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HIGHER ORDER MATCHING POLYNOMIALS AND d-ORTHOGONALITY

DAN DRAKE

Abstract. We show combinatorially that the higher-order matching polynomials of several
families of graphs are d-orthogonal polynomials. The matching polynomial of a graph is
a generating function for coverings of a graph by disjoint edges; the higher-order match-
ing polynomial corresponds to coverings by paths. Several families of classical orthogonal
polynomials—the Chebyshev, Hermite, and Laguerre polynomials—can be interpreted as
matching polynomials of paths, cycles, complete graphs, and complete bipartite graphs. The
notion of d-orthogonality is a generalization of the usual idea of orthogonality for polynomi-
als and we use sign-reversing involutions to show that the higher-order Chebyshev (first and
second kinds), Hermite, and Laguerre polynomials are d-orthogonal. We also investigate the
moments and find generating functions of those polynomials.

1. Introduction and background

A matching of a graph is a subset of mutually disjoint edges in the graph. Given a matching,
we can assign a weight to each matching by giving a weight of −1 to each edge in the matching
and weight x to each vertex not adjacent to an edge in the matching, then multiplying those
weights together. We define the matching polynomial of a graph as the sum of weights of all
matchings of the graph.

Matching polynomials have long been an object of interest in graph theory, and it is well-
known that the matching polynomials for some classes of graphs—namely paths, cycles, com-
plete graphs, and complete bipartite graphs—are in fact classical orthogonal polynomials: re-
spectively, the Chebyshev polynomials of the second and first kinds, Hermite polynomials, and
Laguerre polynomials. See [6, 13, 14, 29] and also [28, §4], which all treat the links between
classical orthogonal polynomials and matching polynomials.

The number of matchings of a graph was used by Hosoya to develop his “topological index” Z,
which relates chemical properties of hydrocarbons with their molecular structure. Later, Randić,
Morales, and Araujo [22] generalized the Z index to the so-called higher-order Hosoya numbers
by considering coverings of graphs not by disjoint edges (which can be thought of as paths of
length one), but by paths of length two, three, and so on. Araujo, Estrada, Morales, and Rada,
starting from the higher-order Hosoya numbers and working with Farrell’s F -coverings [7, 8, 9],
described the higher-order matching polynomial of a graph, derived recurrence relations, exact
formulas, and also found expressions for those polynomials as hypergeometric series [2].

Apart from combinatorics and graph theory, Van Iseghem [30] and Maroni [21] introduced a
generalization of orthogonality for polynomials. A set of polynomials {Pn}n≥0 that is orthogonal
in the usual sense has an associated positive measure µ such that

∫

PnPm dµ = 0 if n > m, and

∫

P 2
n dµ 6= 0.
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(We also demand that the degree of Pn be n.) We call the integral of P 2
n the L2 norm of Pn.

For our purposes, instead of providing a measure, it is equivalent to give a sequence of moments
{µn}n≥0 and define a linear functional L on the space of polynomials by declaring L(xn) = µn.
A set of orthogonal polynomials must satisfy a recurrence relation of the form

(1) Pn+1 = (x − bn)Pn − λnPn−1.

Van Iseghem and Maroni defined the concept of d-orthogonality, or orthogonality of dimension d.
Here d is a positive integer, and we say that a monic set of polynomials {Pn}n≥0 is d-orthogonal
if there is a measure µ (or, for us, a sequence of moments) such that

(2)

∫

PnPm dµ = 0 if n > dm, and

∫

PdnPn dµ = 1.

Observe that usual orthogonal polynomials correspond to d = 1. We will commit a minor abuse
of language and call the integral of PdnPn the L2 norm of Pn. Sets of d-orthogonal polynomials
satisfy a recurrence relation of order d + 2 analogous to the one above.

In this paper, we establish the t-orthogonality for higher-order matching polynomials cor-
responding to coverings of paths, cycles, complete graphs, and complete bipartite graphs by
paths with t edges. We will find formulas and combinatorial descriptions for the moments, the
recurrence relation, a sign-reversing involution that proves the orthogonality and L2 norms, and
generating functions for the moments and polynomials.

1.1. Notation and terminology. A path with t edges and t + 1 vertices will be called a “t-
path”. Vertices of a graph not adjacent to an edge in the matching will often be called “fixed
points”; the term comes from thinking of a matching of a graph as giving an involution on the
vertices. The set of integers from 1 to n, inclusive, will be written as “[n]”. Finally, we use
A ⊔ B for the disjoint union of two sets (usually graphs).

The vertices of our graphs are all labeled 1 to n, and we often draw matchings by arranging
the vertices horizontally and drawing arcs for edges or paths in the matching; we say that a
matching is noncrossing when such a diagram has no crossings. We will draw set partitions in
a similar manner, as Kasraoui and Zeng do in [18].

2. Warmup: Chebyshev polynomials of the second kind

We begin with the Chebyshev polynomials of the second kind, which is the simplest exam-
ple. The basic combinatorics of Chebyshev polynomials of the second kind were described by
de Sainte-Catherine and Viennot in [6, 31, 32] and we review the theory to familiarize the reader
with our basic strategy and aims.

The Chebyshev polynomial of the second kind Un(x) is defined here as the matching poly-
nomial of a path with n vertices. With this normalization, they are also called Fibonacci poly-
nomials, since matchings of a path with n vertices corresponds in a natural way to “pavings”
of length n composed of dominos and monominos, and such pavings are counted by Fibonacci
numbers. The last vertex of such a matching must be a fixed point or in an edge in the matching,
so the recurrence relation corresponding to (1) is clear:

(3) Un+1(x) = xUn(x) − Un−1(x),

so these polynomials have bn = 0 and λn = 1 for all n. Viennot established that the nth moment
of a set of orthogonal polynomials with recurrence coefficients bn and λn as in (1) equals the
total weight of all weighted Motzkin paths of length n; a Motzkin path is a lattice path that
never goes below the x-axis and takes upsteps, horizontal steps, and downsteps (that is, steps
of the form (1, 1), (1, 0), and (1,−1)), with upsteps of weight 1, horizontal steps at height n of
weight bn, and downsteps leaving from height n of weight λn. Knowing that, we see that the nth
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moment of the Chebyshev polynomials of the second kind is the number of Dyck paths—lattice
paths with only up- and down-steps—of length n.

The number of Dyck paths of length 2m is the Catalan number
(

2m
m

)

/(m + 1), which here
we interpret as the number of noncrossing complete matchings of K2m, which are the same as
noncrossing set partitions of [2m] in which all blocks have size two.

The orthogonality of these Chebyshev polynomials can be proved with a sign-reversing invo-
lution: Un(x)Um(x) is the generating function for pairs of matchings of an n-vertex path and
and m-vertex path. Integrating that product can be interpreted as the generating function for
complete noncrossing matchings on [n] ⊔ [m] with:

• black edges of weight −1 that connect adjacent vertices and are homogeneous—that is,
they stay within [n] or [m], and

• dashed edges of weight 1 between any two vertices.

The weight of such a configuration is the product of the weights of the edges. See Figure 1 for
an example. Given such a configuration, we can produce another configuration by finding the
leftmost edge that connects adjacent vertices and changing it to black if it is dashed, or vice versa.
This process is a sign-reversing involution that cancels all configurations with a homogeneous
edge, so L(Un(x)Um(x)) equals the number of complete noncrossing inhomogeneous matchings
of [n] ⊔ [m]. If n 6= m, there are obviously zero such matchings, and if n = m, there’s exactly
one: a “rainbow” configuration in which vertex n− k on the left is connected to vertex k on the
right (1 ≤ k ≤ n).

1 2 3 4 5 6 7 1 2 3 4 5

Figure 1. A configuration that contributes weight −1 to the “integral”
L(U7(x)U5(x)). The orthogonality involution would change the edge connect-
ing vertices 2 and 3 on the left from solid to dashed. There must always be
at least one homogeneous adjacent edge, so all configurations are canceled and
the integral is zero.

Let’s finish this section by mentioning the generating functions of the polynomials and the
moments. For Un(x), any such polynomial is a sequence of fixed points, which have size 1 and
weight x, and edges, which have size 2 and weight −1. When your objects are composed of
sequences of smaller objects, the generating function is typically just a geometric series:

(4)
∑

n≥0

Un(x)zn =
1

1 − (xz − z2)
.

The moments are Catalan numbers, whose generating function is well known; for example, see
Aigner [1, §3.1 and §7.3]:

(5) f(z) =
∑

n≥0

µnzn =
1 −

√
1 − 4z2

2z2
,

but for our purposes, we will focus more on the functional equation satisfied by f(z) and the
corresponding continued fraction. The functional equation is

(6) f(z) = 1 + z2f(z)2
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and is easy to explain using Dyck paths, which are counted by the Catalan numbers. Think of
f(z) as standing for “any possible Dyck path”; such a path is either empty (with weight 1), or is
of the form “upstep-(some Dyck path)-downstep-(some Dyck path)”, which has weight z2f(z)2;
see Figure 2.

f(z) =
1

+
z

f(z)

z
f(z)

Figure 2. A pictorial explanation of the functional equation of (6).

By rearranging (6), one is easily led to a continued fraction expression for f(z):

(7) f(z) =
1

1 − z2

1 − z2

1 − · · ·

Now we generalize the above work to higher-order matching polynomials.

3. Higher-order Chebyshev polynomials of the second kind

Following Araujo et al. in [2], let’s now cover the path with n vertices by paths with t edges,
and give t-paths weight −1 and fixed points weight x. We will denote the generating function for

such coverings by U
(t)
n (x) and call them Chebyshev polynomials of the second kind and order t.

These polynomials satisfy a recurrence relation similar to (3):

(8) U
(t)
n+1(x) = xU (t)

n (x) − U
(t)
n−t(x);

the proof is effectively the same: vertex n + 1 is either fixed or the final vertex in a t-path, and
the rest of the vertices can be covered by a smaller configuration.

Let µ
(t)
n be the number of noncrossing set partitions of [n] in which all blocks have size t + 1,

and let L(t) be the linear functional on the space of polynomials defined by L(t)(xn) = µ
(t)
n .

Then we have our first theorem, which generalizes a result of de Sainte-Catherine and Viennot
[6, Theorem 7].

Theorem 3.1. Let n1, n2, . . . , nk be nonnegative integers. The integral

L(t)

(

k
∏

i=1

U (t)
ni

(x)

)

equals the number of inhomogeneous noncrossing coverings of [n1] ⊔ · · · ⊔ [nk] by t-paths, or

equivalently, the number of noncrossing set partitions of [n1]⊔ · · · ⊔ [nk] in which all blocks have

size t + 1 and no block is a subset of any [ni].

Proof. The proof uses a sign-reversing involution analogous to the above involution we used
for the usual Chebyshev polynomials of the second kind. The product of the polynomials is
the generating function for k-tuples of coverings of ni-vertex paths by fixed points and t-paths.
Integrating the product yields the generating function for complete noncrossing coverings of
[n1] ⊔ · · · ⊔ [nk] by t-paths with
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• homogeneous black t-paths of weight −1 that connect a sequence of adjacent vertices in
the underlying path, and

• dashed t-paths of weight 1 that can go anywhere.

Call a path (black or dashed) that connects t+1 adjacent vertices in the underlying path “flat”.
The sign-reversing involution is simple: find the leftmost homogeneous flat t-path and change its
“color” from black to dashed, or vice versa. Any configuration that has at least one homogeneous
t-path must have a flat t-path, so this involution will cancel any configuration with a homo-

geneous edge. Uncanceled configurations have only edges of weight 1, so L(t)
(

U
(t)
n (x)U

(t)
m (x)

)

equals the number of configurations with only inhomogeneous edges. �

The above theorem immediately implies that the polynomials U
(t)
n are, in fact, t-orthogonal

with respect to those moments.

Corollary 3.2. The polynomials U
(t)
n are t-orthogonal with respect to the above moments: if

m > nt, then

(9) L
(

U (t)
m (x)U (t)

n (x)
)

= 0 and L
(

U
(t)
nt (x)U (t)

n (x)
)

= 1.

Proof. If m > tn, then any configuration of black and dashed edges must have at least one

homogeneous adjacent t-path in [m], so the integral is zero. The integral of U
(t)
n U

(t)
nt is 1

because there is exactly one inhomogeneous configuration, an example of which is pictured in
Figure 3. �

1 2 3 4 5 6 1 2

Figure 3. The sole uncanceled configuration in L
(

U
(3)
6 (x)U

(3)
2 (x)

)

.

The usual Chebyshev polynomials of the second kind are the generating functions for match-
ings of a path; the number of such matchings is a Fibonacci number, and can be obtained
with the appropriate substitution: Fn = Un(i)/in. The higher-order polynomials lead to the
higher-order Fibonacci numbers of Randić et al. [22], and can be obtained by

(10) tFn =

(

1

w

)n

U (t)
n (w),

where w is any (t + 1)th root of −1 and tFn is the notation of Randić et al. for the higher-order
Fibonacci numbers. The explanation for this is simple: we want each t-edge path to have weight

+1, but U
(t)
n (x) gives them weight −1. By multiplying by 1/wn, we effectively give each vertex

weight 1/w, and hence the total weight of each t-path is +1. Then we plug in w to give each
fixed point weight +1 as well.

Before we start investigating the moments of these polynomials, note that the generating
function for the polynomials is a straightforward generalization of (4).

Proposition 3.3. The ordinary generating function of the Chebyshev polynomials of the second

kind and order t is

(11) UP (t, x, z) =
∑

n≥0

U (t)
n (x)zn =

1

1 − (xz − zt+1)
.
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The “UP” is intended to be mnemonic: the U is for U
(t)
n (x), and the P is for “polynomials”.

We’ll meet UM , the generating function for the moments, shortly.

Proof. The rational function in (11) equals
∑

k≥0

(

xz − zt+1
)k

,

which can be interpreted as the generating function for finite sequences of objects with either
weight xz or weight −zt+1 grouped by number of objects; the sum in (11) is the generating
function for the same thing, just grouped by coefficient of z. �

3.1. Moments of U
(t)
n (x). The moments for the usual Chebyshev polynomials of the second

kind (order t = 1) are “aerated” Catalan numbers: µ2n+1 = 0 and µ2n =
(

2n
n

)

/(n + 1) for
all nonnegative n. In what follows, we will work with the following interpretations of Catalan
numbers: as Dyck paths with 2n steps, as noncrossing matchings of [2n], as binary trees, and
as triangulations of an (n + 2)-gon.

To understand the moments for Chebyshev polynomials of the second kind and order t, we
need to understand the Fuss-Catalan numbers, also called k-Catalan or generalized Catalan

numbers. The Fuss-Catalan numbers C
(k)
n are defined by

(12) C(k)
n =

1

kn + 1

(

(k + 1)n

n

)

,

and have been extensively studied; see Hilton and Pedersen [15] for an introduction to these
numbers, which were likely first described by Fuss [12] (see the table in that paper on page 249),
nearly 50 years before Catalan [5]. The above interpretations of the usual Catalan numbers
generalize to the following interpretations for the Fuss-Catalan numbers:

• Dissections of an (nk + 2)-gon into (k + 2)-gons.
• Rooted plane trees in which all non-leaf vertices have k + 1 children; i.e., (k + 1)-ary

trees.
• Lattice paths of length n composed of (1, 1) and (1,−k) steps that start and end on the

x-axis, and never go below the x-axis.
• Noncrossing set partitions with all blocks of size k + 1.

The first item was studied by Fuss; the second and third are connected by the  Lukasiewicz
language; see [20, chap. 11]. The last item is not as ubiquitous as the others and we will use it
to prove the following.

Theorem 3.4. The moments µ
(t)
n for U

(t)
n (x) are “aerated” Fuss-Catalan numbers: µ

(t)
(t+1)n =

C
(t)
n for all n ≥ 0, and are zero otherwise.

Proof. The moments for a d-orthogonal set of polynomials are unique (this follows from an
inductive argument, or by the “spanning argument” of [24]), so from Theorem 3.2, we know that

noncrossing set partitions with all blocks of size t+1 are the correct moments for U
(t)
n . Therefore

we need nothing more than a bijection to one of the above families of objects counted by the
aerated Fuss-Catalan numbers. One easy bijection is to (t+1)-ary trees. Given a (t+1)-ary tree
on (t + 1)n + 1 vertices, number the vertices of the tree according to a depth-first, left-to-right
search. The labels on each set of t + 1 siblings in the tree describe the corresponding block in
the set partition—see Figure 4. Injectivity is obvious, and surjectivity follows from the nesting
structure of such a set partition. Consider the usual diagram of the set partition, and find all
blocks of the set partition that contain t + 1 consecutive numbers; those blocks will be sets of
siblings in the tree that have no subtree. The root of the subtree corresponding to a block P
gets connected to vertex i corresponding to block Q when the smallest number in P is one larger
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than the ith smallest number in Q. (For example, in Figure 4, the block {4, 5, 6} is immediately
nested by block {2, 3, 7}, and we connect the root of the {4, 5, 6} subtree to 3 because 4 is one
larger than 3.) This produces a (t + 1)-ary tree from a noncrossing set partition with all blocks
of size t + 1, so surjectivity—hence bijectivity—holds. �

1

2
3

4 5 6

7

8
9

10 11 12

Figure 4. An example illustrating the bijection from ternary trees to noncross-
ing set partitions in which all blocks have size three; the above tree corresponds
to the set partition {{1, 8, 9}, {2, 3, 7}, {4, 5, 6}, {10, 11, 12}}.

There is a closely related bijection, analogous to Flajolet’s path diagrammes [10] and Vien-
not’s Laguerre histories [31, 32].

A  Lukasiewicz path is a generalization of a Motzkin path in which, in addition to upsteps
and horizontal steps, downsteps of the form (1,−k) are allowed. The paths begin and end on
the x-axis and never go below the x-axis. For a general set of d-orthogonal polynomials, the
nth moment is the generating function for weighted  Lukasiewicz paths of length n that have
downsteps (1,−1), (1,−2), . . . , (1,−d). The weight of each horizontal step and downstep is given
by the recurrence coefficients for the polynomials. See [23, §4.2] for more details.

The recurrence relation (8) tells us that the moments for Chebyshev polynomials of the second
kind and order t are also given by  Lukasiewicz paths with upsteps (1, 1) and downsteps (1,−t),
with all steps of weight 1. The bijection between those paths and the set partitions counted by

µ
(t)
n is the obvious generalization of the classical Motzkin path bijection to set partitions: given

such a  Lukasiewicz path with n steps, one produces a set partition of [n] with the following
procedure: begin with an empty set partition and read through the path. if the kth step is an
upstep, add k to a set of “candidates”. If step k is a downstep, add a block to the set partition
consisting of k and the t largest elements of the candidate set. This produces a set partition
in which every block has size t + 1. Choosing the t largest candidates guarantees that the set
partition is noncrossing, and the procedure is a bijection because every downstep corresponds to
a unique set of t upsteps. This is in some sense a generalization of the map between set partitions
and Charlier diagrams found in [18, §3.1] and [10, 31]; in the language of that bijection, we place
an “opener” vertex whenever one sees an upstep, and placing a “closer” vertex and connecting
the rightmost t open vertices.

For example, if U stands for an upstep and D for a (1,−2) step, the tree and set partition in
Figure 4 correspond to the lattice path UUUUUDDUDUUD.

The tree and lattice path representations for the moments of U
(t)
n make the generalizations

of (6) and (7) obvious.

Theorem 3.5. Let UM(t, z) be the ordinary generating function of the moments of the Cheby-

shev polynomials of the second kind and order t:

UM(t, z) =
∑

n≥0

µ(t)
n zn.
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Then UM(z) satisfies

(13) UM(t, z) = 1 + zt+1UM(t, z)t+1

and has the continued fraction expansion

(14) UM(t, z) =
1

1 − zt+1







1 − zt+1

(

1 − zt+1

(1 − · · · )t

)t







t

.

Viennot called the above continued fraction an L-fraction when he derived a generalization
of the above theorem in [31, chapter V, §6]. Note that the continued fraction expansion only
requires the recursion coefficients of the polynomials, which Araujo et al. found [2, eq. (2.7)],
and are clear from the combinatorial description.

For these polynomials, and every class of higher-ordering matching polynomials we consider
here, we note that Araujo et al. [2] give exact formulas and expressions for these polynomials as

generalized hypergeometric functions. They give an exact formula for U
(t)
n (x) in equation (2.11)

and express that polynomial as a t+1Ft in (3.6).

4. Chebyshev polynomials of the first kind

Now let’s move on to the Chebyshev polynomials of the first kind and order t, which are
the higher-order matching polynomials for a cycle with, as usual, weight x for fixed points and

weight −1 for a path with t edges. We denote them T
(t)
n (x), and use Cyc(n) for the underlying

labeled n-cycle. Here a 1-cycle is a single vertex1 and a 2-cycle, of course, is two vertices with two
edges between them. The interpretation of Chebyshev polynomials as the matching polynomial
of a cycle has been studied by several authors; see Benjamin and Walton [3], Bergeron [4], and
Hosoya [16, 17], whose Q(Y ) polynomials for cycloparaffins in the first reference are essentially
Chebyshev polynomials of the first kind. The Chebyshev polynomials of the first kind are often

defined by Pn(cos θ) = cos(nθ), and those polynomials are related to ours by T
(1)
n (x) = 2Pn(x/2).

The combinatorial model for these polynomials is well known, but it is much harder to find
models for the moments and an involution proof like that of Theorem 3.1 to prove orthogonality.
The Chebyshevs of the first kind satisfy the same recurrence relation as those of the second kind,
but they have different initial conditions. Before we describe the moments and orthogonality

involution, let’s show directly that T
(t)
n (x) satisfies the same recurrence as U

(t)
n (x).

4.1. A weight-preserving bijection for the recurrence relation. In this section, we find
a weight-preserving bijection that shows

(15) T
(t)
n+1(x) = xT (t)

n (x) − T
(t)
n−t(x),

with T
(t)
i (x) = xi for 0 ≤ i ≤ t and T

(t)
t+1(x) = xt+1 − (t + 1). Araujo et al. [2, §2.2] and Farrell

[9, §6] both find this recurrence, but here we present a direct bijection. The initial conditions
are clear; either there are not enough edges to have a t-path (so every vertex is fixed), or there
are t + 1 edges, and we can choose any one of them to be the single edge not in a t-path.

1One can also have a 1-cycle be a vertex with a loop, with the convention that such a graph has no one-edge
matching since the edge would be incident with itself—but that’s effectively the same as just saying it’s a single
vertex with no edge at all.
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Cyc(n + 1)

Cyc(n)

n + 1 1 2

1 2

Figure 5. Case (a) for the T
(t)
n+1(x) recurrence. When the edge (1, 2) in Cyc(n)

is not covered by a t-path, we simply insert a new edge behind 1, label the new
vertex n + 1, and attach the previous (n, 1) edge from n to n + 1. The weight
of the new configuration is x times the weight of the old.

Cyc(n + 1)

Cyc(n)

k − 1 k k + 1 1 2

k − 1 k 1 2

Figure 6. Case (b) for the T
(t)
n+1(x) recurrence. If the edge (1, 2) in Cyc(n) is

covered by a t-path, say the path extends back to vertex k. The “long edges”
from k to 1, and from k + 1 to 1, represent n + 1− k edges in a t-path. Expand
vertex k − 1 into vertices k − 1 and k, with an edge not in a t-path between
them, and relabel the vertices between the old vertex k and vertex 1. Note that
k could be 1, in which case k−1 is n and no relabeling is necessary. The weight
of the new configuration is x times the weight of the old.

Assume n > t. There are four cases for the bijection between coverings of T
(t)
n+1(x) and the

union of coverings of T
(t)
n (x) with extra weight x and coverings of T

(t)
n−t(x) with extra weight

−1.
Given a configuration for T

(t)
n (x), the edge from 1 to 2 is either in a t-path or not. Case (a)

is when the edge is not in a t-path and is illustrated in Figure 5. In all four figures, we have a
section of Cyc(n + 1) on top, and a section of Cyc(n) or Cyc(n − t) on the bottom; the rest of
the vertices are omitted for clarity. Black edges are in a t-path, and dashed edges are not. The
gray triangles indicate expanding (or contracting) edges in the map from one configuration to
another. In case (a), we simply insert a new edge “behind” vertex 1 that is not in a t-path.

In case (b), the edge from 1 to 2 in Cyc(n) is in a t-path, which extends back to vertex k. We
expand vertex k − 1 into an edge not in a t-path and relabel the relevant vertices in the t-path.
Figure 6 shows the process. Observe that this always yields a configuration in which (1, 2) is in
a t-path, and that path is preceded by at least two edges not in a path.

Both operations multiply the weight by x and yield a configuration for T
(t)
n+1(x).

Now consider T
(t)
n−t(x). Case (c) is when the (1, 2) edge is not in a t-path. Insert t + 1 new

edges immediately behind 1: an edge not in a t-path, followed by a t-path. See Figure 7.
Case (d) is shown in Figure 8: if the (1, 2) edge of Cyc(n− t) is in a t-path, there are k edges

in the path preceding vertex 1 for some k with 0 ≤ k < t. Immediately behind vertex 1, add
t + 1 new edges: k edges in a t-path, an edge not in a t-path, and t − k edges in a t-path. This
splits a single t-path into two t-paths.

Both operations yield a configuration with one more t-path than we started with, so we’ve

multiplied the weight by −1 and have a configuration for T
(t)
n+1(x).
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Cyc(n + 1)

Cyc(n− t)

n− t + 1 n− t + 2 1 2

1 2

Figure 7. Case (c) of the T
(t)
n+1(x) recurrence. If the (1, 2) edge of Cyc(n−t) is

not in a t-path, insert a t-path preceded by an edge immediately behind vertex
1. The old (n − t, 1) edge is now an (n − t, n − t + 1) edge. This adds a t-path
and multiplies the weight by −1.

Cyc(n + 1)

Cyc(n− t)

n− t + 1 n + 1− k n + 2− k 1 2

n− t + 1− k 1 2

Figure 8. Case (d) of the T
(t)
n+1(x) recurrence. The bottom is Cyc(n− t), and

edge (1, 2) is covered by a t-path with k edges preceding 1, with 0 ≤ k ≤ t− 1.
Expand vertex 1 into a sequence of t + 1 edges of the form “t − k edges in a
t-path, one edge not in a t-path, k edges in a t-path”.

This is a bijection: in T
(t)
n+1(x), consider if (1, 2) is in a t-path. If it isn’t, is (n + 1, 1) in a

t-path? If no, then the configuration came from T
(t)
n (x) in case (a); if yes, it came from case (c)

and T
(t)
n−t(x). If (1, 2) is indeed in a t-path: is the path preceded by one, or more than one,

edges not in a t-path? If exactly one, the configuration came from case (d) and T
(t)
n−t(x), and

if more than one, it came from T
(t)
n (x) in case (b). Every possible configuration in T

(t)
n+1(x) is

accounted for, so the map is surjective. Since we always simply expand a vertex into new edges,
and because the above argument shows that the cases are distinguishable, the map is injective.

4.2. Orthogonality involution. Now we address the moments and orthogonality for higher
order Chebyshev polynomials of the first kind. Instead of the Fuss-Catalan numbers, the mo-

ments of T
(t)
n (x) are what we will call (t + 1)-reciprocal binomial coefficients:

(16) B(t)
n =

(

(t + 1)n

n

)

.

Note the similarity to (12). We say “(t+1)-reciprocal” because these coefficients give the number
of ways to choose exactly 1/2, 1/3, 1/4, etc., of the elements in a set.

Let L(t) be the linear functional whose moments are defined by aerated (t + 1)-reciprocal

binomial coefficients: µ
(t)
(t+1)n equals B

(t)
n and is zero otherwise. We can easily prove an analogue

of Theorem 3.1:

Theorem 4.1. Let n1, n2, . . . , nk be nonnegative integers. The integral

L(t)

(

k
∏

i=1

T (t)
ni

(x)

)

equals the number of ways to mark exactly 1/(t + 1) of the vertices in Cyc(n1) ⊔ · · · ⊔ Cyc(nk)
such that no marked vertex is followed by t unmarked vertices.
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Proof. The proof follows the now-familiar mantra: the product is the generating function for
coverings of Cyc(n1) ⊔ · · · ⊔ Cyc(nk) by t-edge paths with weight −1 and with fixed points of
weight x. Applying L(t) can be interpreted as changing all fixed points to have weight 1 and
marking exactly 1/(t + 1) of them. Now we apply a sign-reversing involution to the set of those
configurations: scan through the cycles, and find the first occurrence of a t-edge path and turn
it into a marked vertex followed by t unmarked vertices, or vice versa. �

See Figure 9 for two examples of the involution.

1 2

34

1

2

3

45

2

1 3

1 2

34

1

2

3

45

2

1 3

Figure 9. Two (unrelated) configurations in L3

(

T
(3)
4 (x)T

(3)
5 (x)T

(3)
3 (x)

)

.
Marked vertices are indicated by a black circle, unmarked vertices are regu-
lar corners of the shapes, and the thick edges represent paths with t = 3 edges.
In the left configuration, the sign-reversing involution would remove the edge
in the 5-cycle and leave the 5-cycle with vertices 2 and 3 marked and the others
unmarked. In the right configuration, vertex 4 in the 4-cycle is followed by
three unmarked vertices, so the involution would replace the marked vertex by
a path on vertices 4–1–2–3. Observe that it is perfectly acceptable to have no
(or all) marked vertices in a cycle.

The above theorem immediately gives us the orthogonality relation and L2 norm for T
(t)
n (x).

Corollary 4.2. The Chebyshev polynomials of the first kind and order t are t-orthogonal with

respect to the moments given by aerated (t + 1)-reciprocal binomial coefficients. That is, with

L(t) defined as above, whenever m > nt, then

(17) L(t)
(

U (t)
m (x)U (t)

n (x)
)

= 0 and L(t)
(

U
(t)
nt (x)U (t)

n (x)
)

= t + 1.

Proof. Assume m > nt. The above theorem tells us that, to find L(t)
(

U
(t)
m (x)U

(t)
n (x)

)

, we need
to count the number of ways to mark exactly (n + m)/(t + 1) vertices in Cyc(m)⊔Cyc(n) such
that no marked vertex is followed by t unmarked vertices. Since (n + m)/(t + 1) is greater than
n, we must mark at least one vertex in Cyc(m), and to insure that we leave no marked vertex
in Cyc(m) followed by t unmarked vertices, we must mark more than m/t vertices there—but
(n+m)/(t+1) is strictly smaller than m/t, so there are zero configurations meeting the criteria.

When we consider L(t)
(

U
(t)
nt (x)U

(t)
n (x)

)

, we must mark exactly n vertices. We can do that and
meet the marked-unmarked condition by either marking all vertices of Cyc(n), or by marking
those vertices whose label is congruent to 0, 1, 2, . . . modulo t in Cyc(nt), for a total of t + 1
different configurations. �

4.3. Generating functions. In analogy with UP and UM , define

TP (t, x, z) =
∑

n≥0

T (t)
n (x)zn

and

TM(t, z) =
∑

n≥0

µ(t)
n zn.



HIGHER ORDER MATCHING POLYNOMIALS AND d-ORTHOGONALITY 12

These generating functions are not difficult to derive. For the polynomials, we decompose T
(t)
n (x)

by considering vertex 1. That vertex is either a fixed point of weight x, or is one of the t + 1
vertices in a t-path. If one removes the “component” that vertex 1 is in, the result is a covering
of a path. Therefore for n ≥ 1,

T (t)
n (x) = xU

(t)
n−1(x) − (t + 1)U

(t)
n−(t+1)(x),

where we take polynomials with negative indices to equal zero. By multiplying the above
equation by zn and summing over n, the above equation immediately yields the generating

function for T
(t)
n (x):

TP (t, x, z) = 1 + xzUP (t, x, z) − (t + 1)zt+1UP (t, x, z)

=
1 − tzt+1

1 − (xz − zt+1)
.(18)

The generating function for the moments is also similar to that for the Chebyshevs of the second
kind. The recurrence coefficients of (15) tell us the L-fraction expression [31, chapter V, §6]:

(19) TM(t, z) =
1

1 −
(t + 1)zt+1







1 − zt+1

(

1 − zt+1

(1 − · · · )t

)t







t

.

The only recurrence coefficient here that is different from those for the Chebyshev polynomials
of the second kind is the very first one, so reasoning as in Figure 2, we have the following:

(20) TM(t, z) = 1 + (t + 1)zt+1(UM(t, z))tTM(t, z).

That equation also follows from (19) and the definition of UM . The recurrence coefficients also
directly tell us that the moments are the generating function for weighted  Lukasiewicz paths
with upsteps and steps (1,−t) in which all steps have weight 1 except for a downstep leaving
from height t—such a step has weight t + 1.

5. Hermite polynomials

Having addressed paths and cycles, we turn now to complete graphs. The higher-order

matching polynomial for coverings of Kn by t-paths is H
(t)
n (x), the Hermite polynomial of

order t. These polynomials are very similar to Chebyshev polynomials of the second kind, but
now, since the underlying graph is the complete graph instead of just a path, we may have

crossings. We will draw coverings for H
(t)
n (x) similar to how we drew coverings for U

(t)
n (x) but

now edges may be between any two vertices. Figure 10 shows an example configuration.
The recurrence relation is hardly any more difficult than that for higher-order Chebyshev

polynomials of the second kind (3). First, observe that there are (t + 1)!/2 possible t-paths on

a set of t + 1 vertices. Given H
(t)
n+1(x), consider vertex n + 1: it is either fixed, or is in a t-path

with t other vertices, and we have

(21) H
(t)
n+1(x) = xH(t)

n (x) −
(

n

t

)

(t + 1)!

2
H

(t)
n−t(x)

for n > 0, with the usual convention that polynomials with negative indices are zero and the
zeroth polynomial equals one. See Araujo et al. [2, §2.3] for an explicit formula.

For the higher-order Chebyshev U polynomials, the moments were noncrossing set partitions
with all blocks of size t + 1; now, the moments involve the same sort of set partitions, but with



HIGHER ORDER MATCHING POLYNOMIALS AND d-ORTHOGONALITY 13

1 2 3 4 5 6 7 8 9 10

x x

Figure 10. A covering of K10 by 3-paths that contributes weight (−1)2x2 to

H
(3)
10 (x), which equals x10 − 2520x6 + 226800x2. For clarity, only the edges in

covering paths are drawn; the remaining 39 edges of the underlying graph are
considered understood.

crossings allowed. In both cases, the moments are “complete” configurations. Let µ
(t)
n equal the

number of ways to completely cover Kn by t-paths and L(t) the corresponding linear functional.

Clearly µ
(t)
n is zero if n is not a multiple of t + 1, and if it is a multiple of t + 1, then we can

count the number of such coverings by first finding the number of set partitions of [n] with all
blocks of size t (which is just a multinomial coefficient) and then multiplying by an appropriate
power of (t + 1)!/2, the number of t-paths through a given set of vertices. That is,

(22) µ
(t)
(t+1)n =

(

(t + 1)n

t + 1, t + 1, . . . , t + 1

)(

(t + 1)!

2

)n

with n copies of t + 1 in the “denominator” of the multinomial coefficient. Corollary 5.2 will
show that these numbers really are the moments for the higher-order Hermite polynomials.

For t = 1, the moments have the very well-known integral representation as the moments of
a positive measure on the real axis, namely

µ(1)
n =

1√
2π

∫

R

xn exp
(

−x2/2
)

dx.

For t = 2 and t = 3, integral representations are also known:

(23) µ
(2)
3n =

3n

π

∫ ∞

0

xn

√

2

3x
K1/3

(

2
√

2x

3

)

dx,

where K1/3 is the modified Bessel function of the second kind. This expression follows from the
formula given in sequence A025035 of the OEIS [27]. For t = 3, a formula in sequence A025036

gives a representation for µ
(3)
4n :

(24) 12n

∫ ∞

0

xn−1/4 31/4

21/2

(

31/2F (5/4, 3/2)Γ(3/4)

23/4π
− 31/4F (5/4, 3/4)

π1/2x1/4
+

F (1/2, 3/4)

23/4x1/2Γ(3/4)

)

dx,

where F (a, b) = 0F2

(

−
a b

;−3x/32

)

, a generalized hypergeometric function.

With L(t) in hand, our next task is to show what happens when one integrates a product
of higher-order Hermite polynomials; like Theorem 3.1, this is a generalization of a theorem of
de Sainte-Catherine and Viennot [6, Theorem 2].

Theorem 5.1. Let n1, n2, . . . , nk be nonnegative integers. The integral

L(t)

(

k
∏

i=1

H(t)
ni

(x)

)

equals the number of inhomogeneous coverings of [n1] ⊔ · · · ⊔ [nk] by t-paths.
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1
2

3
4

5

1
2

3
4

5
6

7
8

9

123456

Figure 11. A configuration in L(3)
(

H
(3)
5 (x)H

(3)
9 (x)H

(3)
6 (x)

)

. The sign-
reversing involution of Theorem 5.1 would change the path on vertices 1, 3,
4 and 5 in [9] to black.

Proof. Just as in Theorem 3.1, the integral of the product is the generating function for complete
coverings of [n1] ⊔ · · · ⊔ [nk] by two kinds of t-paths: black paths, which have weight −1 and
must stay within on of the [ni], and dashed paths, which have weight 1 and can go anywhere.
We can cancel all the black paths with a simple sign-reversing involution: given a homogeneous
path in [ni], label the path with (i, j), where j is the smallest index among the t + 1 vertices of
the path. Order those labels lexicographically, and switch the first path in that ordering from
dashed to black, or vice versa. This cancels every configuration with a homogeneous t-path. �

Figure 11 shows an example of such a configuration and the action of the above sign-reversing
involution on it.

The next result, along with uniqueness of moments, implies that the µ
(t)
n we defined above

are the moments for the higher-order Hermite polynomials.

Corollary 5.2. The Hermite polynomials of order t are t-orthogonal with respect to the moments

given by µ
(t)
n : whenever m > nt, then

(25) L(t)
(

H(t)
m (x)H(t)

n (x)
)

= 0 and L(t)
(

H
(t)
nt (x)H(t)

n (x)
)

=

(

t + 1

2

)n

(nt)!

for n ≥ 0.

Proof. The first relation is clear from Theorem 5.1, since if m > nt, there must be a homogeneous
t-path in [m] and so all such configurations are canceled.

The L2 norm requires a bit of work. The involution implies that the only configurations we
need consider are those in which every t-path has one vertex in [n], and the other t vertices
in [nt]. To construct such a covering, take a permutation of [nt] and insert a bar after every t
vertices to form n groups. The first group of vertices will be in a path with vertex 1 from [n],
the second group in a path with vertex 2 from [n], and so on. For each of the groups, there
are t + 1 ways to insert the vertex from [n] into the path given by the ordering of the group.
However, since the paths have no orientation, we have counted every possibility twice, so we
divide by 2 for each of the n paths, and obtain the claimed L2 norm. �

5.1. Generating functions. Generating functions for the higher-order Hermite polynomials
and their moments are quite easy to find, since moving from a path to a complete graph gives
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“more symmetry”. First, the polynomials: we define

HP (t, x, z) =
∑

n≥0

H(t)
n (x)

zn

n!
.

Any configuration contributing to H
(t)
n (x) has two kinds of connected components: t-paths and

fixed points. The former has weight −1 and there are (t + 1)!/2 of them on a labeled set of
t + 1 points, the latter has weight x and there’s obviously just one on a point. The exponential
formula [1, §3.3] immediately gives us

(26) HP (t, x, z) = exp

(

xz − zt+1

2

)

.

The above generating function is a specialization of one found by Farrell [7, Theorem 2]. The
same reasoning gives us the exponential generating function for the moments:

(27) HM(t, z) =
∑

n≥0

µ(t)
n

zn

n!
= exp

(

zt+1

2

)

.

We can also find an expression for the ordinary generating function, since the recurrence coef-
ficients of the polynomials tell us the continued fraction expansion for that function. We know
that the moments of order t are also the generating functions for  Lukasiewicz paths that consist
of upsteps and t-downsteps, where upsteps all have weight 1 and a t-downstep leaving from

height n has weight
(

n
t

)

(t + 1)!/2 (the recurrence coefficient for H
(t)
n−t(x) in (21)). For clarity,

let λ
(t)
n =

(

n
t

)

(t + 1)!/2, and write HM ′(t, z) for the ordinary generating function for µ
(t)
n ; then,

decomposing  Lukasiewicz paths makes the following expression clear:

(28) HM ′(t, z) =
1

1 −
λ

(t)
t zt+1

t
∏

k=1









1 −
λ

(t)
t+kzt+1

t
∏

j=1

(

1 −
λ

(t)
t+k+jz

t+1

∏

(1 − · · · )

)









This expression, like the continued fraction for UM(t, z) and TM(t, z), is an L-fraction [31, §6].
Figure 12, the higher-order Hermite version of Figure 2, explains the first steps of HM ′(3, z).
Analogous to (6) and (20), HM ′ satisfies the functional equation

HM ′(t, z) = 1 + λ
(t)
t zt+1HM ′(t, z)

t
∏

k=1

(

δkHM ′(t, z)
)

.

The δ operator seen here and in Figure 12 is taken from [31, chap. V, §1]: the generating

function HM ′(t, z) depends on t, z, and the λ
(t)
n ’s, and we could make the dependence explicit

by writing HM ′(t, z, λ
(t)
t , λ

(t)
t+1, . . . ). The δ operator simply increases the subscript on all the

λ’s: δHM ′ = HM ′(t, z, λ
(t)
t+1, λ

(t)
t+2, . . . ).

6. Laguerre polynomials

The final class of higher-order matching polynomials we will consider are the Laguerre poly-
nomials. The usual Laguerre polynomial Ln(x2) is the matching polynomial for the complete
bipartite graph Kn,n; often the Laguerre polynomials are defined with a parameter α, and while
that parameter has combinatorial meaning—in some sense, it counts cycles; see Foata and Strehl
[11], Labelle and Yeh [19], and Simion and Stanton [25, 26]—we will not use it; our polynomials
correspond to α = 0.
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z

δHM ′ z

δ2HM ′ z

δ3HM ′

λ
(t)
t z

HM ′

Figure 12. A  Lukasiewicz path decomposition for HM ′(t, z) for t = 3. Any
path contributing to HM ′ is either empty, or of the above form. The δkHM ′

notation means shift all the lower subscripts on the λ’s by k.

Let Mt(Kn,n) be the higher-order matching polynomial for complete bipartite graphs with our
usual weights. The degrees of the polynomials of this sequence are all even, but a d-orthogonal
sequence of polynomials requires a polynomial of degree n for every nonnegative n. If t is odd
(so that the number of vertices in a t-path is even) we can simply substitute

√
x for x and get

a proper sequence of polynomials, but if t is even, the resulting matching polynomials contain
both even and odd powers of x and a simple substitution will not work. We could not find a
combinatorially satisfactory way of converting the matching polynomials for even t into a proper
sequence of polynomials, so in this section, we will hereafter assume that t is an odd positive
integer, and define k by t = 2k − 1; k is the number of vertices that a t-path occupies on each
“side” of Kn,n.

We therefore define the Laguerre polynomial of order t (for odd t only) by the relation

(29) L(t)
n (x2) = Mt(Kn,n).

Araujo et al. [2, §2.4] find explicit formulas2 for these polynomials and derive recurrence relations
for the matching polynomials—but some of the polynomials in those relations are from graphs

not of the form Kn,n, so we need to derive an appropriate recurrence relation for L
(t)
n (x) directly.

Before we do that, observe that the number of ways to cover Kk,k by a t-path is (k!)2: we can
orient the path by considering it to start in the left set of vertices, and then we order the vertices
on the left and right.

Theorem 6.1. With the convention that L
(t)
n (x) = 0 when n < 0 and L

(t)
0 (x) = 1, then for

n ≥ 0, the Laguerre polynomials of order t satisfy the recurrence relation

L
(t)
n+1(x) = xL(t)

n (x) − (k!)2

(

(

n

k − 1

)2

+ 2

(

n

k

)(

n

k − 1

)

)

L
(t)
n−(k−1)(x) −

((

n

t

)(

t

k

)

(k!)2
)2

L
(t)
n−t(x).

Proof. Any covering of Kn+1,n+1 by t-paths can be obtained in one or more of the following
ways:

(a) Take any covering of Kn,n and add two fixed vertices at the “bottom” of each vertex

set; this corresponds to xL
(t)
n .

2Note that the terms of the sum in their equation (2.27) are missing a factor of (−1)k .



HIGHER ORDER MATCHING POLYNOMIALS AND d-ORTHOGONALITY 17

(b) Take Kn+1,n+1 and choose k − 1 vertices among the first n vertices of each set. Add in
the last vertices of each set, put a t-path onto those 2k vertices, and then “fill in” the
rest with any configuration. This corresponds to

−(k!)2
(

n

k − 1

)2

L
(t)
n−(k−1)(x).

(c) Take Kn+1,n+1 and choose k vertices among the first n vertices in the left set, k − 1
vertices among the first n vertices in the right set, put a t-path down on those 2k vertices,
and then fill in the rest with any configuration. This, along with exchanging left and
right, contributes

−2

(

n

k

)(

n

k − 1

)

(k!)2L
(t)
n−(k−1)(x).

Configurations in which vertices n + 1 on the left and right are both in a path, and are not in
the same path, are counted twice by item (c) above. So we must correct for this by subtracting
the total weight of those configurations. We need to choose t vertices on each side, and then
choose k of those vertices to get connected to the bottom vertex on the opposite side. Finally,
put down two t-paths. The total contribution of these configurations is

((

n

t

)(

t

k

)

(k!)2
)2

L
(t)
n−t(x).

Adding together the above expressions yields the recurrence relations of the theorem. �

Figure 13 shows the four cases. Observe that if k = 1, we indeed recover the recurrence
coefficients for the classical monic Laguerre polynomials: Ln+1(x) = (x − (2n + 1))Ln(x) −
n2Ln−1(x).

As usual, we define a linear functional L(t) by L(t)(xn) = µ
(t)
n , where µ

(t)
n is the number of

complete coverings of Kn,n by t-paths, and can count the integral of a product of these polyno-
mials. This is a generalization of a result of de Sainte-Catherine and Viennot [6, Theorem 5].

Theorem 6.2. Let n1, n2, . . . , nj be nonnegative integers. The integral

L(t)

(

j
∏

i=1

L(t)
ni

(x)

)

equals the number of inhomogeneous coverings of Kn1,n1
⊔ · · · ⊔ Knj,nj

by t-paths.

Proof. The proof is the same that we’ve seen several times now; we start with the product of the

L
(t)
ni and apply L(t), which gives us the generating function for complete coverings of the disjoint

union of the complete bipartite graphs by t-paths, in which homogeneous t-paths may be black
(weight −1) or dashed (weight +1), and inhomogeneous paths always are black (weight +1). By
choosing, say, the smallest i such that Kni,ni

has a homogeneous path, finding the homogeneous
path with the smallest left vertex inside that subgraph, and changing the color from black to
dashed or vice versa, we have a sign-reversing involution that cancels any configuration with a
homogeneous t-path. �

This immediately implies the t-orthogonality of the higher order Laguerre polynomials (recall
that k = (t + 1)/2):

Corollary 6.3. The Laguerre polynomials of order t are t-orthogonal with respect to the mo-

ments given by µ
(t)
n : whenever m > nt, then

L(t)
(

L(t)
m (x)L(t)

n (x)
)

= 0,
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fixed fixed
(a)

choose k − 1
vertices

choose k − 1
vertices

(b)

choose k
vertices

choose k − 1
vertices

(c)

choose t
vertices & k
among those

choose t
vertices & k
among those

(d)

Figure 13. The four cases of the recurrence relation for L
(t)
n+1(x); here t = 5 so

k = 3. In case (a), both bottom vertices are fixed; in (b), both bottom vertices
are in the same path; the bottom vertices are not necessarily adjacent in the
t-path. In (c), the right vertex is in a path, and the bottom vertex on the left
may or may not be in a path. Case (d) corrects the overcounting from (c) when
both vertices are in a path: the gray circles are in a path together with the
bottom vertex from the opposite side.

and

L(t)
(

L
(t)
nt (x)L(t)

n (x)
)

=

n−1
∏

i=0

((

(n − i)t

t

)(

t

k

)

(k!)2
)2

for n ≥ 0.

Proof. The orthogonality relation is clear from Theorem 6.2, since any such configuration in

L
(t)
m (x)L

(t)
n (x) must have a homogeneous t-path in L

(t)
m (x). The L2 norm can be calculated

as follows: after applying the sign-reversing involution of the theorem, the only remaining
configurations are those with 2n paths, each with one vertex in Kn,n and the remaining vertices
in Knt,nt. Consider vertex 1 on the left and right in Kn,n: to choose a pair of paths that go
through those vertices, choose t vertices among the nt vertices on the left and right in in Knt,nt.

There are
(

nt
t

)2
ways to do that. Among those t vertices on the left, choose k of them to be in the

path that goes through vertex 1 on the right side of Kn,n; the same applies, mutatis mutandis,

on the other side. There are
(

t
k

)2
ways to do this. Now take vertex 1 on the left, the k−1 vertices

not chosen in the second step, and the k vertices chosen on the right, and put a t-path on those
vertices; do the same with the remaining vertices—there are (k!)2 ways to do that for each path.
Altogether we’ve accounted for the i = n factor in the above product; now repeat this procedure
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with vertex 2 on the left and right in Kn,n and the remaining (n− 1)t vertices in Knt,nt, and so
on; the total number of uncanceled configurations is exactly the product above. �

Using just the “left side of the above argument” for the L2 norm, we can derive a formula
for the moments. We know that the moments for the Laguerre polynomials of order t are the
number of complete coverings of Kn,n by t-paths; if n is not a multiple of k, there are zero such
coverings, and otherwise if n = mk, the number of coverings is

(30) µ
(t)
mk =

m−1
∏

i=0

(

(m − i)k

k

)(

(m − i)k − 1

k − 1

)

(k!)2.

6.1. Generating functions. The recurrence coefficients found in Theorem 6.1 allow us to give
a continued fraction expression for the moment generating function:

LM(t, z) =
∑

n≥0

µ(t)
n zn.

The recurrence relation has coefficients in front of L
(t)
n−(k−1)(x) and L

(t)
n−t(x), which tells us that

the weighted  Lukasiewicz paths whose generating function equals that of the moments have
down steps of (1,−(k − 1)) and (1,−t); by decomposing the paths as in Figure 12, we can
express LM(t, z) as an L-fraction:

(31) LM(t, z) =
1

1 − zk−1λ
(t)
k−1,k−1

∏k−1
i=1 δiLM(t, z) − ztλ

(t)
t,t

∏

i=1 δiLM(t, z)

where λ
(t)
n,m denotes the weight of a downstep leaving from height n and falling m steps and δ,

as in section 5.1, acts on LM by increasing the first “coordinate” of the coefficients; it changes

λ
(t)
n,m into λ

(t)
n+1,m.

7. Further work

In this paper, we’ve worked with sets of polynomials that satisfy a recurrence of order t and
in each case, found a linear functional with respect to which the polynomials are t-orthogonal.
However, as Van Iseghem [30] and Maroni [21] have shown, such sequences of polynomials are
naturally associated to not just a single linear functional, but t − 1 of them. These functionals
are defined by

L(t)
k (Pn(x)Pm(x)) =

{

0 if n > tm + k,

nonzero if n = tm + k,

for k = 0, . . . , t−2. The nth moment of L(t)
k is the generating function for weighted  Lukasiewicz

paths of length n that end at height k. In this work we have only addressed the k = 0 functionals
and in light of the results of Van Iseghem and Maroni, the combinatorial theory of these higher-
order matching polynomials is not entirely known until interpretations of the higher functionals
are known.
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