis a morphism
H : Xy — Y, of degree 0 as in the diagram

s

Xy Y]
[¢]1
(4.1.6) al H/ la
. /fo .
XO T) YO’

satisfyingfo — go = dH andf; — g1 = Ho.
A pair algebra B is a monoid in the monoidal category of graded pair modulés, multiplication

u:BeB — B.

We assume thd is concentrated in nonnegative degrees, thBf'is 0 forn < 0.

More explicitly pair algebras can be described as follows.

(4.1.7) DeriniTiON. A pair algebra B is a graded pair module, i. e. an object

0 :B;— By

in Mod, with B} = Bf = 0 forn < 0 such thatB; is a graded algebra iMod', B; is a graded3;,-B;-
bimodule, and' is a bimodule homomorphism. Moreover faly € B; the equality
(4.1.8) a(x)y = xa(y)
holds inB;.
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Itis easy to see that a graded pair algeBrgields an exact sequence of grad&gB,-bimodules

(4.1.9) 0—» mB — B 2 By —» B — 0

where in factroB' is a gradedk-algebras1 B is a gradedroB'-moB-bimodule, and3, — moB’ is a homo-
morphism of grade#-algebras.

The tensor product of pair algebras has a natural pair agsthrcture, as it happens in any symmetric
monoidal category.

We are mainly interested in two examples of pair algebrasnddfbelow in sections 4.5 and 4.6
respectively: thé&-relation pair algebraZ of the Steenrod algebra’ and thepair algebra# of secondary
cohomology operatiordeduced from [3, 5.5.2].

By the work of Milnor [14] it is well known that the dual of thet&:nrod algebra? is a polynomial
algebra and this fact yields important algebraic properiee?. For this reason we also consider the
dual of theG-relation pair algebraz of .7 and the dual of the pair algebrd of secondary cohomology
operations. The duality funct@ is studied in the next section.

4.2. Pair comodulesand pair coalgebras
This section is exactly dual to the previous one. There ig@rawvariant self-equivalence of categories
D = Hom(_, k) : Mod®® —» Mod
which carries a vector spatkin Mod to its dual
DV = Hom(V, K).

We also denote the dual ®fby V.. = DV, for example, the dual of the Steenrod algebfas <7, = D().
We can apply the functor Hogt,, k) to dualize straightforwardly all notions of section 4. kpicitly, one
gets:

A pair comodulds a homomorphism

4.2.1) X = (xl & x°)

in Mod. We writer®(X) = kerd andz*(X) = cokerd. The dual of a pair modul¥ is a pair comodule
DX = Hom(X, k)
= (D4 : DXy — DX3)
with (DX)' = D(X;). A morphism f: X — Y of pair comodules is a commutative diagram

fl
Xt ——=y?

|
X0 . YO,
Evidently pair comodules with these morphisms form a catelypod” and one has functors
% 7t Mod* — Mod.
which are compatible with the duality functbr, that is, for any pair modulX one has
mi(DX) = D(xiX) fori = 0, 1.

A morphism of pair comodules is calledrgeak equivalenci it induces isomorphisms om® andz?.

Clearly a pair comodule is the same as a cochain complex ntrated in degrees 0 and 1. For two
pair comoduleX andY the tensor product of the cochain complexes is concenthatdelyrees in 0, 1 and
2 and is given by

1 0
XloYt & xleY? e X°oY! & X0gY?

with d° = (‘l’g;) andd! = (-1®d,d® 1). Cotruncating this cochain complex we get the pair conedu

X®Y = ((X§Y)1 — ker@) & X0 Y0 = (X§W°)
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with d induced bydy. One readily checks the natural isomorphism
(4.2.2) D(X®Y) = DX&DY.

(4.2.3) Remark (compare 1.1.2). Note that the full embedding of the categbpair comodules into
the category of cochain complexes induced by the aboveifibation has a right adjoint Trgiven by
cotruncation: for a cochain complex

dl dO d—l
C'= ( —CP—Cl—Cl—cCcle ),
one has
40
Tr(C") = (ker(dl) L CO),
with d° induced byd®. Then clearly one has
X®Y = Tr'(X®Y).

Using the fact that Tris a coreflection onto a full subcategory, one easily cheésthe categorivod”
together with the tensor produstand unitk® = (0 « k) is a symmetric monoidal category, and 13 a
monoidal functor.

We next consider the categawod. of gradedmodules, i. e. graded objectsiihod (gradedk-vector
spaceA = (An)nez With lower indices which in each degree have finite dimensi®or graded modules
A, B. we define their graded tensor prodéct® B. again in the usual way, i. e. by

(AeB)n=AcB,
i+j=n
A graded pair comodulés a graded object d¥1od*, i. e. a sequenck, = (dn : X2 — X?1) of pair
comodules. We can also identify such a graded pair comotulith the underlying morphisrd of degree
0 between graded modules

X = (x_l & x,°).
Now the tensor produO(.SY. of graded pair comodules, Y. is defined by
(4.2.4) X&Y)n = P xev;.
i+j=n

This defines a monoidal structure on the cateddmyd. of graded pair comodules. Morphisms in this
category are of degree 0.
For two morphismsf,g : X — Y. between graded pair comoduleshamotopy H: f = gis a
morphismH : X! — Y0 of degree 0 as in the diagram
fl
Xt—=vY!
gl
(4.2.5) Td\H dT
XO —>f0 YO
3 ? P
satisfyingf® — ¢g° = Hdandf! — g = dH.
A pair coalgebra Bis a comonoid in the monoidal category of graded pair comesjulith the
diagonal _
§:B. — B®B.
We assume tha. is concentrated in nonnegative degrees, thBfis 0 forn < 0.
Of course the duality functdD yields a duality functor

D:(Mod,)° — Mod?
which is compatible with the monoidal structure, i. e.
D(X®Y') = (DX)®(DY)).
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We also writeD(X') = X.
More explicitly pair coalgebras can be described as follows

(4.2.6) DeriniTION. A pair coalgebra Bis a graded pair comodule, i. e. an object
d:B°— B!

in Mod* with BY = B2 = 0 for n < 0 such thaB? is a graded coalgebra Mod., B! is a graded3®-B°-
bicomodule, andl. is a bicomodule homomorphism. Moreover the diagram

BL— . Bg B!

l d.@ll

B'® B0 > Bl g B
commutes, wherg, resp.p is the left, resp. right coaction.

It is easy to see that there results an exact sequence ofgBadef-bicomodules dual to (4.1.9)

(4.2.7) 0« n'B. « B! & B — 7°B. « 0

where in factr°B. is a graded-coalgebrazs'B. is a gradedi®B.-7°B.-bicomodule, and® « 7°B. is a
homomorphism of gradddcoalgebras.

One sees easily that the notions in this section correspotitbse in the previous section under the
duality functorD = Homk(_, K). In particular,D carries (graded) pair algebras to (graded) pair coalgebras

4.3. Folding systems

In this section we associate to a “right module syst&vha category ofM-algebrasAlg), which is
a monoidal category iM is a “folding system”. Our main examples given by teelation pair algebra
Z of the Steenrod algebre and by the pair algebr& of secondary cohomology operations are in fact
comonoids in monoidal categories of such type, see sedlidnand 4.6. This generalizes the well known
fact that the Steenrod algeb#d is a Hopf algebra, i. e. a comonoid in the category of algebras

(4.3.1) DxriniTiON. Let A be a subcategory of the category of gradealgebras. Aright module
system MoverA is an assignment, to eaghe A, of a rightA-moduleM(A), and, to each homomorphism
f:A— Ain A, of a homomorphisni, : M(A) — M(A’) which is f-equivariant, i. e.

f.(xa) = f.(x)f(a)

foranya e A, x € M(A). The assignment must be functorial, i. e. one must hayg.(id idu) for all A
and (fg). = f.g. for all composabld, g.

There are the obvious similar notions ofedt module systerand abimodule systeran a category of
gradedk-algebrasA. Clearly any bimodule system can be considered as a left ln@gatem and a right
module system by forgetting part of the structure.

(4.3.2) xampLEs. One obvious example is the bimodule systeémiven by1(A) = A, f. = f for all
A andf. Another example is the bimodule syst&ngiven by the suspension. That BA is given by the
shift
T AV = (ZA)"
(n € Z) which is the identity map denoted By The bimodule structure fa, m € Ais given by

a(=m) = (-1)%9®x(am),

Em)a = Z(ma).
We shall need thanterchangeof £ which for graded moduled, V, W is the isomorphism
(4.3.3) cuvw U EV)eW S S(UeVeW)

which carriesi® ve wto (-1)®03(ue ve w).
Clearly a direct sum of module systems is again a modulesyst¢he same kind, so thatin particular
we get a bimodule systeiha X with (1 & Z)(A) = A® ZA.
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We are mainly interested in the bimodule systérand the bimodule systei® X which are in fact
both folding systems, see (4.3.15) below.

(4.3.4) eriniTion. For a right module systemd on the category of algebr@sand an algebra from
A, anM-algebra of type As a pairD.. = (9 : D; — Dg) with 7o(D.) = Aandr1(D.) = M(A), such thaDg
is ak-algebra, the quotient homomorphigdg » moD. = Ais a homomorphism of algebrd3; is a right
Do-moduled is a homomorphism of righiDp-modules, and the induced structure of a rigé{D..)-module
on rr1(D.) conicides with the original righf-module structure oM. For A, A’ in A, an M-algebraD,
of type A, and another on®,, of type A’, a morphismD,. — D’ of M-pair algebras is defined to be a
commutative diagram of the form

0

0 M(A) D Do A 0
f*J/ l f1 \L fo l f
0 M(A) D} D, A 0

4

where fy is @ homomorphism of algebras afdis a right fo-equivariantk-linear map. It is clear how to
compose such morphisms, so th&talgebras form a category which we denéle, .

With obvious modifications, we also get notions Mfalgebra of typeA when M is a left module
system or a bimodule system; the corresonding categorigigelbras will be denoted blylg{;, andAIgRA,
respectively. Moreover, for a bimodule systdirthere is also a further full subcategory

AlgRa" c Al

whose objects, callelll-pair algebrasare thoséM-algebras which satisfy the pair algebra equatibgy =
xady for all x,y € Dj.

(4.3.5) Rmark. Note that if A containsk, thenAIgf\’,I has an initial object given by thi&l-algebra
I = (0: M(k) — k) of typek. Moreover ifA contains the trivial algebra 0, thﬁgf\’,l also has a terminal
object — theM-algebra 0= M(0) — 0 of type 0. Here ? stands férr or b if M is a left- right- or
bimodule system, respectively.

(4.3.6) DeriniTion. Let A be a category of graded algebras as above which in additidoged under
tensor product, i. ek belongs toA and for anyA, A’ from A the algebraA @ A’ also belongs ta\. A
right folding systenon A is then defined to be a right module syst&hon A together with the collection
of right A ® A’-module homomorphisms

dan  AdM(A) = M(Agy A),
oan - M(A) @ A" - M(Agyx A)

forall A, A" in A which are natural in the sense that for any homomorphism& — Aq, f' 1 A” — A} in
A the diagrams

Apn ’
A M(A) 25 M(Agy A) M(A) & A —2% - M(A gy A')
(4.3.7) f®f;l \L(f@f’)* , f@f’l l(f@f’)*
/lAl_A/l , PAl.A’1 ,
A1 ® M(Aa_) —— M(Al ®x Ai) M(Al) ®k Al —— M(Al ®k Al)

commute. Moreover the homomorphisms

Aka  kex M(A) - M(k®k A),

(4.3.8) pak i M(A) &k = M(A&y k)
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must coincide with the obvious isomorphisms and the diagram

A M(A @ A”)

A
)

AR A AT
A A @ M(A” M(A @A & A”),

/

M(A ®x A') Qk A’

M(A) &k A’ @ A’ kol M(A @ A @ A”),

/

M(A &y A) @ A”

(4.3.11) Ay M(A) & A" MA@ A @ A”)

/

1o A7 /IA,A’®kA”

A® M(A @A)

h

must commute for alh, A’, A” in A. A folding system is calledymmetridf in addition the diagrams

Aan
Agy M(A) 5~ M(Agy A)

TAM(A/)\L \LM(TAN)

M(A) & A 225 M(A &y A)

commute for allA, A’, whereT is the graded interchange operator given in (4.1.4).
Once again, we have the corresponding obvious notions fiffalding system and a bifolding system.

For aright folding systenM, the categonAlg,, has a monoidal structure given by tleéding product
® below. Given anM-algebraD of type A and another one)’ of type A’, we define arM-pair algebra
D®D’ of type A® A’ as the lower row in the diagram

0—— A®M(A) & M(A) @A — > (DBD'); — 2> (D&D')o — > A® A —= 0
(4.3.12) (Aan va.A’)l push l H

0——— M(A® A') ——— (D®D’); — Do® Dy —— A® A ——0.

Here the leftmost square is required to be pushout, and therupw is exact by (4.1.3).

(4.3.13) RorosiTion. For any right (resp. left, bi-) folding system M, the foldipgduct defines a
monoidal structure oilg}, (resp.Algl,, Algy,, Algh"), with unit object I= (0 : M(k) — K). If moreover
the folding system is symmetric, then this monoidal stredgisymmetric.

We only will use the monoidal categorigdg) ., andAlgt®".

Proor. To begin with, let us show that is functorial, i. e. let us for any morphisnfs: D — E,
f’ . D’ — E’in Alg,,, define a morphisnf®f’ : DRE — D’®E’ in a way compatible with identities
and composition. We putf@f’)y = foéfé and define {&f’); as the uniqgue homomorphism making the
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following diagram commute:

BeM(B') & M(B)®B’ (E®E')

fef’ @ f.ef’ (fef')y

ASM(A) ® M(A)®A — (D&D’),

(1B PBR') (Aan pan) l l

M(A® A) —— (D&D"),
(fef). (f8f) ~
M(B® B) (ESE")

where the left hand trapezoid commutes by (4.3.7). Usingarsality of pushout it is clear that right
equivariance of; andf; implies that of f&f"); so that this indeed defines a morphisniiig,,. The same
universality implies compatibility with composition.

Next to show that = (0 : M(k) — K) is a unit object first note that for avi-algebraD by (1.1.2) one
has

@D = Tr. (M © D; % D, & M(W@D, 2% Do) (Dl o MoA L% Do)

From this using (4.3.8) it is easy to see tha); is given by the pushout

M(A) & M(K)®A "L D, & M(K)®A

S

M(A) ————— (1&D),

so that there is a canonical isomorphid®D), = D; compatible with the canonical isomorphig® Dg =
Do. Symmetrically one constructs the isomorphidml = D.

Turning now to associativity, first note that the tensor piid4.1.2) can be equivalently stated as
defining O®D’):1 by the requirement that the diagram

Di®D;

N

Do ® D'l push D1 ® DE)

N

(D®D’);

be pushout. Then combining diagrams we see that}'); can be equivalently defined as the colimit of
the following diagram:

Do® M(A) D1®D, M(A)®D),

e

D0®D' M(A@A’ D1®D/
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where the mafpy ® M(A) —» M(A® A') is the composit®y ® M(A') - A® M(A’) - M(A® A’) and
similarly for M(A) ® Dy, » M(A® A’). Hence (D&D’)®D")1 is given by the colimit of the diagram

Do® Dy ® M(A") (D&D'); ®D; M(A®A)® Dy

K25

D0 ® D/ D// M(A ® A/ A// (D®D/)l ® D//

Substituting here the diagram fdbéD’); we obtain that this is the same as colimit of a diagram of the
form

Do® D} ® DY

_—

Do®D;®D]  Do® M(A)® Dy

Do ® D) ® D} <— Do® D, ® M(A”) = M(A® A’ ® A”) D1 ® D/ ® Dy

R et

Di:®D,®D{  M(A) ®Dj®Dy

I

D:® D, ® Dy.

Treating now D&(D’®D"”’)); in the same way we obtain that it is colimit of a diagram witmsaobjects;
then, using (4.3.9), (4.3.11), and (4.3.10), one can saatbamorphisms in these diagrams are the same.
Finally suppose thatl is a symmetric folding system. Then for aMralgebrad, D’ of type A, A’

respectively, there is a commutative diagram

M(A® A')

M(A ® A)
Do ® M(A) M(A) ® D},
M(A') ® Do D), ® M(A)

[\

D} ® Do < D} ® D1 — D, ® D;
7 A ™~

D0®D <—D1®D/l

D:®D}

which induces a map from the colimit of the outer trianglettattof the inner one, i. e. by (4.3.14) a map
(D&D’); — (D’®D),. It is then straightforward to check that this defines anraitange for the monoidal
structure. ]
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(4.3.15) &ampres. The bimodule systerh above clearly has a structure of a folding system, with
andp both identity maps. Also the bimodule systémX is a folding system via the obvious isomorphisms

(4.3.16) Aan AR (A BIA) = AA © ASIA —% AA & S(AGA),
(4.3.17) pan S (AGIA) @A = ARA & (EA)RA = AgA ® Z(ARA)

where in (4.3.16), the interchange (4.3.3) Iois used.

(4.3.18) Lemma. The isomorphism@&.3.16) (4.3.17)equip the bimodule systelns X with the struc-
ture of a symmetric folding system on any categdf algebras closed under tensor products.

Proor. It is obvious thafl with the identity maps is a folding system, and that a diraat 8f folding
systems is a folding system again, so iffiees to show thak is a folding system.
The right diagram in (4.3.7) is trivially commutative, wlitommutativity of the left one follows from

oamay(f@ @2 (@) = (-1)*®¥x(f(a) ® f'(2))
=3(f ® ')((-1)™®x(a® a)) = Z(f ® ' )oama)(@® Za)

foranyae A a e A, f . A— A, 70 A — Al. Next, the diagrams (4.3.8) commute siricés
concentrated in degree O.

The diagrams (4.3.10) commute trivially, as only right @t are involved. Commutativity of (4.3.9)
follows from the obvious equality

(-1)*®5(ae (-1)*9®)a @ a”) = (-1)** ¥ (aga ®a")

and that of (4.3.11) is also obvious from

(-1)e@z(ap a)®a”’

7N

agXr(a)®a’ (-1)de90r(a® a’ @ a”)
ai(a@®a’)

(]

Thus by (4.3.13) the folding systeine X yields a well-defined monoidal categoig| . of 1 & X-
algebrasas in (4.3.4). The initial object and at the same time thefonithe monoidal structure dtlg .«
is by (4.3.5) and (4.3.13)

s = (F@ZFi ]F).
ForAlg] itis
Iy = (]F 5 ]F).
The projectiong : A® XA — A can be used to construct a monoidal functor
(4.3.19) q: Alg s — Alg}
carrying an objecb in Alg].; to the pushout in the following diagram

A
A

Aa XA D, Do

ql push l

A q(D)1 d(D)o

Evidentlyq(l1gs) = 1.
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4.4. Unfolding systems

It is clear how to dualize the constructions from the presisection along the lines of section 4.2. We
will not give detailed definitions but only briefly indicatieet underlying structures.

We thus consider a categoByof gradedk-coalgebras, and define a right comodule sysieon C as
an assignment, to each coalge@ran C, of aC-comoduleN(C), and to each homomorphisin: C — C’
of coalgebras of af-equivariant homomorphisr : N(C) — N(C’), i. e. the diagram

N(C) coaction N(C) ®C

f. f.of

coaction

N(C") <2 N & €7

is required to commute. Similarly one defines left comodyftems and bicomodule systems. As before,
we have a bicomodule systefrgiven by1(C) = C and alsa®, 1 & X defined dually to (4.3.2).

Then further for a right comodule systelhon C and for a coalgebr& from C one defines aiN-
coalgebra of typ&€ by dualizing (4.3.4). Itis thus a pab* = (d : D° — D) whereD? is a coalgebra,
D! is a right D°-comodule andl is a comodule homomorphism. Moreover one must hé(®*) = C,
7(D*) = N(C), and theC-comodule structure oN(C) induced by this must be the one coming from the
comodule systerN. With morphisms defined dually to (4.3.4), tNecoalgebras form a categoBoal gy .
Similarly one defines categori€palgy andCoalgl" ¢ Coalgh for a left, resp. bicomodule systeh
These categories have the initial object 0->0N(0) and the terminal object Ok — N(K).

Also dually to (4.3.6) one definamfolding systemas comodule systems equipped withC ® C’-
comodule homomorphisms

I¢ . N(C®C’) - C®N(C)

r*¢ :N(CeC) - N(C)eC
for all C,C’ € C required to satisfy obvious duals to the diagrams (4.3.74.3.11). Also there is an
obvious notion of a symmetric unfolding system.

Then for an unfolding systemd we can dualize (4.3.12) to obtain definition of tinefolding product
D®D’ of N-coalgebras via the upper row in the diagram

0—>C®C —> Do DL+ (DgD) ! — > NC®C)—— >0

cc’
‘ ‘ l pu” l :CTC/ )
= g

0—>C&C —> (D&D')° —= (DgD’)t — Ca&N(C’) & N(C)eC’' —= 0

where now the rightmost square is required to be pullbacklaatbwer row is exact by the dual of (4.1.3).

It is then straightforward to dualize (4.3.13), so we codeldhat for any unfolding systemd the
unfolding product equips the categdty)alg?N with the structure of a monoidal category, symmetridlif
is symmetric. Here, “?” stands for “r”, “I, “b” or “pair”, acording to the type oN. Obviously also the
dual of (4.3.18) holds, so that the categommlgﬁ’la" andCoalg ;s have monoidal structures given by the
unfolding product.

4.5. The G-relation pair algebra of the Steenrod algebra
Fix a primep and letG = Z/p?Z be the ring of integers mogf, with the quotient ma@ —» F = Fp =
Z/pZ. Let o be the modp Steenrod algebra and let

Sq ,Sq 5 eee for p = 2,
E., = { }
S ,B,ﬂ ,ﬂ ,} fOI‘Oddp



36 4. HOPF PAIR ALGEBRAS AND HOPF PAIR COALGEBRAS

be the set of generators of the algebraWe consider the following algebras and homomorphisms

q: %o Fo—Z > o
(4.5.1) ‘ H

To(Ew) Te(Ew)

HereTy(S) for a commutative rindk denotes the free associatikalgebra with unit generated by the set
S, i. e. the tensor algebra of the freenodule onS. The mapq« is the algebra homomorphism which is
the identity onE,,. For f € %, we denote the elemeqgy: () € o7 by

f=az(f).
Let Rz denote the kernel df, i. e. there is a short exact sequence

This short exact sequence gives a long exact sequence
TOI’(R{G s F) s TOI’(%(),F) —_— TOI'(JZ%, F) |—> Rz ® F —— %y ®F — &/ QF.

HereA®F = A/pAand Tor@, F) is just thep-torsion part ofA for an abelian grou@, so the connecting
homomorphism sendsa = q(b) + p%o to pb + pR%. It follows that the second homomorphism in the
above sequence is zero. Moreover clearly we can ide#if® F = .%o and Tor(, F) = .o/, so that there
is an exact sequence

o

o 7 —2 > FE
(4.5.2) H H
Rz ®F Fo

One has

(4.5.3) Lemma. The pair%” = (0 : #; — %) above has a pair algebra structure compatible with
the standard bimodule structure of on itself, so thatZ" yields an object irAlgh™", see(4.3.4)

Proor. Clearly modp reduction of any pair algebra ov@ris a pair algebra ovét. Then let%Z* be the
mod p reduction of the pair algebiRz > %y. Thus the%y-Fo-bimodule structure oﬁ?”lF = R%/pRxz is
just the modp reduction of theZy-%o-bimodule structure oR, i. e.b’ + p% € %’g = PBo/pAo acts on
r + pRs € Z; = Rz/pRx via

(b" + pABo)(r + pRz) = b'r + pRx.

Moreover the above inclusioy »» Rg/pRsz sends an elemeub) to pb + pRy. Then the action of
a =q(b’) € & oni(a) = pb+ pRx € i(«/) = kerd induced by this pair algebra is given as follows:

a'i(a) = gz (b" + p%o)(pb+ pRz) = pbib + pRz = iq(b’b) = i(a'a)
and similarly for the right action. O
We call the objectZ" of the categorlgh®" the G-relation pair algebra o7

(4.5.4) Tueorem. The 1-pair algebraZ* has a structure of a cocommutative comonoid in the sym-
. . pair

metric monoidal categorplg;™ .

Proor. Forn = 0, let R(gg? denote the kernel of the mafi", so that there is a short exact sequence

R(gn) > (@(c)z)n Lm» o/®n

and similarly to (4.5.3) there is a pair algebra of the form

oo —— RO QF 24 /"
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determining an objec#® in Algpalr Then one has the following lemma which yields natural exaspf
pair

folding products inAlg;™ .
(4.5.5) Lewmia. There is a canonical isomorphisg® = (%)% in AlgP™".

Proor. Using induction, we will assume given an isomorphism (%Z5)®" = 2™ and constructy,1
in a canonical way. To do this it clearly §ices to construct a canonical isomorphigfh® 7™ = (M1
as then its composite wit#"®a, will give an,1.

To construct a mapZF&z™); — %’i“*l) means by (4.3.14) the same as to find three dashed arrows
making the diagram

Rz ®RY) ®F

/\

Fo® R) Ry ® F5"
AN 7/
AN /
N\ ¥
RO g

A

I
Fo® "N —— 7o) <—— o ® F§"

commute. For this we use the commutative diagram

Rz ® Rg?
Bo® R(”) Rgg ® A"

/ R(n+1) \

PBo® A — d@(nﬂ) ~— d A",
This diagram has a commutative subdiagram

p(Rz ® RY)

/\

P%o ® R(”) Rgg ® pA"

TS

PBo ® A" A ® pAF",

It is obvious that quotient by this subdiagram gives us ardiagof the kind we need.
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We thus obtain a mapA*@#™); — Rgl) ® F. Moreover by its construction this map fits into the
commutative diagram

oy®+l) >~ (%Féﬂ(n))l —_— 350®(n+1) — oy®(n+1)

| \

of®MHl) >~ R(gr;'l) QF —— ygb(ml) ——> gye(n+l)

with exact rows, hence by the five lemma it is an isomorphism. O

Using the lemma we next construct the diagonad&fgiven by

R @ F e ] " ] ———

~ A~ 0
RY @ F —— (#°0%")1 —— %5 ® By Fo® Fo.

HereA® is defined by the commutative diagram
Rz —— %o

(4.5.6) AG\L Aﬁl
R(g? - PBo @ B,

where the diagonal® on %, is defined on generators by
n
A%(sq) = ) sd @ Sd* forp=2,
i=0

A°B)=Bo1+1p8,
A°(PY = ) PeP,
i+j=n for oddp
AS(P)) = Z (P,@P +P o P))
i+j=n
(with S = 1, P = 1 as usual) and extended to the whatg as the unique algebra homomorphism with
respect to the algebra structure &g ® %, given by the nonstandard interchange formula

PBo @ PBo® By Ao

He

PBo @ Bo @ By ® Bo PBo @ Ay

with
TO : Bo®@ Bo = Bo® Bo
TG(X® y) — (_1)pdeg¢() degwy® X.
In particular, clearly for alp one hasT®A% = A%, i. e. the coalgebra structure o8, is cocommutative.
The counit forZ" is given by the diagram
JZ%>—>R@®P—>90—»'J27
[
(4.5.7) l | l l
¥ 0

where the majRz ® F — F sends the generatopls,) ® 1 in degree 0 to 1 and all elements in higher
degrees to zero. It is then clear from the formulaf6rthat this indeed gives a counit for this diagonal.
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Finally to prove coassociativity, by the lemma itflsces to consider the diagram

4.6. The algebra of secondary cohomology oper ations
Let us next consider a derivation of degree 0 of the form
n.od — X,
uniquely determined by
xS =xSd"?! forp=2,

(46.1) %'B =t }for oddp.
#»(P)=0,i>0
We will usex to define ane-<7-bimodule
o &, Xof

as follows. The righter-module structure is the same as .ond X</ above, i. e. one hax(Xy)a =
(xa, Zya). As for the lefte/-module structure, it is given by
a(x, 2y) = (ax (-1)%9®zay + x(a)x).
There is a short exact sequencesf.e/ -bimodules
0-Xd > A 9,2 > o —0
given by the standard inclusion and projection.

(4.6.2) Remark. The above short exact sequence of bimodules and the denwatorrespond to each
other under the well known description of the first Hochsthidthomology group by bimodule extensions
and derivations, respectively. Indeed, more generallgltdlat for a gradedk-algebraA and anA-A-
bimoduleM, one of the possible definitions of the Hochschild cohomglofA with codficients inM
is

HH"(A; M) = Extag, A (A, M).

On the other handdH(A; M) can be also described in terms of derivations. Recall thaflavalued
derivation onA is ak-linear mapx : A — M of degree 0 satisfying
#(xy) = #(x)y + (= 1) x(y)

for anyx,y € A. Such derivations form k-vector space De&; M). A derivationx = ¢y, is called inner if
there is arm € M such that
%(X) = mx— (1) xm = ¢(x)
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for all x € A. These form a subspace IdarM) c Der(A; M) and one has an isomorphigdH*(A; M) =
Der(A; M)/ Ider(A; M). Moreover there is an exact sequence

0 — HHY(A: M) — M 5 Der(A; M) — HHY(A; M) — 0.
Explicitly, the isomorphism
Der(A; M)/ Ider(A; M) = Exthga (A, M),
can be described by assigning to a class of a derivatioA — M the class of the extension
0O->-M->Ap,M>A—-0

where as a vector spacd®, M = A@ M, the maps are the canonical inclusion and projection and the
bimodule structure is given by

a(x,m) = (ax am+ %(a)Xx),
(x, ma = (xa, ma).
Obviously thee? @, .o/ above is an example of this construction.

(4.6.3) DeriniTion. A Hopf pair algebra?” (associated tay) is a pair algebrd : ¥1 — ¥, overF
together with the following commutative diagram in the gatey of .%,-.%-bimodules

Sof ——— 3o
]
(4.6.4) o @, 3o h—"> % o
o ]
o Ry~ T —— o
with exact rows and columns. The pair morphigm ¥ — %" will be called theG-structureof ¥
Moreover 7" has a structure of a comonoid Alg] .. andq is compatible with theAIgﬁa'r-comonoid
structure onZ" in (4.5.4), in the sense that the diagrams
h— (V&)
(4.6.5) ql lqéq
Ky 2 (TSR,
and
#—">F@3F
(4.6.6) ql l
Ay —"F
commute.
We next observe that the following diagrams commute:
o . N4 o . Tof
6l liﬁ E\L lZé
dod s @ d ==X AR), ASA e o @3 — > LA D)

whereo is the interchange fa in (4.3.3). Or, on elements,

(4.6.7) D M@ @ar = ) n@) ®x@) = ) olar ®x(a)).
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where we use the Sweedler notation for the diagonal
6(x) = Z Xe ® X

(4.6.8) Rmark. The above identities have a simple explanation using dat#in. We will see in
(5.1.7) below that the map dual tois the mapE.«/. — < given, forp = 2, by multiplication with the
degree 1 generatdi € <7, and for oddp by the degree 1 generatey. Then the duals of (4.6.7) are the
obvious identities for any, y € 7

(L)Y = d1(xy) = X({1y)
for p=2and
(toX)y = To(xy) = (-1)**¥x(z0y)
for odd p (recall thates, is graded commutative).

Using (4.6.7) we prove:

(4.6.9) Lemma. For a Hopf pair algebray” there is a unique left action o on (¥ ®7); such that
the quotient map
(V&)1 > (V&)1
is .Zo-equivariant. Here we use the pair algebra structure’®7 to equip(¥ ®%); with an.%, ® .-
bimodule structure and then turn it into a leff,-module via restriction of scalars alonyy : %y —
G ® Fp.

Proor. Uniqueness is clear as the module structure on the quatiemy moduleM by a submodule
is clearly uniquely determined by the module structurévan
For the existence, consider the diagram

Fo® (o &, T) Y10 (o &, 2) ® Fo
(4.6.10) l X X l
FoQ® N A QA By (A @) 1 Q Fo.

whose colimit, by (4.3.14), is{®7)1, with the right%, ® .%o-module structure coming from the category
Alg} ;- Itthen siffices to show that all maps in this diagram are also.f&ftequivariant, if one uses the
left .%p-module structure by restricting scalars along the diagdfia— .%o ® %.

This is trivial except possibly for two of the maps involvéehr the map

D: Fo® (A @, 2) > AR Brgy XA )

given by _ _
O(f' ® (%, 2y)) = (f' @ x, (-1)*Ozf" g y),
this amounts to checking that for afiyf’ € .%; andx, y € <7 one must have

D (1@ )1 & x (1T ©y) = L) ) £ o (fx, (-1 90Ty -+ x(F)0),
where again the above Sweedler notation
A(f)=) fref,

is used for the diagonal oy too, andf’ denotegy#(f’) by the notation in (4.5.1).
The left hand side expression then expands as

Z((_l)degm)deg(f') f,f ®fx
(—1)de0t) degt")(_1)dea®)(_1)0ea0)S £ g f,y + (~1)0€90) dea0) () § @ F,)
and the right hand side expands as
(~1)e909e00) N (£,17 @ fyx, (-1 (1) 9OLF @ fy + fof @ x(F)X)).
Thus left equivariance ab is equivalent to the equality

DA @ fix= 3 (1R @ (i)
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This is easily deduced from o B B
D@ f = D (-1 f @ x(f),

which is an instance of (4.6.7).
For another map

VY (o @, )@ Fo > A QA Brgey 2(A Q)

given by B B

P(xZy)e f')=(xe f',Zy® ')
the equality to check is

Dt f)(xe 1,5y e ) = W((-1) 00 N (fix (-1 90Ty + #(f)) ® 1),
Here the left hand side expands as
Z((_l)deg(fr)degoo fxe f f, (—1)e9) deg®y) (_1)deal v 4+ (~1)7e90) deg®(£,)x @ f:rf:’)
and the right hand side expands as
(~1)tet) o) N (Fix T, 7, (-1 905y @ T f + x(f)x® f ),

these two expressions are visibly the same. O

Given this left module structure or¥(®7)1, one can measure the deviation from left equivariance of
the diagonal\y : 71 — (¥ &7);. For that, consider the mdp: %, ® ¥, — (¥ &)1 given by

L(f®@X) := Ay (fX) = f - Ay (X),

forany f € %y = ¥, x € ¥1, where- denotes the left?;-module action dejined in (4.6.9). Since the
diagonalAg of ZF is left equivariant, it follows from (4.6.5) that the imagglolies in the kernel of the
mapg®q, i. . inZe/ ® 7. Moreover iff = vy for somev, € #1, then one has

Ay (0(v1)X) = Ay (V10X) = Ay (VI)A 7 (0X) = Ay (V1)0pA v (X) = dgAy (VI)Ay (X) = Az (V1) Ay (X),
so thattheimage af® 71 : V1 ® ¥1 — ¥ ® # lies in the kernel of. Similarly commutativity of

" (V&)
(4.6.11) 6l laé
Yo —"= %8 %
implies that¥, ® kerd is in the kernel of_. It then follows thatl_ factors uniquely through a map
o ® Ry = (%/imd) ® (71/ kerd) — ker(@®q) = *o/ ® 7.
(4.6.12) kriniTion. The map

Ly : 7 Q®Rg > X @

given by the unique factorization of the mambove is characterized by the deviation of the diaganal
of the Hopf pair algebr&” from left equivariance. That is, one has

Ay (FX) = f - Ap(X) + Ly (f ® %)
foranyf € %y = ¥, X € ¥1 and the actionfrom (4.6.9).
Similarly one can measure deviation®j : 71 — (7&7); from cocommutativity by means of the
mapS : 71 — (¥ &)1 given by
S(X) = Ay (X) = TAy(X),
whereT : (¥®7)1 — (¥®¥), is the interchange operator fAig] ., as constructed in (4.3.13). Then

similarly to L above,S admits a factorization in the following way. First, by comtativity of (4.6.5) one
has

(@®)TAy = T(A®DAy = TA%q = Az = (ABYAy,
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since theﬂ\lgﬁ’f‘"-comonoid%’F is cocommutative. Thus the image®fs contained in ke®q) = S/ ®.7.
Next, commutativity of (4.6.11) implies that ké&is contained in the kernel &. HenceS factors uniquely
as follows

Rz = 71/ kerd — ker(@®q) = Lo/ ® o .

(4.6.13) kriNiTION. The map
Sy Rg - 2o/ @ of
given by the unique factorization of the m&mabove is characterized by the deviation of the diaganal
of the Hopf pair algebra” from cocommutativity. That is, one has

TAy(X) = Ay (X) + Sy (0X)
foranyx e 7.

It is clear from these definitions that, andSy are well defined maps by the Hopf pair algel#fa
Below in (6.1.5) we define the left action operator &7 ® Rz — X4/ ® o/ and the symmetry operator
S:Rgy - X @/ withL = 0andS = 0if pis odd. Forp = 2 these operators are quite intricate but
explicitly given. We also will study the dualization 8fandL.

The next two results are essentially reformulations of tlaémesults in the book [3].

(4.6.14) Tueorem (Existence).There exists a Hopf pair algebrd with Ly =Land Sy = S.

(4.6.15) THeoreM (Uniqueness).The Hopf pair algebra?” satisfying Ly = L and Sy = S is unique
up to an isomorphism over th@-structure’?” — %" and under the kerne¥/ @, o/ »— 7.

The Hopf pair algebra appearing in these theorems ialtiehra of secondary cohomology operations
overF, denoted by#" = (#; — %) = % @ F. The algebraz has been defined overin [3].

Proor oF (4.6.14). Recall thatin [3, 12.1.8] a folding prodiéets defined for paiG-algebras in such
a way that# has a comonoid structure with respect to it, i. e@eaondary Hopf algebrstructure. Let

Aq . 331 d (33@)33)1
be the correspondingecondary diagondrom [3, (12.2.2)]. It is proved in [3, 14.4] that the left @t
operatolL satisfies
A1(bx) = bA1(X) + L(q(b) ® (0x® 1))
forbe %o, X € %$1,0x®1 € RpQF = %”f. Also in [3, 14.5] it is proved that the symmetry opera$or
satisfies
TA1(X) = A1(X) + S(Ox® 1)
for x € #,. Moreover itis provedin [3, 15.3.13] that the secondary HdgebraZ is determined uniquely

up to isomorphism by the maps L andS.
Consider now the diagram

Lo

A ®, S~ B RF > Bo@F — of

ql qa@i

o > Rz ®F o .

Here the inclusiom, : «f @, X</ » %1 @ F is given by the inclusioX.ey c %; and by the map
o - B1®F

which assigns to an elemegfb) € o7, forb € %y, the element] - b® 1. Then it is clear that, is a
right «7-module homomorphism. Moreover it also is a leftmodule homomorphism since fore %,
the following identity holds in#;:

b-[p] - [p] - b= x(b).
Compare [3, A20 in the introduction]. Now one can check thatgroperties ofZ established in [3] yield
the result. O
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(4.6.16) Rmark. For elements, B,y € o7 with 8 = 0 andBy = 0 thetriple Massey product
(@.B,y) € o [(ad + o)
is defined. Here the degree of element&irg, y) is deg) + degB) + degfy) — 1. We can computgy, 3, y)
by use of the Hopf pair algebr#" above as follows. For this we consider the maps
JZ{&%QD R{@LR@@F.

We choose elementsﬁ:,?e Ao which ge carries ta, 8, y respectively. Then we know that the products
ap, By are elements iRy for which we can choose elements/ € %; ® F with

A(x) = ar(aB),

a(y) = ar(8).
Then the bimodule structure &, QF yields the elementy— xy in the kerneE.«7 of q : %, ®F — Rz QF.
Now ay — Xy € & representsa, 3,7), see [3].

4.7. Thedual of the G-relation pair algebra

We next turn to the dualization of tli-relation pair algebra of the Steenrod algebra from seetibn
For this we just apply the duality funct@rto (4.5.2). There results an exact sequence

d

o, 2 R s,
i. e. the sequence
7 D(H) — 2 D) o,
(4.7.1) H H
Hom(ﬂ«‘o, F) Hom(R@,]F).

In particular, by the dual of (4.5.3) one has

(4.7.2) Lemma. The pairZs = (d : %g - %’;) has a pair coalgebra structure compatible with the

standard bicomodule structure of, over itself, so thatZr yields an object irCoaIg']'f‘", see section 4.4.

Moreover the dual of (4.5.4) takes place, i. e. one has

(4.7.3) Tueorem. The pair coalgebraZs has a structure of a commutative monoid in the category

Coalg?™" with respect to the unfolding produdt

m]
The proof uses the duals of the pair algeb®, n > 0, from (4.5.4). Namely, applying to the short
exact sequence
Sp— R
the functorD = Hom(,, F) gives, similarly to (4.7.2), a pair coalgebra

%in) — ( AN o R(%) &N )

such that the following dual of (4.5.5) holds:

4.7.4) Lemma. There is a canonical isomorphisg™ = (%z)®" in Coalg”®".
p 9

Using this lemma one constructs themonoid structure oZy by the diagram

Fs

T == B2 ® HY — " (Fei e —— RO,

L ] Lk

o0 1
F, ——— R R ——— Ry,
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with A® as in (4.5.6).
Moreover the unit ofZr is given by the dual of (4.5.7), i. e. by the diagram

b

|
|
N

%}F

0
1

so that the unit element &, is the mapRz — F sending the generatqlg, in degree 0 to 1 and all
elements in higher degrees to zero.

4.8. Hopf pair coalgebras

We next turn to the dualization of the notion of a Hopf paireddga from (4.6.3), using the du@d of
" from the previous section.

(4.8.1) Dxrnimion. A Hopf pair coalgebra#” (associated tev,) is a pair coalgebrd : #° — w?*
overF together with the following commutative diagram in the gatey of .%..-.%.-bicomodules

o, %g %’% o,
d (zr’;)
o, w0 wl o, By, L,

with exact rows and columns. The pair morphisn¥Zz — # will be called theG-structure of#". More-
over# must be equipped with a structure of a monaigy(, 1) in Coalg],; such thai is compatible

with the Coalg?®"-monoid structure orzz from (4.7.3), i. e. diagrams dual to (4.6.5) and (4.6.6)

1le

(Beoe)t —= Ay F——
L
Wew Lyl FeoSF—2> yt
commute.
We next note that the dual of (4.6.9) holds; more preciselg, las
(4.8.2) Lemma. For a Hopf pair coalgebra#” the subspace
&)t c (wen)

is closed under the left coaction of the coalgel#a on (#®#)* given by the corestriction of scalars
along the multiplication m: .%, ® ., — %, of the leftZ, ® %, = (# ®#)°-comodule structure given
by the pair coalgebra# ®# . In other words, there is a unique mag m(# &% )* — Z. @ (W &¥)*
making the diagram

HSW) - ——— == =T - — = - - F. @ (WeW):

I |

WHN) —= F. 0 F. 0 (VW) 2= . @ (WaW):

commute.
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O
Given this left coaction, one can define the dual of the lefioacoperator in (4.6.12) by measuring
deviation of the muItiE)Iicationxmvzﬂf/)l — w1 from being a left comodule homomorphism. For that, one
first observes the map: (# &@#)* — %, ® #* given by the diference of two composites in the diagram

WV —"= F, & (Ve

My l \L 1My,

Wl L y* ® 7/1.

Then by the argument dual to that before (4.6.12) one seéshianapl factors uniquely through
coker{®i) = ((%’/éW)l > X, ® sz*) and into ker¢) ® im(d) = (sz* ®Rz, —» #°® Wl) to yield a map
Yo, ® of, — o, ® Rg,.. We thus can make, dually to (4.6.12), the following

(4.8.3) eriniTION. The map

Ly 34, @ o, > o, @ Rz,
given by the unique factorization of the mambove is characterized by the deviation of the multiplaati
my, of the Hopf pair coalgebra” from being a left.%.-comodule homomorphism. That is, for any
te (#&#)!one has
(1@ my )M () = m'my (t) + Ly (1s@75) (1).
Next, we define a maPy in a manner dual to (4.6.13), measuring noncommutativitge€oalg .-
monoid structure ot¥ . For that, we first consider the m&p: (# ®#)* — #'* given by
S() = my T () - my (t)
fort e (#@#)! and then observe that, dually to (4.6.13), this map factoiguely through cokeigi) =
((w&w) » 4. ® o) and into im@l) = (Rz. — #*) so we have
(4.8.4) DeriniTion. The map
Sy 2. I — Rz,
given by the unique factorization of the m&mbove is characterized by being the graded commutator map

with respect to the-monoid structure on the Hopf pair coalget#a That is, for anyt € (# &#)* one
has

My T(t) = My (1) + Sy (re@ms) (D).
We now dualize the left action operator (6.1.5) and the symnuperator (6.2.1).
(4.8.5) DxrinTioN. Theleft coaction operator
L.: . ® . — . ®Rz,

of degreet1 is the graded dual of the left action operator (6.1.5).

(4.8.6) xriniTioN. Thecosymmetry operator

S, . ®d - Rz,

of degreet1 is the graded dual of the symmetry operator (6.2.1).

Itis clear that the duals of (4.6.14) and (4.6.15) hold. Lestate these explicitly.

(4.8.7) Teorem (Existence).There exists a Hopf pair coalgebv with Ly = L. and Sy = S..

(4.8.8) Tueorem (Uniqueness).The Hopf pair coalgebra” satisfying Ly = L. and Sy = S, is
unique up to an isomorphism ovéf —» o @, Yo/ and undetzg — ¥ .

The Hopf pair coalgebra appearing in these theorems wildmetbd byZr = (%g - %&) = D(#").



CHAPTER 5

Generators of % and dual generators of #*

In this chapter we describe polynomial generators in thé 8Steeenrod algebraz,. and in the dual of
the free tensor algebiB:(E.,) with the Cartan diagonal. We use these results to obtairrgéors in the
dual of the relation modulB.

5.1. TheMilnor dual of the Steenrod algebra

Here we recall the needed facts from [14]. The graded duah@fHopf algebra’ is the Milnor
Hopf algebraeZ, = Hom(«7,F) = D(«/). It is proved in [14] that for odg as an algebrav, is a graded
polynomial algebra, i. e. it is isomorphic to a tensor prddfcan exterior algebra on generators of odd
degree and a polynomial algebra on generators of even ddgrge = 2 the algebra, is a polynomial
algebra. Moreover, in [14], explicit generators are giveterms of the admissible basis.

First recall that the admissible basis fatis given by the following monomials: for oddthey are of
the form

M = BOPgapP2... pSge
whereg € {0, 1} and
Sl> € + pSZ5SZ> e+ pss5'~"$’lfl> €n-1t prSW = 1~

Then letéy € g gy = Hom(@ 2D, F), k > 1 andry € oy 4 = Hom(@? L F), k > 0 be given on
this basis by

1, M=prpr... prpl
5.1.1 M)={" ’
( ) (M) {O otherwise
and
— petpe? .. pp
(5.1.2) (M) = L M P_ P PPPB.
0 otherwise

As proved in [14],« is a graded polynomial algebra on these elements, i. e. @risted by the elements
& andrty with the defining relations

&iéj = i
&t = 7iéi,
TiTj = —TjT;
only.
For p = 2, the admissible basis far is given by the monomials
M = Sg™ Sg2 - - - Sg™
with

$122% 9 22%,...,5-122%,%9>1
and the polynomial generators.of. are elementg, € o%_; = Hom(xzﬂk‘l, F) given by

1, M=Sq" S¢ - SESd,

0 otherwise

(5.1.3) Z(M) = {

47
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In terms of these generators, also the coalgebra strutture?, — .« ® <7 dual to the multiplication
mof o7 is determined in [14]. Namely, for odglone has

2 k-1
5.1.4) M) = &@L+ & 8&+E,86+ +& ®&a1+186
m. (k) =§k®To+§E_1®Tl+§|§2®‘rg+-~-+§fkﬁl®‘rk,1+1®‘rk+‘rk®1.

Forp =2 one has

(5.1.5) M) = &®1+ 2, @0+, 80+ +8 ®4a+184

We will need expression of the dual 5q <%, — . to the map St : %o/ — & given by
multiplication with Sd from the left.

(5.1.6) Lemma. The mapSdt is equal toa%. That is, on the monomial basis it is given by

n—-1.n, _

=1 mod?2
S Ny Ny ) = 41 42 ’ nl
d@e ) {o, m=0 mod 2

Proor. Note that S§is a derivation, since Sqis a coderivation, i.e. the diagram

Saot-
Xof i of

) l (s & .®1) lé

1eSql -

YA ® A —> ARAXARDA ——> A @A

commutes: indeed for anye </ one has

5(Sat x) = 6(SAH)(X) = (SAF @1 + 1® SA)s(X) = (St ®1)5(X) + (1 ® SqH)s(X).

On the other hand, on the Milnor generators the derivatidreSts as follows:

1, Sgx=S¢  S¢ " ---Sq,
0, Sq'x#SE SE ---Sq.

It follows that Sd(z1) = 1; on the other hand far > 1 the equation Sgx = S S - -- Sqt has no
solutions, since it would imply S¢S - -- St = Sg* Sqt x = 0, whereas actually

SGSE SE St =Sqt? S --- St # 0.

But ﬁ% is the unique derivation sendiggto 1 and all othet;'s to 0. O

SGHE)() = £n(ST¥) = {

We will also need expression of the dual of the derivatione from (4.6.1) in terms of the above
generators.

(5.1.7) Lemma. The map. : X% — < is equal to the left multiplication by, for odd p and by
forp=2.

Proor. For any linear map : &/" — F the mapx.(¢) : oh.1 — F is the composite o with
% . @hy1 — “p. Thus forp odd one has

(518)  w(A)BPHBIPT - PIET) = Y (-1 IIg(BIPIRY . pRAPAPR g PRT),
=1
On the other hand, one has figras above

(7o) (M) = > 7o(M)p(M:) = > cp(My),

M,=c3
O#ceFF

5(M) = Z M ® M;.
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On the other hand one evidently has

5(,350P911351P32 . P&ﬁfn) = Z (_1)Zo<y<v<n(fpﬂp)lvlglo plﬁll . Finlgln ®[360*lo P51*i1ﬂ€1*11 . pSn*inﬂfn*ln
O<p<€6
0<ii<s;
O<u<e
0<in<sy
O<tn<en

so that forM = gopPsig ... P934 one has

Z C¢(Mr) — Z Z (_1)Zo<y<v<n(fp*lp)lv(p(ﬁfoﬂopSrilﬂfrtl . pSn*inﬁfn*ln)
M;=cB &=1 1p=0
O#ceF |1=0
=0
=1
ik+3.=0

— Z(_l)Zowk (B Pslﬁfl . p5k|:>5.<+1'BEk+1 . Psnﬁfn)

=1
which is the same as (5.1.8) above.
Similarly for p = 2 the mapc..(¢) is given by
(5.1.9) #(8)(SC -~ ST™) = $x(SaP -+ ST™) = ) H(Sef* -+ St Se)
k=1

and the mag¢ is given by
(@OM) = D" aM)gM) = > ¢(My).

M,=Sq
On the other hand one has
S(S - -~ SG™) = Z Sqt---Sgr® St - - Sgin,

0<i1<s;

0<in<sn

so that forM = S¢* - - - Sg™ one has

DT M) =D (S-S
M,=Sq* k=1 ilfo

ik,1=0

=1

ikr1=0

in=0

which is equal to (5.1.9). O
It is clear that with respect to the coalgebra structurezGrthe maps., is a coderivation, i. e. the
diagram
P - A
ml lm
E(M®M)LZM®M®M®ZM A ® .

is commutative. Herer is the interchange df as in (4.3.3). Then using dual of the construction mentioned
in (4.6.2) one may equip the vector spage® .o, with a structure of an#.-<7-bicomodule, in such a
way that one has a short exact sequence,ef,-bicomodules

(.®1,1®x.)

(5.1.10) 0- o, — A &, X, — L, — 0.
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Explicitly, one defines the right coaction ef, on < @, X</ as the direct sum of standard coactions on
<, and onz.Z,, whereas the left coaction is given by the composite

(1 %*®1)
m.eXm, 0 o

A ® T, —— A, 4, ® LA QA ——— H. R, ® AL, = o, (. ®LL,).

5.2. Thedual of thetensor algebra %y = Tr(E./) for p=2

We begin by recalling the constructions from [11] relevanbtir case.
TheLeibniz-Hopf algebras the free graded associative ring with unit Zg

(5.2.1) X = T2, 2,

on generator&,, one for each degree> 1. Here we use notation as in (4.5.1). Th#&ris a cocommutative
Hopf algebra with respect to the diagonal

A(Zy) = anzi ® Zni.
-0

Of course forp = 2 we haveZ ® F = .%, = Tz(E.,) by identifyingZ, = Sqd, and moreover the diagonal
corresponds ta® @ F in (4.5.6). The graded dual & over integers is denoted by ; it is proved in [11]
that it is a polynomial algebra. There also a certain setemehts of # is given; it is still a conjecture
(first formulated by Ditters) that these elements form a §@obynomial generators farZ. If, however,
one localizes at any primg then there is another set of elements, defined using thdlsd paelementary
words which, as proved in [11], is a set of polynomial generatorstfie localized algebraz. This in
particular gives a polynomial generating set £8r = Hom(%o, F,) = .# /2.4 . Moreover it turns out that
the embeddingZ. — .%#. given by Hom{,F,) — Hom(%, F,) (dual to the quotient map#y » <)
carries the Milnor generators of, to a subset of these generators.

One chooses a basis i# which is dual to the (hnoncommutative) monomial basisZn for any
sequencer = (d, ..., dn) Of positive integers, leM, = Mg, 4, be the element of the free abelian group
MEH+h = Hom(Z%+-+th, Z) determined by

1, (k... km) = (di, ..., dpn),

Ma...., dn(Zkl"'Z"m)z{o otherwise

SinceZ is a free algebra, dually” is a cofree coalgebra, i. e. the diagonal is given by deceneat
tion:

n
(5.2.2) A(Mg,,...q,) = Z Ma,....ds ® Mg.s....ch-
i=0
Itis noted in [11] (and easy to check) that in this basis thétiplication in ./ is given by the so called
overlapping shgile product Rather than defining this rigorously, we will give some epéas.

MsMz 419 = Ms2419+ M7419+ Mossa19+ M2ag19+ Masas19+ Mogso
+ M2g159+ M24114+ M2g195;
MgsM12 = Mgs12+ Mgg2 + Mgi1s2+ Mgs2 + Mg17 + Mg7 + Mygs2
+ Myg7 + Mygos + Mgos + Mi2gs + Mi1gs + Mg 125

Thus in general, whereas the ordinary Steuproduct of the elements, sa¥lg, a,.a, @nd My, b, bs.b,.bs CON-

Mb,.a,a0.00,bs+26,04.b5+ Mby.a1,80.05.b5,85+04,b5 Mby+a5,30+by.05.30,04.bs @Nd SO 0N, obtained by replacing arand a
b; standing one next to other with their sum, in all possibleitpmss.

Note that the algebra of ordinary dHes is also a polynomial algebra, but over rationals; itasa
polynomial algebra until at least one prime number remaimisueérted. On the other hand, over rationals
./ becomes isomorphic to the algebra of ordinaryfBas.

To define a polynomial generating set fa#, we need some definitions. To conform with the admis-
sible basis in the Steenrod algebra, which consists of maismith decreasing indices, we will reverse



5.2. THE DUAL OF THE TENSOR ALGEBRA%; = Tr(E.y) FORp =2 51

the order of indices in the definitions from [11], where thdiges go in the increasing order. Thus in our

...............

.....

.....

p 1 gcd(dy, ..., dy). The set ESLY) is defined as the set @gfelementary basis elements of the form

Ma,.....dnh,....Chyvroshryonnl

p' times

For exampleMis6.156.156.156 IS in ESL(2) but not in ESLZ) or in ESL(p) for any otherp, whereas
Msge6 iS in ESL(p) for any p # 2, 3 but not in ESL(2), notin ESL(3) and not in ESL)(
One then has

(5.2.4) Tueorem ([11]). The algebra is a polynomial algebra.
(5.2.5) Gnecture (Ditters, [11]). The seESL(Z) is the set of polynomial generators fof' .

(5.2.6) Tueorem ([11]). For each prime p, the s&SL(p) is a set of polynomial generators fo#(,) =
M ® L, i. e. if one inverts all primes except p.

In particular, it follows that ESL{) is a set of polynomial generators fo# '/ p" overz/p" for all n.

Here are the polynomial generators in low degrees, Beerd over few first primes. Note that the num-
bers of generators in each degree are the same (as it shositickeall these algebras become isomorphic
overQ).

112 ] 3 | 4 | 5

Z M1 | My1 | M2, M111 | Ma1,M211, My111 | Ma1, M3, Ma11, Mo21, Mo111, M11111

Pp=2| M1 | My | Mz, Ma1 | Ma1,Mo11, M1111 Ms, Ma1, M32, M3 11, M221, M2 111

©
Il
w

My | M2 | Mgy, M113 Mg, M3 1, M211 Ms, Ma1, M3 2, M3 11, M221, M2111

©
Il
(&)

M1 | M2 M3, M21 Mg, M3 1, M211 Mg1, M32, M311, M221, M2111, M11111

It is easy to calculate the numbers of polynomial generatoesich degree. Let these numbersiae
my, - --. Then the Poincaré series for the algebfa(or 2, or Z, or ., it does not matter) is

S dim( )t = (1 - ™ (L - )L )
n
on the other hand, we know that it is a tensor coalgebra withgenerator in each degree> 1; this
implies that dim(#,) = 2" for n > 1 (and dimMo) = 1). Thus we have equality of power series
1 1-t

— KM = 2 318t 4. = 2 34..)=
l_[(l t) 1+t+2t°+4t°+ 8t" + 1+td+2t+ 2+ 2)°+---) 1+t1_2t 1o

k=1
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Then taking logarithmic derivatives one obtains

t
= - t=t+3t2+7t3+---+(2”—1)t”+---

It follows that for alln one has

Zdrm:Z”—l,

din

which by the Mobius inversion formula gives

o=~ 3 u(@(@F - 1),
din

The latter expression is well known in the literature on comatorics; it equals the number of aperiodic
bicolored necklaces consisting wbeads, and also the dimension of tite homogeneous component of

the free Lie algebra on two generators. See e. g. [17].

5.3. Thedual of therelation module R4

We now turn to the algebt. = Hom(#,F,) = .# /2. By the above, we know that it, as well.a&z),
is a polynomial algebra on the set of generators ESL(2). ABustration, we will give some expressions
of the M-basis elements in terms of sums of overlapping®ayroducts of elements from ESL(2). We

will give these inZ») and then their images i#..

Mz = MZ — 2M1
= M? mod 2
Mo = M3 — Mg — Mp1 — 2M;My
= M3 + Mz + My mod 2

1 1
M111 = M1My1 - éMf + §M3
= MiMy1 + Mf + M3z mod 2
4 1
My = §M1M3 - éMf +2M$; - 4My11s
=M mod 2
2 2 2 2\ 4
szz = Ml,l - 2Ml M]_,l - §M1M3 + §Ml + 2M1,1,1,1
= M2, mod 2
1 4 1 2
M]_,g = éMl - §M1M3 - 2M1,1 — Mg,l + 4M1,1,1,1

= Mi‘ + M;M3 + M3,1 mod 2

2 2
My21 = M1Mag — Mag - Mil +2M2M11 + =M1M3 — =M} = 2My 111 — 2Mp 11

3 3
= MlMg,l + Mg,l + Mil mod 2
1

1
M1!1!2 = Mil - MJZ_M]_!]_ - §M1M3 + §

M7$ —2M1111+ Ma1— MiMp1 + Mo

= M%l + MfMl,l + M1M3 + Mf + Mg,l + M]_Mg,l + Mg,l,l mod 2
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Moreover it is straightforward to calculate the diagonaldmms of these generators. For example, in
Z. one has

AM) =1®M; + M1 ®1,
AM11) =1®@Mg1+ M1 @My + M1 ®1,
AM3z)=1@Ms+M3®1
AM21) =1® Mag + M2@ My + M1 ® 1
AM31) =1® M1+ M3z®@ M + M3; ®1
AMz11) = 1®Mz11+ MZ@ Mg+ Mg ® Mg+ Ma11®1
AM1111) =1®Mi111+ M1 ®@ MiMy1 + M1 ® Mf +Mi1®M3z+M11®My1+ MMy ® Mg
+M3@Mi+M3®M;+My111®1
A(Mg1) =1®Mg1 + Mf @ My + Mg ® 1
AMz2) =1® Mgz + M3g® MZ + M3, ® 1
AMz111) =1® Mp111+MI®MiMpg + MZ2@ M2 + M2® M3 + Ma1 ® My1 + Mp11® My
+Mz111®1
AMs)=1®@Ms+ Ms® 1
A(M311) =1®Mz11+Mzg®Myps+Mz1® M1+ Mz1191
A(M221) = 1®Mp21 + MI®@ M1 + MZ; @ My + Mp21 ® 1.
Also it follows from the results in [11] that one has
(5.3.1) Lemma. For any prime p, in#(y one has
Mpd,.....pdy = Mgl ..... ¢, Modp.

To identify the elements to which the Milnor generatgyof 7. go under the isomorphisi#, =
A |2, we first identify.oZ, with the graded dual of7; then/i corresponds to a linear fora¥s_; — F
given by (5.1.3).

(5.3.2) Rorosition. Under the embedding. — .# /2, the Milnor generatot, maps to the generator
Mo k2 3. In particular, this generator is ifESL(2), i. e. is one of the polynomial generators.%f.

Note how this together with (5.2.2) and (5.3.1) implies thignisk formula (5.1.5) for the diagonal in
o,. ldentifying ¢ with its image in.# /2 by (5.3.2), one obtains

k K
M.(¢k) = A(Maer ez 21) = Z M1z 2 ® Mot 21 = Z Mg:(—l—iyzk—Z—i”_nzyl ® Mzt 21
(5.3.3) =0 =0

k .
DN ALYS
i=0
Thus the setls, &>, ...} of polynomial generators fowZ, can be identified with the subset
Q={M1,Mz1,M421,Mg421,...}

of the set of polynomial generators ESL(2) fef /2 = .%#.. This in particular gives an explicit basis for

.....

not all of whose variables belong @. For example, in first few low dimensions this basis contdires
following monomials:

My 1,

M1My1, Mg,

MZMy 1, M1 Mg, Mil, Mz1,M211, My111,

M3My1, M2M3, My Mil, M1M3z 1, M1M2 11, M1M1 111, M11 M3, M11M2 1, Ms, My 1, M3, M3 11, M2 21,

M2111.
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We next note that obviously the embeddiag) — .%. identifies.%. with a polynomial algebra oves,,
namely one has a canonical isomorphism

(5.3.4) Z, = A[ESL(2)\ Q.

In particular, as anz.-module.%, is free on the generating S§tFSL\Q) (= the free commutative monoid
on ESL(2)\ Q). Then obviously the quotient moduk, is a free.«,-module with the generating set
NESLRNQ) \ {1},

We will need the dual#z =2 of the subspacs?o<2 c %o spanned by the monomials of lengtt2 in the
generators SqObserve thaﬂ‘osz is a subcoalgebra ofy, so that duallyZ, -» .#=2 is a quotient algebra.
We have

(5.3.5) RoposiTion. The algebraZ=? is a quotient of the polynomial algebra on three generatogs M
M11, M2 by a single relation
MiM11Mz1 + M3, + M7, = 0.

Proor. First of all, it is straightforward to calculate i#. the sum of the overlapping shie products

MlMl,lMZ,l + Mil + M%,l =

M1,4,1 + M2,2,2 + M2,3,1 + M3,1,2 + Mg,z,l + M2,1,2,1 + MS,l,l,l + M1’1’3’1 + Ml,2,1,1,1 + |\/|1,2’1’2 + M1,1,1,2,1
so that indeed this gives zero.ii<2. Let
3 2
X = FX1, Xz, X3]/ (X1 X2 X3 + X + X3)

be the graded algebra with deg(= i, i = 1,2, 3, so that there is a homomorphism of algebfasX —
Z52 sendingx; — My, X = My, X3 = Ma . Itis straightforward to calculate the Hilbert functionXf
i. e. the formal power series

2, dimOG)"

it is equal to
1-t8
1-t)2-t)2-t3)°
On the other hand?=? is dual toﬁ‘oSz and it is straightforward also to calculate dimensions ahbge-
neous components of this space. One then simply checkshissed tlimensions coincide fot and for
Z=2. Thus it siffices to show that is surjective, i. e. thatZ=? is generated by (the images ®f);, M1
and M2,1-
We will show by induction on degree that evévly andM,; ; can be obtained as a polynomial in these
three elements. In degreel; is the only nonzero element. In degree 2, besies we haveM, which
is equal toMf by (5.3.1). In degree 3, we have

MiMy1 = My + Mg+ My11 = My + Mz mod .2
and
Mf = M3 + Ml,g + MZ,l,
so that inZ=? we may solve
M1z = M1My1 + Mz
and
M3 = Mf + MlM]_,]_.

Given now any degree > 3, we can obtain any elemel; ; withi > 1, j > 1,i + j = nfrom elements of
lower degree since

Mi,j = My1Mi_g 1.
Next we also can obtain the elemeéwt_; 1 from
Mn-11 + Mopn 2 = M2 1M _3.
Then we can obtaily p—; from
Min-1 + Mn_11 = M11Mpoo,
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and finally we can obtaiM,, from
Mn + Myno1 + Mp_g1 = MiMp_s.

Let us also identify the dual of the product map
Fste Fgt - F5P
in terms of the above generators. By dualizing it is cleat this dual is the unique factorization in the
diagram

F, —— F. Q0 .,

L

F2 - - = Tl I,

*

In particular, it is an algebra homomorphism. Moreover tlyelra.#Z<! may be identified with the poly-
nomial algebra on a single generady = 1, with the quotient map#?, — .Z=! given by sendingvl; to
itself and all other polynomial generators from ESL(2) toazeFrom this it is straightforward to identify
the mapZ=? — .71 ® .Z=! with the algebra homomorphism

F[ X1, X2, X3] /(X1 X2 X3 + X5 + X3) — Fly1, z1]

given by
X1 Y1+21
(5.3.6) X2 > Y17
X3 = yle.

Let us identify in these terms the maf~? -» Rz <. One clearly has

RZ =Rz n.757
in %y, so that dually one has that the diagram

F, — Rz,

L

<2
F e R,

is pushout. ThuR}z* is isomorphic to the quotient <2 by the image of the composite, » .Z, —»
Z=2, Thatimage is clearly the subalgebra generatetpyandM ;.
We can alternatively describ@?* in terms of linear forms orﬁi}2 C 9‘52. It is clear that the latter

subspace is spanned by all Adem relatiomsr]], n < 2m. The mapr : .#=2 —» R}Z* assigns to a linear
form on.Z3? its restriction toRsZ. One then clearly has

(5.3.7) a(M¥) = n(M ) =0
forallk > 0; moreover(My 1) is dual to [1 1] in the basis given by the elementsi], i. e. M1 1([1,1]) = 1
andMg 1([n, m]) = O for all othern, m. Moreover forx,y € .Z=? we have
(5.3.8) e(n.m) = 3 x((n. mly(n. m,)
in the Sweedler notation
A, m) = > [n, i, @ [n, m.

For example, we have

A([1,2]) = (1+ T)(1@[1,2] + Sq' ©[1,1])
which implies thatM; My ; is dual to [1 2] in this basis, i. e. M1M11)[1,2] = 1 and M1M11)[n,m] = 0
for all othern, m. Similarly

A([L,3]) = 1+ T)(1@[1,3] + Sqf ®[1, 2] + S ©[1, 1])
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and
A(2,2]) = 1+ T)(1®[2,2] + Sq*®[1, 2] + S ®[1,1]) + [1,1]®[1, 1]
imply that M, is dual to [22] whereas 1M11)[1,3] = (MZM11)[2,2] = 1, so that dual to [13] is
MJZ_Mlyl + Mil.
We will also need a description of the diRlof R = Rz /(R#-Rg). For this first note that similarly to
the aboveZ, ® .%. is a freed, ® «7,-module orNESL@\Q) x NESL@\Q) andR4, ® R4, is a freed, ® o,-
module on(N‘ESL(Z)\Q) \{1}) X (N(ES'-(Z)\Q) \ {1}). Moreover the diagonal s : %, — %, ® %, and its
factorizationAg : Rz, —» Rz, ® Rz, through the quotient mapg, » R#,, 7. ® %. » Rz, ®R#, are
obviously both equivariant with respect to the diagahak?. — <7 ® 4/, i. e. one has
(5.3.9) Az(af) = 6(a)Az(f),
Ar(ar) = 6(a)Ar(r)

foranyae <, f € #,,r e Rz,.



CHAPTER 6

TheinvariantsL and S and thedual invariants L, and S, in terms of
generators

As proved in the book [3] there are invariaht@and S of the Steenrod algebra which determine the
algebraZ of secondary cohomology operations up to isomorphism. &fbezL andS and the dual
invariantsL, andS, also determineZ™ and.%: respectively. In this chapter we recall the definition_of
andS and we discuss algebraic propertied ofands..

6.1. Theleft action operator L and itsdual

We next recall constructions of certain mapsand S from [3, 14.4,14.5] of the same kind as the
operatorsin (4.6.12) and (4.6.13) respectively. For thatfirst introduce the following notation:

(6.1.1) R:=Rz/(R# -Rz),

with the quotient maRs —» R denoted by  r. There is a well-defined/-.«/-bimodule structure oR
given by

fr="r, rf=rf

for f € o, 1 € Rz. As we show belovR is free both as a left and as a right-module (but not as a
bimodule). A basis foR as a righteZ-module can be found using the set PARRg of preadmissible
relationsas defined in [3, 16.5]. These are the elemen®gfof the form

Sq*---Sd*[n. m]

where h,m], n < 2m, is an Adem relation, the monomial Bq- - Sq* is admissible (i. e.n; > 2n,,
n; > 2ng, ...,Nk_1 > 2ny), and moreoveny > 2n. Itis then proved in [3, 16.5.2] that PAR is a basisRof
as a free right#,-module.

Itis equally true thaR 4 is a free left#;-module. An explicit basis PARf R4 as a left#,-module
consists ofeft preadmissibleelations — elements of the form

[nv m] Sdnl o Sd'fk

where p, m|, n < 2m, is an Adem relation, the monomial 8q - - Sd™ is admissible, and moreovar >
2my.
Using this, one also has

(6.1.2) Lemma. Both as a righter-module and as a IeW—moduleﬁjs free. Moreover, the images
of the preadmissible relations € PAR under the quotient map R -» R form a basis of this free right
«7-module, and the images of left preadmissible relationsifits basis as a left/-module.

Proor. This is clear from the obvious isomorphisms
%@yo Rg = F\TE R ®L6/0.127

of left, resp. rightez-modules. O
In particular we see that every elemenfof can be written in a unique way in the form

(6.1.3) P+ Y el mlp

57
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with p@ € Rz - Rz, ai[m, m] € PAR andg; an admissible monomial. Moreover it can be also uniquely
written in the form

(6.1.4) o® + ) i, milgy

with 0@ € Ry - R, admissible monomials’ and [/, Y]/ € PAR.
(6.1.5) DerntTiON.  Theleft action operator
L:7®Rgy > & Q4
of degree-1 is defined as follows. For odgllet L be the zero map. Fgr = 2, let first the additive map
Ly : F52 > o ® of be given by the formula
Le(sd'sd) = ) Sd"Sq"eSd"Sd"

my, Ny odd
(n,m > 0; remember that Sg= 1). Equivalently, using the algebra structure@® <7 one may write
L#(Sd'Sd") = (1® Sq)s(Sd™ (S @1)s(Sd™ ™).

Restricting this map ttﬁb}z C 34‘52 gives amapr : R}Z — o/ ® /. Itis thus an additive map given on
the Adem relationsr], m], for 0 < n < 2m, by

Lr[n,m] = L#(Sd'Sd") + Z n—2k

k=max0,n—m+1}

min{n/2,m-1} (m _k-1

)Lg(SchKScr).

Next we define the map _ _
L:®R—> g @
as the righte7-module homomorphism which satisfies
(6.1.6) L(a® a[n, m]) = s(x(a)a)Lg[n, m]

with e[n, m| € PAR; by (6.1.2) such a homomorphism exists and is unique.
Finally, L yields a unique linear map : «# ® R# — </ ® o/ by composind- with the quotient map
o @ Rz » o/ ® R. Thus one has
L« ®(Rz-Rz))=0.

The mapL is the left action operator in [3, 14.4] where the followiegima is proved (see [3, 14.4.3)):
(6.1.7) Lemma. The magpl satisfies the equalities
L(a® [n, m]) = x(@)Lg[n, m]
L@a®br) = L(ab®r) + 5(@)L(b&r)
L@a®rb) = L@a®r)s(b)
foranyabe o, r € R.

We observe that can be alternatively constructed as follows. Let
[:Ro>7®d
be the map given by _
L(F) = L(Sq @).
Then one has
(6.1.8) RoposiTioN. For any ae &7, r € R one has
L@er) = s(«(@))L(r);

moreovell is a homomorphism of/-.<7-bimodules, hence uniquely determined by its values ondieenA
relations, which are 3
L([n, m]) = Lr[n, m].
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Proor. For anya € 7, a[n, m] € PAR and3 admissible we have
L@@aln,mg) = L@ oln,m)s
= 6(¢(@)a)Leln, mlop
= sx(a)saLr[n, mlos
= 5(8)6(«(Sd)a)Lrln, mloB
= 6x(a)L(Sq ®@a[n, m|B)
= ox(a)L(a[n, m]|B).

Then using (6.1.3) we see that the same identity holdkf@® r) with anyr € Rz.
Next for anya € <7, r € Rz we have by (6.1.7) andSdq' = Sof = 1,

L(ar) = L(Sq ®ar)
= L(Sq aer) +6(Sq)L(asr)
= 5((Sq @) L(r) + 6(Sqt #(@)L(M
= 6(x(Sq' @) + Sq x(a)) L(T)
= §(a)L(r).

ThusL is a left.«7-module homomorphism. It is also clearly a rigiitmodule homomorphism sindeis.
Finally by (6.1.6) we have

LrIn, m| = 6(<(Sch))Lrn, m| = L(Sqt ®[n, m]) = L([n, m]).
]

Explicit calculation of the left coaction operatbr is as follows. For odd it is the zero map, and
for p = 2 we first define the additive mapk, : % ® /. — Rz=2. ltis dual to the composite map
R — & ® « in the diagram

R}Z > Rg

L

pull
m
egﬁl ® yél 352 70

A®A

Fsle I3l e 75t e I3t

(6-1-9) 10De0R1 Lz
<1 <1 ag<l g<1
T ® Ty ® IS ®F]
1eTel

I
I
I
I
I
I
I
I
I
I
Al
F5le I3t e I3t e F5t T 7520 Iyt ——= Fo

where® is restrictionZ3! — Z5* of the map%, — %o given by

D(x) = Sq' %(X),
so that one has
Sd, n=1 mod?2

®(Sd) = {o, n=0 mod 2
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Indeed by (6.1.5) we have
L#(Sq'Sd" = (1@ SAHASA)(Sq ®1)A(SA™ ) = (1® Sa')Ax(SA)(SA" ®1)A%(Sd™);
on the other hand we saw in (4.6.7) that one has
Ax = (2 1)A = (1® %)A,
so that we can write
L#(Sd'Sd" = (1@ Sat %)AST)(Sq » ® 1)A(S") = (1 D)ASH)(® ® 1)A(SA).

So the map dual ob is the mapd. : F[¢1] — F[£1] given by factorization throughy., - F[{1] of the
map®. : < — <, given on the monomial basis by

G2+, m=1 mod 2

O (M. ) =
66 ) {O, m=0 mod?2

Equivalently, by (5.1.6) and (5.1.7,. = », St is the mama%.
Thus the map g, is the composite7, ® <7, — R}Z* in the diagram

o ® I,

1eT®l

ysl ® ysl ® ysl ® ysl

*

F.®F, — FPR I I 710 Flo 751
|
|
|
|
|
|

(6.1.10) Lz, 180,80,81
|
| jﬂ ® 3z<l ® 3z<l ® jﬂ
* * * *

|
I A.®A.
v m,

Z. ij y*sl ® y*sl

l push i

Now by (6.1.8) we know thaf is a bimodule homomorphism, and moreowis generated by
F@? =~ R¥? c Ras an«/-</-bimodule, so knowledge dfr (actually already ol whose restriction
it is) determined_ and, by (6.1.8), alst.. Dually, one can reconstrutt and thenL, from L, via the
diagram

A @ — — — - s R Deoaton o R @

] 1 |

18Lgr®1

A, ® (A ® A)® A, — > o, @RE, ® o, <~— A, ®Rz, ® ..
Here the bicoaction?, ® o7, — o ® (. ® o.) ® 4, is the composite

(2) (2)
A A (A ® A ® A)® (A ® A, ® )

(142536)

0,®10110,

(A ® ) @ (. @ ) ® (. @ ) —— . Q (, ® I.) ® A,

We next note the following
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(6.1.11) Lemma. The magpl, is a biderivation, i. e.

E*(X1X2,y) = X1|:*(X2,y) + X2|:*(X1, y),
L. (% y1y2) = Vala (% ) + yoLo (X, y1)

for any X Xu, X2, ¥, Y1, Y2 € ..

Proor.

It thus follows thatL, is fully determined by its valuek.(Z, ® Zy) on the Milnor generators. To
calculate the bicoaction on these first note that we have

@) = temm@) = 3 & em@)= > o o4

i+i’=n i+j+k=n

where as alwayg, = 1. For the coaction oty ® £y this then gives in succession

j+k K i+ K’
Lo Y Frelfensd " el ek
i+j+k=n
+j +kK=n

2i+k 2j’+k’ ok Zk’
i Z i®L el ®f ®k®lk
i+j+k=n
i+ +k=n’

2]+k 2j’+k’ 2k zk’
= Z PG e ©fi ®ddis

i+j+k=n
i+j +k'=n

so that for the values df, we have the equation

~ j+k _oj/+K k K
Lo = )Y &"F " elal o) o bl
i+j+k=n
i+ +kK=n’
where is the above embeddirg, — 7 ® R}Z* ® .. Thus we only have to know the valueslof, on

the elements of the forr@‘lj2k ® g’jz,k/ for j > 0,k > 0. Obviously these values are zero fos 2 or j’ > 2.
They are also zero for= 0 or j’ = 0 since®.(1) = 0. There thus remain fourcasgs | =1,j= | =2,
j=1,j =2,andj =2, j = 1. We then have undérz,

4 m,®m, ’
Feol ——(nel+lene@el+len)® =

2ele 0l+Zelele +10 0 el+leZ 0lel®

18Tel , , , ,
29 9lel+Zolelel? +10 9 0l+lelel o

180,80.81 K ok
0+0+19d.] ®0.f ®1+0

ABA, ,
—— 0.2 ® 0.2
We thus have

Le (0l

o [ k=K =0
“lo otherwise.
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We next takg = |’ = 2; then

ok+l 2k’ +1

2ol "= Rene@en)? =" e el o

19T®l 1 K +1 k K’
> 2 2’ 2 2’
é‘l ® 1 ® (1 ® (1

180,80.01 i1 K’ +1 K 4
TR0 0.2 0 =0

AL®A,
— 0,

so that
K K’
Lz.(&5 ®%5 ) =0

for all kandk’. Nextforj = 2, j’ = 1 we have

2k+ 1 2k+ 1

4 m,®m, ’ ’ ,
2ol ——(Pon)olel+len)? =2 " el e ol+Z e 9lel®

19T®l k1 K k 1 K 4
2 2! 2 2! 2 2
'—>§1 ®{1 ®§1 ®1+{1 ®1®§1 ®§1

190.80.01 1 K ok
2" 0 0./ 0,2 ®1+0

A.®A, ki1 K K
2t 2 2
> . ® 0.7,

hence

il + M]_Mz,]_, k=k =0

/ M
Lr (2 ®7%) =
745 ®41) 0 otherwise.

Finally for j = 1, j’ = 2 we get

2k’ +1 2k’ +1

4 m.®m, ’ ’ ’
2ol ——(ol+leon)? e len)? =Zeleld "ol +10l 0 "0l

1eTel k K +1 K K +1 k 4
2! 2 2! 2! 2! 2!
'—>§1 ®§1 ®1®{1 +1®{1 ®{1 ®{1

180,80.81
F———>0+0

A®A,
=0,
so that
K K
Lz.((f ®45 ) =0

for all k andk’.
To pass td_g, from these values means just nullifying all monomials whdchnot contairMy ;; we
thus obtain

Lr.({1® 1) = My,
Lr.(l2® &) = ME,

and LR*(gj2k ® gjz,k/) = 0in all other cases.
From this we easily obtain

(6.1.12) RoposTion. (L. ((n® &n) = 2,02 ;@ M11®@ 1+ 72,02 @ MZ ®1
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where nows,,_, = 0 for n = 1 is understood. Solving.(¢n, Zv) from these equations is then straightfor-
ward. In this way we obtain

C.(¢1. 1) = Mg
L&, 2) = Mg
L&, &1) = Mapg + M2,
Lu(82.£2) = Mag1+ Mozt + Ma121
L.(¢1.43) = Maz11
£.(¢a,81) = Maza1+ M3,
L2, 23) = Me211 + Mag11+ Maza1 + Maz121+ Moaz11
£.(¢3,82) = Me211 + Mag11+ Mazz1+ Magia1 + Mas211
+ ME+ Mz g+ M3, + M7y 55 + MEMZ,; 5 + MIM3
£.(43.48) = Mga11+Mgo31+ Mga121 + Maga1+ Mag121+ Mazso1+ Mazazs + Mazaizs
+Maz1421
L.(&1,24) = Mgaz11
L.(¢a, 1) = Mgaz1a + M1
L.(&2.&a) = Miga211+ Mgg211+ Mgaa11+ Mgazz1+ Mgaz121+Ms2az11+ Maganis
L., £2) = M1ga211+ Mgg211+ Mgaa11+Mgaza1+Msaz121+Ms2a211+ Magazis
+ MG+ M7+ ME, + Mg oy + MZg g+ MEgo+ Mip100 + M3gp + Miy0;
+ MEMZ514 + MIMZ + M3, M3
L.(&.&a) = Mi2g 211+ Mi2aa11+ Mi2a231+ Mi2az121 + Mi224211 + Mgga11 + Mgg231
+ Msgg2121+ Mgsga1+ Msgag121+ Mga2s21+ Mga2az1 + Mgaza121+ Mgaz1421
+ Ma104211+ Mage211+ Magaarr+Magarzr+Magazio1+ Magoani1+ Ma2ganit,

etc.
Having L, we then can obtaih, by the dual of (6.1.8) as

(6.1.13) L.ooy) = D axeye ® L%, yrr)
for x,y € <, with
M) = > X ®X, my) =) yr ey

6.2. Thesymmetry operator S and itsdual

(6.2.1) DerinTion. Thesymmetry operator
S:Rzg >

of degree-1is defined as follows. For ody letS be the zero map. Fgr = 2 letthe elementS,, € #/®.«7,
n > 0, be given by

Se= ), ST eSd" = (S¢ eSS
n+np=n-1
ny, Ny odd

Sy =0,

Soxs1 = Z SeP*t @ Sept ),

O<i<k
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k > 0. Then let the linear map s : 34‘52 — o/ ® o/ be given by
S#(Sd'SA") = Sns(SA™) + 6(SA)Sm + 6(Sd)Smea
= (Sa' ® Sd)5(Sd"° Sd") + 6(SA)(Sd ® SA)s(SA™ ) + 6(Sd)(Sq ® Sa)s(Sd™?),
n,m > 0. Next define the mafr : R — & ® o by restriction toR$? c .Z52. Thus on the Adem
relations this map is given by

min{n/2,m-1} —k-1
(6.2.2) Sen.m =Sz(Sd'sd) + > ( n- 2k

k=max0,n—m+1}

)sg(Sd“m-k sd).

Now let us define the map o
S:RodQd
as a unique right7-module homomorphism satisfying
S(aln, m)) = 6(@)Skln, ml + (1 + T)L(e ® [n, m)
for e[n,m] € PAR. Then finally this determines a unique linear n"&ap Rz — < ® </ by composing
with the quotient mafRz - R.
The mapS is the symmetry operator in [3, 14.5.2] where the followiamnma is proved.

(6.2.3) Lemma. The magSS satisfies the equations
S([n, mi) = S[n, m]
S(ar) =6(a)S(r) + (L+ T)L(a®r)
S(ra) = S(r)s5(a)
forany0<n<2m,ae & andre R.
We now turn to the dueb. : <7 ® & — Rz, of S (dually to the above, the image of this operator

actually lies inR, ¢ Rz, and so defines the operat8r : <% ® «Z. — R.). Since we know tha$, is a
biderivation, it stfices to compute the valu&s(, ® ). Now dually to the equation

S(a[n, mlb) = 5(a)Sr([n, m)s(b) +(1+T)L(a®[n, mlb) = 5(a)Sr([n, M) s(b) +(1+T) (6x(a)Lr([n. ml)5(b))

we have
(Si(én®n) =
> (@ oS o) o tde + 6 o (La(F @ ) + e @) @ i

i+]j+k=n
i+ +k=n

2i+k _i'+K 2K oK 4 2 2 2 2
= § GG OSSR ®L ) ® bk + (ln olh 1 @M @ L+ 0188 1 @ ME ® 1,
i+j+k=n
i+j+k=n

with o = 1 and¢, = 0 forn < 0, as before.

It thus remains to find the value?.?R,ﬂ(gj2k ® gjz,k/) — which in turn are images of the corresponding
values ofS #, under the map#, » Rz.. To find the latter, let us first define another intermediaterator

st It o ded
by the equation
SYSq) = Snw1 = (S @SA)oxx(SA) = > S @S,

n;+nz=n
ny, Ny odd

so that we have
Szm(SA'® Sd") = S#(Sq' SA") = S'(SA)(SA) + 5(SA)S'#(SA") + 5x(Sd)S*(Sd").

We have the dual operator
Sl: o @ - F
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such that dual
Sz, . ®@d, > F2
of Sz is given by
M.Sz.(X®Y) =
Z (é’lsi(xf ®Yr) ® (%Yr) < + (XeYe) T ® 21SH(% ® Yr) + (LaXeyr) S @ SH(x ® Yr’))
where as before we use the Sweedler notation

M) = X ®x%, m(y)= ) yrey

(6.2.4)

and
(_)sl : m — yjl
sendg; to M; and all other Milnor generators to 0. Thus we have

2k oK
MSz.({] ®¢) ) =
or+k 2r’+k’

Y, sk e

l+r=j
r+r=j

or+k or’+K or+k or’+K’

)22+ (2 ) enSi i o2 ) + (2" ) e s o)

Now the operato8? is obviously given by

Xy, X= é’?l, y= é’?z, ny, N odd

6.2.5 Slixey) =
( ) (xey) {O otherwise,

so thatS #,(¢? ® ¢2') = 0 whenevek > 0 ork’ > 0. And among the remaining valugs-. ({; ® ;) the
only nonzero ones are given by

S#z.((1®%) = M3+ Mo = M3+ My,
S7.((1®0) = S#.({2® (1) = Moz + Maz = MiMZ

S7.((2®02) = Ms2 + Mgz = M{M3,.

Then further passing t8g. means, as before, to remove the monomials not contaiding so that the
oK oK
only nonzero values of the forSR,ﬂ(g“j ®Jd ) are
Sr.((1® &) = Sru((2® (1) = M M2,
Hence we obtain
(6.2.6) ROPOSITION.

1S (Gn®w) = Loidy ,®MIMZ @1+ 45 o5 @ MIMZ @1+ 01dn 05 1 ®MZ @1+ 0147 Ly ,®MZ @ 1.

As for L, above, we then solve these equations obtaining e. g. ;
S:(41.81) =0,
S.(¢1.2) = Su(&2. £1) = Mz21 + MiMZ,
Si({2,42) =0,

S.(¢1.43) = Su(la. (1) = Maz21 + MiM3, 5,
S.(42,43) = Si(£3,{2) = Me221 + Maa21 + M2g221
+ MiMZ + MiMZ; + MiM3, + MiM3 1 + MIM3 | + MIM3,
S:(f3.{3) =0,
S.(&1, 4a) = Su(la, &) = Mga221 + Mg Miz,l,l’
S.(£2,44) = Si(¢a, £2) = M104221 + Mge221 + Msaa21+ Mg24221+ Maga221
+ MiM3 + MiMZ, + MiMZ, ; + MiM2, + MiMZ,; + MiMZ 4, + MiMZ, 4

2 2 2 N2 3p 12 9p 2
+ M1M3,4!2 + M1M2,4,2,1 + MleylM3 + M1M4,2,1,1 + M7 Mg,
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etc.



CHAPTER 7

The extended Steenrod algebra and its cocycle

We show that the dual invariaBt determines a singular extension of the Hopf algebra stractiteh
Steenrod algebra. We aslo give a formula for a cocycle reptegy the extension. Then we show tisat
is related to a formula which describes the main result oft€risen on secondary cohomology operations.
A proof of this formula did not appear in the literature yet.

7.1. Singular extensions of Hopf algebras

In this section we introduce a singular extensigrof the Steenrod algebra which is determined by
the symmetry operatd.

(7.1.1) DerintTioN. A singular extensioof a Hopf algebraA is a direct sum diagram

| ~
-~ A<—<—S»A,

i. e. one haps = ida, qi = idr andsp+iq = id, such thaiis an algebra with multiplication : A@A — A
andA s also a coalgebra with diagonal A — A® A. (Here we do not assume thais a homomorphism

of algebras, or equivalently thatis a homomorphism of coalgebras, so that in genAral not a Hopf
algebra). In additiomp is an algebra homomorphism, as@ a coalgebra homomorphism. Moreoviepj

must be a singular extension of algebras apd)(must be a singular extension of coalgebras. This means
that the ideaR = keri of the algebra is a square zero ideal, i. & = 0 for anyx,y € R, and the coideal

R = cokers of the coalgebra is a square zero coideal, i. e. the composite

A% AsAELReR
is zero.
It follows that theA-A-bimodule andA-A-bicomodule structures oR descend to am-A-bimodule
andA-A-bicomodule structures respectively. _
Our basic example of a singular Hopf algebra extension islasfs. We have seen thitfrom (6.1.1)

has ang’-<7-bimodule structure. Now it also has a#i-.<7-bicomodule structure as follows. On the one
hand, there is a diagonak : Rz — RF/Q = ker(@# ® g#) induced in the commutative diagram

Ry Fo— > oy

ool

7z ®Q.2
R(;)>—><3‘\o®<3‘\o(w>szf®42/

with short exact rows. Moreover there is a short exact sezpien

(2)_(igel
i@=('Z,

Rz ® Rz —= F0®Rz ® Rz®F — R,
wherei & : Rg — % is the inclusion. Since the composite of the quotient map
Fo®Rs ® Rz ®.%9 » o 9R® R®.o/
with i@ is obviously zero, we get the induced map
R? - «/@RoRe.

67
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Moreover the diagonal of/, factors through this map as follows

R Ry 2 g —Y oy

| |
(7.1.2) (Y A A lé

_V_ v 805
AORORA ~— RO > F® T e of @ of
giving the left, resp. right coactiofy, resp.A, of the desireds-<7-bicomodule structure oR.
Note that the above construction is actually precisely tluttie standard procedure for equipping the

kernel of a singular extension with a structure of a bimoawler a base. In particular we could use the
dual diagram

A OR® Ros ~— RO = o0 7oY. /o
' |
(7.1.3) o B lm = lm
¥ y _
R_ Rg C 'z g‘o qz "Q{

to give Rvia m, andm, the structure ofr-.</-bimodule.

(7.1.4) Tueorem. There is a unique singular extension of Hopf algebras
i .
=-1IR ~5 o B e o,

where is the split singular extension of algebras, that is, as ageara
o = &SR
is the semidirect product with multiplication
(arn(@,r)=(ad,ar +ra’)
and the following conditions are satisfied.

The induceds -« -bimodule and«/-</-bicomodule structures 0B 'R are given by the ones indi-
cated in(7.1.2)above, and the diagonalof the coalgebray fits into the commutative diagram

o d e A-Y 4
(7.1.5) i lm
sIR—> A @ d > 0

where S is the symmetry operator(th2.1)

We will prove this theorem together with the dual stateméttte that clearly the dual of a singular
extension of any Hopf algebrais a singular extension of the dual Hopf algeBra Clearly then the above
theorem is equivalent to

(7.1.6) Tueorem. There is a unique singular extension of Hopf algebras
— G . s
Z_lR* =~ o, <T< s,
where<, is the split singular extension of coalgebras, that is, agalgebra
A, = d. @R

with diagonal

m. 0

0 m,

A, 0L R, 25 Ao0d © #4085 R 0L R ST RO IR,

where the diagonal mis dual to the multiplication m &« ® &/ — < and m,, m, are the #,-4-
bicomodule structure maps dual to thg-.<7-bimodule structure mapsm « ® TR — IR, m :
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> Re & — IR in (7.1.3) where the inducedy,-.«Z.-bimodule structure OIR, is dual to thes7- .« -
bicomodule structure indicated {f7.1.2)above, and where the multiplication of the algebraszfl satisfies
the commutation rule
P-()P.(X) = P.(X¥)p.(y) + S.(x®Y)
for any xy € <7, where B
S.: . ®d, — IR
is the cosymmetry operator frof4.8.6)

ProoF of (7.1.4)anp (7.1.6). The diagonal can be written as follows

11 d12
$21 $22
_ $31 $32 _ _ _ _

7o R, oo @ /03 'Re T Re @ 3 Rex R

Then the condition thas : &7 » </ @ =~!Ris a coalgebra homomorphism impligs, = & andgy; = 0,

#31 = 0, ¢a1 = 0. Moreover the condition that the’-.«7-bicomodule structure induced an'R coincides
with the one given in (7.1.2) implieg, = A, ¢32 = Ar. Next the condition thatg(q) is a singular
extension of coalgebras, i. e. the coidBdlas zero comultiplication, impligg, = 0. Finally, let us look

at the diagram (7.1.5). The lower composite in this diagrands &,r) € .o/ e X Rto
(S(r),0,0,0) € #®. & 7L ‘ReI R« & T 'RRT 'R
The upper composite sends it to
(L+T)o(@ 1) = (L+T)(6(8) + $a2(r), Ac(r), Ac(r), 0)
=((1+T)6(a) + (L + T)aa(r), Ae(r) + TA(r), Ac(r) + TAL(r), 0).

Sinceé is cocommutative, one has+{1I')é = 0. Moreover cocommutativity o : .%y — %,®.%, implies
TA; = Ar, TA: = A;. Thus commutativity of (7.1.5) is equivalent to the cortiti

(7.1.7) 1+ T)¢1o=S: T 'R> 7/ ® .
Equivalently, passing to the dual we see that the dualémapsi,, : o ® . — IR, must satisfy
&@+T)=S..

Now it is easy to see thdt is in fact the algebra cocycle determining the algebra esxten
thatis, in<, = <% @ 'R, one has

(@.B)(@.B) = (aa’,af’ + o’ + &u(a @ a)).
Hence by (7.1.7) one has

(a’ﬁ)(a/vﬁ,) - (CY/,,B/)(G’,,B) = (07 S*(a ® Cl/)).
Now recall thatez, is actually a polynomial algebra. Using this fact it has bekown in [3, 16.2] that
the algebra structure of any of its singular extensions sisclt, above is completely determined by its
commutator map, i. e. b$.. Thus¢i,, and hence the wholg;; matrix is uniquely determined. It

is then straightforward to check that indeed this matrixdgea coalgebra structure aw with desired
properties. O

It follows immediately from (7.1.6) (and actually this wds@deduced during its proof) that one has
(7.1.8) roLLArY. For the cosymmetry operator.$rom (4.8.6)there exists a map
£ d.®@d. — TR,
which is a 2-cocycle, i. e. for any % z € <7, one has

X (Y, 2) +£.(X YD) = Z£. (X Y) + £.(XY, 2)
and such that its symmetrization is equal tqg Se. for any xy € .7 one has

E(XY) +E(Y, X = Su(XY).



70 7. THE EXTENDED STEENROD ALGEBRA AND ITS COCYCLE

Proor. This follows since any extension

of a commutative algebra by a symmetricd-moduleM is determined by a 2-cocycte A® A — M such
that for anyx,y € A’ one has

xy - yx=i(c(px py) — c(py. PX).
i. e. the commutator map fa¥ is given by the antisymmetrization of Of course forp = 2 there is no
difference between symmetrization and antisymmetrization. O

(7.1.9) Remark. The above corollary is easily seen to be exactly dual to fi&ofem 16.1.5].

Using the extended Steenrod algebra we can next computevfetidn of the cocyclé. from being
an.«Z,-comodule homomorphism. Namely, let

Ve, d.®d > A QTR
be the diference between the upper and lower composites in the diagram

coaction

o, ® o, ——> o, ® I, ® I,
(7.1.10) £ J/l&;*

coaction

IR, —— &, ® T IR..
Thus on elements we have

(7.1.11) Ve, (0Y) = D LY ®E(CYR— D XY ® (% Vi),
where again the Sweedler notation is used,
m() = > %X

for the diagonall
m, . @, — o, ® .
and
a.(x) = Z Xor ® XC
for the coaction
a,:C- . eoC

of a left.«Z.-comoduleC.
Let us also denote bys, the similar operator but witB. in place ofé.. That is, we define

Vs.00Y) = D Su X V) ® S (VR = ) XY ® S. (%, Vo).
We then obviously have
(7.1.12) Ve, (% Y) + Ve, (¥, X) = Vs.(X.Y)
foranyx,y € 4.
(7.1.13) Lemma. The mapV,, above is a 2-cocycle, i. e. for anyyz € < one has
M) Ve, (Y. 2 + Ve, (X YD = Ve (X V)M (D) + Ve, (XY, 2).
Proor. First note that the diagram

—m,®coaction

A, @R, —— o, ® A.® 4. OR,

W

action M®M®M®@

l&@action

coaction

. ®R,

R.
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commutes — this follows from the fact that the action and tioacof <7 on R, are induced from the
multiplication and comultiplication i, which is a Hopf algebra.
We thus conclude that the coaction map

R — . ®R,

is a homomorphism aéZ.-modules, so that its composite with the cocy&lés a cocycle. It thus remains
to show that the composite
o, @ o, — A, ® A, ® o, = ., @R,

in the diagram (7.1.10) is also a cocycle. Let us denote thisposite bys.
Now observe that the Hopf algebra diagram £dr expressing interchange of the multiplication and
diagonal can be written on elements as follows:

DU ® (Y = Y XeYe © XY
Using this identity we then have for amyy, z € <7,

MO)GWY:2) = D XYoZer & Xé. (Vs Zr);
$O0YD) = D xelyde ®£.(%, (VD)) = (0. ®£) (D % ® (y2r @ X ® (y2)r)
= (6. 0£) (D X ®Yrze @ X @Yz ) = > XeYrZe ®E(X, Y Zr);
$0%.2) = > )iz ® (W) z) = (6. @) (D (W) @ 20 @ (y) @71
= (6. 0£) (D XY ® 20 @ XY ®Z) = > XeYoZr ®ELXY; %)
SONMD) = " XeYoZer ®E(X, Yrr)Zor.
These indentities readily imply thatis a cocycle as required. O
We next use the fact the cocydle, is defined on a polynomial algebra and hence can be expregsed b

its values on generators and by its (anti)symmetrizefign Indeed the proof of [3, 16.2.3] works in this
generality, i. e. one has

(7.1.14) RorosiTion. Let P = K[{1, {2, ...] be a polynomial algebra over a commutative ring k, let M
be a P-module, let

y:P®@P—->M
be a Hochschild 2-cocycle, i. e. one has

xy(:2) = v(Xy.2) + y(x. y2 - zy(x.y) = 0
for all x,y,z € P, and leto- be the antisymmetrization gf i. e.

O-(X’ y) = Y(Xa Y) - Y(y’ X)'

Then, up to coboundarieg,can be recovered fron, i. e. there is a cocyclg, cohomologous ty which
depends only oor.

Proor. TOy corresponds a singular extensiorkedlgebras
M >I—> E —p>> P
whose isomorphism class uniquely determines the cohomalegs ofy. Let us choose for each polyno-
mial generatot,, € P an elemens({,) € E with pq¢n) = ¢, Furthermore let us choose an ordering on
the polynomial generators &, /1 < £, < ...; these data determine uniquelidinear section of, by the
formula

S({nlgnz )= S({nl)s(gnz) Tt

for any finite sequence; < n, < --- of positive integers. Then we can usé construct the cocycle,
cohomologous te determined by

S(xy) = S()S(Y) + i (X ).
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But if x andy are monomials, theg(xy) ands(x)s(y) differ only by the order of terms, so thiat, (x, y) is
contained in the ideal generated by commutators

Yo (di-4)) = (&) S(¢) — (87 s(d) = o (4i. £)
fori > j. Soin fact one can express eagh(x, y) by a linear combination of elements bf of the form
20 (i, ¢j) forze P. O

(7.1.15) Rmark. Obviously the above proof actually contains an algoritbnekpressing the cocycle
Yo interms ofo. Forx = &n,dn, -+ - &n @NAY = &yl -+ &, WithNp S Mp <+ <N, M <M < -2 <My,
either one hask < my, in which casey,(x,y) = 0 sinces(X)s(y) = S(xy), or one hasy > my, in Which
case one can write

S()S(Y) = S(¢ny) * -+ S(en 1) S(Gmy ) S(En ) S(Emy) -+ S(Em) + ny Ly + - dn 0 (s L )-

Applying the same procedure again several times one finaliyes ats(xy)+(a sum of elements of the
form zo(¢;, ;). In fact it is easy to see that one has

70'(501412 o 'gnk’ §m1§mz T §m) = Z {nl e gni—lgnnl e {nk(ffh e §m1—1§m1+1 e §m O-({mj’ {ni)'

n;>m;
In the characteristip > 0 case further obvious simplifications occur. In particwarcan choose the
cocycleé, in (7.1.8) in such a way that the formula
f({fl &, ) =
(7.1.16) Z §d1+e1 ) d. 1+e. 1§d.+e. 1é,lc1.r+11+a+1 . §?J l1+eJ 1§j11+eJ 1§?J,r+11+e,+1 - SuG.)
e, dJ odd
holds

The operatoWVs, is readily computable. It is a symmetric biderivation, with, (x, X) = O for all x,
thus uniquely determined by its values of the fovigy (¢, {m) for n < m, which are expressed easily from
the corresponding values 8f. For example, one has

Vs.({1,02) = L@ Miy,
Vs.((1,83) = S OME, + 1@ MF
(7 2 2 L 3o M2 2 2
Vs.({2,{3) = (é'l + §1§2) OMi; +{3®M; 1 +81® (M1M3 + MiMz11+ Ms + Mgz + Mgz + M2,1,1,1) ’
Vs.((1,48) = (153 ® Mil +47® M%,l,l +0® M421,2,1,1’
Vs.(2.a) = (B0 + ) o ME + 4P o M3,
2
+4® (Mfl\/ls + MiM211+ Ms + Mg1 + Mao + |V|2,1,1,1) +30 Miz,l,l
+0H® (Mst + M3 Mz + MIMa211 + Mg + M7z + Mot + Msa + Magz + Mago + Mags
+Mza21 + Ma2111)?,
etc.
7.2. Theformula of Kristensen

We will next use certain elements defined in [12, Theoremt®.8erive more explicit expressions for
¢., hence foiS,, Vs, andV,_ . We recall that Kristensen defines

Ala.b] = (St SPYs|SG3 SP 2 + S2 S 2+ Z(b s e s sq e 2sg 9.

for natural numbera, b. Obviously one has
Ala,b] = (Sa' ® Sd*)sk([a, b]),
wherek is the operator determined by
K(xy) = 2 (ex(X)2ex(y))
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forx,ye 34‘51. We then interpref\[a, b] as anF-linear operator of the form
K:Zle It > d oo
given by
K(x®Y) = (Sq* ® S )ox (e (X)nx(y))
which is factored through#;* ® Z51 » Z52 and then restricted 8 — .#52. We then can dualizk
to get
(7.2.1) Derinition. We define arff-linear operator
K.: o ®d - RZ,

as composite with the quotient map=? — ;} of the dual ofK above (whose image lies in that of
m, : 2 F5t e 5L
Thus explicitly,K. is the composite

S .S, <1 <1 MieMm <1 <1
%@%—)M@M—)%H%HJ‘*—M/ Q@ F » FS QIS — > FSQFS

*

landing in.#7=? »» Z=' ® .Z<! and precomposed wit# <2 —» I%}z* Or on elements,

ax oy

K.(x®3) = (M2 o M) (m (s 72 72

)) =m.(M 11 16{ 00

One thus has

(7.2.2) K@M)= {

MM MpZr ™ 1Mfl, ny, mp odd,n; = m = O fori > 2,

0 otherwise.
We have

(7.2.3) RorosiTion. Symmetrization of the operator. ldual to the operator §in (6.2.2) i. e. is given
by precomposing $. given in(6.2.4)with the restriction map#=? » Rz=2.

Proor. From the above formula (7.2.2), for monomials= £"¢?¢3* -+ andy = M50 -+ we
have

K.(x@Y) + K.(y& X) = M= Mgz M2, mmy +myn; odd andy = m = 0 fori > 2,
0 otherwise.

On the other hand, using the explicit expression (6.2.4Yaae@xpression for the opera®} in (6.2.5) we
can write

mSz.(xey) = > S Ne(xy) T+ (@el+18a) > (xy)te MY,
Y=L =21
Y=gt Y=gt
From the expression (5.1.5) for the Milnor diagonal we thess that for monomials = " 52(3°
y= gf‘lg;“zgg‘s --- one hasS#.(x®y) = 0unles:, = m = 0 fori > 2, whereas in the remaining cases one
has

m*Sy*(é';_h ®é,:rlrhé,£n2) — Z ( I )( )é,|+]+2(n2+mz)+l ®§21+mi—i—j+nz+mz

o<i<ng
O<j<m1
i, j odd

+ ((1 R1+1® {l) Z (nl)( )§|+]+2(nz+mg) ® {;-11+m1—i—j+n2+mz.

Oo<i<n
O<j<my
N —i+np, M —j+modd
Let us now turn back to the symmetrizationkaf. We compute its image under the mag by (5.3.6)
itsendsM;to 1 ® 1+ 1® {1, M11t0 {1 ® {1 andMy to §f ® 1. Thus the nonzero values of this image

are, fornym, + myn, odd,
MK.(1+ T @007 = (e 1+ 10 )™ ™(Z e ()™ ™ (e f).



74 7. THE EXTENDED STEENROD ALGEBRA AND ITS COCYCLE
Then expandingf ® 1+ 1® ()™™ = (10 1+ 1®)™((1® 1+ 1® £1)™ via binomials we obtain

n m . . i
I’T’I*K*(1+T)({:T1 22 ®é,£nlé,g12) _ Z (il)( .l)é,;-+1+2(n2+mz) ®é,:rl11+m1 i j+n2+mz+1.

0<i<ng ]
O<j<my

It follows that nonzero values of theftBrencem.(S#. — K.(1 + T)) on monomials in Milnor generators
are equal to

Z (r:l)(l”fjh) [ iR g smicjangem

0<i<ng
0<j<my
i, j odd
N1\ [ v j+2(np+mp)+1 _ gy —i— j+np+my
YR b 4
Oo<i<n
O<j<m1
n —i+np, m— j+modd
N1\ it j+2(np+myp) Ny +My—i—j+Np+mp+1
0<i<ng ]
OSjSml

N —i+ng, m—j+nmpeven

for numy + mun; odd andm. Sz, (" (52 ® £ 45*) for mmy + myn; even.
The first expression can be rewritten as

({% ® é,l)n2+m2 Z {Il<+l ® é’?1+m1—k
k

Ng\[ Mo Ny\[ Mo Ny m
S )+ 3 ™)+ 3 o
o<ism ! - O<i<n ! - O<i<n ! +ti-d
O<k—i<m O<k—-i<my Ogk+1-i<my

i,k—iodd ng—i+ny, m—k+i+nmodd n—i+n,m-k-—1+i+meven

and in the second case we may write

MS#. (15 G = (e n)™™ ) 4t g™
k

ni\[ M ni\[ M Ny m
. |+ . |+ . -
OZ (I)(k—l) Z (|)(k—|) Z (|)(k+1—|)
<i<ng o<i<m o<i<sm

O<k—-i<my O<k—i<my Ogk+1-i<my

i,k—iodd ng—i+ny, m—k+i+m odd n—i+np,m—k-1+i+m odd
One then shows that these expressions lie in the subalgéb#gbe .Z<1 generated b){f ® {1 and
£1®1+1® /¢4, without involvement of; ® £;1. This means that the image of théfdrenceS ., — K.(1+T)

under the restriction mag=? -» Rz is zero. O



CHAPTER 8

Computation of the algebra of secondary conomology oper ations and
itsdual

We first describe explicit splittings of the pair algels#d of relations in the Steenrod algebra and
its dualZs. Then we describe in terms of these splittirghe multiplication map#\ for the Hopf pair
algebraZ"™ of secondary cohomology operations and we describe thentlasAs determining the Hopf
pair coalgebraz= dual to #". On the basis of the main result in the book [3] we describéesys of
equations which can be solved inductively by a computer amdiwyield the multiplication mapAS and
As as a solution. It turns out théd is explicitly given by a formula in which only the valuég(s,), n > 1,
have to be computed whefgis the Milnor generator in the dual Steenrod algesfa

8.1. Computation of Z* and %
Let us fix a functiony : F — G which splits the projectioft — F, namely, take
(8.1.1) x(k modp) =k modp? 0<k<p.

We will usey to define splittings ofZ" = (%f 1A %g). Here asplitting sof %" is anF-linear map for
which the diagram

i
(8.1.2) / la

commutes wittRg = im(9) = ker(@z : %o — <7). We only consider the cage= 2.

(8.1.3) DxrnTION (The right equivariant splitting of2%). Usingy, all Adem relations

(3]
[a,b] := SF S + Z (ba__k ;kl) Sk s
k=0

fora,b > 0, a < 2b, can be lifted to elementsb], € Ry by applyingy to all codficients, i. e. by
interpreting p, b] as an element of4. As shown in [3, 16.5.2R# is a free right%#p-module with a basis
consisting ofpreadmissible relationg~or p = 2 these are elements of the form

Sqf* -+ - Sf“*[a, al € Re
satisfyinga; > 2ay, ...,a_2 > 281, &-1 > 28, & < 2a. Sending such an element to
St - - - Sef*[ax, al, € Rs

determines then a unique righf-equivariant splittings in the pair algebra#™; that is, we get a commu-
tative diagram

Ry—¢>R@®F=%f

| lﬁ

P —

75
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For a splittings of #° the maps®1 ® 1®sinduces the map. in the diagram

A (%’TP %F)l ~— X ®F0® FoRK;

A
i | selles
|
(8.1.4) Rz AR R(Z) Rz ®.%0 ® %9®R4
Fo —> Fo® Fo.

Then the diferencdl = s;Ar — As: Rz — (Z7®%"), satisfiesdzU = 0 since
03 SAR = AR = AROS = 0gAS.

ThusU lifts to kerdg = o7 ® o/ and gives arff¥-linear map

(8.1.5) US:Ry > 7 ®4.

If we use the splittings to identify %“f with the direct sumeZ @ Rz, then it is clear that knowledge of
the mapU*® determines the diagona#; — (#°®%"), completely. Indeed yields the identification
(HRHT) = A A @ Rf;) and under these identifications: 2} — (%"®%"). corresponds to a map
which by commutativity of (8.1.4) must have the form

(%" &)
(8.1.6) o7 &Ry —— /0 ® R

and is thus determined Wy*.
One readily checks that the mb§ for s = ¢ in (8.1.3) coincides with the mdp defined in [3, 16.4.3]
in terms of the algebrzs. .
Given the splittings and the mapJs, the only piece of structure remaining to determineAtgh™" -
comonoid structure ofZ" completely is theZy-.%o-bimodule structure o%’f =~ o/ ® Rz. Consider for
f € %y, 1 € Rg the diferences(fr) — f(r). It belongs to the kernel af since

as(fr) = fr = fs(r) = a(f (r)).
Thus we obtain théeft multiplication map
(8.1.7) a%: Zo®Rs > .
Similarly we obtain theight multiplication map
b°: Rz ® %9 — &
by the diferences(rf) — (r)f.

(8.1.8) Lemma. For s = ¢ in (8.1.3)the right multiplication map bis trivial, that is ¢ is right equi-
variant, and the left multiplication map factors through @ 1 inducing the map

a¢:£f®R§—>d.

Proor. Right equivariance holds by definition. As for the factatian,Rz ® R »» %y ® Rz isin
the kernel ofa? : %, ® Rz — 7, since by right equivariance afand by the pair algebra property (4.1.8)
for Z one has for any,r’ € Rz

S(r’) = S()r’ = (Nas(r’) = (Bs(r))s(r’) = rs(r’).
Hence factoring the above map throughy(® R#)/(Rz ® Rz) = &7 ® Rz we obtain a map
o @Rz — .

Summarizing the above, we thus have proved
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(8.1.9) Rorosion. Using the splitting s= ¢ of % in (8.1.3)the comonoid#” in the categorlgh™"
described in(4.5.4)is completely determined by the maps

u?: Rg — o QA
and

a’: o @Rz — o
given in(8.1.5)and(8.1.7)respectively.

We next introduce another splittingg = ¢ for which US = 0. For this we use the fact that, =
Hom(«/, F) and

(8.1.10) By = Hom(%o, G)

with 4y = Tg(E.) both are polynomial algebras in such a way that generafosg are also (part of the)
generators ofZ.
Usingy in (8.1.1) we obtain the function

(8.1.11) Uy A — By

(which is notF-linear) as follows. Each elemenrtin <7 is uniquely anf-linear combinatiorx = ), n,a
wherea runs through the monomials in Milnor generators. Such a moalcan be also considered as an
element in%; by (5.2.6) so that we can define

() = D x(Ne)a € By,

(8.1.12) xrintTioN (The comultiplicative splitting of2%). Consider the following commutative dia-
gram with exact rows and columns

oy > F, ——> Hom(Rgg,]F)

AN
N
N

By — = Hom(Rz, G)

ok

i, >—>/ —>H0m(Rgg,]F)—>>-.;z%

with the columns induced by the short exact sequéﬁee G - F and the rows induced by (4.7.1). In
particularg is induced by the inclusioRz c %,. Now it is clear thaiy, yields a mamy, which lifts to
Hom(Rz, F) so that we get the map
Yy @ A — e@f&

which splits the projectiorﬁ’% - /.. Moreoverqy, is F-linear since for allx,y € </ the elements
U, (X) + ¢, (y) — ¢, (X +Y) € By are in the image of the inclusioj#, : # — %4 and thus go to zero
underq.

The dual ofgy, is thus a retractiongfy,)* in the short exact sequence

Ry <~ Ryp®F << o7

~ 7
Ve

- .
L7 @y

AN

N
@l >

#
which induces the splitting = (qu, )} of Z* determined by

Y(r(x) = X = ()" (X))
(8.1.13) Lemma. For the splitting s= y of Z we have U = 0.
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Proor. We must show that the following diagram commutes:

A
Ry = - R?

% |+

Rz®F L (%Fé)%F)l.

Obviously this is equivalent to commutativity of the duadgliam

(%)t ——> HomR. F)

(y)- l ‘(w*

2 AR,

which in turn is equivalent to commutativity of

A @A — "~ o,
(8.1.14) (w#)fl l%
(% %5)* ——> HOMRz5, F).

On the other hand, the left hand vertical map in the lattegrdian can be included into another commutative
diagram
il

F.Rd. & AT~ o, ® .
1&1¢X®Q¢X®ll l ()
F @R ® REQF, <~ (Re ® F)*
It follows that on elements, commutativity of (8.1.14) medmat the equality

Ay (xy) = 1()a¢ (Y) + agy (Xi(y)

holds for anyx,y € /. By linearity, it is clearly enough to prove this wherandy are monomials in
Milnor generators.

For this observe that for any e </, = Hom(¢/, F), the elementy, (X) € Hom(R4, F) is the unique
F-linear map making the diagram

Rg > %Bg——= &
I
Ay (X) | Yy () l l X
\i
F>—G—>F

commute. This uniqueness implies the equality we need i wiethe following commutative diagram
with exact columns:

Ry——=RY- - - - ~FeF—————>F
I I U ()@Y, (Y) I = I
Bo—L  Boo By GG G

S P

Xy

T <——

since wherx andy are monomials in Milnor generators, one lggéxy) = v, (X, (y). O
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Therefore we cally the comultiplicative splitting ofZ". We now want to compute the left and right
multiplication maps¥ andb” defined in (8.1.7). The dual maps = (a*). andb,, = (b”).. can be described
by the diagrams

Qf)(
(Ra). o,
(8.1.15) mﬁl lm
= oy,
and
2%
< T~ ~
(Re). o,
(8.1.16) mil J/m*
~—_ _ —
QY ®i

Herem, is dual to the multiplication i andm’ andm, are induced by the#,-.%,-bimodule structure of
R% ® F. One readily checks

ay = miay, — (i ® gy, )m.
b, = m.ay, - (g, ® i)m..

We now consider the diagram

I

vy
Herey? is defined similarly ag, in (8.1.11) by the formula
l//f [Z naﬁa ®:B] = ZX(naB)a ®:B
a,B af

wherea, S run through the monomials in Milnor generators. Moreavris the dual of the multiplication
mapm® of By = Ta(E).

(8.1.17) Lemma. The dfference iy, — yem, lifts to anF-linear mapV, : .« — #, ® 7. such that
one has

ay = (1emVv,
by = (7®1)V,.

Herer : #. » Rz, isinduced by the inclusionR c %.

Proor. We will only prove the first equality; the proof for the sedoone is completely similar.
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The following diagram

.
Rl% * R 'Q{*

ey

By ~——— .,

m m, mfl J/m« m.
vy
By @ By <— o, @ o,

%#®R'%’# y*@eg.*

1QQY,
///

F.® R#.

commutes except for the innermost square, whose deviatondommutativity isV, and lies in the image
of #, ® Z. — %y ® HBy, and the outermost square, whose deviation from commiteitva,, and lies in
the image of%, ® Rz. — %, ® Rg.. It follows that (1® 7)V, anda, have the same image undep jr,
and since the latter map is injective we are done. O

Let us describe the m&p, more explicitly.

(8.1.18) Lemma. The mapVv, factors as follows
o Fed S F.e 0.

Proor. Let o c Py be the subring generated by the eleméviis M21, My21, Mgg2y, -... Itis then
clear that the image of, lies in <% and the reductio8y - %, carries to /.. Moreover obviously
the image ofy®m, lies in <%, hence it only remains to show the inclusion

M () C By ® .
SincenC is a ring homomorphism, it $fices to check this on the generatis, M1, M421, Mga21, ... But
this is clear from (5.3.3). O
(8.1.19) G@rorrary. For the comultiplicative splittings one has

a, =0.
Moreover the map pfactors as follows

Bw 1gi
o, — Rg:*®£7* —_ R,gy@g‘\*.
Proor. The first statement follows as by definitiafiez,) = 0; the second is obvious. O

Using the splittingy we get the following analogue of (8.1.9).
(8.1.20) RorosiTion. The comonoidZ® in the categoryAlg?®" described in(4.5.4)is completely
determined by the multiplicationmap
b 'Ry ®o — o
dual to the mayb, from 8.1.19. In fact, the identification

L@:T:JZ%EBRQ
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induced by the splitting s v identifies the diagonal ofZ" with A, ® Ar (see(8.1.5) (8.1.6), and the
bimodule structure of7] with

f(a,r) = (fa, fr)
(@0 f = (@f -b’(r, f),rf)

forf e Zg,re Rz, ae .

8.2. Computation of the Hopf pair algebra #*

The Hopf pair algebra” = %" in (4.6.15), given by the algebra of secondary cohomologyaigons,
satisfies the following crucial condition which we deduaanfr[3, 16.1.5].

(8.2.1) Tueorem. There exists a right#p-equivariant splitting
U:%; =Rz®F — #,0F = %,
of the projection8] — %7, see(4.6.4) such that the following holds. The diagram

o &, Sl 3 7 o
/ /
q| Tu q| Tu H H
N N
o 4 B o

commutes, where is the inclusion. Moreover in the diagram of diagonals, 8e6.5)
B 0 (BFRTF ), ~— S ®
[ -
R 2 (SR,

the djferenceA zu — (U®U)AR lifts to .o/ ® .7 and satisfies

& = AU — (URU)AR : %;—E»ﬁ—'£>z4zf ®
where¢ is dual to, in (7.1.8) Herer is the projectionZz » Rz —» R. The cocyclé is trivial if p is odd.
(8.2.2) DerintTion.  Using a splittingu of 8 as in (8.2.1) we define multiplication operator
Ao ®Ryg — X
by the equation
Al ® X) = u(ax) — au(x)
for a € %, x € Rg. Thus—Ais a multiplication map as studied in [3, 16.3.1]. Fixing ditipg s of Z"
as in (8.1.2) we define astmultiplication operator Ato be the composite
AS: of @Ry —2 of @ Ry—2>5.07 .
Such operators have the properties of the followsagultiplication maps.

(8.2.3) DxrmviTiON. Let s be a splitting ofZ" as in (8.1.2) and let) s, as, b® be defined as in section
8.1. Ans-multiplication map
Ao ® Re — o
is anF-linear map of degreel satisfying the following conditions with, o/, 8,8’ € %0, X,y € Ra
(1) A%, XB) = A¥(a, X)B + x()b(x. B)
(2) AS(a, X) = A, a’X) + x(@)as(a’, X) + (—1)9)aAS(e’, X)
(3) 6A%a,X) = Aj(a ® AX) + L(a, X) + Ve(a, X) + 8x(a)US(X).
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HereA; : &/ ® Rﬁ) — o/ ® o/ is defined by the equalities

Al @xef) = > (-1)) O e, X) @ i,

A(a@p®y) = ) (~1)iestndestrdestdeat) 4 5 @ A%(q, y),
where as always

() = Zafg@ar €A Q.
Two s-multiplication mapsA® and A% areequivalentf there exists aiF-linear map
v:Rg - o
of degree-1 such that the equality
Aa,X) = A% (@, %) = y(ax) - (1) ay(x)

holds for anye € 7, X € Rg and moreovey is right . #p-equivariant and the diagram

A —= A ®

L

(2)
Re ——>R5

commutes, withy, given by

Yo(X®B) = y(X) ® B,

Yol ®y) = (-1)*a @ y(y)
fora,B € o, X,y € Rz.

(8.2.4) Tueorem. There exists an s-multiplication map® And any two such s-multiplication maps
are equivalent. Moreover each s-multiplication map is amtiplication operator as ir(8.2.2)and vice
versa.

Proor. We apply [3, 16.3.3]. In fact, we obtain #? the multiplication operator
A: Ry = A7 & ARy — X

with
(8.2.5) Ala® X) = A ® X) + x(a)é
where K, &) € Rz @ & = R4 ® F corresponds ta, that iss(X) + «(£) = xfort: &/ c Rz ®F. O

(8.2.6) Remark. For the splittings = ¢ of %ZF in (8.1.3) the maps

are defined byAnm(a) = A?(a ® [n, m]), with [n, m] the Adem relations iflR». Using formulze in (8.2.3)
the mapsA, m determine the-multiplication mapA? completely. The map8, n, coincide with the corre-
sponding map#nmin [3, 16.4.4]. In [3, 16.6] an algorithm for determinatiohA, i is described, leading
to a list of values ofA, m on the elements of the admissible basiss0f The algorithm for the computation
of Anm can be deduced from theorem (8.2.4) above.

(8.2.7) Rmark. Triple Massey produci@, 8, y) with @, 8,y € <7, o8 = 0 = By, as in (4.6.16) can be
computed byAs as follows. LejBy € Ry be given as in (4.6.16). Thedy ® 1 € Rz ® F satisfies

By®l=s(X)+u&)
with X € Rz, £ € & and{a, B, y) satisfies
A ® X) + x(a)é € (a,B,7).
Compare [3, 16.3.4].
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Now it is clear how to introduce via®, b5, U3, &, %, andAS a Hopf pair algebra structure on

o7 34 ®Ry — > of ®Ry
(8.2.8) H H
By X
which is isomorphic taz®, compare (8.1.9).

In the next section we describe an algorithm for the comprtatf ay-multiplication map, where
is the comultiplicative splitting of2” in (8.1.12). For this we compute the dual mapof A”.

8.3. Computation of the Hopf pair coalgebra %r

For the comultiplicative splitting = y of %" in (8.1.12) we introduce the following-comultiplication
maps which are dual to thiemultiplication maps in (8.2.3).

(8.3.1) DerintTION. Let ﬁ,, be given as in 8.1.19. &-comultiplication map
Ay A, - d.®Rz,

is anF-linear map of degreel satisfying the following conditions.
(1) The maps in the diagram

. @Rz, A,

ml lm

o T
%@R},F@J*W%@m

satisfy _
(1@ m)A, = (A, ®)m. + (x, @ b,)m..
Herex, is computed in (5.1.7) aml is defined in (8.1.16).
(2) The maps in the diagram

o, @Rz, i .

st |»

a
m®/*®R§*W%®m®Rﬂ*mm®R§*

satisfy
Lem)A, = (leiel)(m oA, - (rie1)(1e A))m..
Herent is asin (8.1.15), and : .7, — 7 is given byr(a) = (—1)%9¢)q.
(3) Forx,y € <7 the produciy in the algebrav. satisfies the formula
Ay(xy) = Ay (IML(Y) + (1) ML ()AL (Y) + Lo(X Y) + Ve, (X V).

HereL. andV,,_ are givenin 6.1.13 and 7.1.11 respectively, with= V., = 0 for p odd.

Two y-comultiplication maps\,, A, areequivalentf there is a derivation
Y« & = Re,
of degree+1 satisfying the equality
A, - KN, =mly, - (t®y.)m..

As a dual statement to (8.2.4) we get

(8.3.2) Tueorem. There exists &-comultiplication map 4 and any two sucly-comultiplication maps
are equivalent. Moreover eaal+comultiplication map 4 is the dual of ay-multiplication map A in
(8.2.4)with A, = AY,.
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O
Now dually to (8.2.8), it is clear how to introduce vég, by, ¢., %., andA, a Hopf pair coalgebra
structure on

o, &5, ®Rz, ~—— o, ®Rz,

i R
which is isomorphic toZx, compare (8.1.20).
We now embark on the simplification and solution of the equni8.3.1(1) and 8.3.1(2). To begin
with, note that the equations 8.3.1(1) imply that the imafgth® composite map
4.2 A @Rz, 5 A @R5, ® F.

actually lies in
Z.9Rz, ® H. C H.® Rz, ® F.;
similarly 8.3.1(2) implies that the image of

Ay Lot
A, — A, Rz, —> . F. Rz,
liesin
. Q o ® Rz, C . Q@ F, ®Rz..
Now one obviously has

(8.3.3) Lemma. The following conditions on an elemenéXRg, = Hom(R 4, F) are equivalent:

. mfj(x)e.;zﬁ@Rg*cﬁ*®Ry*;
i n’t(xleR.?*®vQ{*CR37*®y*y
e XeR, CRg,.

Proor. Recall thalR = R#/R#2, i. e. R, is the space of linear forms dRz which vanish orRz2.
Then the first condition means that Rz — F has the property that the composite

mt
yo@Ry—)Ry—X)F

vanishes olRz ® Rz c .%, ® Rz, but the image oRz ® Rz undernt is preciselyRz2. Similarly for
the second condition. O

We thus conclude that the imageAf lies in 7. ® R..
Next note that the condition 8.3.1(3) implies

(8.3.4) A(X3) = La(% %) + Ve (X, X)
for anyx € /.. Moreover the latter formula also implies

(8.3.5) RoposiTioN. FOr any xe < one has

A, (x* =0.
Proor. Since the squaring map is an algebra endomorphism, byl6ohd has
L(xy) = > axeyf © L%, ¥2),
with
M) = X ®x%, m(y)= > yrey.

But L, vanishes on squares since it is a biderivatiorl,.salso vanishes on squares. Moreover by (7.1.11)

Ve 08 Y0 = Y £.08 V) @ E0C YR - ) Y2 ®E0R V)
this is zero sincé, (X2, y?) = 0 for anyx andy by (7.1.16). o
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Taking the above into account, and identifying the image ok7. — %, with 7, 8.3.1(1) can be

rewritten as follows:

(1@ M)A(Z) = Ay(dn) ® 1+ (L1, dn1) + Ve ln1,6n1)) 8 L1 + ) Gadh; © by (),
i=0
or
(L@ M)AL(n) = (L1, Gt + Ve (o1, 6n1)) 8 Q1 + Y Gadh @ by (L),
i=0

Still more explicitly one has

LGet)= > ald.@Zeli.o =) aliel&.a+ > al.& o3,

o<, j<k O<i<k O<i<j<k
where we have denoted

L2, ) = L@, ¢) + L5, 40
similarly

Veldodd= Y. Z.2,88.06.4).

O<i<j<k
As for by (&), by 8.1.17 it can be calculated by the formula
(8.3.6) by(g)= > V] &g,
O<j<i
wherevg are determined by the equalities

Mok gt 2= Mgk 1ok2 1= =2w mod 4

.....

in 4. For example,

Vi = Mgy,
Vo = My11+ Moz + Mazo + Mooy,
V3 = Mga11+ Mgoa1 + Mgooo + Mga121+ Magar + Mas22 + Mag121+ Magaz + Maoso1 + Mazazi + Mazazo

+ Ma2a121+ Maz1421,

etc.
Thus putting everything together we see

(8.3.7) Lemma. The equation 8.3(1) for the value ort;, is equivalent to
1ef)A) = > CP . 8k
O<k<n
where

C(n) Z gl ZHI I— ({n(l) +VI Z glgn 1—|{n 1- j LS(§I’§I)+ Z (n 1- |§n 1-j ®S. (§|,§])

O<i<n O<i<j<n O<i<j<n
and, forl<k<n,

(n) 2k+|
Copn = Z 16k ®

O<i<n-k
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For low values of these equations look like

(1efM)A(L) =0,
(1@ M)AL(fs) = £1® (1(M222) ® {1+ 1(M22) ® £2) + 2 @ (M2 + Moz + M1z + M129) @ {1
+ B @aMp2® b,
(L@ M)A, (La) = &1 ® (T(Mg222+ M722 + Mag22 + Masasz + Maza22) ® 1
+71(Mg22 + Magz + Masg + Ma24) ® {2 + 1(Maa) ® {3)
+ {7 ® 1(Mez2 + Me2s + Me212+ Me122+ Msaz + Masa + Maaz + Magiz + Mazaz + Maazo
+ Mas22 + Maazz + M2423 + Maa212+ Maa122+ Ma14z2+ Migaz + Migaz + M12420) ® {1
+ {7 ® 1(Me22 + Maaz + Maa2d) ® {1
+ 25 ® m(Msg2 + Mazz + Maza + Mazi2+ Mazzo+ M1azo) ® 41 + {145 @ 1(Maz) ® {1
+43 ® (1(M222) ® {1 + 1(M22) ® &) + {715 ® 1(Map + Moz + M2z + M122) ® &3
+ GG en(Ma) @ 41,
etc. (Note tha#\,(£1) = O by dimension considerations.)
As for the equations 8.3.1(2), they have form
(1@ F)AG) = MO DA + & O A1) +8 ®An-2) +. + G2 ® AE) + Gy 8 AYL).

(8.3.8) Lemma. Suppose given a map,Aatisfying 8.3.(3) and those instances of 8.81), 8.3.12)
which involve starting value o#7, on the Milnor generators({1), i({2), ..., where i: o/, — .#, is the
inclusion. Thenw, satisfies these equations for all other values too.

Proor. m]

Now recall that, as already mentioned in 6.1, according ,td@’BS]ﬁis a free righter-module gener-
ated by the set PAR R of preadmissible relations. More explicitly, the compesit

RP' & of inclusior®l §® o i} F\j
is an isomorphism of right7-modules, wher&"'® is theFF-vector space spanned by the set PAR of pread-

missible relations. Dually it follows that the composite

— — 1
q)L:R*gR*(X)JZ{*ﬁ)Rpre@Q{*

is an isomorphism of right7.-comodules. Herg : R. -» Ry denotes the restriction homomorphism from
the spac&R, of F-linear forms orR to the spac, of linear forms on its subspaé®™ c R spanned by
PAR.

It thus follows that we will obtain equations equivalent t8.8(1) if we compose both sides of these
equations with the isomorphismgl®; : o7 ® R, — <% ® Rye ® <. Let us then denote

(L@ ONAL) = ) pr-pal) @
M

with some unknown elementg(u) € (<7 ® Ryre)j, Whereu runs through some basis of..
Now freedom of the rightZ.-comoduleR, on Rye means that the above isomorphidh fits in the
commutative diagram

r

R— " > Rye®

B

' ®1

R ® o, — Rye® 4. ® ..

It follows that we have
(1®lem)(1e @A) = (10, 1)(1e M)A, ().
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Then taking into account 8.3.7 this gives equations

D emw) =) pr @ euslt Y (1e@)CY , ) ok
H M

O<k<n

with the constant@ﬁj) as in 8.3.7. This immediately determines the elemgy{is for |u| > 0. Indeed, the
above equation implies that & ®])A,({,) actually lies in the subspace, ® Rye @ IT C o7, ® Rye ® 47
wherell c 7 is the following subspace:

Hz{xem | m(x)e@%@]l’i{k}.

k>0

Itis easy to see that actually

1= P Fe,

k=0

SO we can write

(1® DA = D pr-2:1(8) ® i

k>0

where we necessarily have

k k
Pn-2:41(¢k) ® 1 + pon_per41(fkr1) ® gf + pan_2i+k11(lkr2) ® {5 +..=(1® (Df)(c(zg)_zk_'_l)'

for all k > 1. By dimension considerations;_,1({k) can only be nonzero fdt < n, so the number of
unknowns in these equations strictly decreasésgmews. Thus moving “backwards” and using successive
elimination we determine gtlon_o,1(Zk) for k > 0.

It is easy to compute values of the isomorphism @’ on all elements involved in the constaﬁl‘ﬁ).

In particular, elements of the formi(v]?k) can be given by an explicit formula. One has
D) = > (S SE s (2, 2]), @
O<i<k

and

(Di(vijfl) _ Z (qukﬂ—l qukﬂ—z B .qunju[ziﬂ-,l, 2”]-,1])* ®§i21’

O<i<k
so our “upside-down” solving gives
,02"*1+1(§n71) = gl ® [Zniz’ 2n72]*’

por-zaalén) = (37 © 272,27+ w (S [275,279)),
przoaltnd) =08 @R 2+ 47 e (SFTRTL ) +ae (SE ST R 2M),

prrcatnn) = > Gl o (s S s MR 2k,

1<igk

fork<n-1.
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As for p»_1(£1), here we do not have a general formula, but neverthelesseiasy to compute this
value explicitly. In this way we obtain, for example,

p1(£1) =0,
p3(l1) =0,
pr() = @[22, + £ ®([3,2], +[2,3].),
p15(d1) = 55 ®[2,2] + (15 ® ([3, 2], +[2,3].) + (a5 © (Sf[2,2]) + 22 & ((STP[2, 2)). + (S, 3]).)
+ 5@ (S[2,2]), +¢f & ((Sd[2, 2]). + (SP3, 2]). + (SF[2, 3]).),
pai((r) = G455 ©[2,2]. + 3 © ([3,2]. + [2,3].) + (743 @ (Sf[2, 2]),
+ 52 o ((SP[2. 2)). + (Sd[2.3)).) + {55 ® (Scf[2. 2]).
+ 503 ® ((SA[2, 2]). + (SEFI3, 2]). + (SP[2, 3]).) + 155 @ (S Scf[2, 2]).
+ 5 @ (ST Sd[2, 2)). + (S 512, 3]).) + &245 © (Sq°Sf[2, 2]),
+ 5 ® ((Sa* sd'[2, 2)). + (Sq°SP[2, 2)). + (Sq'° Scf[2, 3]).) + &7 ® (Sa? Scf[2, 2])
+ 5 @ ((Sa®scP[2, 2)). + (Sq? SP[3, 2)). + (Sq? SP[2, 3)). ).

etc.
To summarize, let us state

(8.3.9) Rorosrition. The general solution of 8.3(1) for the value on,, is given by the formula

A(G) = (18 D)™ D pon 20.1(6d ® i

k>0

where the elemenis;(¢k) € (# ® Ryre); are the ones explicitly given above forsk 0 while p»(1) €
(. ® Rore)n is arbitrary.

(]

Let us now treat the equations 8.3.1(2) in a similar way, neimgithe fact thaR is a freeleft «/-
module on an explicit basis PARsee 6.1.2 again).
Then similarly to the above dualization it follows that thenposite

o RS AeR 2 s oR,,
is an isomorphism of leftZ.-comodules, wherg' : R —» Rire denotes the restriction homomorphism from
the spaceR, of F-linear forms orRto the spac®, of linear forms on the subspa&™ of R spanned by
PAR.

Thus similarly to the above the equations 8.3.1(2) are edgt to ones obtained by composing them
with the isomorphism ® @’ : 7, ® R, —» &7, ® o, ® Rire- Let us then denote

(1@ @A) = ), ormim e,

nePAR
with some unknown elements(7) € (# ® ,c%),, wherer, denotes the corresponding element of the dual
basis, i. e. the unique linear form &4, assigning 1 tar and 0 to all other elements of PAR
Now again as above, freedom of the left-comoduleR, on Rire means that the above isomorphism
! fits in the commutative diagram

— !

R. 'Q{*®Ri)re
l lm@l
A oR 2 e ®R e
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In particular one has
(1elee)(lem)Ad) = (1em o 1)(1e O)A(%).
Using this, we obtain that the equations 8.3.1(2) are etpnit#o the following system of equations
(1em. —m.® 1)(o2-x(7)) = 1® oon_ix(7) + Zonpm (),
where we denote
So(m) = 88 @ (1) + (3 @ T (M) + o+ Ly ® Tain () + L2y ® i ().
We next use the following standard fact:

(8.3.10) RorosiTioN. For any coalgebra C with the diagonal.mC — C ® C and counite : C — F
there is a contractible cochain complex of the form

C o C®?2 d Ce3 % Co®4 b ... ,
S ~— ~— ~—
St S S3 S

i. e. one has
Sl + dn-1Sn-1 = dcen

for all n. Here,

dp =m,

d=1em -mel

d=1®lem -1emel+melel,

di=1919lem -1lemel+1leomelel-melelel,
etc., while § can be taken to be equal to either

SH =R 1C®n
or
S = 1C®n R E.
O
Now suppose given the elements_,(7), k < n, satisfying the equations; we must then fing_(7)
with
G20 on iz (7) = 1 ® 0oy (1) + Zon_ i (70),
with 2on_ () as above. Then sinaid, = 0, it will follow
d3(1® ganr(7) + Zan-im()) = 0.
Then
1® Tz (7T) + Zzn,|,,| (71') = (%dg + dQSQ)(l & T on_p (7T) + Zgn,|n| (71')) = dQSQ(l ® O'zn,|,,|(7T) + 22n7|,,| (71'))
Taking heres, from the second equality of 8.3.10, we see that one has
1® oonir(m) = Zon_jr(7) + A2 (1@ (1@ &) (T2n-r (7)) + (L ® 1 ® &) (Z2n—ii())) -
It follows that we can reconstruct the termg._, () from (1® g)oan_z(7), i. €. from their components
thatlie ineZ. ® F C o7, ® ..
Then denoting
Tz (7T) = Xon_|z| (7T) 1+ O-,Zn—lnl(n’)’
with .
Ton_y(7) € F ® .,
the last equation gives
1® Xor_ (1) ® 1+ 1® 0oy (1) = Zopr(7) + (M. ® 1+ 1@ m,) Z 27 @ Xoni i ().
i>0
By collecting terms of the form & ... on both sides, we conclude that any solutiondosatisfies
T2l () = M (Xon—r (7)) + Z fiznil ® Xor-ijz) (7).

i>0
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Thus the equations 8.3.1(2) are equivalent to the systemuzt®ns
(lem +m®1) Z &F ® X (m) = 1® M.(Xn_pm (7)) + Z 1022 @ Xori_yn (1) + Zon_pmy ()

i>0 i>0

on the elements;(r) € «7j. Substituting here back the valueXyj_, () we obtain the equations

D @me(m) + M) @ Xorin(m) = L@ M (on (M) + D 1@ @ Xori_in()

i>0 i>0 i>0

Y omlo @)+ Y F 9 @ X ().

i>0 i’>0,j>0
These equations easily reduce to
n—i n—i n—(i—j) n—i
m@)? =1+ > & el
o<j<i
which is identically true. We thus conclude

(8.3.11) Roposrrion. The general solution A¢n) of 8.3.12) is determined by

Avgn) = (1@ D)™ 37 X () @ 1+ MO (M) + Y EF @ Xori_in() | @ o,

rePAR i>0
where %(r) € «/; are arbitrary homogeneous elements.

Now to put together 8.3.9 and 8.3.11 we must use the dual
D, : Rpe® &, — «Q{*‘X)R;)re
of the composite isomorphism

o erR YL RY, R .
We will need
(8.3.12) Lemma. There is an inclusion
@, (Rye® F1) C % ® Rye™,
where

Ré)re<2 c Ré)re

is the subspace of those linear forms &¥fRvhich vanish on all left preadmissible elemelmsn]a € PAR
with ae «7.
Similarly, there is an inclusion

0. (F1® Riye) C Rye™ ® 7,

where

Rpre<2 C Rore
is the subspace of those linear forms d¥fRhich vanish on all right preadmissible elemen{s,an] with
aed.

Proor. Dualizing, what we have to prove for the first inclusion iattgiven any admissible monomial
a e o/ and any h, mb € PAR with b € &7, in Rone has the equality

a[n,mb = Zaa[ni, m]b;

with a[n;, m] € PAR and admissible monomiaise . Indeed, consideringas a monomial in#, there
is a unique way to write

an,m = Zaa[ni,m]ci
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in o, with a[n;, m] € PAR andc; some (not necessarily admissible or belonginﬁg monomials in
the S¢ generators of#y. Thus in.%, we have

an,mb = Za[ni,m]cib.

In R we may replace eachb with a sum of admissible monomials of the same degree; obljidhis
degree is positive dsec o7
The proof for the second inclusion is exactly similar. O

This lemma implies that for any simultaneous solutfi¢,) of 8.3.1(1) and 8.3.1(2), the elements in
. ® Rore ® 7, and o/, ® 7. ® Ry corresponding to it according to, respectively, 8.3.9 addld, satisfy

D Pecralk 18 @ 1+ Mook 118) + > & @ Xorincia(k I]a)) ® ([k.I]a).
ace i>~0
[k.IJacPAR

= (191073 (10d,) [Z P_2x41(Lk) ® §k) .

k>0
where

Q>2 : R;)re > R;Jre>2
is the restriction of linear forms oRP™ to the subspace spanned by the subset of RRsisting of the
left preadmissible relations of the forrk [Ja with a € <. Indeed the remaining part of the element from
8.3.9is
pr(1)® 1,
and according to the lemma its image under®. goes to zero under the map?.
Since the elemenjs:_».1(k) are explicitly given for alk > 0, this allows us to explicitly determine
all elementsx;([k, I]a) for [k, I]Ja € PAR with a € <. For example, in low degrees we obtain

x2([2,3]Sq) = %([3. 2] Sof) = 2,
xs([2.21Sd) = 23,
x10((2. 3] S) = x10([3. 2] Sd') = £722,
x1([2,2]1Sq) = 4343,
x26([2. 3] Sf) = xo6([3. 2] SA') = £322,
x7([2.2]Sq) = (14343,
with all otherx;([k,1]a) = 0 for j < 32 and k, I]Ja € PAR with a e .

(8.3.13) Rmark. Calculations can be performed for largetoo. But in fact a pattern is clearly
apparent here. It suggests itself to conjecture that dygtatlelementsx;([k, I]a) for [k, l]a € PAR with
a € o/ can be chosen to be

Xor_6([2, 3] SAf) = Xn_6([3, 2] SA) = &1 507 .
Xor_5([2, 21 Sq) = (183 502 5,
for n > 3, with all otherx;([k, I]a) = 0.

It remains to deal with the elememtg[k, I]). These shall satisfy

Z Yo ([K, 1) ® 1 + A, (Xon_ii ([K, 1)) + Z 72 @ o ([K, |])] ® [k 1.

k<2l i>0

= (180.) (ox(De ) + (181007 (16 D) [Z pon 210 ® 4k],

k>0
where now

Q<2 R;)re > Ré)regz
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is the restriction of linear forms dRP™® to the subspace spanned by the Adem relations. The last sugnma
Dh=(1®180%%)(1® d.) (Zr0p_2:1(ZK) ® &) is again explicitly given; for example, in low degrees it
is equal to

D; =0,

D, =0,

D3 = (1®41)°®[2,2].,

Ds= (o0 +0Lo0+Zons) ®2.2].

Ds = (3600 + (50 L+ (R0 0L+ (o ki + ok +Eeak) 9(2.2].

Then finally the equations that remain to be solved can bevalguitly written as follows:

1eled)le ) [Z (xznk.([k, ) © 1+ Ok ID) + Y ¢ @ %ok |])] ® [k, |]*]

k<2l i>0
=(1010&)(1e d,) XDy,
where
&, >,
is the projection to the positive degree part, i. e. maps landall homogeneous positive degree elements
to themselves. Again, the right hand sides of these equagignexplicitly given constants, for example, in
low degrees they are given by
0
Zel2,2.04,
(¢ e12.2]. + 2 & (SH[2,2)). + £ © (Sf[2,2]).) 8 &,
(32 ®[2.2). + 823 ® (SH[2, 2)). + £33 ® (SP[2, 2]). + {3 ® (S Sf[2, 2]).
+3 © (Sq0Sf[2. 2)). + £ ® (Sd?Scf[2. 2)).) © &2,
One possible set of solutions farwith k < 5 is given by
xs([1,2]) = {322,
x([L.3]) = 1.
x13([1, 2]) = 4343,
x12([1, 3]) = &5,
xoo([1. 2]) = £3La
xo8([1,3]) = &3

and all remaining;([k,1]) =0 for j + k+1 < 32.
Or equivalently one might give the same solution “on the p#ige of®” by

p2(1) =0,
pa(1) =0,
ps(1) = (32 ®[1,2). + 41 ® [1,3]. + L2 ® (SAIL, 2]). + £F ® (ST[L, 2])..
p16(1) = 53 ®[1,2]. + 3 ® [1,3]. + 14 @ (SKIL, 2]) + (15 ® (S[1, 2]),
+ {30 (S SP[1,2]) + &3 ® (S S, 2]), + &1 ® (S SF[L. 2]),
pa(1) = B30 ®[1.2). + 55, ® [1.3]. + 5524 ® (SF(L.2]), + 58 ® (SA[L.2]),
+ 030 (S SCL.2]) + (745 © (SP SIL.2]), + (743 ® (S SP[1. 2]),
+ £ ® (S Sof SP[1.2]) + 5 @ (ST S SP[L.2]) + 45 ® (S S S[L. 2]) + 45 @ (S S SeP[1,2]).

[T
hronNRE

5 35 5 S

S
|
o
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(8.3.14) Rmark. Asin 8.3.13, here one also has a suggestive pattern wadis I® a conjecture that
a simultaneous solution of (1) and (2) is determined by pgtti

on_3([1, 2]) = & pln-1,
Xor_a([1,3]) = &4,

for n > 3, with all otherx;([k, I]) = 0.

This then gives the solution itself as follows:

Ay({1) =0,
Ay(L2) =0,

Au(l3) = (152 ® Mg
+7 ® (Ma1 + {1M3)
+£3® Mooy
+Ho® (M5 + Ma1 + M3 + §fM3)

+{Z® (M51 + Ma21 + Mag1 + Ma121 + {1(Ms + Mag + Map + Mp21) + £EMZ + (8 + &) Ms)
+{1 ® Mooy,

A(La) = L3 ® Mg
+{3 ® (Ma1 + {1M3)
+{305 ® Mooy
+® (Ms + Mag + M3 + {fMg)
+0325 ® (Ms1 + Ma1 + Magy + Ma1o1 + (2(Ms + Maz + Maa + Mag) + ZZMZ; + (&3 + £)Ms)
+{3 ® Mao21
+0145 ® Mazz1
+(3® (Mg + M72 + Mg21 + Msa + Maa1 + Magz + Maaz + Maags + {fMs + §§M3)
+5® (M721+ Mas1 + Maz21 + Mazs1+ Maz121+ Maga1r + (Ms + Mag + Mgz + Ma111)
+01(Mg + M72 + Mea1 + Msg + Magz + Magz + Mazo1 + Mz + Maga1) + (M35 + 3Ms + (L85 + fs)Ms)
+85 ® (Mp221 + Magz1 + Magzz1)
+¢7 ® (Mg31 + Ma121 + Mes1 + Meaz1 + Me2a1 + Me2121+ Masa1 + Magat + Magio1+ Maazs
+ Mz721+ Maas1 + Maagz1 + M2aza1 + Maaz121+ M2zaz1
+ 1(Me221 + Magz + Maaza1) + {5(Ms + Mag + Maz + Mp119)?
+ {2(Mg + M7z + Me21 + Msg + Maar + Maza + Maap + Magzq) + (M3, + EEM3 + £3(Ms + Mgz + M3y)
+(30Ms + (33 + (3)Ms)
+{1 ® (Ma2221+ Maaaz1+ Mago21 + Mazazz1) ,
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A(ls) = 50 ® Mg
+3 ® (Ma1 + {1M3)
+010505 ® Mooy

+5a ® (Ms + Mg + M3 + {fMg)

+{E® (M51 + Ma21 + Mag1 + Ma121 + 1(Ms + Mag + Maz + Mp2a) + E2MZ, + (83 + §2)M3)

+{105 ® Mooy

+{05 ® Mazor

+(304® (Mg + M72 + Mga1 + Msg + Magz + Magz + Magz + Maaz1 + {{Ms + §§M3)

+305® (M721+ Mas1 + Masz1 + Maza1 + Mazi21+ Maaz1 + (Ms + Maz + Maz + Ma111)?
+{1(Mg + M7z + Mg21 + Msg + Maaz + Mazz + Maga1 + Mzgz + Mag21)
+$MZ + M + (4183 + £5) M)

+{743 ® (Me221 + Maaz1 + M2sz21)

+{3¢7 ® (Mg31 + Mgi21+ Mes1 + Mgz21 + Me2a1 + Me2121+ Masz1 + Maast + Maa121+ Mataz
+ M2721+ Maas1 + M2as21+ M24231+ M242121+ M2zaz1
+ {1(Me221 + Magz1 + M2az2)) + {Z(Ms + Mag + Maz + M2117)?
+ (Mg + M7z + M1 + Msg + Magz + Magz + Maaz + Magar) + (M3, + £8M3
+{16Ms + £3(Ms + Mag + Ma2) + (45 + (g)Ms)

+17 ® (Mg2221+ Magaz1+ Magoo1 + Maza229)
+0® (Mg + M13s + Myua2 + Myoa1 + Mgg + Mgz2 + Mgeo1 + Mgsa + Mggar + Mgazz + Mgsaz + Mg2a21

+Mesgg + Magaz + Magazs + {EMg + (5 Ms + §§M3)

+0182 ® Maapon

+5® (M1_1421+ Mg721 + Mgas1+ Mgazz1 + Mgaza1 + Mgazi21+ Mgaazs + Magana

2
+ (Mg + M72 + Mg21 + Msa + Maa1 + Mazo + Mao111+ Masz + Mogz1)
+ {1(My7 + M13s + M1uo + Migao + Mog

+ Mg72 + Mgg21 + Mgsa + Mgaa1 + Mgazo + Mgazo1+ Mgzao + Mgoao1 + Msga + Magao + Magaos)
8pp2 L 9 2 4 2
+IMZ + IMo + 3ME + 215 Ms + (4145 + La) M)
+0d5 ® (M1_04221+ Mage221+ Mgag21+ Mgos221+ M284221)

+5 ® (M1_2521+ Ma12431 + M124121 + Ma21421 + Mag721 + Maoas1 + Maoaszr + Maoa2s1 + Maoaz121+ Miosaz1
+ Mgga1 + Mgg121+ Mggs1 + Mge321+ Mgs231+ Mgs2121+ Maas21 + Mgaazs + Maasa21+ Maaia21
+ Mg24s1+ Mg2721+ Mg23az1+ Mg24321+ Ma24231+ Ma242121
+ Magaz1+ Mags21+ Magaz1 + Magar21+ Magraz1+ Maigaz1
+ M211421 + M2g721+ Mogas1 + Magazo1+ Magaosi+ Magaz121+ Mogzaz1+ Mosgazt
+ {1(M1o4221 + Mge221+ Maaaz1+ Mg2az21+ M2gaz21)
+ % (Mg + M72 + M1 + Msa + Maaz + Magz + Map111+ Maap + Maap1)?
+ {2(M17 + M134 + M1uo + M1gaog + Mog + Mgy + Mgeo1 + Mgss + Mgga1 + Mgazz + Mgaaz + Mgaao1

+ Msga + Maga2 + Mogaoi)

+{iMipyy + GOME + oMo + GEEIMS + 5Ms + La(Ms + May + M) + ($34a + Lo23)Ms)
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9
+® (Ml_26221+ Mi124421 + M1224221 + Maroz21 + Mggazs + Mags221+ Magaso1+ Magzazo1+ M428422]>

+3 ® (Ml_4631+ Muss121 + Myazs21 + M1g2a31 + M1g2a121+ Migp1421
+ M12831 + M12g121 + M1ggs1 + M1oez21 + Mioe231 + Migg2121+ Mi2aso1 + M124a31 + M124a121 + Mi2a1421
+ M12721 + M1224s1 + M1224321 + M1224231 + M12242121+ M1223421
+ Mgeea1+ Msgss121+ Mgs2s21+ Mgs2431+ Mgs24121+ Mge21421
+ Mgaas21+ Mgaaaz1+ Mgaaa121+ Msasi421+ Maazesi+ Mgaze121+ Msazzaz1+ Mgazi2421
+ Me121 + Me1ms1 + Meio121 + Me1a1421 + Meges1 + Megs121+ Meg2s21+ Meg2431+ Meg24121+ Mes21421
+ Me29421+ Me2gs21+ Me2gaz1+ Me2ga121+ Me2g1a21+ Me218421
+ Ma1z21 + Maz2a31 + Mazaa21 + Maiziaz1 + Mazoror + Mazmst + Maimsz1 + Mawoaza: + Maiome121+ Maimazt
+ Mygga1+ Maggi21+ Magss1 + Mages21+ Magezsi+ Magez121+ Magasoi+ Magagzr+ Magasiz1+ Magaraz1
+ Magz721+ Magzasi+ Magzazoi+ Mag24231+ Magraz121+ Magosazr
+ Maagaz1+ Maagso1+ Maagazi+ Maaga121+ Masgraz1+ Maaiganr
+ Maz21u21 + Maogz21+ Maogas: + Maogazo1+ Mazgazsi+ Mazgaz121+ Mazgaazi+ Mazagazr
+ (Mg31 + Mg121+ M7311+ M7221 + M71211+ Mes1 + Mea11+ Mea21 + Mes111+ Me2211+ Me12111
+ Mazz11+ Magoo1+ Maz1211+ Mazoo11+ Maz1a11+ Maz1o21+ Ma1ao1
+ Mas211+ Maaz11+ Magzo1 + Masi211+ Maigz11
+ M2721+ Ma2g211+ Masz111+ Massy + Maaar1 + M2gzz1 + Maszi11+ Maazo11+ Mogi2111

+ Magaz1+ Mo2ag11+ M2142119°

+ (Ms1 + Mag1 + Map1)* + M3

+ {1(M126221 + M124421 + M1224201 + Mggao1 + Mai1os221 + Mageoo1+ Magago1+ Magoszo1+ Mazgaz2)

+ 7 (Ms + Mgy + Mgp)*

+¢5 (Mg + M7z + Me21 + Msg + Maaz + Magz + Masz + Magz)?

+ {3(M17 + M1y + M1w2 + Miogg21 + Mog + Mg72 + Mge21 + Mgsa + Mgas1 + Mgazz + Mgaaz + Mg2421
+ Msgg + Magaz + M2gan1)

+ {3EME + Z5(Ms + Ma + M32)? + {3¢3Meo

+ {a(Mg + M72 + Mg21 + Msg + Maa1 + Mazz + Magp)

+({12 + MG + (G5 + BIME + ((ida + 550)Ms + (G3La + (5)Ms)

+1® (Ml_682221+ Mies6221+ Mipaaa21 + Mieazazon
+Mag124421 + Mg126221 + Mg1224221 + Maggaz1+ Maaimo21 + Maags221+ Mgagaso1+ Msagrazo1+ M8428422])

The formulee above were obtained via computer calculatiditey lead to the general patterns in
8.3.13 and 8.3.14 which would determine the mgpompletely.






CHAPTER 9
Thedual dp differential

In this chapter we will compute the,) differential in the B term
Ey? = Coto?, (F,F)? = Ext’ (F, F)*

of the Adams spectral sequence. For this we will first set gplaiaic formalism necessary to carry out an
analog of the computations in Chapter 3 in the dual settiimgt et us recall how the above isomorphism
is obtained.

9.1. Secondary coresolution

One starts with a projective resolution of thé-moduleF, e. g. with the minimal resolution as in
(3.2.1). Its graded-linear dual
2142l

(9.1.1) WL B @m{gﬁ”} as m{gz b

n>0 li-jl#1

is then an injective resolution @ in the category of righteZ,-comodules. (This is not entirely trivial
since we takeggradedduals. However all (co)modules that we encounter will beréegise finite, i. e.
having generating sets with finite number of elements in elgiiee. Obviously then graded duality is a
contravariant equivalence between the categories of mmpdules.)

There are isomorphisms

Homﬂ(M, N) =~ M.oOg N

for any left o-modulesM andN of the above kind (i. e. of graded finite type), where on thétridpe
graded duaM. is considered as a righ¥.-comodule andN as a left«,-comodule in the standard way.
It follows that applying Hor, (-, F) to (3.2.1) and applying O, F to (9.1.1) gives isomorphic cochain
complexes (of-vector spaces). But by definition cohomology of the lattanplex is given by

HP((9.1.1)0., F) = Cotor’, (F, F)%.
It then follows from (3.2.13) that in these terms the secondéferential

. 2
dg, : Cotor’, (F,F)¥ — Cotor?“(F, F)***

is given by

(9.1.2) d(g‘;(gg) = Z gm = 5.(00)°.
gp appears irib‘(ggié)

Here,

5, @Z%{gg} N @%{QE&}
q q

0. (g*r‘,+2> — X (g’,3>

determined in 3.2.7, whereg$ denotes the dual basis gf, i. e. g?, € sz*{g:} is the vector with thegg-th
coordinate equal to 1 and all other coordinates equal to. z&tareover byé*(gg)o is denoted the zero
degree component 0‘12(@%), i. e. the result of applying to the element

is the dual of the map

q+j+1

5*(9%) e @ szj{gmz }

j>0

97
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the projection to thej(= 0)-th component

q+J+1 q+1}

@ Jj gp+2 gp+2

>0

Instead of directly dualizing the majp it is more convenient from the computational point of view t
dualize the conditions of 3.2.7 using (3.2.12) and deteediirdirectly from these dualized conditions. In
fact using 8.2.5 we can further detalize the diagram (3)drithe following way:

S @ Vpy —s S @ . ®V,

69{

(9.1.3) Vpi3 7 ® A ®Vy 7Rz eV, 2 L 3 @V,

whereAS is the multiplication map correspondlng to a splittimgf the G-relation pair algebra used, as in
8.1, to identifyRyz with &7 @R, and (S, oR9) are the components of the corresponding composite map
Vo2 5 Rz ®V, = 78V, ®RzaV,,

with ¢ as defined in (3.2.10).
Moreover just as the mapis completely determined by its restriction\g, », its duals.. is determined
by the compositég as in

O Hom(Vp.2.€)
Hom(Vp, 2.4,) — Hom(Vy,2, o) ——— Hom(Vp,2, F),

where graded Hom is meant, anis the augmentation af/... In fact we only need this composite mép
as by (9.1.2) above we have

(9.1.4) df>)(@p) = 6o(Gp)-
Now the dual to diagram (9.1.3) is easy to identify; it is

~ 1®d, ~
o, ® Vipey ~——— 5.0/, ® . ®Vp

(9.1.5) Vi3 A.® AV A ®ORz. ®Vp < 5, ® VU,

10RS
18p7 S 5
d, m.e1

M®VP+Z<WM®ZM®V,)

whereV, are the graded dual spaces\f
It is straightforward to reformulate the above in terms eheénts: the values of the mégpon arbitrary

elementa®g e X4 ® \7p must satisfy
©16) 5o() & @d.(a ®g) = d.() | a ®dofar ©9))
h +d.) Gare e @ ®9)+d() ay © et @ar® ),

where we have denoted by
A@) =D aea
the value of the diagondl : < — &, ® <7 and by
Af@) =) ay ®aq

the value of the comultiplication maf; : .o, — . ® R#, ona € 4.
We thus obtain
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(9.1.7) Rorosttion.  The dy) differential of the Adams spectral sequence is given on the cologm
classes represented by the generafpis the minimal resolution by the formula

d2)(8) = do(X1® ),
where
60 : 2, ® Vs — Vsiz
are any maps satisfying the equatiq@sl.6)

We will next describe the actual steps of the computatiohefhaps, and its outcome.
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