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EQUATIONS OF THE FORM t(x + a) = t(x) AND

t(x + a) = 1 − t(x) FOR THUE-MORSE SEQUENCE

VLADIMIR SHEVELEV

Abstract. For every a ≥ 1 we give a recursion algorithm of building
of set of solutions of equations of the form t(x+a) = t(x) and t(x+a) =
1−t(x), where {t(n)} is Thue-Morse sequence. We pose an open problem
and two conjectures.

1. Introduction and main results

The Thue-Morse (or Prouhet-Thue-Morse [1]) sequence {tn}n≥0 is one of

the most known and useful (0, 1)-sequences. By the definition, tn = 0, if the

binary expansion of n contains an even number of 1′s, and tn = 1 otherwise.

It is sequence A010060 in OEIS [8]. Numerous applications of this sequence

and a large bibliography one can find in [1] (see also the author’s articles

[6]-[7] and especially the applied papers [4]-[5] in combinatorics and [3] and

[11] in informative theory, in which the Thue-Morse sequence plays a key

role in their constructions). Let N0 be the set of nonnegative integers. For

a ∈ N, consider on N0 equations

(1) t(x + a) = t(x),

(2) t(x + a) = 1 − t(x).

Denote Ca and Ba the sets of solutions of equations (1) and (2) correspond-

ingly. Evidently we have

(3) Ba ∪ Ca = N0, Ba ∩ Ca = ⊘.

The following lemma is proved straightforward (cf.[8], A079523, A121539).

Lemma 1. B1 (C1) consists of nonnegative integers the binary expansion

of which ends in an even (odd) number of 1’s.

For a set of integers A = {a1, a2, ...} let us introduce a translation operator

(4) Eh(A) = {a1 − h, a2 − h, ...}.

One of our main result is the following.

Theorem 1. Ba and Ca are obtained by a finite set of operations of trans-

lation, union and intersection over B1 and C1.
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It is well known that the Thue-Morse sequence is not periodic (a very

attractive proof of this fact is given in [9]). Nevertheless, it is trivial to

note that for every n ∈ N0 there exists x = 1, 2 or 3 such that t(n + x) =

t(n). Indeed, as is well-known, the Thue-Morse sequence does not contain

configurations of the form 000 or 111. Therefore, if to suppose that the

equalities t(n + x) = 1 − t(n), x = 1, 2, 3, are valid simultaneously, then

we have a contradiction. In connection with this, it is natural to pose the

following problem.

Question 1. For which numbers a, b, c one can state that for every n ∈ N0

there exists x = a, b or c such that t(n + x) = t(n)?

In conclusion of introduction, we pose a quite another conjecture. Recall

that n ∈ N0 is called evil (odious) if the number of 1’s in its binary expansion

is even (odd). Thus, by the above definition of Thue-Morse sequence, for

evil (odious) n we have tn = 0 (tn = 1). Denote {Ba(n)}({Ca(n)}) the

sequence of elements of Ba(Ca) in the increasing order. Denote, furthermore,

{βa(n)}({γa(n)}) (0, 1)-sequence, which is obtained from {Ba(n)}({Ca(n)})

by replacing the odious terms by 1’s and the evil terms by 0’s.

Conjecture 1. 1)Sequence {γa(n)} is periodic; 2) if 2m||a, then the min-

imal period has 2m+1 terms, moreover, 3) if a is evil, then the minimal pe-

riod contains the first 2m+1 terms of Thue-Morse sequence {tn}, otherwise,

it contains the first 2m+1 terms of sequence {1 − tn}; 4) βa(n) + γa(n) = 1.

Below we prove the conjecture in case of a = 2m.

2. Some formulas for Ba and Ca

Theorem 2.

(5) Ba+1 = (Ca ∩ Ea(B1)) ∪ (Ba ∩ Ea(C1)),

(6) Ca+1 = (Ca ∩ Ea(C1)) ∪ (Ba ∩ Ea(B1)).

Proof. Denote the right hand sides of (5) and (6) via B∗
a+1 and C∗

a+1

correspondingly. Show that B∗
a+1 ∪ C∗

a+1 = N0. Indeed, using (3)-(6), we

have

B∗
a+1 ∪ C∗

a+1 = (Ca ∩ (Ea(B1) ∪ Ea(C1))) ∪ (Ba ∩ (Ea(C1) ∪ Ea(B1))) =
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(Ca ∩ Ea(N0)) ∪ (Ba ∩ Ea(N0)) = Ca ∪ Ba = N0.

Now it is sufficient to show that B∗
a+1 contains only solutions of (2) for

a := a+1, while C∗
a+1 contains only solutions of (1) for a := a+1. Indeed, let

x ∈ B∗
a+1. Distinguish two cases: 1) x ∈ Ca∩Ea(B1) and 2) x ∈ Ba∩Ea(C1).

In case 1) (1) is valid and x + a ∈ B1. Thus

t(x + a + 1) + t(x + a) = 1,

or, taking into account (1), we have

t(x + a + 1) = 1 − t(x).

In case 2) (2) is valid and x + a ∈ C1. Thus

t(x + a + 1) = t(x + a),

or, taking into account (2), we have

t(x + a + 1) = 1 − t(x).

Let now x ∈ C∗
a+1. Again distinguish two cases: 1) x ∈ Ca ∩ Ea(C1) and 2)

x ∈ Ba ∩ Ea(B1). In case 1) (1) is valid and x + a ∈ C1. Thus

t(x + a + 1) = t(x + a),

or, taking into account (1), we have

t(x + a + 1) = t(x).

In case 2) (2) is valid and x + a ∈ B1. Thus

t(x + a + 1) = 1 − t(x + a),

or, taking into account (2), we have

t(x + a + 1) = t(x).

Consequently, B∗
a+1 ∩ C∗

a+1 = ⊘ and B∗
a+1 = Ba+1, C∗

a+1 = Ca+1.�

From Theorem 3, evidently follows Theorem 1. �

Example 1. (cf.A081706[8]; this sequence is closely connected with se-

quence of Allouche et al [2], A003159[8])

According to Theorem 2, we have

C2 = (C1 ∩ E1(C1)) ∪ (B1 ∩ E1(B1)).

Since, evidently, C1 ∩ E1(C1) = ⊘, then we obtain a representation

(7) C2 = B1 ∩ E1(B1).
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Example 2. (cf. our sequences A161916, A161974 in [8]) Denote C
(0)
3 the

subset of C3 such that for n ∈ C
(0)
3 we have: min{x : t(n + x) = t(x)} = 3.

The following simple formula is valid:

C
(0)
3 = E1(C1).

Proof. Using (7), consider the following partition of N0 :

N0 = C1 ∪ B1 = C1 ∪ (B1 ∩ E1(B1)) ∪ (B1 ∩ E1(B1)) = C1 ∪ C2 ∪ D,

where

D = B1 ∩ E1(B1)

Evidently,

D ∩ C1 = ⊘, D ∩ C2 = D ∩ (B1 ∩ E1(B1)) = ⊘.

Thus D = C
(0)
3 . On the other hand, we have

D = B1 ∩ E1(B1) = B1 ∩ E1(C1) = E1(C1).�

By the same way one can prove the following more general results.

Theorem 3. (A generalization) Let l + m = a + 1. Then we have

(8) Ba+1 = (Cl ∩ El(Bm)) ∪ (Bl ∩ El(Cm)),

(9) Ca+1 = (Cl ∩ El(Cm)) ∪ (Bl ∩ El(Bm)).

In particular together with (5)-(6) we have

(10) Ba+1 = (C1 ∩ E1(Ba)) ∪ (B1 ∩ E1(Ca)),

(11) Ca+1 = (C1 ∩ E1(Ca)) ∪ (B1 ∩ E1(Ba)).

Further, for a set of integers A = {a1, a2, ...}, denote hA the set A =

{ha1, ha2, ...}.

Theorem 4. For m ∈ N we have

(12) B2m =
2m−1⋃

k=0

E−k(2
mB1),

(13) C2m =

2m−1⋃

k=0

E−k(2
mC1).

Proof. It is sufficient to consider numbers of the form

(14) n = ...011...1 ××...×,

where the m last digits are arbitrary. The theorem follows from a simple

observation that the indicated in (14) series of 1’s contains an odd (even)

number of 1’s if and only if n ∈ C2m (n ∈ B2m).�
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Example 3.

(15) C2 = (2C1) ∪ E−1(2C1).

Comparison with (7) leads to an identity

(16) (2C1) ∪ E−1(2C1) = B1 ∩ E1(B1).

On the other hand, the calculating B2 by Theorems 3,5 leads to another

identity

(17) (2B1) ∪ E−1(2B1) = C1 ∪ E1(C1).

Corollary 1. For a = 2m, Conjecture 1 is true.

Proof. In view of the structure of formulas (12)-(13), it is sufficient

to prove that in sequences {B1(n)}, {C1(n)} odious and evil terms alter-

nate. Indeed, in the mapping {B2m(n)}({C2m(n)}) on {β2m(n)}({γ2m(n)})

correspondingly, for any x ∈ B1(n) the ordered subset

2m−1⋃

k=0

E−k(2
mx)

of B2m (12) maps on the first 2m terms of sequence {tn} or {1−tn} depending

on the number x is evil or odious. Therefore, if odious and evil terms of

B1(n) alternate, then we obtain the minimal period 2m+1 for {β2m(n)}. By

the same way we prove that if odious and evil terms of C1(n) alternate, then

we obtain the minimal period 2m+1 for {γ2m(n)}. Now we prove that odious

and evil terms of, e.g., C1(n), indeed, alternate. If the binary expansion

of n ends in more than 1 odd 1’s, then the nearest following number from

{C1(n)} is n + 2, and it is easy to see that the relation t(n + 2) = 1 − t(n)

satisfies; if the binary expansion of n ends in one isolated 1, and before it

we have a series of more than 1 0’s, then the nearest following number from

{C1(n)} is n + 4, and it is easy to see that the relation t(n + 4) = 1 − t(n)

again satisfies; at last, if the binary expansion of n ends in one isolated 1,

and before it we have one isolated 0, i.e. n has the form ...011...101, then

we distinguish two cases: the series of 1’s before two last digits 01 contains

a)odd and b)even 1’s. In case a) the nearest following number from {C1(n)}

is n + 2, with the relation t(n + 2) = 1 − t(n), while in case b) it is n + 4

with the relation t(n+4) = 1−t(n). Thus odious and evil terms of {C1(n)},

indeed, alternate. For {B1(n)} the statement is proved quite analogously.�
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Theorem 5. (Formulas of complement to power of 2) Let 2m−1 + 1 ≤ a ≤

2m. Then we have

Ba = (C2m ∩ Ea(B2m−a)) ∪ (B2m ∩ Ea(C2m−a)),

Ca = (B2m ∩ Ea(B2m−a)) ∪ (C2m ∩ Ea(C2m−a)).

Proof. Denote the right hand sides of the formulas being proved via B∗∗
a

and C∗∗
a

correspondingly. Show that B∗∗
a

∪ C∗∗
a

= N0. Indeed,

B∗∗
a

∪ C∗∗
a

=

(C2m ∩ (Ea(B2m−a) ∪ Ea(C2m−a))) ∪ (B2m ∩ (Ea(C2m−a) ∪ Ea(B2m−a))) =

(Ea(B2m−a) ∪ Ea(C2m−a)) ∩ (B2m ∪ (C2m)) = Ea(N0) ∩ N0 = N0.

Now, by the same way as in proof of Theorem 3, it is easy to show that

B∗∗
a

contains only solutions of (2) , while C∗∗
a

contains only solutions of (1).

Then B∗∗
a

∩ C∗∗
a

= ⊘ and B∗∗
a

= Ba, C∗∗
a

= Ca.�

3. An approximation of Thue-Morse constant

Let Tm (Um) be the number which is obtained by the reading the period

of {βa(n)}({γa(n)}) as 2m+1−bits binary number. Note that Um = Tm, i.e.

Um is obtained from Tm by replacing 0’s by 1’s and 1’s by 0’s. Therefore,

(18) Tm + Um = 22m+1

− 1.

Denote Um∨Tm the concatenation of Um and Tm. Then, using (18), we have

U0 = 1, for m ≥ 0,

(19) Um+1 = Um ∨Tm = 22m+1

Um +22m+1

−Um − 1 = (22m+1

− 1)(Um +1).

Consider now the infinite binary fraction corresponding to sequence {γa(n)} :

(20) τm = .Um ∨ Um ∨ ... = Um/(22m+1

− 1).

Lemma 2. If Fn = 22n

+1 is n-th Fermat number, then we have a recursion:

(21) Fm+1τm+1 = 1 + (Fm+1 − 2)τm, m ≥ 0

with τ0 defined as the binary fraction

(22) τ0 = .010101... = 1/3.

Proof. Indeed, according to (19)-(20), we have

τm+1 = .Um+1 ∨ Um+1 ∨ ... =

Um+1/(22m+2

− 1) = (22m+1

− 1)(Um + 1)/(22m+2

− 1) =

(Um + 1)/(22m+1

+ 1) = (1 + τm(22m+1

− 1))/(22m+1

+ 1) =
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(1 + τm(Fm+1 − 2))/Fm+1,

and the lemma follows.�

So, by (21)-(22) for m = 0, 1, ... we find

τ1 = 2/5, τ2 = 7/17, τ3 = 106/257,

τ4 = 27031/65537, τ5 = 1771476586/4294967297, ... .

It follows from (21) that the numerators {sn} of these fractions satisfy the

recursion

(23) s1 = 2, sn+1 = 1 + (22n

− 1)sn, n ≥ 1,

while the denominators are {Fn}. Of course, by its definition, the sequence

{τn} very fast converges to the Thue-Morse constant

τ =

∞∑

n=1

tn
2n

= 0.4124540336401....

E.g., τ5 approximates τ up to 10−9.

Conjecture 2. For n ≥ 1, the fraction τn = sn/Fn is a convergent corre-

sponding to the continued fraction for τ.

Note that, the first values of indices of the corresponding convergents,

according to numeration of A085394 and A085395 [8] are: 3, 5, 7, 13, 23,...

Note also that the binary fraction corresponding to sequence {βa(n)} :

τm = .Tm ∨ Tm ∨ ...

satisfies the same relation (21) but with

τ 0 = .101010... = 2/3,

and converges to 1 − τ.

4. Comparison with the Weisstein approximations

Now we want to show that Conjecture 2 is very plausible. As is well

known, if the fraction p/q, q > 0, is a convergent (beginning the second

one) corresponding to the continued fraction for α, then p/q is the best

approximation to α between all fractions of the form x/y, y > 0, with

y ≤ q.

Weisstein [10] considered the approximations of τ of the form:

a0 = 0.02; a1 = 0.012; a2 = 0.01102; a3 = 0.011010012;

(24) a4 = 0.01101001100101102; ...
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If to keep the ”natural” denominators Fn−1 (without cancelations), then,

denoting wn the numerators of these fractions, we have

(25) wn+1 = Un, n ≥ 0.

Since, according to (19),

Un = 22n

Un−1 + 22n

− Un−1 − 1, n ≥ 1,

then

(26) w = 1, wn+1 = 22n

− 1 + (22n

− 1)wn, n ≥ 1.

Theorem 6. We have

(27) wn/(Fn − 1) < sn/Fn < τ

Proof. It is easy to see that sn/Fn < τ. Indeed, since t2n = 1, then

(2n + 1)-th binary digit of τ after the point is 1, while the period of τn

begins from 0. Let us now prove the left inequality. To this end, let us

prove by induction that

(28) sn − wn = 1.

Indeed, if (28) is true for some n, then, subtracting (26) from (23), we find

sn+1 − wn+1 = −22n

+ 2 + (22n

− 1)(sn − wn) = 1.

Thus finally we have

wn/(Fn − 1) = (sn − 1)/(Fn − 1) < sn/Fn < τ.�
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