EQUATIONS OF THE FORM $t(x+a)=t(x)$ AND $t(x+a)=1-t(x)$ FOR THUE-MORSE SEQUENCE

VLADIMIR SHEVELEV

Abstract

For every $a \geq 1$ we give a recursion algorithm of building of set of solutions of equations of the form $t(x+a)=t(x)$ and $t(x+a)=$ $1-t(x)$, where $\{t(n)\}$ is Thue-Morse sequence. We pose an open problem and two conjectures.

1. Introduction and main results

The Thue-Morse (or Prouhet-Thue-Morse [1]) sequence $\left\{t_{n}\right\}_{n \geq 0}$ is one of the most known and useful $(0,1)$-sequences. By the definition, $t_{n}=0$, if the binary expansion of n contains an even number of $1^{\prime} s$, and $t_{n}=1$ otherwise. It is sequence A010060 in OEIS [8]. Numerous applications of this sequence and a large bibliography one can find in [1] (see also the author's articles [6]-[7] and especially the applied papers [4]-[5] in combinatorics and [3] and [11] in informative theory, in which the Thue-Morse sequence plays a key role in their constructions). Let \mathbb{N}_{0} be the set of nonnegative integers. For $a \in \mathbb{N}$, consider on \mathbb{N}_{0} equations

$$
\begin{gather*}
t(x+a)=t(x), \tag{1}\\
t(x+a)=1-t(x) . \tag{2}
\end{gather*}
$$

Denote C_{a} and B_{a} the sets of solutions of equations (1) and (2) correspondingly. Evidently we have

$$
\begin{equation*}
B_{a} \cup C_{a}=\mathbb{N}_{0}, \quad B_{a} \cap C_{a}=\oslash \tag{3}
\end{equation*}
$$

The following lemma is proved straightforward (cf.[8], A079523, A121539).
Lemma 1. $B_{1}\left(C_{1}\right)$ consists of nonnegative integers the binary expansion of which ends in an even (odd) number of 1's.

For a set of integers $A=\left\{a_{1}, a_{2}, \ldots\right\}$ let us introduce a translation operator

$$
\begin{equation*}
E_{h}(A)=\left\{a_{1}-h, a_{2}-h, \ldots\right\} \tag{4}
\end{equation*}
$$

One of our main result is the following.
Theorem 1. B_{a} and C_{a} are obtained by a finite set of operations of translation, union and intersection over B_{1} and C_{1}.

It is well known that the Thue-Morse sequence is not periodic (a very attractive proof of this fact is given in [9]). Nevertheless, it is trivial to note that for every $n \in \mathbb{N}_{0}$ there exists $x=1,2$ or 3 such that $t(n+x)=$ $t(n)$. Indeed, as is well-known, the Thue-Morse sequence does not contain configurations of the form 000 or 111 . Therefore, if to suppose that the equalities $t(n+x)=1-t(n), x=1,2,3, \quad$ are valid simultaneously, then we have a contradiction. In connection with this, it is natural to pose the following problem.

Question 1. For which numbers a, b, c one can state that for every $n \in \mathbb{N}_{0}$ there exists $x=a, b$ or c such that $t(n+x)=t(n)$?

In conclusion of introduction, we pose a quite another conjecture. Recall that $n \in \mathbb{N}_{0}$ is called evil (odious) if the number of 1 's in its binary expansion is even (odd). Thus, by the above definition of Thue-Morse sequence, for evil (odious) n we have $t_{n}=0\left(t_{n}=1\right)$. Denote $\left\{B_{a}(n)\right\}\left(\left\{C_{a}(n)\right\}\right)$ the sequence of elements of $B_{a}\left(C_{a}\right)$ in the increasing order. Denote, furthermore, $\left\{\beta_{a}(n)\right\}\left(\left\{\gamma_{a}(n)\right\}\right)(0,1)$-sequence, which is obtained from $\left\{B_{a}(n)\right\}\left(\left\{C_{a}(n)\right\}\right)$ by replacing the odious terms by 1's and the evil terms by 0 's.

Conjecture 1. 1)Sequence $\left\{\gamma_{a}(n)\right\}$ is periodic; 2) if $2^{m} \| a$, then the minimal period has 2^{m+1} terms, moreover, 3) if a is evil, then the minimal period contains the first 2^{m+1} terms of Thue-Morse sequence $\left\{t_{n}\right\}$, otherwise, it contains the first 2^{m+1} terms of sequence $\left\{1-t_{n}\right\}$; 4) $\beta_{a}(n)+\gamma_{a}(n)=1$.

Below we prove the conjecture in case of $a=2^{m}$.

2. Some formulas for B_{a} And C_{a}

Theorem 2.

$$
\begin{align*}
& B_{a+1}=\left(C_{a} \cap E_{a}\left(B_{1}\right)\right) \cup\left(B_{a} \cap E_{a}\left(C_{1}\right)\right), \tag{5}\\
& C_{a+1}=\left(C_{a} \cap E_{a}\left(C_{1}\right)\right) \cup\left(B_{a} \cap E_{a}\left(B_{1}\right)\right) . \tag{6}
\end{align*}
$$

Proof. Denote the right hand sides of (5) and (6) via B_{a+1}^{*} and C_{a+1}^{*} correspondingly. Show that $B_{a+1}^{*} \cup C_{a+1}^{*}=\mathbb{N}_{0}$. Indeed, using (3)-(6), we have

$$
B_{a+1}^{*} \cup C_{a+1}^{*}=\left(C_{a} \cap\left(E_{a}\left(B_{1}\right) \cup E_{a}\left(C_{1}\right)\right)\right) \cup\left(B_{a} \cap\left(E_{a}\left(C_{1}\right) \cup E_{a}\left(B_{1}\right)\right)\right)=
$$

$$
\left(C_{a} \cap E_{a}\left(\mathbb{N}_{0}\right)\right) \cup\left(B_{a} \cap E_{a}\left(\mathbb{N}_{0}\right)\right)=C_{a} \cup B_{a}=\mathbb{N}_{0}
$$

Now it is sufficient to show that B_{a+1}^{*} contains only solutions of (2) for $a:=a+1$, while C_{a+1}^{*} contains only solutions of (1) for $a:=a+1$. Indeed, let $x \in B_{a+1}^{*}$. Distinguish two cases: 1) $x \in C_{a} \cap E_{a}\left(B_{1}\right)$ and 2) $x \in B_{a} \cap E_{a}\left(C_{1}\right)$. In case 1) (1) is valid and $x+a \in B_{1}$. Thus

$$
t(x+a+1)+t(x+a)=1,
$$

or, taking into account (1), we have

$$
t(x+a+1)=1-t(x)
$$

In case 2) (2) is valid and $x+a \in C_{1}$. Thus

$$
t(x+a+1)=t(x+a)
$$

or, taking into account (2), we have

$$
t(x+a+1)=1-t(x)
$$

Let now $x \in C_{a+1}^{*}$. Again distinguish two cases: 1) $x \in C_{a} \cap E_{a}\left(C_{1}\right)$ and 2) $x \in B_{a} \cap E_{a}\left(B_{1}\right)$. In case 1) (1) is valid and $x+a \in C_{1}$. Thus

$$
t(x+a+1)=t(x+a)
$$

or, taking into account (1), we have

$$
t(x+a+1)=t(x)
$$

In case 2) (2) is valid and $x+a \in B_{1}$. Thus

$$
t(x+a+1)=1-t(x+a),
$$

or, taking into account (2), we have

$$
t(x+a+1)=t(x)
$$

Consequently, $B_{a+1}^{*} \cap C_{a+1}^{*}=\oslash$ and $B_{a+1}^{*}=B_{a+1}, \quad C_{a+1}^{*}=C_{a+1}$.
From Theorem 3, evidently follows Theorem 1.
Example 1. (cf.A081706[8]; this sequence is closely connected with sequence of Allouche et al [2], A003159[8])

According to Theorem 2, we have

$$
C_{2}=\left(C_{1} \cap E_{1}\left(C_{1}\right)\right) \cup\left(B_{1} \cap E_{1}\left(B_{1}\right)\right)
$$

Since, evidently, $C_{1} \cap E_{1}\left(C_{1}\right)=\oslash$, then we obtain a representation

$$
\begin{equation*}
C_{2}=B_{1} \cap E_{1}\left(B_{1}\right) \tag{7}
\end{equation*}
$$

Example 2. (cf. our sequences A161916, A161974 in [8]) Denote $C_{3}^{(0)}$ the subset of C_{3} such that for $n \in C_{3}^{(0)}$ we have: $\min \{x: t(n+x)=t(x)\}=3$. The following simple formula is valid:

$$
C_{3}^{(0)}=E_{1}\left(C_{1}\right)
$$

Proof. Using (7), consider the following partition of \mathbb{N}_{0} :

$$
\mathbb{N}_{0}=C_{1} \cup B_{1}=C_{1} \cup\left(B_{1} \cap E_{1}\left(B_{1}\right)\right) \cup\left(B_{1} \cap \overline{E_{1}\left(B_{1}\right)}\right)=C_{1} \cup C_{2} \cup D
$$

where

$$
D=B_{1} \cap \overline{E_{1}\left(B_{1}\right)}
$$

Evidently,

$$
D \cap C_{1}=\oslash, \quad D \cap C_{2}=D \cap\left(B_{1} \cap E_{1}\left(B_{1}\right)\right)=\oslash
$$

Thus $D=C_{3}^{(0)}$. On the other hand, we have

$$
D=B_{1} \cap \overline{E_{1}\left(B_{1}\right)}=B_{1} \cap E_{1}\left(C_{1}\right)=E_{1}\left(C_{1}\right) .
$$

By the same way one can prove the following more general results.
Theorem 3. (A generalization) Let $l+m=a+1$. Then we have

$$
\begin{align*}
& B_{a+1}=\left(C_{l} \cap E_{l}\left(B_{m}\right)\right) \cup\left(B_{l} \cap E_{l}\left(C_{m}\right)\right), \tag{8}\\
& C_{a+1}=\left(C_{l} \cap E_{l}\left(C_{m}\right)\right) \cup\left(B_{l} \cap E_{l}\left(B_{m}\right)\right) . \tag{9}
\end{align*}
$$

In particular together with (5)-(6) we have

$$
\begin{align*}
& B_{a+1}=\left(C_{1} \cap E_{1}\left(B_{a}\right)\right) \cup\left(B_{1} \cap E_{1}\left(C_{a}\right)\right), \tag{10}\\
& C_{a+1}=\left(C_{1} \cap E_{1}\left(C_{a}\right)\right) \cup\left(B_{1} \cap E_{1}\left(B_{a}\right)\right) . \tag{11}
\end{align*}
$$

Further, for a set of integers $A=\left\{a_{1}, a_{2}, \ldots\right\}$, denote $h A$ the set $A=$ $\left\{h a_{1}, h a_{2}, \ldots\right\}$.

Theorem 4. For $m \in \mathbb{N}$ we have

$$
\begin{align*}
& B_{2^{m}}=\bigcup_{k=0}^{2^{m}-1} E_{-k}\left(2^{m} B_{1}\right), \tag{12}\\
& C_{2^{m}}=\bigcup_{k=0}^{2^{m}-1} E_{-k}\left(2^{m} C_{1}\right) . \tag{13}
\end{align*}
$$

Proof. It is sufficient to consider numbers of the form

$$
\begin{equation*}
n=\ldots 011 \ldots 1 \times \times \ldots \times, \tag{14}
\end{equation*}
$$

where the m last digits are arbitrary. The theorem follows from a simple observation that the indicated in (14) series of 1's contains an odd (even) number of 1 's if and only if $n \in C_{2^{m}}\left(n \in B_{2^{m}}\right)$.

Example 3.

$$
\begin{equation*}
C_{2}=\left(2 C_{1}\right) \cup E_{-1}\left(2 C_{1}\right) . \tag{15}
\end{equation*}
$$

Comparison with (7) leads to an identity

$$
\begin{equation*}
\left(2 C_{1}\right) \cup E_{-1}\left(2 C_{1}\right)=B_{1} \cap E_{1}\left(B_{1}\right) \tag{16}
\end{equation*}
$$

On the other hand, the calculating B_{2} by Theorems 3,5 leads to another identity

$$
\begin{equation*}
\left(2 B_{1}\right) \cup E_{-1}\left(2 B_{1}\right)=C_{1} \cup E_{1}\left(C_{1}\right) \tag{17}
\end{equation*}
$$

Corollary 1. For $a=2^{m}$, Conjecture 1 is true.
Proof. In view of the structure of formulas (12)-(13), it is sufficient to prove that in sequences $\left\{B_{1}(n)\right\},\left\{C_{1}(n)\right\}$ odious and evil terms alternate. Indeed, in the mapping $\left\{B_{2^{m}}(n)\right\}\left(\left\{C_{2^{m}}(n)\right\}\right)$ on $\left\{\beta_{2^{m}}(n)\right\}\left(\left\{\gamma_{2^{m}}(n)\right\}\right)$ correspondingly, for any $x \in B_{1}(n)$ the ordered subset

$$
\bigcup_{k=0}^{2^{m}-1} E_{-k}\left(2^{m} x\right)
$$

of $B_{2^{m}}$ (12) maps on the first 2^{m} terms of sequence $\left\{t_{n}\right\}$ or $\left\{1-t_{n}\right\}$ depending on the number x is evil or odious. Therefore, if odious and evil terms of $B_{1}(n)$ alternate, then we obtain the minimal period 2^{m+1} for $\left\{\beta_{2^{m}}(n)\right\}$. By the same way we prove that if odious and evil terms of $C_{1}(n)$ alternate, then we obtain the minimal period 2^{m+1} for $\left\{\gamma_{2^{m}}(n)\right\}$. Now we prove that odious and evil terms of, e.g., $C_{1}(n)$, indeed, alternate. If the binary expansion of n ends in more than 1 odd 1's, then the nearest following number from $\left\{C_{1}(n)\right\}$ is $n+2$, and it is easy to see that the relation $t(n+2)=1-t(n)$ satisfies; if the binary expansion of n ends in one isolated 1 , and before it we have a series of more than 10 's, then the nearest following number from $\left\{C_{1}(n)\right\}$ is $n+4$, and it is easy to see that the relation $t(n+4)=1-t(n)$ again satisfies; at last, if the binary expansion of n ends in one isolated 1 , and before it we have one isolated 0 , i.e. n has the form $\ldots 011 \ldots 101$, then we distinguish two cases: the series of 1's before two last digits 01 contains a)odd and b)even 1's. In case a) the nearest following number from $\left\{C_{1}(n)\right\}$ is $n+2$, with the relation $t(n+2)=1-t(n)$, while in case b) it is $n+4$ with the relation $t(n+4)=1-t(n)$. Thus odious and evil terms of $\left\{C_{1}(n)\right\}$, indeed, alternate. For $\left\{B_{1}(n)\right\}$ the statement is proved quite analogously.

Theorem 5. (Formulas of complement to power of 2) Let $2^{m-1}+1 \leq a \leq$ 2^{m}. Then we have

$$
\begin{aligned}
& B_{a}=\left(C_{2^{m}} \cap E_{a}\left(B_{2^{m}-a}\right)\right) \cup\left(B_{2^{m}} \cap E_{a}\left(C_{2^{m}-a}\right)\right), \\
& C_{a}=\left(B_{2^{m}} \cap E_{a}\left(B_{2^{m}-a}\right)\right) \cup\left(C_{2^{m}} \cap E_{a}\left(C_{2^{m}-a}\right)\right) .
\end{aligned}
$$

Proof. Denote the right hand sides of the formulas being proved via $B_{a}^{* *}$ and $C_{a}^{* *}$ correspondingly. Show that $B_{a}^{* *} \cup C_{a}^{* *}=\mathbb{N}_{0}$. Indeed,

$$
\begin{gathered}
B_{a}^{* *} \cup C_{a}^{* *}= \\
\left(C_{2^{m}} \cap\left(E_{a}\left(B_{2^{m}-a}\right) \cup E_{a}\left(C_{2^{m}-a}\right)\right)\right) \cup\left(B_{2^{m}} \cap\left(E_{a}\left(C_{2^{m}-a}\right) \cup E_{a}\left(B_{2^{m}-a}\right)\right)\right)= \\
\left(E_{a}\left(B_{2^{m}-a}\right) \cup E_{a}\left(C_{2^{m}-a}\right)\right) \cap\left(B_{2^{m}} \cup\left(C_{2^{m}}\right)\right)=E_{a}\left(\mathbb{N}_{0}\right) \cap \mathbb{N}_{0}=\mathbb{N}_{0} .
\end{gathered}
$$

Now, by the same way as in proof of Theorem 3, it is easy to show that $B_{a}^{* *}$ contains only solutions of (2), while $C_{a}^{* *}$ contains only solutions of (1). Then $B_{a}^{* *} \cap C_{a}^{* *}=\oslash$ and $B_{a}^{* *}=B_{a}, C_{a}^{* *}=C_{a}$.

3. An approximation of Thue-Morse constant

Let $T_{m}\left(U_{m}\right)$ be the number which is obtained by the reading the period of $\left\{\beta_{a}(n)\right\}\left(\left\{\gamma_{a}(n)\right\}\right)$ as 2^{m+1}-bits binary number. Note that $\bar{U}_{m}=T_{m}$, i.e. U_{m} is obtained from T_{m} by replacing 0 's by 1 's and 1's by 0 's. Therefore,

$$
\begin{equation*}
T_{m}+U_{m}=2^{2^{m+1}}-1 \tag{18}
\end{equation*}
$$

Denote $U_{m} \vee T_{m}$ the concatenation of U_{m} and T_{m}. Then, using (18), we have

$$
U_{0}=1, \text { for } m \geq 0
$$

(19) $U_{m+1}=U_{m} \vee T_{m}=2^{2^{m+1}} U_{m}+2^{2^{m+1}}-U_{m}-1=\left(2^{2^{m+1}}-1\right)\left(U_{m}+1\right)$.

Consider now the infinite binary fraction corresponding to sequence $\left\{\gamma_{a}(n)\right\}$:

$$
\begin{equation*}
\tau_{m}=. U_{m} \vee U_{m} \vee \ldots=U_{m} /\left(2^{2^{m+1}}-1\right) \tag{20}
\end{equation*}
$$

Lemma 2. If $F_{n}=2^{2^{n}}+1$ is n-th Fermat number, then we have a recursion:

$$
\begin{equation*}
F_{m+1} \tau_{m+1}=1+\left(F_{m+1}-2\right) \tau_{m}, \quad m \geq 0 \tag{21}
\end{equation*}
$$

with τ_{0} defined as the binary fraction

$$
\begin{equation*}
\tau_{0}=.010101 \ldots=1 / 3 \tag{22}
\end{equation*}
$$

Proof. Indeed, according to (19)-(20), we have

$$
\begin{gathered}
\tau_{m+1}=. U_{m+1} \vee U_{m+1} \vee \ldots= \\
U_{m+1} /\left(2^{2^{m+2}}-1\right)=\left(2^{2^{m+1}}-1\right)\left(U_{m}+1\right) /\left(2^{2^{m+2}}-1\right)= \\
\left(U_{m}+1\right) /\left(2^{2^{m+1}}+1\right)=\left(1+\tau_{m}\left(2^{2^{m+1}}-1\right)\right) /\left(2^{2^{m+1}}+1\right)=
\end{gathered}
$$

$$
\left(1+\tau_{m}\left(F_{m+1}-2\right)\right) / F_{m+1},
$$

and the lemma follows.
So, by (21)-(22) for $m=0,1, \ldots$ we find

$$
\begin{gathered}
\tau_{1}=2 / 5, \quad \tau_{2}=7 / 17, \quad \tau_{3}=106 / 257 \\
\tau_{4}=27031 / 65537, \\
\tau_{5}=1771476586 / 4294967297, \ldots
\end{gathered}
$$

It follows from (21) that the numerators $\left\{s_{n}\right\}$ of these fractions satisfy the recursion

$$
\begin{equation*}
s_{1}=2, \quad s_{n+1}=1+\left(2^{2^{n}}-1\right) s_{n}, \quad n \geq 1 \tag{23}
\end{equation*}
$$

while the denominators are $\left\{F_{n}\right\}$. Of course, by its definition, the sequence $\left\{\tau_{n}\right\}$ very fast converges to the Thue-Morse constant

$$
\tau=\sum_{n=1}^{\infty} \frac{t_{n}}{2^{n}}=0.4124540336401 \ldots
$$

E.g., τ_{5} approximates τ up to 10^{-9}.

Conjecture 2. For $n \geq 1$, the fraction $\tau_{n}=s_{n} / F_{n}$ is a convergent corresponding to the continued fraction for τ.

Note that, the first values of indices of the corresponding convergents, according to numeration of A085394 and A085395 [8] are: 3, 5, 7, 13, 23, .. Note also that the binary fraction corresponding to sequence $\left\{\beta_{a}(n)\right\}$:

$$
\bar{\tau}_{m}=. T_{m} \vee T_{m} \vee \ldots
$$

satisfies the same relation (21) but with

$$
\bar{\tau}_{0}=.101010 \ldots=2 / 3
$$

and converges to $1-\tau$.

4. Comparison with the Weisstein approximations

Now we want to show that Conjecture 2 is very plausible. As is well known, if the fraction $p / q, q>0$, is a convergent (beginning the second one) corresponding to the continued fraction for α, then p / q is the best approximation to α between all fractions of the form $x / y, y>0$, with $y \leq q$.
Weisstein [10] considered the approximations of τ of the form:

$$
\begin{gather*}
a_{0}=0.0_{2} ; \quad a_{1}=0.01_{2} ; \quad a_{2}=0.0110_{2} ; \quad a_{3}=0.01101001_{2} ; \\
a_{4}=0.0110100110010110_{2} ; \ldots \tag{24}
\end{gather*}
$$

If to keep the "natural" denominators $F_{n}-1$ (without cancelations), then, denoting w_{n} the numerators of these fractions, we have

$$
\begin{equation*}
w_{n+1}=U_{n}, \quad n \geq 0 \tag{25}
\end{equation*}
$$

Since, according to (19),

$$
U_{n}=2^{2^{n}} U_{n-1}+2^{2^{n}}-U_{n-1}-1, \quad n \geq 1
$$

then

$$
\begin{equation*}
w=1, \quad w_{n+1}=2^{2^{n}}-1+\left(2^{2^{n}}-1\right) w_{n}, \quad n \geq 1 \tag{26}
\end{equation*}
$$

Theorem 6. We have

$$
\begin{equation*}
w_{n} /\left(F_{n}-1\right)<s_{n} / F_{n}<\tau \tag{27}
\end{equation*}
$$

Proof. It is easy to see that $s_{n} / F_{n}<\tau$. Indeed, since $t_{2^{n}}=1$, then $\left(2^{n}+1\right)$-th binary digit of τ after the point is 1 , while the period of τ_{n} begins from 0 . Let us now prove the left inequality. To this end, let us prove by induction that

$$
\begin{equation*}
s_{n}-w_{n}=1 \tag{28}
\end{equation*}
$$

Indeed, if (28) is true for some n, then, subtracting (26) from (23), we find

$$
s_{n+1}-w_{n+1}=-2^{2^{n}}+2+\left(2^{2^{n}}-1\right)\left(s_{n}-w_{n}\right)=1 .
$$

Thus finally we have

$$
w_{n} /\left(F_{n}-1\right)=\left(s_{n}-1\right) /\left(F_{n}-1\right)<s_{n} / F_{n}<\tau .
$$

Acknowledgment. The author is grateful to J.-P. Allouche and D. Berend for very useful remarks and to S. Litsyn for sending papers [3] and [11].

References

[1] . J.-P. Allouche and J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, http://www.lri.fr/ allouche/bibliorecente.html
[2] . J.-P. Allouche, Andre Arnold, Jean Berstel, Srecko Brlek, William Jockusch, Simon Plouffe and Bruce E. Sagan, A sequence related to that of Thue-Morse, Discrete Math., 139 (1995), 455-461.
[3] . A. Pezeshki, A. R. Calderbank, W. Moran and S. D. Howard, Doppler resilient Golay complementary waveforms, IEEE Trans. Inform. Theory, 54, no. 9 (2008), 4254-4266.
[4] . V. Shevelev, On the basis polynomials in the theory of permutations with prescribed up-down structure, http://www.arxiv.org/abs/0801.0072
[5] . V. Shevelev, On connection between the numbers of permutations and full cycles with some restrictions on positions and up-down structure, http://www.arxiv.org/abs/0803.2396
[6] . V. Shevelev, A recursion for divisor function over divisors belonging to a prescribed finite sequence of positive integers and a solution of the Lahiri problem for divisor function $\sigma_{x}(n)$, http://www.arxiv.org/abs/0903.1743
[7] . V. Shevelev, Several results on sequences which are similar to the positive integers, http://www.arxiv.org/abs/0904.2101
[8] . N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (http: //www.research.att.com)
[9] . S. Tabachnikov, Variations on Escher theme, Kvant, no. 12 (1990), 2-7 (in Russian).
[10] . E. W. Weisstein, "Thue-Morse Constant", From MathWorld: A Wolfram Web Resource. (http: //mathworld.wolfram.com/Thue-MorseConstant.html)
[11] .R. Yarlagadda and J. E. Hershey, Autocorrelation properties of the Thue-Morse sequence and their use in synchronization,IEEE Trans. and Com., 38, no. 12 (1990), 2099-2102.

Departments of Mathematics, Ben-Gurion University of the Negev, BeerSheva 84105, Israel. e-mail:Shevelev@bGu.ac.il

