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Abstract

I show how to associate a Clifford algebra to a graph. I describe

the structure of these Clifford graph algebras and provide many exam-

ples and pictures. I describe which graphs correspond to isomorphic

Clifford algebras and also discuss other related sets of graphs. This

construction can be used to build models of representations of simply-

laced compact Lie groups.

1 Clifford Algebras

Let A be a unital algebra over C, with n generators e1, e2, . . . , en and relations
e2

i = −1 for any i, and eiej = −ejei, for i 6= j. A is a classical Clifford algebra.
As a vector space A has dimension 2n and is generated by monomials

ei1ei2 . . . eik , where i1 < i2 < . . . < ik. The monomials are in one-to-one
correspondence with the subsets of the set {1, 2, . . . n} or with binary strings
of length n.

Suppose α is a binary string of length n. We associate with this string
the monomial eα = ei1ei2 . . . eik , where 1 ≤ i1 < i2 < . . . < ik ≤ n and i1, i2,
. . ., ik are positons of ones in the string α. We associate 1 with the string of
all zeroes. If β is a binary string too, then eαeβ = ±eγ , where γ = αXORβ,
and XOR is the standard parity (xoring) operation on binary strings.

Let us look at the center of this algebra — the subalgebra of elements that
commute with all elements. Are there central elements not in C1? Every
monomial either commutes or anticommutes with generators ei. From this we
can deduce that the center is spanned by monomials. Suppose a monomial c
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in the center is of length m; that is, c is the product of m different generators.
Then, eic = (−1)mcei if ei is not in the monomial c, and eic = (−1)m−1cei

otherwise. From here, we see that c either contains all the generators or
none. The product of all the generators e1e2 . . . en is in the center iff n is
odd.

We showed that the classical Clifford algebra has a one-dimensional center
for even n and a two-dimensional center for odd n.

2 Clifford Graph Algebras

Let G be a graph with n vertices and no multiple edges and no loops. We
associate with this graph a unital algebra AG over C, with n generators e1,
e2, . . ., en corresponding to the vertices; relations e2

i = −1 for any i; and
relations eiej = −ejei, if there is an edge between the ith and jth vertices,
and eiej = ejei, if there is no edge between the ith and jth vertices.

We call the Clifford algebra associated with a given graph a Clifford graph
algebra.

The classical Clifford algebra in Section 1 is a Clifford graph algebra of
the complete graph with n vertices. If our graph doesn’t have any edges,
then its Clifford graph algebra is commutative.

3 The Center of a Clifford Graph Algebra

As in the case of the classical Clifford algebra, a Clifford graph algebra has
dimension 2n over C, and has a basis of monomials eα, over all binary strings
α of length n, or, correspondingly subsets of the set {1, 2, . . . , n}.

I would like to describe the center of a Clifford graph algebra. Often,
understanding the center of a ring is a first step towards understanding its
structure and the structre of its representations. In case of Clifford graph
algebras the dimension of the center uniquely determines the structure of the
given Clifford algebra as proven in theorem 7.1. I will denote the center of
algebra A by Z(A).

Suppose an element c =
∑

aαeα is in the center, where eα are monomials.
As each monomial either commutes or anticommutes with the basis elements
ei, every monomial eα lies in the center. Hence, to analyze the center it is
enough to analyze central monomials. A monomial eα is central iff for each
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vertex i, the number of edges connecting it to the set of vertices α is even.
Let me describe monomials in the center in terms of the adjacency matrix.

Let me remind you that the adjacency matrix of a graph G is the matrix
(aij)

n
i,j=1 such that aij = 1 if the vertices i and j are connected and aij = 0

if they are not connected. A central monomial eα corresponds to a subset
of vertices α. If we add up rows of the adjacency matrix corresponding to
this subset, the resulting row vector will have only even entries. That is, this
vector is the zero vector modulo 2.

The elements of the center form a subalgebra, and the dimension of the
center is always a power of 2.

4 Examples

Let us consider path graphs and star graphs as examples. Not only providing
examples can help my readers to understand my construction, but I also have
other reasons for providing these particular examples, which I will reveal at
the end of this section.

Let us start with a path graph P on n vertices. Vertices i and j are
connected by an edge iff |i − j| = 1 (see Figure 1).

1 2 3 4 5 6

Figure 1: Path Graph on 6 Vertices.

If n is even, the center of the corresponding Clifford graph algebra AP is
one-dimensional: Z(AP ) ≃ C. If n is odd, then the center also contains the
monomial e1e3 . . . en — the product of odd-numbered generators. In Figure
2 you can see a path graph with 7 vertices. The monomial e1e3e5e7 is in the
center of this Clifford graph algebra.
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1 2 3 4 5 6 7

Figure 2: Path Graph on 7 Vertices.

Let us compare the Clifford algebras of the complete graph and the path
graph with n vertices. If we denote the generators of the Clifford algebra of
the complete graph as ei and the generators of the Clifford algebra of the
path graph as e′i, we can show that the Clifford algebras of these two graphs
are isomorphic by presenting an isomorphism:

e′1 = e1, and e′i = ei−1ei, for i 6= 1,

and the other way:
ei = e′ie

′

i−1 · · · e
′

1.

Let us consider the star graph on n vertices (see Figure 3).

2

3

4

5

6

7

81

Figure 3: Star Graph on 8 Vertices.
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In this case, the vertex number 1 connects to every other vertex, and
there are no other edges. The center is a linear combination of monomials of
even length such that they do not contain e1. The dimension of the center is
2n−2. Let us show that the Clifford algebra of the star graph is isomorphic to
the Clifford algebra of a graph with n vertices and one edge. We denote the
generators of the Clifford algebra of the star graph as ei and the generators
of the Clifford algebra of the graph with n vertices and one edge as e′i, where
we number the vertices adjacent to the edge as 1 and 2, so that e′1e

′

2 = −e′2e
′

1,
and all other pairs of generators commute. We can show that the Clifford
algebras of these two graphs are isomorphic by presenting an isomorphism:

e′1 = e1, e′2 = e1e2 and for i > 2, e′i = e2ei,

and the other way:

e1 = e′1, e2 = e′1e
′

2 and ei = e′ie
′

1e
′

2 for i > 2.

Now it is time to explain why I particularly like these two examples. The
path graph and the star graph with n vertices are quite similar: they have
the same number of edges — n−1, not to mention that for n equal 2 or 3 the
path and the star graphs are isomorphic. On the other hand, the Clifford
algebra of a path graph has the smallest possible center (we will see the
proof later) and the Clifford algebra of a star graph has largest center for a
non-commutative Clifford graph algebra of this size.

5 Clifford Graph Algebra Structure

Every central monomial in a Clifford graph algebra corresponds to a central
idempotent. Suppose eα is a central monomial. Then, e2

α = ±1. Let us
denote by fα a multiple of eα such that f 2

α = 1. If e2
α = 1, then fα = eα and

if e2
α = −1 then fα = ıeα. The element c = (1+fα)/2 is a central idempotent.

Being a central idempotent means that c is in the center and c2 = c, which
is easy to check. Central idempotent c gives rise to a decomposition of our
Clifford graph algebra A as a direct sum of Ac and A(1−c) (see Idempotence
article at wiki [6]).

Let us take an index j that belongs to the set α, that is, ej is one of
the generators that the monomial eα contains. Denote the graph G with the
vertex corresponding to j removed by G−j. The algebra AG−j

is naturally
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embedded into AG. The map x → xc is an isomorphism between this em-
bedding of AG−j

and Ac. Similarly, the map x → x(1− c) is an isomorphism
between the embedding of AG−j

and A(1 − c). Hence, AG is a direct sum of
two copies of AG−j

. We can continue the decomposition until we get a graph
such that its Clifford algebra has a one-dimensional center.

If the dimension of the center of AG is 2k, then AG is a direct sum of 2k

copies of the Clifford graph algebra of a subgraph G′ of G, such that AG′ has
a one-dimensional center.

By the Artin-Wedderburn theorem [5] we can show that a Clifford graph
algebra is isomorphic to a direct sum of matrix algebras. Therefore, any
Clifford graph algebra is a direct sum of 2k copies of an m×m matrix algebra,
for some k. We can deduce from here that m = 2(n−k)/2. In particular, we
see that for graphs with odd number of vertices, the corresponding Clifford
graph algebra has to have a center of dimension more than 1.

In our examples, we saw that the Clifford graph algebra of a complete
graph is isomorphic to a Clifford algebra of a path graph. For n even, both of
these algebras are isomorphic to a matrix algebra over the 2n/2-dimensional
space. For odd n, the Clifford algebra of the complete graph is a direct sum
of two Clifford graph algebras of the complete graph for n − 1. The same
goes for the path graph.

The Clifford algebra corresponding to a star graph is the direct sum of
2n−2 copies of a 2 × 2 matrix algebra.

6 Small Graphs

Previously we covered complete graphs, path graphs and star graphs in our
examples. Now I would like to cover all graphs with small number of vertices
and see how their Clifford graph algebras are different from each other.

Let us denote by Cliffk(n) the number of graphs with n vertices such that
the center of their Clifford graph algebras has dimension 2k.

For n = 1, there is only one graph and its algebra is C⊕C. Cliff2(1) = 1.
For n = 2, there are two graphs — a complete graph whose Clifford

algebra is a 2 × 2 matrix algebra Mat(2) and the dual graph without edges
whose Clifford algebra is C⊕C⊕C⊕C. Thus, Cliff1(2) = 1 and Cliff4(2) = 1.

For n = 3, there are four graphs. The Clifford algebra of a graph with
no edges is commutative, thus it has an 8-dimensional center and is equal to
the direct sum of 8 copies of C. All other graphs (see Figure 4) have a two-

6



dimensional center, hence they are isomorphic to Mat(2) ⊕ Mat(2). Thus,
Cliff2(3) = 3 and Cliff8(3) = 1.

Figure 4: Graphs with 3 vertices and noncommutative Clifford algebras.

For n = 4, there are 11 graphs. Below I describe all the graphs with 4
vertices and present the dimension of the center of the corresponding Clifford
algebra.

1. There is one graph without edges — the dimension is 16.

2. There is one graph with one edge — the dimension is 4.

3. There are two graphs with two edges: the graph with two adjacent
edges — the dimension is 4; the graph with 2 non-adjacent edges —
the dimension is 1.

4. There are 3 graphs with 3 edges: the complete graph with 3 vertices
plus 1 isolated vertex — the dimension is 4; the path graph — the
dimension is 1; the star graph — the dimension is 4.

5. There are two graphs with 4 edges: the cycle graph — the dimension is
4; the kite graph which is the dual graph to the graph with two edges
adjacent to each other — the dimension is 1.

6. There is one graph with 5 edges — the dimension is 4.

7. The only graph with 6 edges is the complete graph — the dimension
is 1.

You can see graphs with 4 vertices and their corresponding dimensions in
Figure 5. As we calculated, Cliff1(4) = 4, Cliff4(4) = 6, and Cliff16(4) = 1.
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16 4 1 4

1 4 4 1

4 4 1

Figure 5: Graphs with four vertices.

7 Clifford Class

Let us say that two graphs with the same number of vertices belong to the
same Clifford class if the centers of their Clifford algebras have the same
dimension.

Theorem 7.1. If two graphs are in the same Clifford class then their Clifford
algebras are isomorphic.

Proof. The structure of a Clifford graph algebra is uniquely defined by the
number of vertices and the dimension of its center.

Let us consider a special graph with 2k + m vertices and k edges which
has m isolated vertices and 2k vertices of degree one. I denote this graph as
G(k, m). This graph is the union of k K2-graphs and m K1-graphs. (Here
I use the standard definition, Kn, for a complete graph with n vertices.) It
is easy to check that the center of the Clifford algebra of this graph has
dimension 2m and the algebra itself is isomorphic to the direct sum of 2m

matrix algebras of size 2k × 2k.

Lemma 7.2. Suppose G is a graph with at least one edge, then there is a
graph G′ such that G′ is a union of K2 and some graph and AG is isomorphic
to AG′.

Proof. Let us number the vertices in graph G in such a way that the vertices
numbered 1 and 2 are connected. Suppose ei are the generators in AG — the
Clifford algebra of the graph G. We will build new generators in the algebra
AG. We will have e′1 = e1 and e′2 = e2. For every i > 2 let us choose a new
generator e′i in the following way:

• If the vertex i is not connected to either vertex 1 or vertex 2, then
e′i = ei
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• If the vertex i is connected to vertex 1 and is not connected to vertex
2, then e′i = ıeie2

• If the vertex i is not connected to vertex 1 and is connected to vertex
2, then e′i = ıeie1

• If the vertex i is connected to both vertices 1 and 2, then e′i = eie2e1

The new generators e′i have the property e′i
2 = −1 and eiej = ±ejei.

Hence, we can build a graph G′ for which the generators e′i generate its
Clifford graph algebra.

The algebra AG′ is isomorphic to AG. The generators e′i commute with
both e′1 and e′2 for i > 2. This means that vertices numbered 1 and 2 in the
graph G′ are isolated from the rest of the graph G′. From here we see that
G′ is the union of K2 and another graph.

Theorem 7.3. Each Clifford class has exactly one representative of type
G(k, m).

Proof. The theorem is trivial for graphs with one or two vertices. If a graph
with n vertices doesn’t have an edge, then the graph is G(0, n). If a graph
G has an edge, then we can build a graph G′ which is a union of K2 and a
graph with n − 2 vertices and such that AG is isomorphic to AG′. We can
use induction on the number of vertices to finish the proof.

Corollary 7.4. A Clifford algebra of a graph is isomorphic to a direct sum
of 2m copies of the matrix algebra over 2k-dimensional space for some k and
m such that n = 2k + m.

Proof. We already proved this fact in Section 5 using the Artin-Wedderburn
theorem. Here we prove it again without using this theorem. From theorem
7.3, all Clifford algebras with one-dimensional center and the same number of
vertices are isomorphic to each other. That means that the Clifford algebra
of the graph G(k, 0), sometimes called the ladder rung graph, is isomorphic
to the Clifford graph algebra of the complete graph K2k, which is the matrix
algebra Mat2k . Hence the Clifford algebra of G(k, m), as well as all other
algebras of the same class, is isomorphic to a direct sum of 2m copies of
Mat2k .
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8 Adjacency Matrices

The adjacency matrix of a graph G is a matrix (aij)
n
i,j=1 such that aij = 1 if

the vertices i and j are connected and aij = 0 if they are not connected. By
definition, the adjacency matrix is symmetric: aij = aji; and by requiring
our graphs not to have loops we restrict the diagonal to have only zeroes:
aii = 0.

In the proof of lemma 7.2 we used a construction where we express old
generators through new generators. We can express our replacement through
a sequence of basic replacements. The basic replacement is the following.
The new generators are e′i = ei for i 6= 2 and e′2 = ae1e2. The coefficient a
is needed to adjust the square of e′2 to be equal to −1. The new adjacency
matrix a′

ij can be calculated from the old adjacency matrix by the following
operation: replace the second row in the adjacency matrix by the sum of the
first row and the second row modulo 2, then do the same operation on the
columns.

In particular, we see that the basic operation doesn’t change the rank or
the determinant of the adjacency matrix if we consider this matrix to be a
matrix over field F2. In particular, the basic operation doesn’t change the
parity of the determinant.

Lemma 8.1. Two graphs belong to the same Clifford class iff their adjacency
matrices considered as matrices over F2 have the same rank.

Proof. I previously produced a construction that changes a graph but doesn’t
change its Clifford class. I just showed that this construction doesn’t change
the rank of the adjacency matrix over F2. I also showed that any graph has
exactly one graph of type G(k, m) in its class. The adjacency matrix of a
Clifford algebra of the graph G(k, m) has rank 2k. Thus, the rank separates
the classes.

Corollary 8.2. If the rank of the adjacency matrix considered over F2 of a
graph is equal to 2k, then the center of the Clifford algebra corresponding to
this graph is 2n−2k, where n is the number of vertices.

9 Odd-Determinant Graphs

Let us call a graph an odd-determinant graph if its Clifford graph algebra
has a one-dimensional center.
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Theorem 9.1. The odd-determinant graphs are the graphs whose adjacency
matrix has an odd determinant.

Proof. By the discussion above, the parity of the determinant of the adja-
cency matrix is invariant under basic construction, and by using the basic
construction we can replace a given graph G with a canonical graph G(k, 0)
such that their Clifford algebras are isomorphic.

Obviously, an odd-determinant graph doesn’t have isolated vertices. Also,
all odd-determinant graphs are in the same Clifford class. No graphs in the
Clifford class of an odd-determinant graph have isolated vertices. And vice
versa, if no graphs in the Clifford class of a graph have isolated vertices then
all the graphs in this class are odd-determinant graphs.

From the classification theorem it follows that an odd-determinant graph
has a complete graph on even number of vertices in its class.

In the next two sections I discuss other sets of graphs that are related to
odd-determinant graphs.

10 Mating Graphs

By definition, a mating graph, sometimes called a point-determining graph
(see [1]), is a graph such that no two vertices have identical sets of neighbors.

Lemma 10.1. Odd-determinant graphs are mating graphs.

Proof. If two vertices i and j of the graph G have the same set of neighbors,
then the product of the corresponding generators eiej is in the center of the
Clifford graph algebra AG. Hence, odd-determinant graphs can’t have two
vertices with the same set of neighbors.

The converse of the lemma is not true. There are mating graphs that
are not odd-determinant graphs. The smallest examples have three vertices.
Graphs with an odd number of vertices can’t be odd-determinant. At the
same time there are 2 mating graphs with 3 vertices: K3, and the union of
K2 and an isolated point (See Figure 6).

It is easy to see that complete graphs are always mating graphs. The
set of neighbors of each vertex is uniquely determined by the vertex itself:
the neighbors of the vertex are the set of all the other vertices. That means
the complete graphs with an odd number of vertices give an infinite set of
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Figure 6: Mating graphs with 3 vertices.

examples of mating and not odd-determinant graphs. Similarly, the union of
a complete graph with an isolated point is a mating graph.

Below I present all mating graphs with 4 vertices. Only one of them is
not an odd-determinant graph — the union of the complete graph K3 and
an isolated vertex.

Figure 7: Mating graphs with 4 vertices.

We see that if we want to estimate the number of odd-determinant graphs
we have a natural bound: the number of such graphs is not more than the
number of mating graphs.

There is a natural set of graphs that is somewhat in between odd-deter-
minant graphs and mating graphs. This is the set of graphs with invertible
adjacency matrices.

11 Invertible Adjacency Matrix Graphs

Lemma 11.1. Odd-determinant graphs have an invertible adjacency matrix.
Graphs that have an invertible adjacency matrix are mating graphs.

Proof. Graphs that have an invertible adjacency matrix have a nonzero de-
terminant. Odd-determinant graphs are a subset of them. On the other

12



hand a non-mating graph has two equal rows in its adjacency matrix, thus
the determinant of its adjacency matrix is zero.

Thus, graphs with an invertible adjacency matrix give us a better bound
on the number of odd-determinant graphs than mating graphs.

The smallest graph with an invertible adjacency matrix that has an even
determinant is K3. Any graph with an invertible adjacency matrix and an
odd number of vertices is not an odd-determinant graph. Let us find an ex-
ample of a graph with an even number of vertices and an invertible adjacency
matrix which is not an odd-determinant graph. We can see that there are
no such graphs with 2 or 4 vertices. Hence, we should try six vertices. There
are 10 such graphs with 6 vertices and you can see them in Figure 8. Not
surprisingly, the union of two copies of K3 is in this set.

Figure 8: Graphs with an invertible adjacency matrix with an even determi-
nant.

To complete our discussion I would like to show mating graphs with a
degenerate adjacency matrix. The smallest such graph has one vertex. The
smallest nontrivial case is a graph with 3 vertices and it is the union of K2

and K1.

12 Unions of Graphs

I already mentioned the unions of graphs, but this whole section is dedicated
to the unions of graphs, so I would like to remind you of the formal definition.

Suppose we are given two graphs G1 and G2 with disjoint sets of vertices
V1 and V2 and the sets of edges X1 and X2. The union graph G has V as its
set of vertices and X as its set of edges, where V is the union of V1 and V2

and X is the union of X1 and X2.
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Let us see how mating graphs behave with respect to unions. Obviously,
if a graph contains at least two isolated vertices, it can’t be a mating graph.
At the same time we can build many mating graphs by taking unions. The
following lemma is easy to prove.

Lemma 12.1. A union of mating graphs is a mating graph if it doesn’t
contain more than one isolated vertex.

This lemma allows us to provide many more examples of mating graphs.
In particular, unions of complete graphs as long as they do not contain more
than one isolated vertex are mating graphs.

The determinants of adjacency matrices behave nicely with respect to
unions. If graph G is the union of G1 and G2, then the determinant of the
adjacency matrix of G is the product of the corresponding determinants for
G1 and G2. From here the next lemma follows:

Lemma 12.2. If G1 and G2 are two graphs with invertible adjacency matri-
ces, then their union G has an invertible adjacency matrix. If the union G
of two graph G1 and G2 has an invertible adjacency matrix, then the graphs
G1 and G2 themselves have invertible adjacency matrices.

The following two lemmas can be trivially proved using the determinant
argument, but I would like to use Clifford graph algebras to prove them. The
reason I am doing this is that I would like to share with you the beauty of
Clifford graph algebras.

Lemma 12.3. If G1 and G2 are two odd-determinant graphs, then the union
graph G is an odd-determinant graph.

Proof. Suppose a monomial m is in the center of the Clifford algebra AG.
Then we can express it as a product of two monomials m1 and m2, where
m1(or m2) contains only the generators corresponding to the first (or second)
graph. It is easy to see that monomials mi must belong to the center of the
Clifford graph algebra AGi

.

The converse is also true:

Lemma 12.4. If G is an odd-determinant graph and is the union of several
connected components, then each component is an odd-determinant graph too.

14



Proof. If a Clifford algebra corresponding to a connected component has
a center, then the corresponding monomial is in the center of the Clifford
algebra of the whole graph.

The previous lemmas allow us to build many mating graphs that are not
odd-determinant graphs. For example, the union of several complete graphs
is a mating and at the same time not an odd-determinant graph if it contains
not more than one isolated vertex and if at least one of the complete graphs
in the union has an odd number of vertices.

13 Sequences

For the reference, I would like to present here the list of sequences related to
this paper. These are the sequences of different types of graphs indexed by
the number of vertices.

The shortest sequence in my list is the sequence of odd-determinant
graphs. Obviously, odd-determinant graphs can have only an even number of
vertices. That means, the sequence I am talking about is the sequence a(n)
of odd-determinant graphs with 2n vertices. As I showed before the sequence
starts as: a(1) = 1, a(2) = 4. I checked that there are 47 odd-determinant
graphs of order 6. (see Figures 9, 10, 11, 12) This means that a(3) = 47.

Figure 9: Odd-determinant graphs with 6 vertices. Part 1.

I submitted this sequence to the Online Encyclopedia of Integer Se-
quences, see [4] and its number in the OEIS is A141040. I will appreciate if
someone can expand it beyond the first three terms.

• Number of odd-determinant graphs with 2n vertices (A141040): 1, 4,
47, . . ..
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Figure 10: Odd-determinant graphs with 6 vertices. Part 2.

Figure 11: Odd-determinant graphs with 6 vertices. Part 3.

Figure 12: Odd-determinant graphs with 6 vertices. Part 4.
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In the list below I show other sequences related to this paper. The n-th
term of each sequence is the number of particular graphs with n vertices.
All sequences start with index 1, that is, the first term is the number of
particular graphs with one vertex. The A number of the sequence references
the sequence in the Online Encyclopedia of Integer Sequences, see [4].

• Number of graphs with n unlabeled vertices (A000088): 1, 2, 4, 11, 34,
156, 1044, 12346, . . ..

• Number of even-determinant graphs with n vertices (A140981): 1, 1,
4, 7, 34, 109, 1044, . . .. This sequence is the difference between the
sequence of all graphs and the sequence of odd-determinant graphs.

• Number of mating graphs with n vertices (A004110): 1, 1, 2, 5, 16,
78, 588, . . .. This sequence is the same as sequence of n-node graphs
without endpoints as proved in [3].

• Number of non-mating graphs with n vertices (A141580): 0, 1, 2, 6,
18, 78, 456, . . .. This sequence is the difference between the sequence
of all graphs and the sequence of mating graphs.

• Number of graphs with n vertices and an invertible adjacency matrix
(A109717): 0, 1, 1, 4, 9, 57, 354, . . ..

• Number of graphs with n vertices and a degenerate adjacency matrix
(A133206): 1, 1, 3, 7, 25, 99, 690, . . .. This sequence is the difference
between the sequence of all graphs and the sequence of graphs with an
invertible adjacency matrix.

• Number of mating graphs with n vertices and a degenerate adjacency
matrix (A133279): 1, 0, 1, 1, 7, 21, 234, . . .. This sequence is the
difference between the sequence of mating graphs and the sequence of
graphs with an invertible adjacency matrix.

• Number of even-determinant graphs with n vertices and an invertible
adjacency matrix (A103869): 0, 0, 1, 0, 9, 10, 354, . . .. This sequence
is the difference between the sequence of even-determinant graphs and
the sequence of graphs with a degenerate adjacency matrix.
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14 Dynkin Diagrams

We can build Clifford graph algebras corresponding to the Dynkin diagrams
of simply-laced Lie algebras. Here is the table of the dimensions of the center
for such algebras. Recall that Lie algebras An are defined for n > 0 and Dn

for n > 3.

Lie Algebra Dimension
A2k−1 2
A2k 1

D2k−1 2
D2k 4
E6 1
E7 2
E8 1

Clifford graph algebras for Dynkin diagrams were used in my masters’
thesis to build models of representations. A model of representations of
a group is a representation that contains every irreducible representation
exactly once. The construction without proofs is presented in [2].

15 Conclusions

I have shown how to construct a Clifford graph algebra, an interesting and
simple algebraic object corresponding to a graph. It is a direct sum of 2m

copies of matrix algebra Mat2k , where 2k +m is the number of vertices. The
structure of the Clifford graph algebra is completely defined by the rank, 2k,
of the graph’s adjacency matrix modulo 2.

Graphs whose Clifford algebras have a one-dimensional center are the
most interesting, because they represent the least degenerate case. I called
these graphs odd-determinant graphs. The odd-determinant graphs always
have an invertible adjacency matrix and, consequently, are always mating
graphs.

The Clifford algebras corresponding to Dynkin diagrams are very useful
in representation theory. Here too, odd-determinant graphs A2k, E6 and E8

produce the least degenerate construction of models of representations.
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