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A NOTE ON THE RELATION BETWEEN

FIXED POINT AND ORBIT COUNT SEQUENCES

MICHAEL BAAKE AND NATASCHA NEUMÄRKER

Abstract. The relation between fixed point and orbit count sequences is investigated from
the point of view of linear mappings on the space of arithmetic functions. Spectral and
asymptotic properties are derived and several quantities are explicitly given in terms of
Gaussian binomial coefficients.

1. Introduction and general setting

Each map of an arbitrary set into itself gives rise to sequences a = (an)n∈N and c = (cn)n∈N

that count the number of periodic points with period n and the orbits of length n, respectively.
In many interesting cases, an and cn are finite for all n ∈ N, turning a and c into sequences
of non-negative integers. They are then related by Möbius inversion as

(1) an =
∑

d|n

d cd and cn =
1

n

∑

d|n

µ
(n

d

)

ad.

Here, µ denotes the Möbius function from elementary number theory [1]. Puri and Ward
[10] study these relations as paired transformations between certain non-negative integer
sequences, with special emphasis on arithmetic and asymptotic aspects. It is the purpose
of this short note, which is based on [8], to extend these transformations to the space of
arithmetic functions, on which they act as linear operators, and to investigate their spectral
properties and their asymptotic behaviour under iteration, thus generalising results from [10].

Let A = C
N denote the set of arithmetic functions. Its elements can be thought of either

as functions f : N → C, n 7→ f(n), or as sequences of complex numbers (fn)n∈N, hence the
notations f(n) and fn are used in parallel; see [1] for details and general notation. Clearly,
A is a complex vector space with respect to component-wise addition and the usual scalar
multiplication. Additionally, it is equipped with the structure of a commutative algebra
(A,+, ∗) with unit element, where ∗ denotes Dirichlet convolution, defined by

(
f ∗ g

)
(n) =

∑

d|n

f(d) g
(n

d

)

for all n ∈ N. The unit element with regard to this product is δ1 = (1, 0, 0, . . .). When f ∈ A
is invertible, the notation f−1 refers to its Dirichlet inverse, defined by f ∗f−1 = f−1 ∗f = δ1.
Furthermore, f · g denotes the pointwise product where

(
f · g

)
(n) = f(n)g(n) for all n ∈ N.

Motivated by the transformations (1), we define ‘fix’ and ‘orb’ as mappings from A into itself
by a 7→ a′, with

(2) a′n = fix(a)n =
∑

d|n

d ad and a′n = orb(a)n =
1

n

∑

d|n

µ
(n

d

)

ad,

1
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respectively, for all n ∈ N. Denoting by N the arithmetic function n 7→ n, fix and orb can be
written as

(3) fix(f) = N ·
( 1

N
∗ f
)

and orb(f) =
1

N
·
(
µ ∗ f

)
.

This is particularly useful when considering the Dirichlet series of fix(f) and orb(f). In
general, the Dirichlet series Df of f ∈ A is defined by

Df (s) =
∞∑

m=1

f(m)

ms
,

which is viewed as a formal series at this stage. This generating function gives rise to the
(formal) identities [1]

Df+g = Df + Dg and Df∗g = Df · Dg .

Using these in connection with (3), a straightforward calculation shows

Lemma 1.1. Let Da(s) denote the Dirichlet series of a ∈ A. Then,

Dfix(a)(s) = ζ (s)Da(s − 1) and Dorb(a)(s) =
1

ζ (s + 1)
Da(s + 1).

where ζ is Riemann’s zeta function. �

For a discussion of the identities from Lemma 1.1 in a different context, and for interesting
recent development on Dirichlet series as orbit counting generating functions, we refer the
reader to [3, Secs. 2 and 10]. We now turn our attention to the structure of fix and orb as
linear mappings on A.

2. Spectral properties

When studying fix on A, it is natural to ask for eigenvalues and eigenvectors. Let x be an
arithmetic function that satisfies the fixed point condition fix(x)n =

∑

d|n dxd = xn for all

n ∈ N. Solving for xn yields the recursive relation

(4) xn =
1

1 − n

∑

n>d|n

dxd

for n > 1, so that all xn are uniquely determined from x1. The xn depend linearly on x1,
which is the only degree of freedom in solving (4), wherefore the eigenspace for the eigenvalue
1 is one-dimensional. Setting x1 = a1 = 1, we denote the resulting solution of (4) by
a = (a1, a2, a3, . . .). Since fix maps multiplicative sequences to multiplicative sequences, it is
an interesting question to what extent this is reflected by a.

Lemma 2.1. Let a satisfy fix(a) = a, with a1 = 1. The eigenvector a is multiplicative, so

that anm = an · am for all n,m ≥ 1 with (m,n) = 1.

Proof. In order to show multiplicativity by induction on the index, we first note that the
claim is true for trivial decompositions such as n · 1, because a1 = 1. In particular, it is then
true for all natural numbers n ≤ 5 = 2 · 3 − 1. Let (m,n) = 1 with mn > 1 and suppose the
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ak satisfy the multiplicativity property for all k ≤ mn − 1 (so that ak = ad ad′ for all d, d′

with (d, d′) = 1 and d d′ = k). This implies

amn =
1

1 − mn

∑

d|mn
d<mn

d ad =
1

1 − mn

∑

d=dmdn

dm|m, dn|n
dmdn<mn

(dmadm
) (dnadn

)

=
1

1 − mn

(
(∑

d|m

dad

︸ ︷︷ ︸

=am

∑

d′|n

d ′ad′

︸ ︷︷ ︸

=an

)

− mn aman

)

= am an .

This argument shows the induction step from mn − 1 to mn. In general, the step from N to
N + 1 is trivial when N + 1 is prime, and of the above form otherwise, which completes the
induction. �

For the remainder of this section, a always denotes the unique solution of fix(a) = a with
a1 = 1. The recursion in (4) runs over all proper divisors of n and yields an explicit expression
for apr with p prime and r ∈ N. By multiplicativity, this extends to a closed formula for an.

Proposition 2.2. Let n > 1 with prime decomposition n = pr1
1 · . . . ·prs

s . Then, the n-th entry

of the eigenvector a of Lemma 2.1 reads

an =

s∏

k=1

rk∏

ℓ=1

1

1 − pℓ
k

.

Proof. Observing that ap =
a1

1−p , induction on the exponent r leads to apr =
∏r

ℓ=1(1− pℓ)−1,

from which the statement follows by Lemma 2.1. �

The sequence of denominators is now entry A153038 of the Online Encyclopedia of Integer
Sequences (OEIS) [11]. In particular, |an| ≤ 1 for all n, and Proposition 2.2 suggests that the
an become ‘asymptotically small’ in some sense, as n → ∞. Indeed, with

ℓq =
{
f ∈ C

N
∣
∣

∞∑

n=1

|fn|
q < ∞

}
,

one obtains the following result.

Proposition 2.3. The eigenvector a is an element of ℓ1+ε for all ε > 0.

Proof. Substituting pk − 1 = (p − 1)
∑k−1

j=0 pj in the denominator of |apr | leads to

r∏

k=1

(pk − 1) = (p − 1)r
r∏

k=1

k−1∑

j=0

pj ≥ (p − 1)rp
Pr

k=1 (k−1) = (p − 1)rpr(r−1)/2.

Since (p − 1)rpr(r−1)/2 ≥ pr for r > 2 or p > 2, the inequality |apr | ≤ 1
pr holds in these cases.

Besides, one has |ap| = 1
p−1 = p

p−1 · 1
p for every prime p. The remaining term a22 = 4

3
1
22

introduces an additional factor of c = 4
3 in the estimate of |an|, to account for the case when

22 is the highest power of 2 that divides n. For n = p
r1
1 · . . . · p

rs
s , this gives

|an| ≤
c

n

∏

{i|ri=1}

pi

pi − 1
.
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This product can be related to Euler’s φ-function,

φ(n) = n
∏

p|n

(

1 −
1

p

)

= n
∏

p|n

(
p − 1

p

)

≤ n

r∏

p|n
p2∤n

(
p − 1

p

)

,

giving
∏

{i|ri=1}
pi

pi−1 ≤ n
φ(n) . Using

lim sup
n→∞

n

φ(n) log(log n)
= eγ ,

where γ = limn→∞

(
1 + 1

2 + · · · + 1
n − log n

)
denotes Euler’s constant, compare [6, Thm. 328],

we obtain

|an| ≤
C · log(log(n))

n

for some constant C, which implies
∑∞

n=1 |an|
1+ε < ∞. �

In particular, a ∈ ℓ2, and (numerically) one finds
∑∞

n=1|an|
2 ≈ 2.99635 < 3. Since

∑

p
1
p

diverges and
∣
∣ap

∣
∣ = 1

p−1 > 1
p , it is clear that the statement of Proposition 2.3 is not true for

ε = 0.

Lemma 2.4. Let Da(s) be the Dirichlet series of the eigenvector a, with s = σ + it.

(i) Da(s) converges absolutely in S = {s ∈ C | σ > 1}.

(ii) limσ→∞ Da(σ + it) = 1, uniformly in t ∈ R.

Proof. We employ the methods of [1, Chapter 11]. The first claim follows from the absolute

convergence of ζ(σ) for σ > 1, because
∑

m

∣
∣am

ms

∣
∣ ≤

∑

m
|am|
mσ ≤ ζ(σ).

For (ii), observe that a1 = 1, wherefore one has

|Da(s) − 1| ≤

∞∑

m=2

1

mσ
= ζ(σ) − 1,

which tends to 0 (independently of t) as σ → ∞. �

Using the fixed point relations fix(a) = a and orb(a) = a, the first equation of Lemma 1.1
becomes a ‘recursion’ that can be solved for an explicit expression in terms of the Riemann
zeta function.

Theorem 2.5. The Dirichlet series of the fixed point a satisfies

Da(s) =
∞∏

ℓ=1

1

ζ(s + ℓ)
=
∏

p

∏

ℓ≥1

(

1 −
1

ps+ℓ

)

,

where the infinite product converges on the set S from Lemma 2.4.

Proof. Using Lemma 1.1, one inductively obtains Da(s) = Da(s+m)
Qm

ℓ=1 ζ(s+ℓ) for arbitrary m ∈ N.

For m → ∞, the numerator converges to 1, since

Da(s + m) = a1 +
∑

n≥2

an

ns

1

nm
≤ a1 +

1

2m
Da(s).

Due to the asymptotic behaviour ζ(σ + it) = 1 + O(1/2σ) for σ → ∞, the product in the
denominator of the resulting expression Da(s) =

∏∞
ℓ=1

1
ζ(s+ℓ) converges as well, giving the
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first part of the claim. The second equality follows from the Euler product representation
ζ(s + ℓ)−1 =

∏

p(1 − p−(s+ℓ)) for σ > 1, in which the order of taking products over p and ℓ
may be exchanged due to absolute convergence. �

Remark. Since a1 6= 0, a admits a Dirichlet inverse. Its terms can be calculated via to the
general recursion formula, compare [1, Thm. 2.8]. The Dirichlet inverse satisfies Df−1 = 1/Df ,

wherefore b := a−1 has the Dirichlet series Db =
∏

ℓ≥1 ζ(s + ℓ). Determining the coefficients
of this series leads to an analogue of Proposition 2.2; the n-th entry of b is

bn =
s∏

j=1

rj∏

k=1

pk−1
j

pk
j − 1

=
s∏

j=1

p
1
2
rj(rj−1)

j
∏rj

ℓ=1(p
ℓ
j − 1)

,

with n = p
r1
1 · . . . · p

rs
s as before; see [8] for details. The first few terms of a and b read

a =
(

1,−1,−
1

2
,
1

3
,−

1

4
,
1

2
,−

1

6
,−

1

21
, . . .

)

and b =
(

1, 1,
1

2
,
2

3
,
1

4
,
1

2
,
1

6
,

8

21
, . . .

)

.

Although it appears that a and b share the same denominator sequence, this is not true when
the terms are represented as reduced fractions, because cancellation can occur for the bn. The
first instance of this phenomenon is b12 = 1

3 , whereas a12 = −1
6 .

Returning to the task of identifying all eigenvalues and their corresponding eigenspaces,
we consider the equation x = λ · fix(x) for λ 6= 1 or, equivalently,

(λ − n)xn = λ
∑

n>d|n

dxd

for all n ∈ N. Since fix(x)1 = x1 by definition, the first term of such an eigenvector has to be
0. In general, if xd = 0 for all d|n with d < n, the n-th term xn will vanish as well, unless
λ = n. Thus, the first non-zero term is xm where m = λ, and all eigenvalues are thus natural
numbers. For fixed 1 < m ∈ N, the recursion analogous to the case m = 1 given in (4) is

(5) xn =
1

m − n

∑

n>d|n

dxd (for n 6= m),

which shows that xn 6= 0 if and only if n = km for some k ≥ 1. The recursion for the
non-vanishing terms simplifies to

xkm =
1

m(1 − k)

∑

k>d|k

dm xdm =
1

1 − k

∑

k>d|k

dxdm

for k > 1,where the only free parameter is now the first non-zero term xm, indicating a one-
dimensional eigenspace. Choosing xm = a1 = 1, the resulting eigenvector a(m) with eigenvalue

m can be expressed in terms of a = a(1):

(6) a(m)(n) =

{

a
(

n
m

)
, if m|n;

0, otherwise.

In particular, a(m) ∈ ℓ1+ε for all ε > 0 and all m ≥ 1, where a(m) and a clearly have the same
norm. Being eigenvectors for different eigenvalues, the a(m) are linearly independent. The
next proposition states that they even generate the space of arithmetic functions in the sense
of formal linear combinations.
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Proposition 2.6. The eigenvectors of fix form a basis of A, so that
〈
a(m) | m ∈ N

〉

C
= A,

and the representation of f ∈ A as a formal linear combination of the a(m) is unique.

Proof. Let f ∈ A, a = a(1) and b := (a)−1, and set α = f ∗ b. Then, α ∗ a = (f ∗ b) ∗ a = f .
On the other hand, one has

(
α ∗ a

)
(k) =

∑

d|k

αd a(d)(k) =
∑

m≥1

αm a(m)(k)

for all k ∈ N, so f ∈
〈
a(m) | m ∈ N

〉

C
. Uniqueness of the linear combination follows from the

uniqueness of the Dirichlet inverse. �

The spectrum of an operator T : A → A is defined by

spec(T ) := {λ ∈ C | T − λ id is not invertible }.

Note that fix and orb could be investigated as operators on ℓ2, restricting their domains
to appropriate invariant subspaces. But since we need a more general setting later when
considering their behaviour under iteration, we work with the spectrum as a purely algebraic
notion.

Theorem 2.7. The spectra of fix and orb are

spec(fix) = N and spec(orb) =

{
1

N
| N ∈ N

}

.

Proof. Obviously, fix(f) = λf implies f = 0 if and only if λ ∈ C \ N, so fix − λ id is injective
for these λ. Surjectivity can be seen by constructing a preimage f ∈ A of an arbitrary g ∈ A
under fix − λ id. To this end, let f1 =

g1
1−λ and, having already defined f1, . . . , fn−1 for some

n > 1, set

fn =
1

n − λ

(

gn −
∑

n>d|n

d fd

)

.

When λ /∈ N, the resulting arithmetic function f is a term-wise well-defined element of A with
fix(f) − λf = g. In summary, fix − λ id is invertible if and only if λ ∈ C \ N. The spectrum
of orb can be derived from that of fix by the equivalence

fix(a(N)) = Na(N) ⇐⇒ orb(a(N)) =
1

N
a(N),

which follows from fix ◦ orb = orb ◦ fix = id. �

3. Iterations of the operator fix

Puri and Ward [10] raised the question of the nature of the orbits under fix. In particular,
the asymptotic properties of such orbits are sought. In our terminology, this is to ask how
elements of A behave under iteration of the operator fix. Starting from δ1 = (1, 0, 0, . . .), the
first iterates are sequences A000007, A000012, A000203, A001001 and A038991 – A038999 of
the OEIS, see [10, 11]. Here, we start from the sequences δm, m ≥ 1, defined via δm(n) = δm,n

for all n, and give term-wise exact representations of fixn(δm), from which the corresponding
quantities of general starting sequences can later be constructed.

Let y(0) = δ1 and y(n) := fix(y(n−1)) for n ≥ 1, so that

y(n)(m) =
(
fix(y(n−1))

)

m
=
(
fixn(y(0))

)

m

holds for all m ≥ 1.
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Proposition 3.1. Let p be a prime and r ∈ N. Then

y(n)(pr) =

[
n + r − 1

r

]

p

=
r−1∏

i=0

1 − pn+r−1−i

1 − pi+1
,

where [ n
r ]q denotes the Gaussian or q-binomial coefficient.

Proof. The claim can be verified by induction in n. By definition of fix, we have

y(n+1)(pr) = fix(y(n))(pr) =
∑

d|pr

d · y(n)(d) =

r∑

k=0

pk · y(n)(pk)

= 1 + p

[
n
1

]

p

+

r∑

k=2

pk · y(n)(pk).(7)

Applying Pascal’s identity for Gaussian binomials,
[
m
ℓ

]

q

= qr

[
m − 1

ℓ

]

q

+

[
m − 1
ℓ − 1

]

q

,

to the k-th summand in (7) yields

pk

[
n + k − 1

k

]

p

=

[
n + k

k

]

p

−

[
n + k − 1

k − 1

]

p

.

Plugging this and the relation [ n
1 ]p =

∑n−1
k=0 pk into (7), we obtain

y(n+1)(pr) =

[
n + 1

1

]

p

+

r∑

k=2

[
n + k

k

]

p

−

[
n + k − 1

k − 1

]

p

=

[
n + r

r

]

p

which completes the proof. �

Corollary 3.2. For 1 6= m ∈ N with prime decomposition m = p
r1
1 p

r2
2 · . . . · p

r
k

k , one has

y(n)(m) = y(n)(p
r1
1 ) y(n)(p

r2
2 ) · . . . · y(n)(p

r
k

k ) =

k∏

j=1

rj−1
∏

i=0

1 − p
n+rj−1−i
j

1 − pi+1
j

.

Proof. It is easy to check that fix, and hence all iterates fixn with n ≥ 1, preserve multiplica-
tivity. Thus, in view of Proposition 3.1, the claim follows from δ1 being multiplicative. �

Remark. A different approach to calculating y(n) exploits the fact that its Dirichlet series
D

y(n)(s) is known from the context of counting sublattices of Z
n. Let

hn(m) =
∣
∣{Λ | Λ is a sublattice of Z

n of index m}
∣
∣

and Dhn
(s) =

∑

m≥1
hn(m)

ms . Proposition A.1 of [2] states that

hn(m) =
∑

d1·...·dn=m

d0
1 · d1

2 · . . . · dn−1
n and Dhn

(s) = ζ(s) · Dhn−1
(s − 1),

where the first sum runs over all n-tuples (d1, . . . , dn) of positive integers with d1 · . . . ·dn = m.
In particular, Dh1

(s) = ζ(s) = D
y(1)(s). On the other hand, Lemma 1.1 gives D

y(n+1)(s) =
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ζ(s)D
y(n)(s−1), so D

y(n)(s) = Dhn
(s) for all n ≥ 1 and thus hn(m) = y(n)(m) for all n,m ≥ 1.

For m = p
r1
1 · . . . · p

r
k

k , the coefficient hn(m) can be written as

hn(m) =

k∏

j=1

rj∏

i=1

pn+i−1
j − 1

pi
j − 1

=

k∏

j=1

[
n + rj − 1

rj

]

pj

,

as shown in [5] and [12], leading to the result of Corollary 3.2. This also provides a concrete
interpretation of the iteration sequences mentioned earlier.

Similarly to calculating fix-eigenvectors a(m) for m > 1, the sequences arising from fix-
iterations on starting sequences δm with m > 1 can be related to the case m = 1. From
(
fix(δm)

)

k
= m · δk,jm for some j ∈ N, one can conclude inductively

(
fixn(δm)

)

k
=

{

mn · y(n)
(

k
m

)
, if m|k;

0, otherwise.

Since arbitrary elements from A can be written as complex linear combinations of the δm, we
find the following behaviour of general arithmetic sequences under fix-iterations.

Lemma 3.3. Let f = (f1, f2, . . .) ∈ A. Then, for all M ≥ 1,

(
fixn(f)

)

M
=

M∑

k=1

fk

(
fixn(δk)

)

M
=
∑

k|M

fk kny(n)
(

M
k

)
.

As a convolution product, this is

fixn(f) =
(
f · Nn

)
∗ y(n), for all n ∈ N,

where Nn denotes the arithmetic function defined by m 7→ mn.

Proof. Note first that, for all M ≥ 1, the value fix(f)M depends on the fn with n|M only. Each
single term of fix(f)M can thus be obtained by applying fix to the finite linear combination
∑M

k=1 fkδk, resulting in a component-wise well-defined arithmetic function. The last identity
follows from the definition of the convolution product. �

Given the unbounded spectrum of fix, it is not surprising that the image sequences fixn(f)
of a non-negative f component-wise tend to infinity when n → ∞. Nevertheless, the ‘quotient

sequences’
(

fixn+1(f)M

fixn(f)M

)

n
have a well-defined convergence behaviour for each M as follows.

Theorem 3.4. Let f be a non-negative arithmetic function and let M ∈ N be such that
(
fixr(f)

)

M
6= 0 for some r ∈ N. Then,

lim
n→∞

(
fixn+1(f)

)

M(
fixn(f)

)

M

= M.

Proof. Expanding the quotient in question yields
(
fixn+1(f)

)

M(
fixn(f)

)

M

=
∑

d|M

d

(
fixn(f)

)

d(
fixn(f)

)

M

= M +
∑

M>d|M

d

(
fixn(f)

)

d(
fixn(f)

)

M

.
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The number of terms in the last sum being independent of n, it suffices to show that, for each
divisor d of M , the corresponding summand approaches 0 as n → ∞. Let d1 = 1, . . . , dR = d
denote the divisors of d. Then, using Lemma 3.3, one gets

(
fixn(f)

)

d(
fixn(f)

)

M

=

R∑

i=1

fdi
dn

i y(n)
(

d
di

)

∑

k|M fk kny(n)
(

M
k

) ≤

R∑

i=1

dn
i fdi

y(n)(d/di)

dn
i fdi

y(n)(M/di)
=

R∑

i=1

y(n)(d/di)

y(n)(M/di)
.

This upper bound can be seen to converge to 0 by splitting numerator and denominator of
each summand in the last sum into the factors that arise from the prime decomposition of
d/di and M/di. For r > s, the quotient

(8)
y(n)(ps)

y(n)(pr)
=

s−1∏

i=0

1 − pn+s−1−i

1 − pn+r−1−i

r−1∏

i=s

1 − pi+1

1 − pn+r−1−i

converges to 0 as n → ∞, since the first product tends to ps−r > 0, while the second tends
to 0. Being composed of factors such as (8), the quotient

(
fixn(f)

)

d
/
(
fixn(f)

)

M
tends to 0

for all d|M as n → ∞, which proves the claim. �

Remark. Unlike fix, the operator orb’s spectrum is bounded by 0 from below and by 1 from
above. One would expect orbn(f) to converge to an element of the eigenspace for the largest

eigenvalue (λ = 1), hence to a scalar multiple of a(1) = a. Indeed, employing the eigenvector
basis representation f =

∑

m≥1 αma(m), one obtains

lim
n→∞

(orbnf)M = lim
n→∞

M∑

m=1

αmorbn(a(m))M = lim
n→∞

M∑

m=1

αm

1

mn
a

(m)
M = α1a

(1)
M

for all M ∈ N. In other words, orbn(f)
n→∞
−−−−→ f1 a, for all f ∈ A.

4. Concluding remarks

The eigenvector a has an interesting consequence in the setting of dynamical (or Artin-
Mazur) zeta functions, where one considers the generating function

exp

(
∞∑

m=1

fm

m
zm

)

=

∞∏

m=1

(1 − zm)−orb(f)m ,

usually for arithmetic functions f that count (isolated) fixed points of a discrete dynamical
system, see [4] for background material. Using a together with a = orb(a), one finds the
product identity

exp

(
∞∑

m=1

am

m
zm

)

=
∞∏

m=1

(1 − zm)−am

or, equivalently, the series identity

∞∑

m=1

am

m
zm = −

∞∑

m=1

am log(1 − zm),

with absolute convergence for |z| < 1. It would be interesting to know whether this gives rise
to another interpretation of the meaning of the eigenvector a in this setting.
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