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Abstract

Given a finite nonempty sequence of integers S, by grouping adjacent terms it is always possible
to write it, possibly in many ways, as S = X Y k, where X and Y are sequences and Y is nonempty.
Choose the version which maximizes the value of k: this k is the curling number of S. The curling
number conjecture is that if one starts with any initial sequence S, and extends it by repeatedly
appending the curling number of the current sequence, the sequence will eventually reach 1. The
conjecture remains open, but we will report on some numerical results in the case when S consists
of only 2’s and 3’s.
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1. The curling number conjecture

Let S be a finite nonempty sequence of integers. By grouping adjacent terms, it is always possible to
write it as S = X Y Y · · · Y = X Y k, where X and Y are sequences of integers and Y is nonempty.
There may be several ways to do this: choose the one that maximizes the value of k: this k is the
curling number of S, denoted by k(S).

For example, if S = 0 1 2 2 1 2 2 1 2 2, we could write it as X Y 2, where X = 0 1 2 2 1 2 2 1 and
Y = 2, or as X Y 3, where X = 0 and Y = 1 2 2. The latter representation is to be preferred, since
it has k = 3, and as k = 4 is impossible, the curling number of this S is 3.

The curling number conjecture is that if one starts with any initial sequence S, and extends it
by repeatedly appending the curling number of the current sequence, the sequence will eventually
reach 1. In other words, if S0 = S is any finite nonempty sequence of integers, and we define

Sn+1 = Sn k(Sn) for n ≥ 0 , (1)

then the conjecture is that for some m ≥ 0 we will have k(Sm) = 1.
For example, suppose we start with S0 = 2 3 2 3. By taking X = ∅, Y = 2 3, we have S0 = Y 2,

so k(S0) = 2, and we get S1 = 2 3 2 3 2. By taking X = 2, Y = 3 2 we get k(S1) = 2, S2 = 2 3 2 3 2 2.
By taking X = 2 3 2 3, Y = 2 we get k(S2) = 2, S3 = 2 3 2 3 2 2 2. Again taking X = 2 3 2 3, Y = 2
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we get k(S3) = 3, S4 = 2 3 2 3 2 2 2 3. Now, unfortunately, it is impossible to write S4 = X Y k with
k > 1, so k(S4) = 1, S5 = 2 3 2 3 2 2 2 3 1, and we have reached a 1, as predicted by the conjecture.
(If we continue the sequence from this point, it appears to join Gijswijt’s sequence, discussed in
Section 3.)

The conjecture is stated in [1], [3], [4], and is mentioned in several entries in [2]. Some of the
proofs in [1] could be shortened if the conjecture were known to be true. All the available evidence
suggests that the conjecture is true, but it has so far resisted all attempts to prove it.

Notation. Y k means Y Y · · · Y , where Y is repeated k times. ∅ denotes the empty sequence.
We usually separate the parts of a sequence by small spaces.

2. Initial sequences of 2’s and 3’s

One way to approach the problem is to consider initial sequences S0 that contain only 2’s and 3’s,
and to see how far such a sequence will extend using the rule (1) before reaching a 1.

Let µ(n) denote the maximal length that can be achieved before a 1 appears, for any starting
sequence consisting of n 2’s and 3’s. The Curling Number Conjecture implies that µ(n) < ∞ for
all n. Reference [1] gave µ(n) for 1 ≤ n ≤ 30. Since then we have computed the values of µ(n) for
all n ≤ 52, and we have lower bounds, which are probably the exact values, for 53 ≤ n ≤ 80. The
results are shown in Table 1 and Figure 1. The values of µ(n) also form sequence A094004 in [2].

n 1 2 3 4 5 6 7 8 9 10 11 12
µ(n) 1 4 5 8 9 14 15 66 68 70 123 124

n 13 14 15 16 17 18 19 20 21 22 23 24
µ(n) 125 132 133 134 135 136 138 139 140 142 143 144

n 25 26 27 28 29 30 31 32 33 34 35 36
µ(n) 145 146 147 148 149 150 151 152 153 154 155 156

n 37 38 39 40 41 42 43 44 45 46 47 48
µ(n) 157 158 159 160 161 162 163 164 165 166 167 179

n 49 50 51 52 53 54 55 56 57 58 59 60
µ(n) 180 181 182 183 184† 185† 186† 187† 188† 189† 190† 191†

n 61 62 63 64 65 66 67 68 69 70 71 72
µ(n) 192† 193† 194† 195† 196† 197† 198† 200† 201† 202† 203† 204†

n 73 74 75 76 77 78 79 80
µ(n) 205† 206† 207† 209† 250† 251† 252† 253†

Table 1: µ(n), the record for a starting sequence of n 2’s and 3’s. Entries marked with a dagger
(†) are only lower bounds but are conjectured to be exact.

As can be seen from Fig. 1, up to n = 52, µ(n) increases in a piecewise linear manner. At
the values n = 1, 2, 4, 6, 8, 9, 10, 11, 14, 19, 22, 48 (entry A160766 in [2]) there is a jump, but at the
other values of n up to 52, µ(n) is simply µ(n− 1) + 1. Table 2 gives the starting sequences where
µ(n) > µ(n − 1) + 1. Up to n = 52, such sequences are always unique and start with a 2 (except
for n = 1).

Note from Table 1 that
µ(n) = n+ 120 for 22 ≤ n ≤ 47 . (2)
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Figure 1: Known values of µ(n), the maximal length of a sequence produced by any starting
sequence of n 2’s and 3’s, stopping when first 1 is reached. The values for 53 ≤ n ≤ 80 are only
lower bounds, but are conjectured to be exact.

That is, in this range one cannot do any better than taking the starting sequence for n = 22 and
prefixing it by an irrelevant sequence of 47−n 2’s and 3’s. However, at n = 48 a new record-holder
appears, and we have

µ(n) = n+ 131 for 48 ≤ n ≤ 52 . (3)

The main reason we were able to extend the search as far as n = 52 is the following lemma.

Lemma 1. If µ(n) > µ(n − 1) + 1 then no starting sequence of n 2’s and 3’s that achieves µ(n)
can contain a subsequence W 4 for a nonempty sequence W .

Proof. Let S be a starting sequence of length n that achieves µ(n) > µ(n − 1) + 1, say S =
s1 s2 . . . sn, and let T = s1 s2 . . . sn . . . sµ(n) (with si ∈ {2, 3} for 1 ≤ i ≤ µ(n), sµ(n)+1 /∈ {2, 3})
be its extension. Call S “weak” if s1 is never used in T , that is, if s1 s2 . . . sr can be written as
XY sr+1 , X 6= ∅, Y 6= ∅, for all r satisfying n ≤ r ≤ µ(n)− 1. If S is weak, then µ(n) ≤ µ(n− 1) + 1,
since T is simply s1 followed by the extension of s2 . . . sn. Hence S is not weak, and so for some
r with n ≤ r ≤ µ(n) − 1 we have s1 s2 . . . sr = Y k, where k = sr+1 ≥ 2 and Y is a sequence that

3



n Starting sequence

1 2
2 2 2
4 2 3 2 3
6 2 2 2 3 2 2
8 2 3 2 2 2 3 2 3
9 2 2 3 2 2 2 3 2 3
10 2 3 2 3 2 2 2 3 2 2
11 2 2 3 2 3 2 2 2 3 2 2
14 2 2 3 2 3 2 2 2 3 2 2 3 2 3
19 2 2 3 2 2 3 2 3 2 2 2 3 2 2 3 2 2 3 2
22 2 3 2 2 3 2 2 3 2 3 2 2 2 3 2 3 2 2 3 2 2 3
48 2 2 3 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 3

Table 2: Starting sequences of n 2’s and 3’s for which µ(n) > µ(n−1)+1, complete for 1 ≤ n ≤ 52.

begins with S. If S were to contain a sequence of the form W 4, we would have a contradiction
unless W 4 were at the end of Y , for when growing the second copy of Y , after W 4 has appeared,
the next term is ≥ 4, whereas S only contains 2’s and 3’s. On the other hand, if W 4 is at the end
of Y , the next term is ≥ 4, so k = 1, again a contradiction.

We also made use of a number of more obvious shortcuts, such as not considering a starting
sequence s1 . . . sn if k(s1 . . . sn−1) = sn, since we may assume that we have already considered all
starting sequences of length n− 1.

The lemma cuts down the number of starting sequences of 2’s and 3’s that must be considered.
Even if we simply exclude sequences that contain four consecutive 2’s or four consecutive 3’s, the
number of length n (see entry A135491 in [2]) drops from 2n to constant·αn, where α = 1.839 . . ..

Inspection of the best starting sequences in Table 2 suggests they must satisfy another condition,
which however we have not been able to prove: namely that they do not contain two consecutive
3’s. This is true for all the best starting sequences of lengths n ≤ 52.

Making the assumption (as yet unjustified) that we need only consider starting sequences with
at most three consecutive 2’s and with no pair of adjacent 3’s, we were able extend the search to
n = 78. This produced three further jumps, at n = 68, 76 and 77, establishing that µ(n) ≥ n+ 132
for 68 ≤ n ≤ 75, µ(n) ≥ n+133 for n = 76 and µ(n) ≥ n+173 for 77 ≤ n ≤ 80. The corresponding
starting sequences are shown in Table 3.

n Starting sequence

68 2 2 3 2 2 3 2 2 2 3 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 3 2 2 2 3 2 2
2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2

76 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 3 2 3
2 2 2 3 2 2 2 3 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 3

77 2 2 3 2 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 2 2 2
3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 3 2 2 2 3 2 2 3 2 2 2 3 2 3

Table 3: Starting sequences of n 2’s and 3’s for which µ(n) > µ(n − 1) + 1, conjectured to be
complete for 53 ≤ n ≤ 80.

We have not succeeded in finding any algebraic constructions for good starting sequences.
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However, one simple construction enables us to obtain lower bounds on µ(n) for some larger values
of n. Let S be a sequence of length n that achieves µ(n), and let T be the sequence of length µ(n)
that it generates (up to just before the first 1 appears). Then in some cases the starting sequence
T S will extend to T T 2 and beyond before reaching a 1. For example, taking S to be the length-48
sequence in Table 2, the sequence T S has length 179 + 48 = 227 and extends to a total length of
596 before reaching a 1, showing that µ(227) ≥ 596.

It would be nice to have some further exact values of µ(n), even though they will require
extensive computations. Can the especially good starting sequences shown in Tables 2 and 3
(especially at lengths 22, 48 and 77) be generalized? What makes them so special? And above all,
what is the asymptotic behavior of µ(n)?

3. Gijswijt’s sequence

If we simply start with S0 = 1, and generate an infinite sequence by continually appending the
curling number of the current sequence, as in (1), we obtain

1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, . . . .

This is Gijswijt’s sequence, invented by Dion Gijswijt when he was a graduate student at the
University of Amsterdam, and analyzed in [1]. It is entry A090822 in [2].

The first time a 4 appears is at term 220. One can calculate quite a few million terms without
finding a 5 (as the authors of [1] discovered!), but in [1] it was shown that a 5 eventually appears
for the first time at about term

1010
23
.

Reference [1] also shows that the sequence is in fact unbounded, and conjectures that the first time
that a number m ≥ 6 appears is at about term number

22
34

··
·m−1

,

a tower of height m− 1.
There is another question, also still open, which relates Gijswijt’s sequence to the discussion

in the previous section. If we start with an initial sequence S of 2’s and 3’s, extend it until we
reach the first 1, say at the (k+ 1)st step, and then keep going, it appears that the result is always
simply the first k terms of the extension of S, followed by Gijswijt’s sequence. In other words, there
is never any interaction between the first k terms of the extension of S and an initial segment of
Gijswijt’s sequence when computing curling numbers after the kth step. This seems plausible, but
we would not be surprised if there was a counterexample. It would be nice to have this question
settled one way or the other.

One final remark: To avoid 1’s in the sequence, we might define h(S) = max{k(S), 2}, and
replace the recurrence (1) by

Sn+1 = Sn h(Sn) for n ≥ 0 , (4)

If we start with S0 = 1 and use the rule (4) to extend it, the resulting sequence (A091787) is again
unbounded, and now it is possible to compute exactly when the first 5 appears, which is at step

77709404388415370160829246932345692180 .

See [1] for further information.
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