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Abstract. Derangements are a popular topic in combinatorics classes. We

study a generalization to face derangements of the n-dimensional hypercube.
These derangements can be classified as odd or even, depending on whether the

underlying isometry is direct or indirect, providing a link to abstract algebra.

We emphasize the interplay between the geometry, algebra and combinatorics
of these sequences, with lots of pretty pictures.

1. Introduction

Suppose you have a die sitting on a table. Instead of just looking at the number
on the top of the die, pay attention to the location of the numbers on all six sides.
Now you pick it up and roll it so that it occupies the same place on the table it did
before. How many ways could you have done this so that none of the 6 numbers
are in the same place?

Rolling a die so that it occupies the same place it did before it was rolled gives a
direct isometry of the cube, i.e., a geometric transformation realizable in 3 dimen-
sions that fixes the cube. Then our question becomes:

How many direct isometries of the cube are derangements of the
faces of the cube?

How many additional derangements do you get if you allow yourself to turn your
cube inside out (allowing an indirect isometry via a roll through 4-dimensional
space)? Generalizing, if you have an n-dimensional hypercube, then the same
question makes sense, although it’s a bit harder to buy one and actually roll it.

We’ll need a few important facts about isometries in n dimensions. Every isome-
try can be written as a composition of reflections through hyperplanes. An isometry
is direct if it can be written as a composition of an even number of reflections, oth-
erwise, it is indirect (as with products of transpositions in symmetric groups, this
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is well-defined). Further, a direct isometry is orientation preserving, while an indi-
rect isometry reverses orientation. The composition of two reflections is a rotation,
provided the hyperplanes corresponding to those reflections intersect. This will al-
ways be the case with the isometries we consider here since we will be considering
isometries of regular solids whose centers will always be fixed.

The total number of isometries of an n-cube is 2nn! – see Chapters 5 and 7 of
Coxeter’s classic [7] for a guide to understanding the geometry of these isometries.
Half of these are direct and half are indirect.

We now have several questions at hand:

• How many of the 2nn! isometries are derangements of the (n−1)-dimensional
faces (also called facets) of the n-cube?
• How many of these facet derangements are direct and how many are indi-

rect?
• What if our die is not a cube (or hypercube)? In particular, what are the

counts for a die shaped as an n-dimensional simplex?

The answers will lead us to integer sequences that have been studied before in
several contexts, as well as to two new sequences. In particular, the sequences
associated with the direct and indirect facet-derangements of the n-cube do not
appear in Sloane’s Online Encyclopedia of Integer Sequences (OEIS, [12]).

These problems lie at the intersection of three fields: combinatorics, geometry
and algebra. Our philosophy is mathematically inclusive here. Derangements are
typically studied in combinatorics classes, where they provide a good example of
inclusion-exclusion. Students need to take a class in abstract algebra to see even
and odd permutations. Finally, isometries of Euclidean space might appear in a
geometry class emphasizing transformations. But no one class typically presents
all three topics coherently.

Derangements of faces of different dimensions of the cube have been studied
before. In [4], Chen and Stanley derive explicit generating functions that count
derangements of the vertices, edges and 2-dimensional faces for an n-cube; the
number of isometries that do fix at least one vertex is given by an especially at-
tractive formula: (2n − 1)!! = (2n − 1)(2n − 3) · · · 3 · 1. Chen and Zhang study
the excedance of a signed permutation in [3] and [6], and Chen, Tang and Zhao
[5] generalize this approach to derangement polynomials. In a different direction,
Shareshian and Wachs give an interesting connection to combinatorial topology in
[11], where Theorem 6.2 shows that the number of facet derangements of the n-cube
is the dimension of the reduced homology of the order complex of a certain poset.

Most of the material we present here is known, but our approach seeks to unify
the combinatorics, algebra and geometry. This paper is organized as follows: In
Section 2, we begin with a treatment of ordinary derangements from combinatorial,
geometric and algebraic viewpoints. Section 3 generalizes the entire approach from
Section 2 to the hypercube. This gives us a ‘new’ combinatorics problem (we call
it the coatcheck problem, generalizing the hatcheck problem for ordinary derange-
ments), and (what we believe to be) a new recursion for the facet derangements
for the n-cube. We also present several known formulas for the number of facet
derangements, with proofs that use ideas from combinatorics (inclusion-exclusion)
and linear algebra (signed permutation matrices).
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Section 4 studies the partition of the facet derangements of the (n− 1)-simplex
and the n-cube into direct and indirect isometries. This is where the connections
to geometry are deepest, and where some very pretty relations are developed.

The geometry of 3 dimensions gives us a chance to test our geometric intuition, so
Section 5 describes these isometries and derangements in some detail. We conclude
by offering a few suggestions for further study in Section 6.

2. Derangements and simplices

2.1. Counting ordinary derangements. One of the standard problems in a
combinatorics class asks the following question:

Hatcheck problem: n people check their hats at the beginning
of a party. How many ways can the hats be returned later so that
no one gets their own hat back?

Slightly more modern versions might involve returning cell phones to students
after an exam, or designing a cryptoquote so that no letter stands for itself (usually
called a substitution cypher) in the coded message.

Permutations of {1, 2, . . . , n} with no fixed points are called derangements. The
following formula counting derangments can be found in every combinatorics book
in the section that introduces inclusion-exclusion as a counting technique. If dn

denotes the number of derangements on an n-element set, then

(1) dn = n!
n∑

k=0

(−1)k

k!

From the formula, we get d0 = 1. You can give any explanation you like for
what happens when no people check their hats, as long as you get the answer 1.

This formula has a very attractive probabilistic consequence: If the hats are
randomly returned to the party-goers, then the probability that no one receives
their own hat is approximately e−1 ∼ 36.79%. When n is large, this probability is
(essentially) independent of n, which is surprising (unless you already know this,
in which case it isn’t). The number of derangements for n ≤ 7 is given in Table 1.
Note that the ratio d7/7! agrees with e−1 ≈ 0.367879 . . . to 4 decimals.

Table 1. Number of derangements dn for n ≤ 7.

n 0 1 2 3 4 5 6 7
dn 1 0 1 2 9 44 265 1854
dn

n!
1 0 0.5 0.3̄ 0.375 0.36̄ 0.36805̄ 0.367857 . . .

We end this preliminary discussion with one more formula – a very useful recur-
sion for dn that we’ll refer to later:

(2) dn = (n− 1)(dn−1 + dn−2)

The proof of this recursion follows from partitioning the derangements into those
in which 1 participates in a 2-cycle and those in which 1 is in a longer cycle. A
proof can be found in [1], for instance.
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2.2. Derangements and the (n− 1)-simplex. Our first goal is to interpret de-
rangements geometrically, as derangements of the facets (or vertices) of the (n−1)-
simplex. Recall the (n − 1)-simplex is formed by joining n affinely independent
points in Rn−1, so the 2-simplex is a triangle in the plane, the 3-simplex is a tetra-
hedron in 3-space, and so on.

Geometric Interpretation: A derangement on {1, 2, . . . , n} cor-
responds to an isometry in Rn−1 of the regular (n − 1)-simplex in
which every one of the n facets is moved.

Why does this work? First, the full symmetry group (including both direct and
indirect isometries) of the regular (n− 1)-simplex is the symmetric group Sn. The
group is usually thought of as acting on the n vertices of the simplex, but since
every facet has a unique vertex it does not touch, a permutation moves a vertex if
and only if it moves the ‘opposing’ facet. Thus, for our purposes, we will think of
Sn as acting on the facets of the (n− 1)-simplex .

In 2 dimensions, a simplex is an equilateral triangle in the plane. There are only
two kinds of isometries possible: rotations (direct) and reflections (indirect). This
group of isometries is easy to visualize via the six edge permutations of the triangle.
The correspondence between the isometries and the permutations is given in Fig.
1.
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Figure 1. Symmetry group = S3
∼= D3

Which of these are derangements? The two rotations r = (123) and r2 = (132)
derange the edges, and the remaining four permutations fix at least one edge, so
d3 = 2, as we saw earlier.

In 3 dimensions, we need to add one more isometry to our tool kit: rotary re-
flections. These can be hard to visualize - they correspond to compositions of
reflections and rotations. For some fun (and a good exercise in geometric visual-
ization), try to figure out the geometry of the facet derangements in 3 dimensions.
You should get the following:

• For the regular tetrahedron, there are 9 derangements: 3 of these are rota-
tions and the remaining 6 are rotary reflections.

Much more information about the geometry of isometries in 3 dimensions – and
some very attractive pictures – appears in Section 5. Feel free to skip ahead.
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3. Deranging the facets of a hypercube

3.1. A problem with coats and cubes. In Section 2, we saw that ordinary
derangements correspond to isometries of a regular (n − 1)-simplex in which no
(n − 1)-dimensional facet is fixed. To generalize this to facet derangements of
hypercubes, we need to modify the hatcheck problem:

Couples coatcheck problem This time, n couples each check
their two coats at the beginning of a party; the attendant puts a
couple’s coats on a single hanger. The coats are returned at the
end of the party in the following way: when a couple arrives to
get their coats, the (lazy) attendant picks an arbitrary hanger and
then hands one of those coats to one person in the couple and the
other coat to the other (again, arbitrarily). How many ways can
the coats be returned so that no one gets their own coat back?

If no one receives their own coat, we’ll say we have a c-derangement (where ‘c’
stands for ‘coat’ or ‘couple’ or ‘cube’). Evidently, there are two ways the people in
a couple could fail to receive their own coats: Either the pair of coats belonging to
that couple was given to another couple, or the couple did receive their own coats,
but the coats were swapped between the two partners.

As before, we begin by interpreting this combinatorial problem geometrically.
Geometric Interpretation: A c-derangement corresponds to an
isometry in Rn of the hypercube in which no (n − 1)-dimensional
facet is fixed.

Why is this true? First, note that there are 2nn! ways to return the coats with
no restrictions:

• First, permute the n hangers in n! ways;
• Next, hand the coats back to the two members of each couple in 2n ways.

But this is precisely the number of isometries of the n-dimensional hypercube:
• First, permute the n facets around a given vertex in n! ways;
• Next, swap or don’t swap each pair of opposite facets in 2n ways.

Let’s introduce some notation: Let Qn denote the regular n-dimensional hy-
percube. The 2n people are represented by the 2n symbols 1, 1∗, 2, 2∗, . . . , n, n∗,
where {i, i∗} is the ith couple. Then the 2n facets of Qn correspond precisely to
the 2n people in the coatcheck problem, with the couple {i, i∗} corresponding to
that pair of opposite facets in the hypercube. It should now be clear that moving
all the facets of Qn is equivalent to deranging the coats. (Unlike the connection be-
tween ordinary derangements and the simplex, deranging vertices is not the same
as deranging facets. In Figure 2, you can locate a c-derangement of the square
that is not a vertex derangement, and then find a vertex-derangement that’s not a
c-derangement.)

A 2-dimensional cube is a square, and its facets are the 4 bounding edges. Among
the 8 symmetries of a square (which form the dihedral symmetry group D4), there
are 5 c-derangements, pictured in Figure 2. The original square is in the upper left.
The other two squares in the top row arise from reflections through the diagonals of
the square, and the 3 squares in the bottom row of the figure arise from rotations.

As with the simplex, the geometry is fun to explore in 3 dimensions. We return
to this (in great detail) in Section 5. For now, though, see if you can determine
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Figure 2. The 5 side-derangements of the square.

which isometries of the cube are derangements. As a check, you should get the
following:

• For the cube, there are 29 derangements: 14 rotations and 15 rotary reflec-
tions.

3.2. Some formulas for c-derangements. We are ready to derive some formulas
for the number of c-derangements. Let d̂n be the number of c-derangements of
{1, 1∗, . . . , n, n∗}. As in the ordinary derangement case, we can find a formula
for d̂n using inclusion-exclusion. This formula is listed for sequence A000354 in
the OEIS [12], but the interpretation in terms of c-derangements is not mentioned
there.

Theorem 3.1. The number d̂n of c-derangements of the facets of Qn is given by

(3) d̂n =
n∑

k=0

(−1)k

(
n

k

)
2n−k(n− k)!

Proof. First, place the n-dimensional hypercube so that one vertex is at the origin
and the opposite vertex is at the point (1, 1, . . . , 1). Then Qn has n facets with one
vertex at the origin, and we need only consider what happens to those facets to
determine what happens to all the facets of Qn.

We use inclusion-exclusion. The number of c-derangements will be the total
number of isometries of Qn, minus the number that fix at least one facet, plus the
number that fix at least 2 facets, etc.

The number of isometries of Qn that fix at least 0 facets is just the total number
of isometries of Qn, that is, 2nn!. To fix k (or more) facets, we choose those k
in
(
n
k

)
ways, and then consider the number of automorphisms of the rest, which is

2n−k(n− k)!. This gives the formula.

Note that a consequence of this formula is that d̂0 = 1. Again, you can figure
out what that means yourself. Also notice that this formula guarantees that d̂n is
always odd: every term in Equation 3 is even except for the term corresponding to
k = n. We’ll see two more proofs of this fact later – pay attention.
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As with ordinary derangements, we can use this result to get a nice probabilistic
interpretation. Rewriting the above formula as

(4) d̂n = 2nn!
n∑

k=0

(−1/2)k 1
k!

gives us the following:

In the coatcheck problem, the probability that no one receives their
own coat approaches e−1/2 as the number of couples increases.

Table 2 gives the number of c-derangements for n ≤ 7. When n = 6, the approx-
imation to e−1/2 ≈ 0.606531 . . . is accurate to 5 decimals. This series converges
faster than the series for e−1 that gave the number of (ordinary) derangements, as
you would expect from the Taylor series error estimate.

Table 2. Number of c-derangements d̂n for n ≤ 7.

n 0 1 2 3
d̂n 1 1 5 29

d̂n

2nn!
1 0.5 0.625 0.6041 . . .

n 4 5 6 7
d̂n 233 2329 27,949 391,285

d̂n

2nn!
0.606770 . . . 0.606510 . . . 0.606532 . . . 0.606530 . . .

There is another formulation for d̂n that we like. We can express d̂n with a sum
that uses the ordinary derangements dk. The proof uses signed permutation matri-
ces, which will be important for us in Section 4 when we consider the orientation
of a c-derangement, i.e., whether the c-derangement corresponds to a direct or an
indirect isometry of the hypercube.

Proposition 3.2. The number of c-derangements of the facets of Qn is

(5) d̂n =
n∑

k=0

(
n

k

)
2kdk.

Proof. Situate Qn so that all its vertices are located at the points (±1,±1, . . . ,±1).
Then the centers of the facets are ±ei, where ei is the ith standard basis vector
in Rn. Now any isometry of Qn sends the facet corresponding to ei to another
facet ±ej . Thus, an isometry can be identified with a signed permutation matrix, a
permutation matrix with with entries ±1. (There are clearly 2n ·n! such matrices.)

Now let A be a signed permutation matrix that corresponds to a facet derange-
ment. Then there are no 1’s on the main diagonal of A. (An entry of −1 along the
main diagonal corresponds to sending a facet to its opposite.) It remains to count
the number of such matrices.

Suppose A has k 0’s along its main diagonal. Then the remaining n−k diagonal
entries must be −1’s. We can view the action of A on Qn as follows: A fixes the
n − k facet pairs corresponding to the −1’s on the diagonal (swapping the facets
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within each such pair), and A deranges the remaining k facet pairs. We can choose
the k facet pairs to derange in

(
n
k

)
ways, then derange those pairs in dk ways. But

there are two choices for each such pair: If the pair {ei,−ei} is sent to {ej ,−ej},
then either ei 7→ ej (and so −ei 7→ −ej), or ei 7→ −ej (so −ei 7→ ej).

Thus, the total number of c-derangement signed permutation matrices having k
0’s on their diagonals is just

(
n
k

)
2kdk. The formula follows by summing over k.

One way to visualize the derivation of Equation (5) is suggested by Figure 3.
In the figure, assume that two pairs of opposite facets of a 5-dimensional cube
are interchanged, so i ↔ i∗ and j ↔ j∗, corresponding to two −1’s on the main
diagonal of the signed permutation matrix. Then the two facet pairs (i, i∗) and
(j, j∗) are ‘shrunk,’ leaving a 3-cube. That cube will then have its pairs of opposite
faces deranged in d3 ways (since we don’t allow opposite faces to be interchanged),
and then pairs of opposite sides can be oriented in 23 ways.

Figure 3. A 5-cube with two sets of opposite facets that will be
interchanged; the remaining 3 pairs will be deranged.

A generalization of Equation (5) appears in [13], where Spivey and Steil define
the rising k-binomial transform of a sequence an to be

rn =
{ ∑n

i=0

(
n
i

)
kiai if k 6= 0

a0 if k = 0.

Then the sequence d̂n is the rising 2-binomial transform of the sequence dk. The
explicit connection to c-derangements does not appear in that paper, however.

The following recursion generalizes the recursion for ordinary derangements given
in Equation (2). The recursion appears to be new. It also gives an inductive proof
that d̂n is always odd (our second proof of this fact).

Proposition 3.3. For n ≥ 2, d̂n satisfies:

(6) d̂n = (2n− 1)d̂n−1 + (2n− 2)d̂n−2

Proof. This proof is modeled on the proof of Equation (2). That proof partitions
derangements into 2 classes: those in which 1 is interchanged with some k > 1
and those in which 1 is in a cycle of length greater than 2. For c-deragements,
we have an additional case arising from the fact that a pair (i, i∗) can be fixed
but swapped and additional complications because there are multiple ways to send
(i, i∗) to (j, j∗).

There are three cases to consider for c-derangements.
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Case 1: The pair (1, 1∗) is fixed by the c-derangement. In this case, 1 and 1∗

must be swapped and the remaining n− 1 pairs are c-deranged. This gives
a total of d̂n−1 c-derangements. (This case does not appear in the proof of
the ordinary derangement recursion (2).)

Case 2: The pair (1, 1∗) is swapped with some other pair (k, k∗). There are
n − 1 choices for the (k, k∗) pair, and then there are 4 ways to swap the
pairs (1, 1∗) and (k, k∗): (1) 1↔ k, 1∗ ↔ k∗; or (2) 1↔ k∗, 1∗ ↔ k; or (3)
1→ k → 1∗ → k∗ → 1; or (4) 1→ k∗ → 1∗ → k → 1.

The remaining n− 2 pairs can be c-deranged in d̂n−2 ways. This gives a
total of 4(n− 1)d̂n−2 c-derangements.

Case 3: 1 is in a cycle of length greater than 2. If (1, 1∗)→ (k, k∗), then by
assumption, k 6= 1 and (k, k∗) 67→ (1, 1∗). There are n− 1 choices for k, and
there are 2 ways to send (1, 1∗) to (k, k∗). Since (k, k∗) 7→ (i, i∗), where
(i, i∗) 6= (1, 1∗), we can simply replace (k, k∗) by either (1, 1∗) or (1∗, 1),
depending on how (1, 1∗) mapped to (k, k∗) in the original c-derangement.
This gives us a c-derangement on n − 1 pairs with the additional restric-
tion that the pair (1, 1∗) is not mapped to itself. (This restriction is a
consequence of the fact that we can’t send (k, k∗) to (1, 1∗).)

How many of the d̂n−1 derangements require that (1, 1∗) not be sent to
itself? The number of c-derangements of n − 1 pairs in which one pair is
sent to itself is d̂n−2 (this is just Case 1 for the remaining n − 1 pairs).
Thus, the final total in this case is 2(n− 1)(d̂n−1 − d̂n−2) derangements.

These three cases give that d̂n = d̂n−1 + 4(n− 1)d̂n−2 + 2(n− 1)(d̂n−1− d̂n−2) =
(2n− 1)d̂n−1 + (2n− 2)d̂n−2, as desired.

Notice that d̂2 and the values you get from the recursion depend on the (some-
what disturbing) fact that d̂0 = 1.

4. The parity of derangements and c-derangements

4.1. Counting direct and indirect (ordinary) derangements. As we’ve seen,
isometries can be either direct or indirect, depending on whether they can be ex-
pressed as a product of an even or odd number of reflections, resp. The direct
isometries of a simplex correspond to even permutations of {1, 2, . . . , n}, and the
indirect ones correspond to odd permutations.

For the facet derangements of a simplex, here’s what we have seen so far: For
the triangle, both derangements are rotations, and so are direct isometries. For the
regular tetrahedron, there are 9 derangements: 3 rotations (direct) and 6 rotary
reflections (indirect). See Section 5 for a full explanation for the tetrahedron.

We let en denote the number of direct derangements of the facets of an (n− 1)-
simplex and on denote the number of indirect derangements. Table 3 gives the
values of dn, en and on for n ≤ 7.

A very casual glance at the last row of the table should suggest a very pretty
theorem. This pattern is not new; for example, you can find the sequences en

and on in the OEIS [12]. A bijective proof using a conjugation argument can be
found in [2], and the recent paper [9] offers two more proofs based on an analysis of
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Table 3. Number of even and odd derangements for n ≤ 7.

n 1 2 3 4 5 6 7
dn 0 1 2 9 44 265 1854
en 0 0 2 3 24 130 930
on 0 1 0 6 20 135 924

en − on 0 −1 2 −3 4 −5 6

excedances of permutations. The proof we give is inductive and more in line with
what we have done to this point.

Theorem 4.1. Let en and on be the respective number of even and odd derange-
ments of {1, 2, . . . , n}. Then en − on = (−1)n−1(n− 1).

Proof. We give a recursive procedure for computing en and on. The proof then
follows by induction. The key observation is the familiar recursion given in Equation
(2): dn = (n− 1)(dn−1 + dn−2).

Adapting this recursion to include the parity of the derangements is easy: If 1 is
in a transposition, we just remove that transposition. If 1 is not in a transposition,
then we just remove 1 from the cycle it participates in. In either case, this process
changes even permutations to odd ones, and vice versa.

We let e′n denote the even derangements in which the transposition (1r) appears
for some r > 1 and e′′n denote the other even derangements, and define o′n and o′′n
similarly. Then en = e′n + e′′n and on = o′n + o′′n. This gives the following recursive
relations:

e′n = (n− 1)on−2 e′′n = (n− 1)on−1 o′n = (n− 1)en−2 o′′n = (n− 1)en−1

Then

en − on = (e′n + e′′n)− (o′n + o′′n)
= (n− 1)((on−1 + on−2)− (en−1 + en−2))
= (n− 1)((on−1 − en−1) + (on−2 − en−2))
= (n− 1)((−1)n−1(n− 2) + (−1)n−2(n− 3))
= (−1)n−1(n− 1).

The formula now follows by induction, using the initial values from Table 3.

Corollary 4.2. Let en and on be the number of even and odd derangements, resp.

Then en =
dn + (−1)n−1(n− 1)

2
and on =

dn + (−1)n(n− 1)
2

.

We don’t believe Theorem 4.1 is as well-known as it should be. As we remarked
earlier, we believe this has to do with the fact that students study derangements in
combinatorics classes, but they study permutation groups in algebra classes.

4.2. Counting direct and indirect c-derangements. How can we determine
whether an isometry of Qn is direct or indirect? We know that direct isometries
are the product of an even number of reflections, but in this setting, it can be
confusing to interpret reflections using permutation notation. For instance, consider
the following c-derangement of the cube in 3-dimensions:
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• First, reflect in a plane that contains two edges of the cube to get the facet
permutation (1, 2)(1∗, 2∗).
• Then reflect in a plane parallel to facets 3 and 3∗: (3, 3∗).

The result is a c-derangement whose facet cycle structure is (1, 2)(1∗, 2∗)(3, 3∗).
This looks like a product of an odd number of transpositions, but this isometry
is direct (and so, in this case, it’s a rotation). The problem with our algebraic
representations of the isometries is the redundancy in representing the reflection
(1, 2)(1∗, 2∗).

We can work around this problem by finding a more concise way to represent an
isometry. For our example, the representation of the first isometry has the following
redundancy: If facets 1 and 2 are swapped, then the isometry also must swap 1∗

and 2∗. Thus, we can recode the isometry as follows: (1, 2)(3, 3∗). Similarly, we
can recode (1, 2∗)(1∗, 2) as (1, 2∗) (of course, we could also recode it as (1∗, 2) if we
wanted).

For readers who know more group theory, this recoding can be made precise by
using the group of isometries of the hypercube, called the hyperoctahedral group
(it’s the same as the isometry group of the dual solid - the hyperoctahedron or
the n-dimensional cross-polytope [7]). This group is isomorphic to Zn

2 o Sn, the
semidirect product of the normal abelian 2-group Zn

2 and the symmetric group Sn,
where the action of Sn on Zn

2 is conjugation.
From a geometric perspective, we can think of this group as acting on the facets

of the hypercube as follows:

• Situate the hypercube so that the origin 0 is one of its vertices and the
facets incident to 0 are labeled 1, 2, . . . , n.
• Use elements in Sn to permute the facets surrounding 0.
• Finally, use reflections in the normal subgroup Zn

2 to move 0 to some other
vertex v.

We saw this procedure earlier in the discussion at the beginning of Section 3
that explained the link between the coat problem and c-derangements. Any per-
mutation in Sn can be written as a product of transpositions, and you can show
that interchanging two facets adjacent to 0 can be realized as a single reflection.
Then the first factor Zn

2 is generated by n orthogonal reflections normal to the n
coordinate axes, and Sn is generated by reflections corresponding to transpositions.
More information about this action can be found in [8], for example.

We can now use this to get the ‘right’ way to represent an isometry of the cube
as a product of transpositions. Our goal is to write any isometry of the cube as
a product of terms like (i, i∗) followed by terms of the form (i, j). (We use the
convention that multiplication is done right to left.) For example, the rotation
(12)(1∗2∗)(33∗) would be expressed more simply as (33∗)(12) (since if 1 and 2
are switched, then 1∗ and 2∗ must also be switched). More complicated but still
doable, (1, 2∗)(1∗, 2) = (1, 1∗)(2, 2∗)(1, 2)(1∗, 2∗) which becomes (1, 1∗)(2, 2∗)(1, 2)
in our shorthand notation.

Using this representation for the group, we see that an isometry is direct if and
only if it is a product of an even number of transpositions (written in the shorthand
way), which is what we were after.

An even better way to deal with the direct-indirect issue here is to use the signed
permutation matrices we used in the proof of Prop. 3.2. Then we can tell whether
an isometry is direct or indirect by evaluating its determinant:
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If A is a signed permutation matrix, then det(A) = 1 precisely
when A corresponds to a direct isometry, and det(A) = −1 if A
corresponds to an indirect isometry.

Reflection Transposition Matrix operation
Normal to coordinate axis (k, k∗) Multiply row k by −1

Not normal to coordinate axis (ab)(a∗b∗) Swap rows a and b
Not normal to coordinate axis (ab∗)(a∗b) Swap rows a and b

and multiply each by −1

In Section 3 we gave the number of direct and indirect c-derangements for the
square and cube. Here’s what we asserted:

• Square: d̂2 = 5, with 3 direct and 2 indirect c-derangements.
• Cube: d̂3 = 29, with 14 direct and 15 indirect c-derangements.

The next theorem shows that the difference between the number of direct and
indirect c-derangements is always ±1. This will follow from the construction of
a bijection between the odd and even c-derangements except for central inversion.
Central inversion is the isometry that sends every point (x1, . . . , xn) to its antipodal
point (−x1, . . . ,−xn). For the square, you can see the central inversion in Figure
2 in the center of the bottom row – a 180◦ rotation indeed sends every point to its
antipode. Thus, in dimension 2, central inversion is a direct isometry. In Section
5, we will see that central inversion in dimension 3 is indirect (chemists call this an
improper reflection). This pattern continues: the matrix corresponding to central
inversion is −In×n, i.e., the diagonal matrix with all entries −1. Its determinant is
±1, depending on the parity of n, the dimension of our hypercube. Thus, central
inversion (which is always a c-derangement) is direct in even dimensions and indirect
in odd dimensions.

Theorem 4.3. Let ên and ôn denote the number of direct and indirect c-derangements
of Qn resp. Then ên − ôn = (−1)n.

Proof. To keep track of which c-derangements are direct and which are indirect, we
use signed permutation matrices. We will construct a bijection between the direct
and indirect c-derangments that are not central inversion. So, assume A is a signed
permutation matrix corresponding to a c-derangement that is not central inversion.
A has at least 2 non-zero entries off the main diagonal, so we can find i so that
ai,i = 0 but am,m 6= 0 for all m < i. Let j be the column corresponding to the
non-zero entry in row i, so j is the unique index with ai,j 6= 0.

We know that ai,j = 1 or −1. For one of those choices, the determinant will
be 1 and for the other, the determinant will be −1 (since ai,j is the only non-zero
entry in that row, and multiplying a row by −1 multiplies the determinant by
−1). Since both choices are c-derangements, this gives us the bijection between the
direct and indirect c-derangements (where we have removed central inversion from
consideration). Putting central inversion back in gives us the formula, since central
inversion is direct if and only if n is even.
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Theorem 4.3 gives a third proof1 that d̂n is always odd: d̂n = 2ên ± 1. In Table
4, we list the first 7 values of the sequences ên and ôn.

Table 4. Number of even and odd c-derangements for n ≤ 7.

n 1 2 3 4 5 6 7
d̂n 1 5 29 233 2329 27,949 391,285
ên 0 3 14 117 1164 13,975 195,642
ôn 1 2 15 116 1165 13,974 195,643

Corollary 4.4. Let ên and ôn denote the number of direct and indirect c-derangements

of Qn resp. Then ên =
d̂n + (−1)n

2
and ôn =

d̂n + (−1)n+1

2
.

The sequences ên and ôn appear to be ‘new’ in the sense they are not (currently)
in the OEIS [12].

5. Geometry of 3-dimensional derangements and c-derangements

Time for some fun. If, like most humans, you have trouble visualizing objects
in 4 or more dimensions, then you can start by looking at some low dimensional
examples, and then try to generalize. This sounds easier than it is, but, for the sim-
plex and hypercube symmetries, it’s extremely valuable. An interesting discussion
about the power of analogy appears in Section 7-1 of [7].

5.1. Derangements of the tetrahedron. For a bounded solid in R3, there are
three kinds of isometries we need to consider: rotations, reflections and rotary re-
flections. Rotary reflections are operations that correspond to combining a rotation
and a reflection. It is possible to have a rotary reflection where neither the rotation
nor the reflection involved is itself a symmetry of the object; when this happens,
the rotary reflection is called irreducible.

(a) Identity (b) 120◦ Rotation (c) 180◦ rotation (d) Reflection

Figure 4. A tetrahedron, a 120◦ rotation, a 180◦ rotation and a reflection.

The tetrahedron has 24 symmetries corresponding to the 4! permutations of S4.
As isometries, these can be broken into the following categories.

• Direct isometries

1Three proofs mean it’s really really really true.
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◦ The identity I, which is clearly not a derangement;
◦ The 8 rotations with axis through a vertex and the center of the oppo-

site facet as in Figure 4(b). These order 3 rotations are through angles
of 120◦ or 240◦ and correspond to face permutations of the form (abc).
These are not derangements;

◦ The 3 180◦ rotations with axis through the centers of two opposite
edges as in Figure 4(c). They have face permutations (ab)(cd) and so
are derangements.

• Indirect isometries
◦ The 6 reflections with mirror plane containing one edge of the tetra-

hedron as in Figure 4(d). These have face permutations of the form
(ab), so they aren’t derangements;

◦ The 6 rotary reflections, with face permutation form (abcd) as in Figure
5. These are derangements.

It’s worth investigating more closely how the rotary reflections operate. The
following step-by-step guide should help you create any of the 6 rotary reflections
on your own tetrahedron.

(1) Cut the tetrahedron through the plane containing the centers of four edges
(take all edges except two that do not share a vertex). This cuts the
tetrahedron into two congruent pieces that get glued back along a square.
(You now have a tricky little puzzle.)

(2) Rotate the entire tetrahedron 90◦ about an axis perpendicular to the square
cross-section. This is not an isometry of the tetrahedron.

(3) Reflect the tetrahedron through the plane containing the square. This is
also not an isometry of the tetrahedron.

Original 90◦ rotation Reflection

Figure 5. A rotary reflection in two steps: First rotate (the tetra-
hedron does not match up), then reflect.

You didn’t really need to cut your tetrahedron into two pieces after all, but
you do need to identify the square cross-section. The rotation involved is ‘half’ of
one of our 180◦ edge-rotations from Figure 4(c). The resulting rotary reflection is
irreducible. As mentioned above, this rotary reflection induces the face permutation
(abcd), a 4-cycle. This shouldn’t be too surprising, as the square from the cross-
section meets each of the four faces, and we are rotating around this square.

5.2. c-derangements of the cube. Now we turn our attention to the ordinary
3-dimensional cube. There are 233! = 48 isometries of a cube:
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• Direct isometries
◦ The identity, which is not a c-derangement;
◦ Eight rotations of 120◦ and 240◦ through the 4 pairs of opposite ver-

tices as pictured in 6(a). These are c-derangements;
◦ Six 180◦ rotations through the centers of opposite edges as pictured in

6(b). These are also c-derangements;
◦ Nine rotations through the centers of opposite faces. These are not

c-derangements.
• Indirect isometries

◦ Nine reflections: three through the plane containing the centers of
four parallel edges and six through opposite edges. None of these are
c-derangements;

◦ Fifteen rotary reflections: central inversion (pictured in Figure 7(a));
six reducible ones through an axis through centers of opposite sides
(pictured in Figure 7(b)) and eight irreducible ones through an axis
through two opposite vertices (pictured in Figure 7(c)). These are
c-derangements.

Note that 14 of the 29 c-derangements are direct, while 15 are indirect. In both
Figure 6 and Figure 7, opposite facets have the same pattern, but in different sizes.
Notice also that the direct isometries preserve the orientation of the cube (so you
perform these isometries with a die), while the indirect ones reverse the orientation
of the cube (so you’d need a mirror-image die to perform them).

(a) Rotate through opposite vertices (b) Rotate through opposite edge centers

Figure 6. The direct face-derangements of the cube.

The indirect c-derangements are all rotary reflections, which are, again, a bit
harder to picture. Central inversion always corresponds to a c-derangement (see
Figure 7(a)), but it’s an indirect isometry in 3-dimensions. It can be realized either
as the composition of 3 mutually perpendicular reflections or by a rotary reflection
in a variety of ways, as we will see shortly.

We now examine the 14 remaining rotary reflections in a bit more detail. In
Figure 7(b), you can see the rotary reflection formed as a composition of a rotation
of 90◦ or 270◦ around an axis through the center of two opposite sides followed by
a reflection through the plane perpendicular to that axis at its midpoint. There
are 3 of those axes so there are 6 such rotary reflections, all of which are reducible.
(Notice that if you do this same rotary reflection with a rotation of 180◦, you get
central inversion).

In Figure 7(c), you can see the last kind of rotary reflection, which is irreducible:
a rotation of 60◦ or 300◦ around an axis through two opposite vertices followed by
a reflection through the plane perpendicular to that axis. Since there are 4 pairs
of opposite vertices, this gives 8 distinct isometries. (Once again, central inversion
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(a) Central inversion (b) Axis through side centers (c) Diagonal axis

Figure 7. The 15 indirect face-derangements of the cube.

arises from a rotation of 180◦ followed by reflection.) These can be quite challenging
to picture, since the initial rotation does not align the cube with itself. Figure 8
breaks an irreducible rotary reflection down to help with visualization.

Figure 8. An irreducible rotary reflection of the cube.

There are two more interesting aspects of this kind of rotary reflection. First, it
gives a 6-cycle on the faces of the cube. Second, the plane perpendicular to the axis
of rotation cuts the cube into two congruent pieces, forming (as a cross section) a
regular hexagon that passes through each of the 6 sides of the cube. It is well worth
locating these hexagons on an actual cube! Showing students the two pieces (after
having them guess about what kinds of polygons could be formed as cross sections
when slicing a cube) usually elicits some surprised looks.

6. Suggestions for future study

We conclude with a few ideas for projects that can help solidify some of the ideas
from this paper.

(1) In the proof of Theorem 4.3, signed permutation matrices give a bijection
between the direct and indirect isometries (excluding central inversion). As
a warm-up, find this bijection explicitly for the 14 direct and 14 indirect
(again, excluding central inversion) c-derangements of the cube. (To do
this, you will need to number the six faces of your cube 1, 1∗, 2, 2∗, 3, 3∗ and
then use this numbering to refer to your c-derangements.)

(2) Study the vertex, edge and face derangements for the remaining Platonic
solids. We’ve covered the faces (and the vertices) for the tetrahedron, and
we’ve done the faces of the cube (and therefore, the vertices of its dual,
the octahedron). We haven’t considered the faces of the octahedron, and
we’ve completely ignored the icosahedron and its dual, the dodecahedron.
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Determining the vertex, edge or facet derangement numbers for these solids
is a good exercise in geometric visualization.

The symmetry group of the icosahedron is A5 × Z2, so there are 120
isometries to consider. Counting the direct and indirect vertex, edge and
face derangements is also a good exercise. For extra credit, describe the 45
rotary reflections explicitly in this case.

(3) There are 6 regular solids in 4 dimensions: The 4-simplex, the hypercube
the hyperoctahedron, the 24-cell, the 120-cell, and the 600-cell. All of the
same questions make sense here:
• Find the number of vertex, edge, 2-dimensional and 3-dimensional face

derangement numbers for the 24-cell and the 120-cell. (By duality,
derangements for the 120-cell and the 600-cell are the same, where the
vertex derangements for the 120-cell are the same as the 3-dimesional
facet derangements for the 600-cell, and so on.)

• For each class of derangements, count the direct and indirect isome-
tries, as above.

The 24-cell has 1152 isometries and the 120-cell (and 600-cell) has 14,400.
In dimensions 5 and higher, there are only 3 regular solids: The n-simples,
the n-cube its dual, the n-dimensional hyperoctahedron. See [8] for de-
scriptions of these symmetry groups.

(4) Extend this approach to general root systems. In particular, the exceptional
root systems E6, E7 and E8 are very important families of vectors that
display lots of symmetry. How many isometries move all the vectors in the
root system? Much more about root systems can be found in [8].
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