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ON SMALL INTERVALS CONTAINING PRIMES

VLADIMIR SHEVELEV

Abstract. Let p be an odd prime, such that pn < p/2 < pn+1, where
pn is the n-th prime. We study the following question: with what proba-
bility does there exist a prime in the interval (p, 2pn+1)? After the strong
definition of the probability with help of the Ramanujan primes ([11],
[12])and the introducing pseudo-Ramanujan primes, we show, that if
such probability P exists, then P ≥ 0.5. We also study a symmetrical
case of the left intervals, which connected with sequence A080359 in [10].

1. Introduction

As well known, the Bertrand’s postulate (1845) states that, for x > 1, al-

ways there exists a prime in interval (x, 2x). This postulate very quickly-five

years later- became a theorem due to Russian mathematician P.L.Chebyshev

(cf., e.g., [9, Theorem 9.2]). In 1930 Hoheisel[3] proved that, for x > x0(ε),

the interval (x, x + x1− 1
33000

+ε] always contains a prime. After that there

were a large chain of improvements of the Hoheisel’s result. Up to now,

probably, the best known result belongs to Baker, Harman abd Pintz[1],

who showed that even the interval (x, x + x0.525) contains a prime. Their

result is rather close to the best result which gives the Riemann hypothesis:

pn+1−pn = O(
√

pn ln pn) (cf. [4, p.299]), but still very far from the Cramér’s

1937 conjecture which states that already the interval (x, x + (1 + ε) ln2 x]

contains a prime for sufficiently large x.

Everywhere during this paper we understand that pn is the n-th prime.

Let p be an odd prime. Let, furthermore, pn < p/2 < pn+1. According to

the Bertrand’s postulate, between p/2 and p there exists a prime. There-

fore, pn+1 ≤ p. Again, by the Bertrand’s postulate, between p and 2p there

exists a prime. More subtle question is the following.

Question 1. Let p be a randomly chosen odd prime. Suppose that p/2 lies

in the interval (pn, pn+1). With what probability does there exist a prime in

the interval (p, 2pn+1)?

At the first we should formulate more exactly what we understand under

such probability. To this end we start with two conditions for odd primes

and their equivalence. An important role for our definition of the desired
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probability play Ramanujan primes ([11]-[12]) and also Pseudo-Ramanujan

primes which we introduce below.

2. Equivalence of two conditions for odd primes

Consider the following two conditions for primes:

Condition 1. Let p = pn, with n > 1. Then all integers (p + 1)/2, (p +

3)/2, ..., (pn+1 − 1))/2 are composite numbers.

Condition 2. Let, for an odd prime p, we have pm < p/2 < pm+1. Then

the interval (p, 2pm+1) contains a prime.

Lemma 1. Conditions 1 and 2 are equivalent.

Proof. If Condition 1 is valid, then pm+1 > (pn+1 − 1)/2, i.e. pm+1 ≥
(pn+1 + 1)/2. Thus 2pm+1 > pn+1 > pn = p, and Condition 2 is valid;

conversely, if Condition 2 satisfies, i.e. pm+1 > p/2 and 2pm+1 > pn+1 >

p = pn. If k is the least positive integer, such that pm < pn/2 < (pn +

k)/2 < (pn+1 − 1)/2 and (pn + k)/2 is prime, then pm+1 = (pn + k)/2 and

pn+1 − 1 > pn + k = 2pm+1 > pn+1. Contradiction shows that Condition 1

is valid. �

3. Ramanujan primes

In 1919 S. Ramanujan [7]-[8] unexpectedly gave a new short and elegant

proof of the Bertrand’s postulate. In his proof appeared a sequence of

primes

(1) 2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, ...

For a long time, this important sequence was not presented in the Sloane’s

OEIS [9]. Only in 2005 J. Sondow published it in OEIS (sequence A104272).

Definition 1. (J. Sondow[10])For n ≥ 1, the nth Ramanujan prime is

the smallest positive integer (Rn) with the property that if x ≥ Rn, then

π(x) − π(x/2) ≥ n.

In [11], J. Sondow obtained some estimates for Rn and, in particular,

proved that, for every n > 1, Rn > p2n. Further, he proved that for n →
∞, Rn ∼ p2n. From this, denoting πR(x) the counting function of the

Ramanujan primes not exceeding x, we have RπR(x) ∼ 2πR(x) ln πR(x). Since

RπR(x) ≤ x < RπR(x)+1, then x ∼ p2πR(x) ∼ 2πR(x) lnπR(x), as x → ∞, and

we conclude that
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(2) πR(x) ∼ x

2 lnx
.

It is interesting that quite recently S. Laishram (see [10], comments to

A104272) has proved a Sondow conjectural inequality Rn < p3n for every

positive n.

4. Satisfaction Conditions 1,2 for Ramanujan primes

Lemma 2. If p is an odd Ramanujan prime, then Conditions 1 and 2

satisfy.

Proof. In view of Lemma 1, it is sufficient to prove that Condition 1

satisfies. If Condition 1 does not satisfy, then suppose that pm = Rn < pm+1

and k is the least positive integer, such that q = (pm + k)/2 is prime not

more than (pm+1 − 1)/2. Thus

(3) Rn = pm < 2q < pm+1 − 1.

As Sondow proved ([12]), Rn−1 is the maximal integer for which the equality

(4) π(Rn − 1) − π((Rn − 1)/2) = n − 1

holds. However, according to (5), π(2q) = π(Rn − 1) + 1 and in view if the

minimality of the prime q, in the interval ((Rn − 1)/2, q) there are not any

prime. Thus π(q) = π((Rn − 1)/2) + 1 and

π(2q) − π(q) = π(Rn − 1) − π((Rn − 1)/2) = n − 1.

Since, by (5), 2q > Rn, then this contradicts to the property of the maxi-

mality of Rn in (6). �

Note that, there are non-Ramanujan primes which satisfy Conditions

1,2. We call them pseudo-Ramanujan primes (PR)n. The first terms of the

sequence of pseudo-Ramanujan primes are:

(5) 109, 137, 191, 197, 283, 521, ...

Definition 2. We call a prime p an RPR-prime if p satisfies Condition 1

(or, equivalently, Condition 2).

From the above it follows that a RPR-prime is either Ramanujan or

pseudo-Ramanujan prime. Thus we see that the relative density (if it exists)

of RPR-primes (and only of them) with respect to all primes not exceeding

N, for N tends to the infinity should give the answer on Question 1. More



ON SMALL INTERVALS CONTAINING PRIMES 4

exactly, denote (RPR)n the n-th pseudo-Ramanujan prime and πRPR(n)

the number of RPR-primes not exceeding n.

Definition 3. Let pn < p/2 < pn+1. Under the probability P that there

exists a prime in the interval (p, 2pn+1) we understand, if it exists, the limit

P := lim
n→∞

πRPR(n)

π(n)
,

or, the same, by Prime Number Theorem,

P = lim
n→∞

πRPR(n)

n/ lnn
.

5. A sieve for selection RPR-primes from all primes

Denote PR(respectively, RPR) the set of all pseudo-Ramanujan primes

(respectively, RPR-primes). The probability under consideration is

P(x ∈ R/x ∈ P) + P(x ∈ PR/x ∈ P) = P(x ∈ RPR/x ∈ P).

Therefore, it is interesting to build a sieve for selection RPR-primes from

all primes. Recall that the Bertrand sequence {b(n)} is defined as b(1) = 2,

and, for n ≥ 2, b(n) is the largest prime less than 2b(n − 1) (see A006992

in [10]):

(6) 2, 3, 5, 7, 13, 23, 43, ...

Put

(7) B1 = {b(1)(n)} = {b(n)}.
Further we build sequences B2 = {b(2)(n)}, B3 = {b(3)(n)}, ... according the

following inductive rule: if we have sequences B1, ..., Bk−1, let us consider

the minimal prime p(k) 6∈
⋃k−1

i=1 Bi. Then the sequence {b(k)(n)} is defined

as b(k)(1) = p(k), and, for n ≥ 2, b(k)(n) is the largest prime less than

2b(k)(n − 1). So, we obtain consequently:

(8) B2 = {11, 19, 37, 73, ...}

(9) B3 = {17, 31, 61, 113, ...}

(10) B3 = {29, 53, 103, 199, ...}
etc., such that, putting p(1) = 2, we obtain the sequence

(11) {p(k)}k≥1 = {2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 109, 127, ...}
Sequence (11) coincides with sequence (1) of the Ramanujan primes up to

the 12-th term, but the 13-th term of this sequence is 109 which is the first

term of sequence (5) of the pseudo-Ramanujan primes.
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Theorem 1. For n ≥ 1, we have

(12) p(n) = (RPR)n

where (RPR)n is the n-th RPR-prime.

Proof. The least omitted prime in (7) is p(2) = 11 = (RPR)2; the least

omitted prime in the union of (7) and (8) is p(3) = 17 = (RPR)3. We use

the induction. Let we have already built primes

p(1) = 2, p(3), ..., p(n−1) = (RPR)n−1.

Let q be the least prime which is omitted in the union
⋃n−1

i=1 Bi, such that q/2

is in interval (pm, pm+1). According to our algorithm, q which is dropped

should not be the large prime in the interval (pm+1, 2pm+1). Then there

are primes in the interval q, 2pm+1); let r be one of them. Then we have

2pm < q < r < 2pm+1. This means that q, in view of its minimality between

the dropping primes more than (RPR)n−1 = p(n−1), is the least RPR-pime

more than (RPR)n−1 and the least prime of the form p(k) more than p(n−1).

Therefore, q = p(n) = (RPR)n.�

Unfortunately the research of this sieve seems much more difficult than

the research of the Eratosthenes one for primes. For example, the following

question remains open.

Problem 1. With help of the sieve of Theorem 1 to find a formula for the

counting function of RPR-primes not exceeding x.

The following theorem is proved even without the supposition of the ex-

isting the limit in Definition 3.

Theorem 2. Denote

P = lim inf
n→∞

πRPR(n)

π(n)

(”lower probability”). Then we have

P ≥ 1

2
.

Proof. Using (2), we have

P = lim infn→∞πRPR(n)/π(n) ≥ limn→∞πR(n)/π(n) = 1/2.�

D. Berend [2] gave another very elegant proof of this theorem.

Second proof of Theorem 2. We saw that if the interval (2pm, 2pm+1)

with odd pm contains a prime p, then the interval (p, 2pm+1) contains in

turn a prime if and only if p is a RPR-primes. Let n ≥ 7. In the range from

7 up to n there are π(n) − 3 primes. Put
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(13) h = h(n) = ⌊(π(n) − 1)/2⌋.

Look at h intervals:

(14) (2p2, 2p3), (2p3, 2p4), ..., (2ph+1, 2ph+2).

Our π(n)− 3 primes are somehow distributed in these h intervals. Suppose

k = k(n) of the intervals contain at least one prime and h − k contain

no primes. Then for exactly k primes there is no primes between them

and the next 2pj , and for the other π(n) − 3 − k there is. Hence, among

π(n) − 3 primes exactly π(n) − 3 − k are RPR-primes and exactly k non-

RPR-primes. Therefore, since k(n) ≤ h(n) ≤ π(n)/2, then for the desired

lower probability that there is a prime we have:

(15) P = lim infn→∞

πRPR(n)

π(n) − 3
= lim infn→∞

π(n) − k(n)

π(n)
≥ 1/2.

�

6. A heuristic idea of Greg Martin

Greg Martin [5] proposed the following heuristic arguments, which show

that P is close to 2/3. ”Imagine the following process: start from p and

examine the numbers p+1, p+2, ... in turn. If the number we’re examining

is odd, check if it’s a prime: if so, we ”win”. If the number we’re examining

is twice an odd number (that is,2 (mod 4)), check if it’s twice a prime: if

so, we ”lose”. In this way we ”win” if and only if there is a prime in the

interval (p, 2pn+1), since we either find such a prime when we ”win” or else

detect the endpoint 2pn+1, when we ”lose”.

Now if the primes were distributed totally randomly, then the probability

of each odd number being prime would be the same(roughly 1/lnp), while

the probability of a 2 (mod 4) number being twice a prime would be roughly

1/ln(p/2), which for p large is about the same as 1/lnp. However, in every

block of 4 consecutive integers, we have two odd numbers that might be

prime and only one 2 (mod 4) number that might be twice a prime. There-

fore we expect that we ”win” twice as often as we ”lose”, since the placement

of primes should behave statistically randomly in the limit; in other words,

we expect to ”win” P0 = 2/3 of the time.” His computions what happens

for p among the first million primes show that the probability of ”we win”

has a steadily increasing trend as p increases, and among the first million

primes about 61.2 of them have a prime in the interval (p, 2pn+1).
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Remark 1. The following heuristic arguments are seductive but wrong:

Consider the probability that a random interval I from system (14) con-

tains a prime. In order to say about a statistics, consider I with ”average”

length, which for large n equals to 2pn/(n−1) ∼ 2 lnn. Note that, the prob-

ability that a random integer from (0, 2pn+1) is prime is 1/ lnn. Thus the

proportion θ of the absence a prime in I is θ = (1− 1
lnn

)2 ln n = e−2(1+o(1)).

Therefore, we expect that the number of intervals (14) containing a prime is

approximately (1−θ)n. Now using (15) for k = θn, we obtain the probability

P1 = 1/2(1 + e−2) = 0.5676676... .

It is not correct since, as well known (see [6, Chapter 5]), for n tends to the

infinity and any c > 0, there is a finite part of differences of the consecutive

primes pn+1 − pn which are less than c ln n. This makes θ less than e−2 and

P1 more than 1/2(1 + e−2).

7. A symmetrical case of the left intervals

It is clear that for the symmetrical problem of the existence a prime in

the left interval (2pn, p) (for the same condition pn < p/2 < pn+1) we have

the same results. Therefore, this case is not interesting from the formal-

probabilistic point of view, but it is more interesting from the sequences

point of view. Indeed, now in our construction the role of the Ramanujan

primes play other primes which appear in OEIS [9] earlier (2003) than the

Ramanujan primes due to E. Labos (see sequence A080359):

(16) 2, 3, 13, 19, 31, 43, 53, 61, 71, 73, 101, 103, 109, 113, 139, 157, 173, ...

These primes we call the Labos primes.

Definition 4. (cf. [9, A080359] For n ≥ 1, the nth Labos prime is the

smallest positive integer (Ln) for which π(Ln) − π(Ln/2) = n.

Note that, since ([11])

(17) π(Rn) − π(Rn/2) = n,

then, by the Definition 2, we have

(18) Ln ≤ Rn.

As above, one can prove the equivalence of the following conditions on

primes:

Condition 3. Let p = pn with n ≥ 3. Then all integers (p − 1)/2, (p −
3)/2, ..., (pn−1 + 1)/2 are composite numbers.
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Condition 4. Let pm < p/2 < pm+1. Then the interval (2pm, p) contains

a prime.

Furthermore, by the same way as for Lemma 2, one can prove that if

p is a Labos prime, then Conditions 3 and 4 satisfy. But again there are

non-Labos primes which satisfy Conditions 3,4. We call them pseudo-Labos

primes (PR)n. The first terms of the sequence of pseudo-Labos primes are:

(19) 131, 151, 229, 233, 311, 571, ...

Definition 5. We call a prime p a LPL-prime if p satisfies Condition 3 (or,

equivalently, Condition 4).

From the above it follows that a LPL-prime is either Labos or pseudo-

Labos prime. Note that for the LPL-primes one can build a sieve with help

of the Sloan’s primes (see A055496 [10]) and the corresponding generaliza-

tions of them (cf. constructing in Section 5).
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