EQUATIONS OF THE FORM t(x + a) = t(x) AND t(x + a) = 1 - t(x) FOR THUE-MORSE SEQUENCE

VLADIMIR SHEVELEV

ABSTRACT. For every $a \ge 1$ we give a recursion algorithm of building of set of solutions of equations of the form t(x+a) = t(x) and t(x+a) = 1-t(x), where $\{t(n)\}$ is Thue-Morse sequence. We pose an open problem and two conjectures.

1. INTRODUCTION AND MAIN RESULTS

The Thue-Morse (or Prouhet-Thue-Morse [1]) sequence $\{t_n\}_{n\geq 0}$ is one of the most known and useful (0, 1)-sequences. By the definition, $t_n = 0$, if the binary expansion of n contains an even number of 1's, and $t_n = 1$ otherwise. It is sequence A010060 in OEIS [8]. Numerous applications of this sequence and a large bibliography one can find in [1] (see also the author's articles [6]-[7] and especially the applied papers [4]-[5] in combinatorics and [3] and [11] in informative theory, in which the Thue-Morse sequence plays a key role in their constructions). Let \mathbb{N}_0 be the set of nonnegative integers. For $a \in \mathbb{N}$, consider on \mathbb{N}_0 equations

(1)
$$t(x+a) = t(x),$$

(2)
$$t(x+a) = 1 - t(x).$$

Denote C_a and B_a the sets of solutions of equations (1) and (2) correspondingly. Evidently we have

(3)
$$B_a \cup C_a = \mathbb{N}_0, \ B_a \cap C_a = \emptyset.$$

The following lemma is proved straightforward (cf.[8], A079523, A121539).

Lemma 1. B_1 (C_1) consists of nonnegative integers the binary expansion of which ends in an even (odd) number of 1's.

For a set of integers $A = \{a_1, a_2, ...\}$ let us introduce a translation operator

(4)
$$E_h(A) = \{a_1 - h, a_2 - h, ...\}.$$

One of our main result is the following.

Theorem 1. B_a and C_a are obtained by a finite set of operations of translation, union and intersection over B_1 and C_1 .

¹⁰⁰¹ M /l /: 0 l · / 0 · C /: 11D97

It is well known that the Thue-Morse sequence is not periodic (a very attractive proof of this fact is given in [9]). Nevertheless, it is trivial to note that for every $n \in \mathbb{N}_0$ there exists x = 1, 2 or 3 such that t(n + x) = t(n). Indeed, as is well-known, the Thue-Morse sequence does not contain configurations of the form 000 or 111. Therefore, if to suppose that the equalities t(n + x) = 1 - t(n), x = 1, 2, 3, are valid simultaneously, then we have a contradiction. In connection with this, it is natural to pose the following problem.

Question 1. For which numbers a, b, c one can state that for every $n \in \mathbb{N}_0$ there exists x = a, b or c such that t(n + x) = t(n)?

In conclusion of introduction, we pose a quite another conjecture. Recall that $n \in \mathbb{N}_0$ is called evil (odious) if the number of 1's in its binary expansion is even (odd). Thus, by the above definition of Thue-Morse sequence, for evil (odious) n we have $t_n = 0$ ($t_n = 1$). Denote $\{B_a(n)\}(\{C_a(n)\})$ the sequence of elements of $B_a(C_a)$ in the increasing order. Denote, furthermore, $\{\beta_a(n)\}(\{\gamma_a(n)\})$ (0, 1)-sequence, which is obtained from $\{B_a(n)\}(\{C_a(n)\})$ by replacing the odious terms by 1's and the evil terms by 0's.

Conjecture 1. 1)Sequence $\{\gamma_a(n)\}$ is periodic; 2) if $2^m ||a|$, then the minimal period has 2^{m+1} terms, moreover, 3) if a is evil, then the minimal period contains the first 2^{m+1} terms of Thue-Morse sequence $\{t_n\}$, otherwise, it contains the first 2^{m+1} terms of sequence $\{1-t_n\}$; 4) $\beta_a(n) + \gamma_a(n) = 1$.

Below we prove the conjecture in case of $a = 2^m$.

2. Some formulas for B_a and C_a

Theorem 2.

(5) $B_{a+1} = (C_a \cap E_a(B_1)) \cup (B_a \cap E_a(C_1)),$

(6) $C_{a+1} = (C_a \cap E_a(C_1)) \cup (B_a \cap E_a(B_1)).$

Proof. Denote the right hand sides of (5) and (6) via B_{a+1}^* and C_{a+1}^* correspondingly. Show that $B_{a+1}^* \cup C_{a+1}^* = \mathbb{N}_0$. Indeed, using (3)-(6), we have

$$B_{a+1}^* \cup C_{a+1}^* = (C_a \cap (E_a(B_1) \cup E_a(C_1))) \cup (B_a \cap (E_a(C_1) \cup E_a(B_1))) = (C_a \cap (E_a(C_1) \cup E_a(C_1))) = (C_a$$

$$(C_a \cap E_a(\mathbb{N}_0)) \cup (B_a \cap E_a(\mathbb{N}_0)) = C_a \cup B_a = \mathbb{N}_0.$$

Now it is sufficient to show that B_{a+1}^* contains only solutions of (2) for a := a+1, while C_{a+1}^* contains only solutions of (1) for a := a+1. Indeed, let $x \in B_{a+1}^*$. Distinguish two cases: 1) $x \in C_a \cap E_a(B_1)$ and 2) $x \in B_a \cap E_a(C_1)$. In case 1) (1) is valid and $x + a \in B_1$. Thus

$$t(x + a + 1) + t(x + a) = 1,$$

or, taking into account (1), we have

$$t(x + a + 1) = 1 - t(x).$$

In case 2) (2) is valid and $x + a \in C_1$. Thus

$$t(x+a+1) = t(x+a),$$

or, taking into account (2), we have

$$t(x + a + 1) = 1 - t(x).$$

Let now $x \in C_{a+1}^*$. Again distinguish two cases: 1) $x \in C_a \cap E_a(C_1)$ and 2) $x \in B_a \cap E_a(B_1)$. In case 1) (1) is valid and $x + a \in C_1$. Thus

t(x+a+1) = t(x+a),

or, taking into account (1), we have

$$t(x+a+1) = t(x).$$

In case 2) (2) is valid and $x + a \in B_1$. Thus

$$t(x + a + 1) = 1 - t(x + a),$$

or, taking into account (2), we have

$$t(x+a+1) = t(x).$$

Consequently, $B_{a+1}^* \cap C_{a+1}^* = \emptyset$ and $B_{a+1}^* = B_{a+1}$, $C_{a+1}^* = C_{a+1}$. From Theorem 3, evidently follows Theorem 1.

Example 1. (cf. A081706[8]; this sequence is closely connected with sequence of Allouche et al [2], A003159[8])

According to Theorem 2, we have

$$C_2 = (C_1 \cap E_1(C_1)) \cup (B_1 \cap E_1(B_1)).$$

Since, evidently, $C_1 \cap E_1(C_1) = \emptyset$, then we obtain a representation

(7)
$$C_2 = B_1 \cap E_1(B_1).$$

Example 2. (cf. our sequences A161916, A161974 in [8]) Denote $C_3^{(0)}$ the subset of C_3 such that for $n \in C_3^{(0)}$ we have: $\min\{x : t(n+x) = t(x)\} = 3$. The following simple formula is valid:

$$C_3^{(0)} = E_1(C_1).$$

Proof. Using (7), consider the following partition of \mathbb{N}_0 :

$$\mathbb{N}_0 = C_1 \cup B_1 = C_1 \cup (B_1 \cap E_1(B_1)) \cup (B_1 \cap \overline{E_1(B_1)}) = C_1 \cup C_2 \cup D,$$

where

$$D = B_1 \cap \overline{E_1(B_1)}$$

Evidently,

$$D \cap C_1 = \oslash, \ D \cap C_2 = D \cap (B_1 \cap E_1(B_1)) = \oslash$$

Thus $D = C_3^{(0)}$. On the other hand, we have

$$D = B_1 \cap \overline{E_1(B_1)} = B_1 \cap E_1(C_1) = E_1(C_1).\blacksquare$$

By the same way one can prove the following more general results.

Theorem 3. (A generalization) Let l + m = a + 1. Then we have

(8)
$$B_{a+1} = (C_l \cap E_l(B_m)) \cup (B_l \cap E_l(C_m)),$$

(9)
$$C_{a+1} = (C_l \cap E_l(C_m)) \cup (B_l \cap E_l(B_m)).$$

In particular together with (5)-(6) we have

(10)
$$B_{a+1} = (C_1 \cap E_1(B_a)) \cup (B_1 \cap E_1(C_a)),$$

(11)
$$C_{a+1} = (C_1 \cap E_1(C_a)) \cup (B_1 \cap E_1(B_a)).$$

Further, for a set of integers $A = \{a_1, a_2, ...\}$, denote hA the set $A = \{ha_1, ha_2, ...\}$.

Theorem 4. For $m \in \mathbb{N}$ we have

(12)
$$B_{2^m} = \bigcup_{k=0}^{2^m-1} E_{-k}(2^m B_1),$$

(13)
$$C_{2^m} = \bigcup_{k=0}^{2^m - 1} E_{-k}(2^m C_1).$$

Proof. It is sufficient to consider numbers of the form

$$(14) n = \dots 011 \dots 1 \times \times \dots \times,$$

where the m last digits are arbitrary. The theorem follows from a simple observation that the indicated in (14) series of 1's contains an odd (even) number of 1's if and only if $n \in C_{2^m}$ $(n \in B_{2^m})$.

Example 3.

(15)
$$C_2 = (2C_1) \cup E_{-1}(2C_1)$$

Comparison with (7) leads to an identity

(16)
$$(2C_1) \cup E_{-1}(2C_1) = B_1 \cap E_1(B_1).$$

On the other hand, the calculating B_2 by Theorems 3,5 leads to another identity

(17)
$$(2B_1) \cup E_{-1}(2B_1) = C_1 \cup E_1(C_1).$$

Corollary 1. For $a = 2^m$, Conjecture 1 is true.

Proof. In view of the structure of formulas (12)-(13), it is sufficient to prove that in sequences $\{B_1(n)\}, \{C_1(n)\}$ odious and evil terms alternate. Indeed, in the mapping $\{B_{2^m}(n)\}(\{C_{2^m}(n)\})$ on $\{\beta_{2^m}(n)\}(\{\gamma_{2^m}(n)\})$ correspondingly, for any $x \in B_1(n)$ the ordered subset

$$\bigcup_{k=0}^{2^{m}-1} E_{-k}(2^{m}x)$$

of B_{2^m} (12) maps on the first 2^m terms of sequence $\{t_n\}$ or $\{1-t_n\}$ depending on the number x is evil or odious. Therefore, if odious and evil terms of $B_1(n)$ alternate, then we obtain the minimal period 2^{m+1} for $\{\beta_{2^m}(n)\}$. By the same way we prove that if odious and evil terms of $C_1(n)$ alternate, then we obtain the minimal period 2^{m+1} for $\{\gamma_{2^m}(n)\}$. Now we prove that odious and evil terms of, e.g., $C_1(n)$, indeed, alternate. If the binary expansion of n ends in more than 1 odd 1's, then the nearest following number from $\{C_1(n)\}$ is n+2, and it is easy to see that the relation t(n+2) = 1 - t(n)satisfies; if the binary expansion of n ends in one isolated 1, and before it we have a series of more than 1 0's, then the nearest following number from $\{C_1(n)\}$ is n+4, and it is easy to see that the relation t(n+4) = 1 - t(n)again satisfies; at last, if the binary expansion of n ends in one isolated 1, and before it we have one isolated 0, i.e. n has the form ...011...101, then we distinguish two cases: the series of 1's before two last digits 01 contains a) a) and b) even 1's. In case a) the nearest following number from $\{C_1(n)\}$ is n+2, with the relation t(n+2) = 1 - t(n), while in case b) it is n+4with the relation t(n+4) = 1 - t(n). Thus odious and evil terms of $\{C_1(n)\},\$ indeed, alternate. For $\{B_1(n)\}$ the statement is proved quite analogously.

Theorem 5. (Formulas of complement to power of 2) Let $2^{m-1} + 1 \le a \le 2^m$. Then we have

$$B_a = (C_{2^m} \cap E_a(B_{2^m-a})) \cup (B_{2^m} \cap E_a(C_{2^m-a})),$$

$$C_a = (B_{2^m} \cap E_a(B_{2^m-a})) \cup (C_{2^m} \cap E_a(C_{2^m-a})).$$

Proof. Denote the right hand sides of the formulas being proved via B_a^{**} and C_a^{**} correspondingly. Show that $B_a^{**} \cup C_a^{**} = \mathbb{N}_0$. Indeed,

 $B^{**} \sqcup C^{**} =$

$$(C_{2^m} \cap (E_a(B_{2^m-a}) \cup E_a(C_{2^m-a}))) \cup (B_{2^m} \cap (E_a(C_{2^m-a}) \cup E_a(B_{2^m-a}))) = (E_a(B_{2^m-a}) \cup E_a(C_{2^m-a})) \cap (B_{2^m} \cup (C_{2^m})) = E_a(\mathbb{N}_0) \cap \mathbb{N}_0 = \mathbb{N}_0.$$

Now, by the same way as in proof of Theorem 3, it is easy to show that B_a^{**} contains only solutions of (2), while C_a^{**} contains only solutions of (1). Then $B_a^{**} \cap C_a^{**} = \emptyset$ and $B_a^{**} = B_a$, $C_a^{**} = C_a$.

3. An approximation of Thue-Morse constant

Let T_m (U_m) be the number which is obtained by the reading the period of $\{\beta_a(n)\}(\{\gamma_a(n)\})$ as 2^{m+1} -bits binary number. Note that $\overline{U}_m = T_m$, i.e. U_m is obtained from T_m by replacing 0's by 1's and 1's by 0's. Therefore,

(18)
$$T_m + U_m = 2^{2^{m+1}} - 1$$

Denote $U_m \vee T_m$ the concatenation of U_m and T_m . Then, using (18), we have

 $U_0 = 1, for m \ge 0,$

(19)
$$U_{m+1} = U_m \lor T_m = 2^{2^{m+1}} U_m + 2^{2^{m+1}} - U_m - 1 = (2^{2^{m+1}} - 1)(U_m + 1).$$

Consider now the infinite binary fraction corresponding to sequence $\{\gamma_a(n)\}$:

(20)
$$\tau_m = .U_m \vee U_m \vee ... = U_m / (2^{2^{m+1}} - 1).$$

Lemma 2. If $F_n = 2^{2^n} + 1$ is n-th Fermat number, then we have a recursion:

(21)
$$F_{m+1}\tau_{m+1} = 1 + (F_{m+1} - 2)\tau_m, \ m \ge 0$$

with τ_0 defined as the binary fraction

Proof. Indeed, according to (19)-(20), we have

$$\tau_{m+1} = .U_{m+1} \lor U_{m+1} \lor \dots =$$
$$U_{m+1}/(2^{2^{m+2}} - 1) = (2^{2^{m+1}} - 1)(U_m + 1)/(2^{2^{m+2}} - 1) =$$
$$(U_m + 1)/(2^{2^{m+1}} + 1) = (1 + \tau_m (2^{2^{m+1}} - 1))/(2^{2^{m+1}} + 1) =$$

$$(1 + \tau_m(F_{m+1} - 2))/F_{m+1},$$

and the lemma follows.

So, by (21)-(22) for m = 0, 1, ... we find

$$\tau_1 = 2/5, \ \tau_2 = 7/17, \ \tau_3 = 106/257,$$

 $\tau_4 = 27031/65537, \ \tau_5 = 1771476586/4294967297, \dots$

It follows from (21) that the numerators $\{s_n\}$ of these fractions satisfy the recursion

(23)
$$s_1 = 2, \ s_{n+1} = 1 + (2^{2^n} - 1)s_n, \ n \ge 1,$$

while the denominators are $\{F_n\}$. Of course, by its definition, the sequence $\{\tau_n\}$ very fast converges to the Thue-Morse constant

$$\tau = \sum_{n=1}^{\infty} \frac{t_n}{2^n} = 0.4124540336401....$$

E.g., τ_5 approximates τ up to 10^{-9} .

Conjecture 2. For $n \ge 1$, the fraction $\tau_n = s_n/F_n$ is a convergent corresponding to the continued fraction for τ .

Note that, the first values of indices of the corresponding convergents, according to numeration of A085394 and A085395 [8] are: 3, 5, 7, 13, 23,... Note also that the binary fraction corresponding to sequence $\{\beta_a(n)\}$:

$$\overline{\tau}_m = .T_m \vee T_m \vee \dots$$

satisfies the same relation (21) but with

$$\overline{\tau}_0 = .101010... = 2/3,$$

and converges to $1 - \tau$.

4. Comparison with the Weisstein Approximations

Now we want to show that Conjecture 2 is very plausible. As is well known, if the fraction p/q, q > 0, is a convergent (beginning the second one) corresponding to the continued fraction for α , then p/q is the best approximation to α between all fractions of the form x/y, y > 0, with $y \leq q$.

Weisstein [10] considered the approximations of τ of the form:

(24)
$$a_0 = 0.0_2; \ a_1 = 0.01_2; \ a_2 = 0.0110_2; \ a_3 = 0.01101001_2;$$

 $a_4 = 0.0110100110010110_2; \dots$

If to keep the "natural" denominators $F_n - 1$ (without cancelations), then, denoting w_n the numerators of these fractions, we have

$$(25) w_{n+1} = U_n, \ n \ge 0$$

Since, according to (19),

$$U_n = 2^{2^n} U_{n-1} + 2^{2^n} - U_{n-1} - 1, \ n \ge 1,$$

then

(26)
$$w = 1, \ w_{n+1} = 2^{2^n} - 1 + (2^{2^n} - 1)w_n, \ n \ge 1.$$

Theorem 6. We have

(27)
$$w_n/(F_n-1) < s_n/F_n < \tau$$

Proof. It is easy to see that $s_n/F_n < \tau$. Indeed, since $t_{2^n} = 1$, then $(2^n + 1)$ -th binary digit of τ after the point is 1, while the period of τ_n begins from 0. Let us now prove the left inequality. To this end, let us prove by induction that

$$(28) s_n - w_n = 1.$$

Indeed, if (28) is true for some n, then, subtracting (26) from (23), we find

$$s_{n+1} - w_{n+1} = -2^{2^n} + 2 + (2^{2^n} - 1)(s_n - w_n) = 1.$$

Thus finally we have

$$w_n/(F_n-1) = (s_n-1)/(F_n-1) < s_n/F_n < \tau.$$

Acknowledgment. The author is grateful to J.-P. Allouche and D. Berend for very useful remarks and to S. Litsyn for sending papers [3] and [11].

References

- [1] . J.-P. Allouche and J. Shallit, *The ubiquitous Prouhet-Thue-Morse sequence*, http://www.lri.fr/ allouche/bibliorecente.html
- [2] J.-P. Allouche, Andre Arnold, Jean Berstel, Srecko Brlek, William Jockusch, Simon Plouffe and Bruce E. Sagan, A sequence related to that of Thue-Morse, Discrete Math., 139 (1995), 455–461.
- [3] A. Pezeshki, A. R. Calderbank, W. Moran and S. D. Howard, Doppler resilient Golay complementary waveforms, IEEE Trans. Inform. Theory, 54, no. 9 (2008), 4254–4266.
- [4] . V. Shevelev, On the basis polynomials in the theory of permutations with prescribed up-down structure, http://www.arxiv.org/abs/0801.0072
- [5] V. Shevelev, On connection between the numbers of permutations and full cycles with some restrictions on positions and up-down structure, http://www.arxiv.org/abs/0803.2396
- [6] . V. Shevelev, A recursion for divisor function over divisors belonging to a prescribed finite sequence of positive integers and a solution of the Lahiri problem for divisor function $\sigma_x(n)$, http://www.arxiv.org/abs/0903.1743

- [7] . V. Shevelev, Several results on sequences which are similar to the positive integers, http://www.arxiv.org/abs/0904.2101
- [8] . N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (http: //www.research.att.com)
- [9] S. Tabachnikov, Variations on Escher theme, Kvant, no.12 (1990), 2-7 (in Russian).
- [10] . E. W. Weisstein, "Thue-Morse Constant", From MathWorld: A Wolfram Web Resource. (http://mathworld.wolfram.com/Thue-MorseConstant.html)
- [11] .R. Yarlagadda and J. E. Hershey, Autocorrelation properties of the Thue-Morse sequence and their use in synchronization, IEEE Trans. and Com., 38, no.12 (1990), 2099-2102.

DEPARTMENTS OF MATHEMATICS, BEN-GURION UNIVERSITY OF THE NEGEV, BEER-SHEVA 84105, ISRAEL. E-MAIL:SHEVELEV@BGU.AC.IL