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CONSTRUCTING ELLIPTIC CURVES OVER FINITE FIELDS

WITH PRESCRIBED TORSION

ANDREW V. SUTHERLAND

Abstract. The modular curve X1(N) parametrizes elliptic curves with a
point of order N . For N ≤ 50 we obtain plane models of X1(N) that have

been optimized for fast computation, and provide explicit birational maps to
transform a point on our model of X1(N) to an elliptic curve. Over a finite
field, these allow us to quickly construct elliptic curves containing a point of
order N , and can accelerate the search for an elliptic curve whose order is
divisible by N .

1. Introduction

By Mazur’s theorem [12], the order of a nontrivial torsion point on an elliptic
curve over the rational numbers must belong to the set

T = {2, 3, 4, 5, 6, 7, 8, 9, 10, 12}.
Conversely, for each N ∈ T , an infinite family of elliptic curves over Q containing
a point of order N is exhibited by the parametrizations of Kubert [11].1 Over a
finite field Fq, these parametrizations provide an easy way to generate universal
families of curves whose order is divisible by N . This can accelerate applications
that search for an elliptic curve with a particular property, such as a curves with
smooth order (as in the elliptic curve factorization method [1]), or curves with a
particular endomorphism ring (as when computing Hilbert class polynomials with
the Chinese Remainder Theorem [2]).

To generate an elliptic curve E/Fq with non-trivial 7-torsion, for example, one
applies [11]. Pick r ∈ Fq, then use b = r3 − r2 and c = r2 − r to define

(1) E(b, c) : y2 + (1− c)xy − by = x3 − bx2.

Provided E(b, c) is nonsingular, we obtain an elliptic curve on which the point
P = (0, 0) has order 7. By contrast, obtaining such a curve by trial and error is far
more time consuming: testing for 7-torsion typically involves finding the roots of a
degree 24 polynomial (the 7-division polynomial), and several curves may need to
be tested (approximately six on average) .

Mazur’s theorem limits us to N ∈ T , but we can proceed further if we do not re-
strict ourselves to curves defined over Q. Reichert treats N ∈ {11, 13, 14, 15, 16, 18}
over quadratic extensions of Q using X1(N), the modular curve that parametrizes
elliptic curves with a point of order N [15]. We may be able to realize a curve

defined over K = Q[
√

d] in Fq, but only if d is a quadratic residue in Fq.

2000 Mathematics Subject Classification. Primary 14H52; Secondary 11G20.
1Kubert also addresses the torsion subgroups Z/2Z × Z/2NZ for N = 1, 2, 3, 4. We consider

only the subgroups Z/NZ here.
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Alternatively, we can use a point on X1(N)/Fq to directly construct E(b, c)/Fq

containing a point of order N . This applies in any sufficiently large finite field, for
all N > 3 (see [11] for N ≤ 3). For N ∈ T the curve X1(N) has genus 0 and
we simply obtain the Kubert parametrizations, but in general we construct E(b, c)
from a point (x, y) on X1(N) via a birational map that depends on the defining
equation we choose for X1(N).

For example, to obtain a curve with non-trivial 13-torsion, we use a point on

X1(13) : y2 + (x3 + x2 + 1)y − x2 − x = 0,

which may be obtained by choosing x ∈ Fq at random and attempting to solve the
resulting quadratic equation for y in Fq.

2 We then apply the transformation

r = 1− xy,

s = 1− xy/(y + 1),

set c = s(r− 1) and b = cr, and construct E(b, c). If we obtain a singular curve (or
if y = −1) we try again with a different point on X1(13) (this rarely happens).

To apply this method we require a defining equation for X1(N)/Fq along with
a suitable birational map. For fast computation we seek a plane model f(x, y) = 0
that minimizes the degree d of one of its variables. For N ≤ 18 one can derive these
from the results of Reichert (and Kubert). Reichert’s method can be applied to
N > 18, but the “raw” form of X1(N) initially obtained is quite large and of higher
degree than necessary. More compact defining equations for X1(N) are given by
Yang [21] for N ≤ 22, but these do not minimize d. The minimal value d = d(N)
is a topic of some interest [6, 7, 9, 13, 14], since we can construct (infinitely many)
elliptic curves containing a point of order N over number fields of degree d. For
N > 18, few values of d(N) are known (see sequence A146879 in the OEIS [17]).

Given a plane model for X1(N), we may attempt to reduce its complexity (de-
gree, number of terms, and coefficient size) through a judiciously chosen sequence
of rational transformations. This procedure is somewhat ad hoc, however, and find-
ing an optimal (or even good) sequence becomes difficult for larger N . We treat
this as a combinatorial optimization problem, applying standard search techniques
to obtain a solution that is locally optimal under a relation we define. We cannot
claim that the results are globally optimal, but they do yield an upper bound on
d(n). For N ≤ 22 we are able to match known lower bounds for d(N) [6, 7, 9],
including d(19) = 5, which we believe to be new.3 Results for N ≤ 30 are listed in
the appendix, and are available in electronic form for N ≤ 50.

For odd N we also show how to efficiently generate E/Fq with a point of order
4N , or satisfying #E ≡ 2N mod 4N , using our results for X1(2N).

2. Computing the raw form of X1(N)

Following Reichert [15], we summarize the method to obtain a plane model for
X1(N) in the form F (r, s) = 0.4 The equation E(b, c) in (1) is the Tate normal
form of an elliptic curve (called a Kubert curve in [1]). Any elliptic curve containing

2When X1(N) has genus 1 (N = 11, 14, 15) we may obtain additional points more efficiently
using the group operation on X1(N) (see Section 4).

3But we do not achieve d(24) = 4 implied by [6].
4Reichert uses auxiliary variables m = s(1 − r)/(1 − s) and t = (r − s)/(1 − s). We find it

preferable to work directly with r and s.
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a point of order greater than 3 can be put in this form (see V.5 of [10]). The
discriminant of E(b, c) is

(2) ∆(b, c) = b3(16b2 − 8bc2 − 20bc + b + c(c− 1)3).

To ensure E(b, c) is nonsingular we require ∆(b, c) 6= 0, so assume b 6= 0. Applying
the group law for elliptic curves [16, III.2.3], we double the point P = (0, 0) to
obtain 2P = (b, bc), and for n > 1 compute the point (n + 1)P = (xn+1, yn+1) in
terms of nP = (xn, yn) using

(3) xn+1 = byn/x2
n, yn+1 = b2(x2

n − yn)/x3
n.

We find that the inverse of nP = (xn, yn) is

(4) − nP = (xn, b + (c− 1)xn − yn).

If P is an N -torsion point and m + n = N , then we must have mP = −nP . If
m 6= n this implies xm = xn, and if m = n we have 2yn = b + (c− 1)xn. For b 6= 0
this requires N > 3. When xm = xn either mP = nP or mP = −nP , and in the
latter case P is an N -torsion point. If we choose m =

⌈

N+1
2

⌉

and n =
⌊

N−1
2

⌉

we
ensure that mP 6= nP , obtaining a necessary and sufficient condition for N -torsion:

(5) NP = 0E ⇐⇒ xm = xn,

valid for N > 3. The first three multiples of P are:

P = (0, 0),

2P = (b, bc),

3P = (c, b− c).

We see immediately that P is a point of order 4 exactly when c = 0, and P is a
point of order 5 exactly when b = c. For N > 5 define:

r = b/c, b = rs(r − 1),

s = c2/(b− c), c = s(r − 1),

and note that r /∈ {0, 1}, and s 6= 0.
We now apply (3) to compute xn in terms of r and s. Values for n ≤ 10 are

listed in Table 1. To obtain the raw form of X1(N), we start with the equation
xm = xn from (5), then clear denominators and subtract to obtain an equation of
the form F ∗(r, s) = 0, where the polynomial F ∗(r, s) has integer coefficients. We
then remove from F ∗ any factors prohibited by our assumptions (namely r, r − 1,
and s), and also factors corresponding to M -torsion for any M > 5 dividing N
(such as s− 1 for M = 6 and r − s for M = 7).5

Let F (r, s) denote the polynomial that remains. We claim that F (r, s) = 0 is
a defining equation for X1(N). By construction, any solution to F (r, s) = 0 will
produce a curve E(b, c), with c = s(r−1) and b = rc, on which P is a point of order
N , provided that ∆(b, c) 6= 0. Conversely, any curve E(b, c) on which P has order
N > 5 yields a solution r = b/c, s = c2/(b − c) to F (r, s) = 0. These statements
hold for any field K, provided that we verify ∆(b, c) 6= 0 in K.

5More generally, these can be recognized by computing the raw form of each X1(M). In
practice F (r, s) is simply the largest irreducible factor of F ∗(r, s).
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x1 = 0
x2 = rs(r − 1)
x3 = s(r − 1)
x4 = r(r − 1)
x5 = rs(s− 1)
x6 = s(r − 1)(r − s) / (s− 1)2

x7 = rs(r − 1)(s− 1)(rs− 2r + 1) / (r − s)2

x8 = r(r − 1)(r − s)(r − s2 + s− 1) / (rs− 2r + 1)2

x9 = s(r − 1)(rs − 2r + 1)(rs2 − 3rs + r + s2) / (r − s2 + s− 1)2

x10 = rs(r − s2 + s− 1)(r2 − rs3 + 3rs2 − 4rs + s) / (rs2 − 3rs + r + s2)2

Table 1. x-coordinates of nP for n ≤ 10.

When N = 16, for example, putting x9 = x7 in the form F ∗(r, s) = 0 yields

F ∗(r, s) =s(r − 1)(r − s)2(rs− 2r + 1)(rs2 − 3rs + r + s + s2)

− rs(r − 1)(s− 1)(rs− 2r + 1)(r − s2 + s− 1)2.

The nonzero factors s and r − 1 may be removed, and also the factor rs − 2r + 1,
which can be zero only when P has order 8. Thus we obtain

F (r, s) = (r − s)2(rs2 − 3rs + r + s + s2)− r(s− 1)(r − s2 + s− 1)2.

When expanded, this yields the entry for N = 16 in Table 4. The polynomials
F (r, s) for N up to 50 are available in electronic form from the author. The largest
of these has 1,791 terms and maximum coefficient on the order of 1019.

3. Reducing the complexity of F (r, s) = 0

To facilitate fast computation we wish to simplify the raw from of X1(N). We
seek a birationally equivalent curve f(x, y) = 0 that minimizes the degree of one of
its variables (say y). Subject to this constraint, we would like to make f monic in
y and also to minimize the degree in x, the number of terms, and the size of the
coefficients (roughly in that order of priority). One typically approaches this prob-
lem by attempting to remove singularities from F (r, s) through a combination of
translations and inversions (see [15] for examples). We take a more näıve approach
that allows us to easily automate the process.

There are three basic types of transformations we will use:

(1) Translate: x x + a or y  y + a.
(2) Invert: x 1/x or y  1/y.
(3) Separate: x 1/x, y  y/x or x x/y, y  1/y.

These are clearly all invertible operations. The third type combines an inversion
and a division, but we find it works well as an atomic unit. In order to bound the
number of atomic operations, we let a ∈ {±1}, giving a total of eight.

Consider the directed graph G on the set C of plane curves that can be obtained
from F (r, s) = 0 by applying a finite sequence of the transformations above, with
edges labeled by the corresponding operation. A path in G defines a birational map
(the composition of the operations labeling its edges), and any path can be reversed
to yield the inverse map. Starting from the curve C0 defined by F (r, s) = 0, we
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want to find a path to a “better” curve C. To make this precise, we associate to
each integer polynomial f(x, y) a vector of nonnegative integers

v(f) = (dy , my, dx, dtot, t, S),

whose components are defined by:

• dy is the degree of f in y;
• my is 0 if no term of f is a multiple of xydy and 1 otherwise;
• dtot is the total degree of f ;
• t is the number of terms in f ;
• S is the sum of the absolute values of the coefficients of f .

The component my will be zero exactly when f can be made monic as a polynomial
in y. We order the vectors v(f) lexicographically, and to each C ∈ C assign the vec-
tor v(C) = min{v(f(x, y)), v(f(y, x))}, where f(x, y) = 0 defines C. We compare
curves by comparing their vectors, obtaining a prewellordering of C. In particular,
any subset of C contains a (not necessarily unique) minimal element.

We now give a simple algorithm to search the graph G for a curve that is locally
optimal within a radius R. We use N(C, k) to denote the set of curves connected
to C by a path of length at most k in G. For C′ ∈ N(C, k) we let φ(C′, C) denote
the birational map defined by the path from C′ back to C.

1. Set C ← C0, k = 1, and let ϕ be the identity map.
2. While k ≤ R:

a. Determine a minimal element C′ of N(C, k).
b. If v(C′) < v(C), then set ϕ← ϕ ◦ φ(C′, C), C ← C′, and k ← 0.
c. Set k← k + 1.

3. Output C1 = C and ϕ.

The curve C1 output by the algorithm is our optimized plane model for X1(N). It
is birationally equivalent to the curve C0 defined by F (r, s) = 0, and the map ϕ
carries points on C1 to points on C0.

To enumerate the neighbors of the curve C defined by f(x, y) = 0, the algorithm
applies each of the eight atomic operations. The result of applying the birational
map φ with inverse φ̃ is computed by expanding f(φ̃x(x, y), φ̃y(x, y)) as a formal
substitution of variables and clearing any denominators that result. Thus the trans-
lation x  x− 1 is obtained by expanding f(x + 1, y), and the inversion x  1/x
effectively replaces xi in f(x, y) with xdx−i. To enumerate N(C, k) involves ap-
plying up to 8k possible sequences of operations (this number can be reduced by
eliminating obviously redundant sequences), so the bound R cannot be very large.
We have tested up to R = 10, but find that R = 8 suffices to obtain the results
given here. When R = 8 the algorithm takes less than an hour (on a 2.8 GHz AMD
Athlon processor) for N ≤ 50.

Table 2 illustrates the algorithm’s execution for N = 16. We begin with the
curve C0 defined by F (r, s) = 0, as listed in Table 4, and set C = C0 with f(x, y) =
F (x, y). The algorithm finds v(C) = v(f(y, x)) = (3, 1, 5, 6, 13, 40), indicating that
the f(x, y) has degree 3 in x (in this case v(f(y, x)) is less than v(f(x, y)) so the
roles of x and y are reversed). Additionally, f(x, y) is not monic in x, has degree 5
in y, total degree 6, 13 terms, and the absolute values of its coefficients sum to 40.

No curves within a distance k = 1 are found that improve v(C), but for k = 2 a
curve C′ is found that is monic in x (and also degree 3), which implies v(C′) < v(C).
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steps C : f(x, y) = 0 v(C)

- x3y2 − 4x3y + 2x3 + 3x2y2 + 2x2y − 2x2 − xy5 + 4xy4 (3,1,5,6,13,40)
− 10xy3 + 6xy2 − 3xy + x + y4

5,8 x3 + x2y5 − 3x2y4 + 6x2y3 − 10x2y2 + 4x2y − x2 − 2xy6 (3,0,7,7,13,40)
+ 2xy5 + 3xy4 + 2y7 − 4y6 + y5

1,3,8,6 x3 + x2y4 + 2x2y3 + 4x2y2 − 5x2 − 2xy4 − 8xy3 − 13xy2 (3,0,4,6,13,68)
+ 8x + 2y4 + 8y3 + 10y2 − 4

1 x3 + x2y4 + 2x2y3 + 4x2y2 − 2x2 − 4xy3 − 5xy2 + x (3,0,4,6,11,24)
+ y4 + 2y3 + y2

1 x3 + x2y4 + 2x2y3 + 4x2y2 + x2 + 2xy4 + 3xy2 + 2y4 (3,0,4,6,8,16)
5,6 2x3 + 3x2y2 + 2x2 + xy4 + 4xy2 + 2xy + x + y4 (3,0,4,5,8)
2,4,5,6,8 −x3 + x2y3 − 4x2y2 + 4x2y + 2x2 + 3xy2 − 6xy − x + 2y (3,0,3,5,9,24)
3 −x3 + x2y3 − x2y2 − x2y + 3x2 + 3xy2 − 4x + 2y + 2 (3,3,0,5,9,18)
4,5,1,7 −x2y2 − 2x2y − x2 + xy3 + 2xy2 + y3 + 3y2 + 2y (2,1,3,4,8,13)
4 −x2y2 + xy3 − xy2 − xy + x + y3 − y (2,1,3,4,7,7)
8 −x2 + xy3 − xy2 − xy + x− y3 + y (2,0,3,4,7,7)
1 −x2 + xy3 − xy2 − xy − x− y2 (2,0,3,4,6,6)

Table 2. Optimization of X1(16).

1 : x x− 1, 2 : x x + 1, 3 : y  y − 1, 4 : y  y + 1

5 : x 1/x, 6 : y  1/y, 7 : x 1/x, y  y/x, 8 : x x/y, y  1/y.

C′ is a minimal curve in N(C, 2), so C is replaced by C′ and the map ϕ becomes

x y/x, y  1/y.

This reverses the sequence of steps 5,8 (as identified in the key to Table 2) used
to reach C′ from C0 (so ϕ maps points on C′ back to points on C0). The next
improvement occurs when k = 4. In this case reversing the path 1,3,8,6 from C to
C′ yields the sequence 6,8,4,2, and ϕ becomes

x (y + 1)/(xy + 1), y  1/(y + 1).

The algorithm continues in this fashion, finding the sequence of curves listed in
Table 2, until it is unable to find a better curve within the maximum search radius
R. The resulting curve has minimal degree in x rather than y, so we swap variables
(and adjust signs) to obtain the optimized curve

(6) X1(16) : y2 + (x3 + x2 − x + 1)y + x2 = 0,

which appears in Table 6. Corresponding changes to ϕ yield the birational map

(7) r = 1 + (y + 1)/(xy + y2), s = 1 + (y + 1)/(xy − y2),

listed in Table 7, which carries points on the curve in (6) to points on C0.
Table 5 shows the improvement in the minimal degree d(Ci) and the number

of terms t(Ci) obtained when the initial curve C0 is transformed to the locally
optimal curve C1 output by the algorithm. For comparison, we also list the genus
of X1(N), obtained from sequence A029937 in the OEIS [17] (see Theorem 1.1 of
[8] for a general formula).
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The search procedure described above can be applied to any plane curve defined
over Q, but its effectiveness depends largely on finding singularities with small
integer coordinates. Empirically, this works well with X1(N), but other applica-
tions may wish to modify the list of atomic operations to incorporate more general
translations. Alternative search strategies, such as simulated annealing, may also
be worth investigating.

4. Application to finite fields

We can use the optimized form of X1(N) to efficiently generate elliptic curves
containing a point of order N over the finite field Fq, as described in the introduc-
tion. Here we briefly address a few topics relevant to practical implementation. We
assume that C1 is defined by f(x, y) = 0, with dy ≤ dx, and consider how we may
use f(x, y) to efficiently generate a set of m elliptic curves over Fq, each containing
a point of order N .

Except for a small set of points (those leading to singular curves and those for
which ϕ is undefined), there is a one-to-one correspondence between points on C1

and nonsingular curves in Tate normal form on which the point P = (0, 0) has order
N (see Section 2). For large q, each possible j-invariant in Fq (and each twist) is
represented by an approximately equal number of curves in Tate normal form. It
follows that we can obtain a (nearly) uniform distribution over isomorphism classes
of elliptic curves defined over Fq containing a point of order N , provided that we
have a uniformly distributed sample of points on f(x, y) = 0.

When d > 2 it is not a trivial task to efficiently generate a sample with uniform
distribution. It is impractical to test random solutions to f(x, y) = 0, so instead
we pick xi ∈ Fq at random and compute the roots yij (if any) of the degree d
polynomial hi(y) = f(xi, y) over Fq. For each root yij of hi we include the point
(xi, yij) in our set of m points. Assuming m ≫ d this gives us an approximately
uniform distribution (if we used only one root of hi this would not be true), but the
points obtained are not all independent. In practice this does not pose a problem.
At most d points share a common x value, and after mapping the points back to
F (r, s) = 0 and constructing E(b, c) it is very difficult to discern any relationship
among the curves.6 With this approach we expect to compute the roots of m
polynomials hi(y), on average, in order to obtain m points on f(x, y) = 0.

When X1(N) has genus 1, the curve f(x, y) = 0 is an elliptic curve, and we may
use a more efficient approach: select one point at random, then compute multiples
of it via the group operation. We can generate m random multiples using O(log q+
m log q/ log log q) group operations via standard multi-exponentiation techniques
[22], or we can compute multiples in an arithmetic sequence using just m+O(log q)
group operations. The latter approach does not generate independent points, but
it is highly efficient: only O(1) operations in Fp are required per point (assuming
m ≫ log q). During this computation it is convenient to work with a model for
X1(N) in short Weierstrass form. These are provided in Table 3, along with the
corresponding maps back to F (r, s) = 0.

Having generated a set of m points on f(x, y) = 0, we apply the appropriate
birational map to obtain points on F (r, s) = 0. When doing so, we invert the

6Alternatively, we could obtain a uniform independent distribution using as most one root of
each hi, provided we discard it with a certain probability depending on the number of roots hi

has. We do not regard this as a practical solution.
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N X1(N)

11 y2 = x3 − 432x + 8208
r = (y + 108)/216
s = 1 + (y − 108)/(6x + 72)

14 y2 = x3 − 675x + 13662
r = 1 + (108x− 36y + 3564)/(3x2 − xy − 342x + 75y + 999)
s = (6x− 234)/(9x− y − 135)

15 y2 = x3 − 27x + 8694
t = (6x− 90)(18x + 6y − 918)
r = 1− t/(x2y − 189x2 + 42xy − 4050x− 3y2 + 441y − 1701)
s = 1− t/(x2y − 81x2 + 6xy − 3402x− 3y2 + 981y − 35721)

Table 3. Short Weierstrass form of X1(N) with genus 1.

denominators in parallel, via the usual Montgomery trick [3, Alg. 11.15]. We then
compute (b, c) pairs (using c = s(r− 1) and b = rc). In a field of characteristic not
2 or 3, we may convert the curve E(b, c) to the short Weierstrass form:

(8) y2 = x3 + Ax + B.

Let d = c− 1 and e = d2 − 4b. Through the admissible change of variables

(9) x = 36x′ − 3e, y = 216y′ + 108(dx′ + b),

we find that

A = 27(24bd− e2), B = 54(e3 − 36bde + 216b2),

and (3d,−108b) is a point of order N on y2 = x3 + Ax + B.7

At some point during the process described above, we need to check that the
discriminant ∆ of each curve obtained is nonzero. This is most efficiently done at
the end using ∆ = −4A3 − 27B2. This may result in fewer than m curves being
generated, but we can always obtain more points on X1(N) if necessary.

5. Prescribing 4-torsion

For odd N , we can use X1(2N) to generate elliptic curves which contain a point
of order 4N over Fq in a manner that may be more efficient than using X1(4N).
Alternatively, we can generate curves which contain a point of order 2N but do
not contain a point of order 4N . These results rely on efficiently computing the
4-torsion of an elliptic curve using a known a point of order 2, which we obtain
from the point P = (0, 0) of order 2N . For odd N , a curve with a point of order N
has a point of order 4N if and only if it has a point of order 4.

In fact, we only need the x-coordinate of NP , which can be computed as de-
scribed in Section 2 (see Table 1 for N ≤ 10). It will be convenient to work
with the short Weierstrass form (8), so we assume that the point NP has been
translated via (9) to the 2-torsion point β = (x0, 0) on the curve E defined by
y2 = f(x) = x3 + Ax + B.

7For N ∈ T , parametrizations which additionally provide a point with infinite order over Q

are considered by Atkin and Morain in [1].
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Our strategy is to use the value x0 to determine whether E contains a point
of order 4 or not. In the best case this requires only a single test for quadratic
residuacity in Fq, and even in the worst case, a square root and two tests for
quadratic residuacity suffice. If the result is not as desired, we discard E and test
another curve with a point of order 2N . On average we expect to test two curves.
This is typically faster than either finding a point on X1(4N), or using X1(N) and
computing 4-torsion without a known point of order 2.

Lemma 1. If α = (u, v) and β = (x0, 0) are points on a nonsingular elliptic curve

E defined by y2 = f(x) = x3 + Ax + B over a field of characteristic not 2 then

2α = β ⇐⇒ (u− x0)
2 = f ′(x0),

where f ′(x) = 3x2 + A.

Proof. If 2α = β then the duplication formula for elliptic curves [16, p. 59] implies

x0 =
u4 − 2Au2 − 8Bu + A2

4(u3 + Au + B)
.

Therefore u must satisfy

u4 − 4x0u
3 − 2Au2 − (4Ax0 + 8B)u− 4Bx0 + A2 = 0.

Since β = (x0, 0) ∈ E, we have x3
0 + Ax0 + B = 0. Substituting for B yields

u4 − 4x0u
3 − 2Au2 + (8x3

0 + 4Ax0)u + 4x4
0 + 4Ax2

0 + A2.

We now set u = z + x0 and rewrite this as

(z2 − (3x2
0 + A))2 = 0.

Therefore

(u− x0)
2 = 3x2

0 + A = f ′(x0),

as desired. Reversing the argument yields the converse, provided f(u) 6= 0. But
if u is a root of f , then one can show that (u − x0)

2 = f ′(x0) implies D(f) = 0,
contradicting the fact that E is nonsingular. �

There may be 1 or 3 points of order 2 on E. The x-coordinates of the other two
(if they exist) are the roots x1 and x2 of f(x)/(x − x0), which we can determine
with the quadratic formula. We now give our main result for treating 4-torsion.

Proposition 1. Let (x0, 0) be a point of order 2 on a nonsingular elliptic curve E
defined by y2 = f(x) = x3 + Ax + B over the field Fq, with quadratic character χ.

Let n be the number of roots of f(x) in Fq, and for n = 3, let x1 and x2 denote the

other two roots.

For q ≡ 3 mod 4:

(1) If χ(f ′(x0)) = 1 then E has a point of order 4.

(2) Otherwise, E has a point of order 4 if and only if n = 3 and χ(f ′(x1)) = 1.

For q ≡ 1 mod 4:

(1) If n = 1 then E has a point of order 4 if and only if χ(f ′(x0)) = 1.
(2) Otherwise, if χ(f ′(x0)) = 1 (resp., χ(f ′(x0)) = −1) then E has a point of

order 4 if and only if χ(x0 − x1) = 1 (resp., χ(x1 − x2) = 1).
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Proof. Note that f(xi) = 0 implies f ′(xi) 6= 0, since E is nonsingular, hence

χ(f ′(xi)) = ±1. Let Ẽ denote the quadratic twist of E over Fq. By Lemma 1,
each root xi of f(x) for which χ(f ′(xi)) = 1 yields 4 points of order 4 (two pairs

of inverses), either all on E, all on Ẽ, or split 2-2 between them. Recall that

#E = q + 1− t and #Ẽ = q + 1 + t, where t is the trace of Frobenius, so 4|#E if

and only if 4|#Ẽ, and for q ≡ 3 mod 4, 8|#E if and only if 8|#Ẽ.
We first consider q ≡ 3 mod 4.
Suppose χ(f ′(x0)) = 1. If n = 1 then E and Ẽ each have 2 points of order 4. If

n = 3 then at least one of E and Ẽ has order 8, but if one does, then so must the
other, and again E has a point of order 4.

Suppose χ(f ′(x0)) = −1. If n = 1 then E cannot have a point of order 4, so
assume n = 3. By Lemma 2, for q ≡ 3 mod 4 we have χ(f ′(x1)) = χ(f ′(x2)), and
if their common value is -1 then E cannot have a point of order 4. If it is 1 then at
least one of #E or #Ẽ is divisible by 8, but then they both are and both contain
a point of order 4.

We now consider q ≡ 1 mod 4.
If n = 1 then E can have a point of order 4 if and only if χ(f ′(x0)) = 1, as above.

Now assume n = 3. It follows from Theorem 4.2 of [10] that E has a point of order
4 if and only if at least two of x0 − x1, x1 − x2, and x2 − x0 are squares in Fq.
We have f ′(x0) = (x0 − x1)(x0 − x2), so if χ(f ′(x0)) = 1 then it suffices to check
χ(x0 − x1), and if χ(f ′(x0)) = −1 then it suffices to check χ(x1 − x2).

�

Lemma 2. Let f(x) be a monic cubic polynomial with distinct roots x0,x1,x2 in

Fq, with q odd. We have

χ(−1)χ(f ′(x0))χ(f ′(x2))χ(f ′(x2)) = 1.

In particular, the number of squares in the set {f ′(x0), f
′(x1), f

′(x2)} is even when

q ≡ 1 mod 4 and odd when q ≡ 3 mod 4.

Proof. Recall that for a monic f of degree n = 3, the discriminant of f is given by

D(f) = (−1)n(n−1)/2R(f, f ′) = −R(f, f ′),

where R(f, f ′) is the resultant. Since f is monic, we have R(f, f ′)
∏

f ′(xi), thus

D(f) = −f ′(x0)f
′(x1)f

′(x2).

The roots of f are distinct, so D(f) 6= 0. By the Stickelberger-Swan Theorem
(Corollary 1 in [19]), D(f) must be a square in Fq, since f is degree 3 and has 3
irreducible factors. The lemma then follows, since χ(D(f)) = 1. �

As a final remark, we note that when (1) fails to hold in Proposition 1, it is quite
likely that E has trivial 4-torsion. On average, this probability is about 90% (this
can be computed precisely, see [4, 5]). As a practical optimization, when seeking a
point of order 4N , if condition (1) fails we may simply discard the curve and test
another. When q ≡ 3 mod 4 this reduces to a test for quadratic residuacity in Fq,
and we expect two tests of curves generated with X1(2N) will suffice to produce a
curve with a point of order 4N .
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number fields, Astérisque (1995), no. 228, 81–100.
10. Anthony W. Knapp, Elliptic curves, Princeton University Press, 1992.
11. Daniel Sion Kubert, Universal bounds on the torsion of elliptic curves, Proceedings of the

London Mathematical Society 33 (1976), 193–237.
12. Barry Mazur, Rational points on modular curves, Modular forms of one variable V, Lecture

Notes in Mathematics, vol. 601, Springer-Verlag, 1977, pp. 107–148.
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6. Appendix

For reasons of space, most of the tables that follow give data only for N ≤ 30
(in one case we also omit the full entry for N = 29). Full results are available in
electronic form for N ≤ 50 from

http://math.mit.edu/∼drew.

Massachusetts Institute of Technology

E-mail address: drew@math.mit.edu

http://arxiv.org/abs/math/0607611v1
www.research.att.com/~njas/sequences/
http://math.mit.edu/~drew
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N F (r, s)

8 rs− 2r + 1
9 r − s2 + s− 1
10 rs2 − 3rs + r + s2

11 r2 − rs3 + 3rs2 − 4rs + s
12 r2s− 3r2 + rs + 3r − s2 − 1
13 r3 − r2s4 + 5r2s3 − 9r2s2 + 4r2s− 2r2 − rs3 + 6rs2 − 3rs + r − s3

14 r2s3 − 5r2s2 + 6r2s− r2 + rs4 − 3rs3 + 6rs2 − 7rs + r + s
15 r3 − r2s5 + 7r2s4 − 18r2s3 + 19r2s2 − 10r2s− rs5 + 4rs4 − 5rs2 + 5rs− s5

+ s4 − s3 + s2 − s
16 r3s2 − 4r3s + 2r3 + 3r2s2 + 2r2s− 2r2 − rs5 + 4rs4 − 10rs3 + 6rs2 − 3rs

+ r + s4

17 r5 − r4s6 + 9r4s5 − 31r4s4 + 50r4s3 − 39r4s2 + 10r4s− 3r4 − r3s6 + 3r3s5

+ 12r3s4 − 46r3s3 + 54r3s2 − 15r3s + 3r3 − r2s6 − 3r2s5 + 9r2s4 + r2s3

− 21r2s2 + 6r2s− r2 + rs7 − 3rs6 + 6rs5 − 10rs4 + 11rs3 − s3

18 r4s3 − 6r4s2 + 9r4s− r4 + r3s5 − 7r3s4 + 20r3s3 − 19r3s2 − 8r3s + r3 + r2s4

− 11r2s3 + 28r2s2 + rs4 − 5rs3 − 8rs2 + s4 + s3 + s2

19 r6 − r5s7 + 11r5s6 − 48r5s5 + 105r5s4 − 121r5s3 + 69r5s2 − 20r5s− r5

− 2r4s7 + 12r4s6 − 9r4s5 − 60r4s4 + 144r4s3 − 105r4s2 + 35r4s− 3r3s7

+ 3r3s6 + 21r3s5 − 30r3s4 − 41r3s3 + 51r3s2 − 21r3s + r2s9 − 6r2s8 + 21r2s7

− 50r2s6 + 66r2s5 − 31r2s4 + 25r2s3 − 18r2s2 + 7r2s + 3rs6 − 15rs5 + 10rs4

− 6rs3 + 3rs2 − rs + s6

20 r5s2 − 5r5s + 5r5 + 5r4s2 − 10r4 − r3s7 + 9r3s6 − 35r3s5 + 70r3s4 − 85r3s3

+ 51r3s2 − 9r3s + 10r3 + 10r2s5 − 35r2s4 + 60r2s3 − 50r2s2 + 10r2s− 5r2

− rs7 + 3rs6 − 6rs5 + 10rs4 − 15rs3 + 16rs2 − 3rs + r − s2

21 r6 − r5s8 + 13r5s7 − 69r5s6 + 192r5s5 − 300r5s4 + 261r5s3 − 119r5s2

+ 21r5s− 4r5 − r4s9 + 10r4s8 − 45r4s7 + 141r4s6 − 345r4s5 + 576r4s4

− 551r4s3 + 273r4s2 − 49r4s + 6r4 − r3s10 + 10r3s9 − 51r3s8 + 159r3s7

− 316r3s6 + 450r3s5 − 551r3s4 + 489r3s3 − 247r3s2 + 42r3s− 4r3 + 3r2s8

− 31r2s7 + 109r2s6 − 172r2s5 + 203r2s4 − 181r2s3 + 97r2s2 − 14r2s + r2

+ 2rs8 − 11rs7 + 8rs6 + 2rs5 − 13rs4 + 19rs3 − 14rs2 + rs + s8 − s7 + s6 − s5

+ s4 − s3 + s2

22 r6s5 − 9r6s4 + 28r6s3 − 35r6s2 + 15r6s− r6 + r5s8 − 12r5s7 + 59r5s6

− 148r5s5 + 205r5s4 − 186r5s3 + 133r5s2 − 49r5s + 3r5 + r4s8 − 6r4s7

− 8r4s6 + 118r4s5 − 260r4s4 + 249r4s3 − 164r4s2 + 58r4s− 3r4 + r3s8

− 30r3s6 + 34r3s5 + 70r3s4 − 106r3s3 + 80r3s2 − 30r3s + r3 + r2s8

+ 6r2s7 − 7r2s6 − 25r2s5 + 5r2s4 + 14r2s3 − 16r2s2 + 7r2s− rs9 + 3rs8

− 8rs7 + 21rs6 − 15rs5 + 10rs4 − 6rs3 + 3rs2 − rs− s7

23 r9 − r8s9 + 15r8s8 − 94r8s7 + 319r8s6 − 636r8s5 + 756r8s4 − 520r8s3

+ 189r8s2 − 35r8s− 2r8 − 4r7s9 + 39r7s8 − 120r7s7 + 28r7s6 + 597r7s5

− 1341r7s4 + 1256r7s3 − 525r7s2 + 105r7s + r7 − 10r6s9 + 45r6s8 + 24r6s7

− 357r6s6 + 324r6s5 + 570r6s4 − 1130r6s3 + 576r6s2 − 126r6s + r5s13 − 14r5s12

+ 93r5s11 − 370r5s10 + 970r5s9 − 1827r5s8 + 2553r5s7 − 2296r5s6 + 1095r5s5

− 480r5s4 + 686r5s3 − 369r5s2 + 84r5s + r4s12 − 21r4s11 + 165r4s10 − 650r4s9

+ 1530r4s8 − 2562r4s7 + 2957r4s6 − 2046r4s5 + 780r4s4 − 415r4s3 + 171r4s2

− 36r4s + r3s12 − 15r3s11 + 66r3s10 − 84r3s9 − 45r3s8 + 402r3s7

− 833r3s6 + 837r3s5 − 351r3s4 + 145r3s3 − 48r3s2 + 9r3s + r2s12 − 9r2s11

+ 13r2s10 − r2s9 − 24r2s8 + 28r2s7 + 42r2s6 − 126r2s5 + 56r2s4 − 21r2s3

+ 6r2s2 − r2s + rs12 − 3rs11 + 6rs10 − 10rs9 + 15rs8 − 21rs7 + 21rs6 − s6

Table 4. Raw form of X1(N) : F (r, s) = 0.
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N g d(C0) d(C1) t(C0) t(C1) kmax ℓ(C0, C1)

10 0 4 0 1 1 2 10
11 1 2 2 5 4 2 4
12 0 2 0 6 1 2 13
13 2 3 2 11 6 2 13
14 1 2 2 10 4 2 11
15 1 3 2 15 5 3 18
16 2 3 2 13 6 5 23
17 5 5 4 28 12 5 23
18 2 4 2 19 6 5 24
19 7 6 5 39 18 4 23
20 3 5 3 28 6 4 23
21 5 6 4 55 11 4 18
22 6 6 4 50 17 7 40
23 12 9 7 87 38 7 25
24 5 6 5 41 20 6 25
25 12 10 8 114 46 6 20
26 10 8 7 82 27 5 32
27 13 11 8 135 52 4 19
28 10 10 7 115 30 2 16
29 22 14 11 214 88 8 32
30 9 10 8 109 46 7 23
31 26 16 13 279 124 6 23
32 17 13 10 190 78 7 19
33 21 16 12 319 109 6 29
34 21 14 11 235 88 7 22
35 25 19 15 438 142 4 19
36 17 14 11 224 94 7 23
37 40 23 18 582 225 4 19
38 28 18 14 383 140 6 27
39 33 22 17 586 212 4 20
40 25 19 15 412 171 5 22
41 51 28 22 870 336 8 49
42 25 20 15 442 165 8 27
43 57 31 24 1065 408 6 23
44 36 24 19 654 208 3 21
45 41 29 23 960 368 4 19
46 45 26 21 791 285 6 23
47 70 37 29 1526 1768 6 33
48 37 26 19 773 257 7 23
49 69 39 31 1791 900 6 37
50 48 30 23 1040 391 8 42

Table 5. Search algorithm statistics for X1(N).

C0 and C1 are (respectively) the raw and optimized forms of X1(N). The column d(Ci)
denotes the minimum of the degree of Ci in x or y, and t(Ci) denotes the number of terms.
The column ℓ(C0, C1) gives the length of the path traveled by the algorithm of Section 3
to reach C1 from C0 (typically not a shortest path), and kmax is the maximum value of k

prior to reaching C1.
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N f(x, y)

11 y2 + (x2 + 1)y + x
13 y2 + (x3 + x2 + 1)y − x2 − x
14 y2 + (x2 + x)y + x
15 y2 + (x2 + x + 1)y + x2

16 y2 + (x3 + x2 − x + 1)y + x2

17 y4 + (x3 + x2 − x + 2)y3 + (x3 − 3x + 1)y2 − (x4 + 2x)y + x3 + x2

18 y2 + (x3 − 2x2 + 3x + 1)y + 2x
19 y5 − (x2 + 2)y4 − (2x3 + 2x2 + 2x− 1)y3 + (x5 + 3x4 + 7x3 + 6x2 + 2x)y2

−(x5 + 2x4 + 4x3 + 3x2)y + x3 + x2

20 y3 + (x2 + 3)y2 + (x3 + 4)y + 2
21 y4 + (3x2 + 1)y3 + (x5 + x4 + 2x2 + 2x)y2 + (2x4 + x3 + x)y + x3

22 y4 + (x3 + 2x2 + x + 2)y3 + (x5 + x4 + 2x3 + 2x2 + 1)y2

+(x5 − x4 − 2x3 − x2 − x)y − x4 − x3

23 y7 + (x5 − x4 + x3 + 4x2 + 3)y6 + (x7 + 3x5 + x4 + 5x3 + 7x2 − 4x + 3)y5

+(2x7 + 3x5 − x4 − 2x3 − x2 − 8x + 1)y4

+(x7 − 4x6 − 5x5 − 6x4 − 6x3 − 2x2 − 3x)y3

−(3x6 − 5x4 − 3x3 − 3x2 − 2x)y2 + (3x5 + 4x4 + x)y − x2(x + 1)2

24 y5 + (x4 + 4x3 + 3x2 − x− 2)y4 − (2x4 + 8x3 + 7x2 − 1)y3

−(2x5 + 4x4 − 3x3 − 5x2 − x)y2 + (2x5 + 5x4 + 2x3)y + x6 + x5

25 y8 + (4x2 + 7x− 4)y7 − (x5 − x4 − 14x3 − 4x2 + 24x− 6)y6

−(x7 + 4x6 − 3x5 − 18x4 + 15x3 + 33x2 − 30x + 4)y5

−(x8 + 2x7 − 8x6 − 14x5 + 24x4 + 17x3 − 41x2 + 16x− 1)y4

+(x8 + 6x7 + 3x6 − 20x5 − 3x4 + 28x3 − 19x2 + 3x)y3

−(3x7 + 9x6 − 3x5 − 13x4 + 11x3 − 3x2)y2 + (3x6 + 4x5 − 4x4 + x3)y − x5

26 y6 + (3x2 + 4x− 2)y5 + (3x4 + 10x3 − 9x + 1)y4

+(x6 + 7x5 + 8x4 − 14x3 − 11x2 + 6x)y3

+(x7 + 4x6 − x5 − 13x4 + 2x3 + 10x2 − x)y2

−(x6 − 7x4 − 4x3 + 2x2)y − x4 − x3

27 y8 + (3x2 + 6x− 3)y7 − (3x5 − 18x3 − 9x2 + 18x− 3)y6

−(x8 + 8x7 + 13x6 − 21x5 − 48x4 + 20x3 + 42x2 − 18x + 1)y5

−(x10 + 6x9 + 12x8 − 14x7 − 72x6 − 27x5 + 93x4 + 33x3 − 45x2 + 6x)y4

+(x10 + 11x9 + 40x8 + 36x7 − 69x6 − 105x5 + 33x4 + 54x3 − 15x2)y3

−(4x9 + 30x8 + 63x7 + 10x6 − 69x5 − 24x4 + 19x3)y2

+(6x8 + 27x7 + 27x6 − 6x5 − 12x4)y − 3x7 − 6x6 − 3x5

28 y7 + 3xy6 + (x5 + 3x4 + 5x3 + 9x2 + 2x)y5 − (2x5 − 6x3 + 2x2 + 2x)y4

+(3x6 + 16x5 + 18x4 − 2x2)y3 + (x7 − 2x6 − 20x5 − 28x4 − 12x3 − 2x2)y2

−(2x7 + 3x6 − 5x5 − 10x4 − 5x3 − x2)y + x7 + 2x6 + x5

29 y11 + (2x3 + 5x2 + 5x− 3)y10 + (x6 + 8x5 + 18x4 + 11x3 − 5x2 − 12x + · · ·
30 y8 − (2x3 + 4x2 + x + 5)y7 + (x6 + 4x5 + 6x4 + 9x3 + 14x2 + 10)y6

−(x7 + 4x6 + 9x5 + 10x4 + 4x3 + 15x2 − 10x + 10)y5

+(x8 + 4x7 + 4x6 − 5x4 − 20x3 + 5x2 − 20x + 5)y4

+(3x7 + 11x6 + 15x5 + 9x4 + 18x3 − 9x2 + 14x− 1)y3

+(3x6 + 9x5 + 14x4 + 2x3 + 13x2 − 3x)y2 + (x5 + x4 + 4x3 − 3x2)y − x3

Table 6. Optimized form of X1(N) : f(x, y) = 0.

The polynomial for N = 29 is not displayed in full. Full polynomials for N ≤ 50 are available at

http://math.mit.edu/∼drew.

http://math.mit.edu/~drew
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N ϕ

6 r = x, s = 1
7 r = x, s = x
8 r = 1/(2− x), s = x
9 r = x2 − x + 1, s = x

10 r = −x2/(x2 − 3x + 1), s = x
11 r = 1 + xy, s = 1− x
12 r = (2x2 − 2x + 1)/x, s = (3x2 − 3x + 1)/x2

13 r = 1− xy, s = 1− xy/(y + 1)
14 r = 1− (x + y)/((y + 1)(x + y + 1)), s = (1− x)/(y + 1)
15 r = 1 + (xy + y2)/(x3 + x2y + x2), s = 1 + y/(x2 + x)
16 r = (x2 − xy + y2 + y)/(x2 + x− y − 1), s = (x− y)/(x + 1)
17 r = (x2 + x− y)/(x2 + xy + x− y2 − y), s = (x + 1)/(x + y + 1)
18 r = (x2 − xy − 3x + 1)/((x− 1)2(xy + 1)),

s = x2 − 2x− y)/(x2 − xy − 3x− y2 − 2y)
19 r = 1 + x(x + y)(y − 1)/((x + 1)(x2 − xy + 2x− y2 + y)),

s = 1 + x(y − 1)/((x + 1)(x− y + 1))
20 r = 1 + (x3 + xy + x)/((x − 1)2(x2 − x + y + 1)),

s = 1 + (x2 + y + 1)/((x− 1)(x2 − x + y + 2))
21 r = 1 + (y2 + y)(xy + y + 1)/((xy + 1)(xy − y2 + 1)),

s = 1 + (y2 + y)/(xy + 1)
22 r = (x2y + x2 + xy + y)/(x3 + 2x2 + y), s = (xy + y)/(x2 + y)
23 r = (x2 + x + y + 1)/(x2 − xy), s = (x + y + 1)/x
24 r = (x2 + x− y + 1)/(x2 + xy − y2 + y), s = (x + 1)/(x + y)
25 r = (x2 + xy + y2 − y)/(x2 + x + y − 1), s = (x + y)/(x + 1)
26 r = (x3y + 3x2y − x2 + xy2)/((x + 1)(x2y + x2 + 3xy + y2)),

s = (xy − x)/(xy + y)
27 r = (−x3 − x2 − x− y)/(x2y + xy − x− y), s = (−x2 − x− y)/(xy − x− y)
28 r = 1 + (xy + y)/((y − 1)(xy − x + 2y − 1)),

s = 1− (xy + y)/((y − 1)(x− y + 1))
29 r = (−x3 − x2 − x− y)/(x2y + xy − x− y)

s = 1− (x2 + xy)/(xy − x− y)
30 r = (x2y + x + y)/(x2y − xy + x),

s = (x2y + xy + x + y)/(x2y + x)

Table 7. Birational maps for X1(N) from f(x, y) = 0 to F (r, s) = 0.
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