
ar
X

iv
:1

00
1.

44
53

v2
0 

 [
m

at
h.

N
T

] 
 3

 N
ov

 2
01

1

Sci. China Math. 54(2011), no. 12, 2509–2535.

SUPER CONGRUENCES AND EULER NUMBERS

Zhi-Wei Sun

Department of Mathematics, Nanjing University
Nanjing 210093, People’s Republic of China

zwsun@nju.edu.cn
http://math.nju.edu.cn/∼zwsun

Abstract. Let p > 3 be a prime. A p-adic congruence is called a super

congruence if it happens to hold modulo some higher power of p. The

topic of super congruences is related to many fields including Gauss and
Jacobi sums and hypergeometric series. We prove that

p−1
∑

k=0

(2k
k

)

2k
≡(−1)(p−1)/2

− p2Ep−3 (mod p3),

(p−1)/2
∑

k=1

(2k
k

)

k
≡(−1)(p+1)/2 8

3
pEp−3 (mod p2),

(p−1)/2
∑

k=0

(2k
k

)2

16k
≡(−1)(p−1)/2 + p2Ep−3 (mod p3),

where E0, E1, E2, . . . are Euler numbers. Our new approach is of com-

binatorial nature. We also formulate many conjectures concerning super
congruences and relate most of them to Euler numbers or Bernoulli num-

bers. Motivated by our investigation of super congruences, we also raise a

conjecture on 7 new series for π2, π−2 and the constant K :=
∑

∞

k=1(
k
3
)/k2

(with (−) the Jacobi symbol), two of which are

∞
∑

k=1

(10k − 3)8k

k3
(2k
k

)2(3k
k

)

=
π2

2
and

∞
∑

k=1

(15k − 4)(−27)k−1

k3
(2k
k

)2(3k
k

)

= K.
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1. Introduction

Let p be an odd prime. Clearly

(

2k

k

)

=
(2k)!

(k!)2
≡ 0 (mod p) for every k =

p+ 1

2
, . . . , p− 1.

After a series of work on combinatorial congruences involving central bino-
mial coefficients (cf. [PS], [ST1] and [ST2]), Z. W. Sun [S10b] determined
∑p−1

k=0

(

2k
k

)

/mk modulo p2 for any integer m 6≡ 0 (mod p). In particular,
he showed that

p−1
∑

k=0

(

2k
k

)

2k
≡ (−1)(p−1)/2 (mod p2)

and conjectured that there are no odd composite numbers n > 1 satisfying
the congruence

∑n−1
k=0

(

2k
k

)

/2k ≡ (−1)(n−1)/2 (mod n2). He also searched

those exceptional primes p such that
∑p−1

k=0

(

2k
k

)

/2k ≡ (−1)(p−1)/2 (mod p3)
and only found two such primes: 149 and 241.

Let p be an odd prime. A p-adic congruence is said to be a super
congruence if it happens to hold modulo some higher power of p. In 2003
Rodriguez-Villegas [RV] conjectured 22 super congruences via his analysis
of the p-adic analogues of Gaussian hypergeometric series and the Calabi-
Yau manifolds. The most elegant one of the 22 super congruences is as
follows:

p−1
∑

k=0

(

2k
k

)2

16k
≡ (−1)(p−1)/2 (mod p2),

which was later proved by E. Mortenson [M03a] via the p-adic Γ-function
and the Gross-Koblitz formula. See also K. Ono’s book [O] and the papers
[AO], [K], [MO], [M03b], [M05], [M08], [Mc] and [OS] for such advanced
approach to super congruences. Recently the author’s twin brother Z.
H. Sun, as well as R. Tauraso [T], gave a simple proof of the last super
congruence, and Z. H. Sun also proved the author’s conjectural congruence

p−1
∑

k=0

k
(

2k
k

)2

16k
≡ (−1)(p+1)/2

4
(mod p2)

via a combinatorial identity. Note that Stirling’s formula n! ∼
√
2πn(n/e)n

implies that

lim
k→+∞

k
(

2k
k

)2

16k
=

1

π
.

Surprisingly, we find that the above topics are related to Euler numbers.
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Recall that Euler numbers En (n ∈ N = {0, 1, 2, . . .}) are integers
defined by

E0 = 1, and

n
∑

k=0
2|k

(

n

k

)

En−k = 0 for n ∈ Z+ = {1, 2, 3, . . .}.

It is well known that E2n+1 = 0 for all n ∈ N and

sec x =

∞
∑

n=0

(−1)nE2n
x2n

(2n)!
for |x| < π

2
.

Now we state the main results and key conjectures in this paper.

Theorem 1.1. Let p be an odd prime. Then

p−1
∑

k=0

(

2k
k

)

2k
≡ (−1)(p−1)/2 − p2Ep−3 (mod p3). (1.1)

If p > 3, then

(p−1)/2
∑

k=1

(

2k
k

)

k
≡ (−1)(p+1)/2 8

3
pEp−3 (mod p2) (1.2)

and
(p−1)/2
∑

k=1

1

k2
(

2k
k

) ≡ (−1)(p−1)/2 4

3
Ep−3 (mod p). (1.3)

We also have

(p−1)/2
∑

k=1

4k

k2
(

2k
k

) ≡ (−1)(p−1)/2 4Ep−3 (mod p) (1.4)

and
∑

p/2<k<p

(

2k
k

)

k4k
≡ (−1)(p−1)/2 2pEp−3 (mod p2). (1.5)

Remark 1.1. By (1.1) those exceptional primes are just those odd primes
p with p | Ep−3; the two exceptional primes 149 and 241 offer the main
clue to our discovery of (1.2)-(1.5). Also, Sun and Tauraso [ST1] showed
that

p−1
∑

k=1

(

2k
k

)

k
≡ 8

9
p2Bp−3 (mod p3)



4 ZHI-WEI SUN

for any prime p > 3, where B0, B1, B2, . . . are Bernoulli numbers. It is
remarkable that

∞
∑

k=1

1

k2
(

2k
k

) =
π2

18
and

∞
∑

k=1

4k

k2
(

2k
k

) =
π2

2

(see [Po, (3)] and problem 44b of [St, Chapter 1] for the first series, and
[Ma] and [Sp] for the second series), which were even known in the nine-
teenth century. Tauraso ([T1],[T2]) showed that

p−1
∑

k=1

(

2k
k

)

k4k
≡ −

(p−1)/2
∑

k=1

1

k
(mod p3) and

p−1
∑

k=1

1

k2
(

2k
k

) ≡ 1

3p

p−1
∑

k=1

1

k
(mod p3)

for any prime p > 5.

Recall that harmonic numbers are those integers

Hn :=
∑

0<k6n

1

k
(n = 0, 1, 2, . . . ).

It is known (cf. [S1]) that

Hp−1

p2
≡ −Bp−3

3
(mod p) and

5

p2

p−1
∑

k=1

1

k3
≡ −6Bp−5 (mod p)

for any prime p > 3.
Now we present our first conjecture.

Conjecture 1.1. Let p > 3 be a prime. Then

p−1
∑

k=1

4k

k2
(

2k
k

) +
4qp(2)

p
≡ −2q2p(2) + pBp−3 (mod p2)

and

p

p−1
∑

k=1

2k

k
(

2k
k

) ≡
(−1

p

)

− 1− p qp(2) + p2Ep−3 (mod p3),

where (−) denotes the Jacobi symbol and qp(2) stands for the Fermat quo-
tient (2p−1 − 1)/p. Also,

p−1
∑

k=1

(

2k
k

)

k3
≡ 2

3
Bp−3 (mod p),
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and furthermore

p−1
∑

k=1

(

2k
k

)

k3
≡ − 2

p2
Hp−1 −

13

27

p−1
∑

k=1

1

k3
(mod p4) if p > 7.

When p > 5 we have

(p−1)/2
∑

k=1

(−1)k

k3
(

2k
k

) ≡− 2Bp−3 (mod p),

(p−1)/2
∑

k=1

(−1)k

k2

(

2k

k

)

≡56

15
pBp−3 (mod p2),

p−1
∑

k=1

1

k4
(

2k
k

) − Hp−1

p3
≡− 7

45
pBp−5 (mod p2).

Remark 1.2. It is known that

∞
∑

k=1

2k

k
(

2k
k

) =
π

2
,

∞
∑

k=1

(−1)k

k3
(

2k
k

) = −2

5
ζ(3) and

∞
∑

k=1

1

k4
(

2k
k

) =
17

36
ζ(4).

Tauraso [T2] determined
∑p−1

k=1(−1)k/(k3
(

2k
k

)

) and
∑p−1

k=1(−1)k
(

2k
k

)

/k2 mod-

ulo p2 (for any prime p > 5) in terms of Hp−1.

Theorem 1.2. Let p > 3 be a prime. Then

(p−1)/2
∑

k=0

(

2k
k

)

8k
≡
(

2

p

)

+

(−2

p

)

p2

4
Ep−3 (mod p3); (1.6)

(p−1)/2
∑

k=0

(

2k
k

)2

16k
≡(−1)(p−1)/2 + p2Ep−3 (mod p3), (1.7)

(p−1)/2
∑

k=0

k
(

2k
k

)2

16k
≡ (−1)(p+1)/2

4
+

p2

4
(1−Ep−3) (mod p3);

(1.8)

∑

p/2<k<p

(

2k
k

)2

16k
≡− 2p2Ep−3 (mod p3), (1.9)

∑

p/2<k<p

k
(

2k
k

)2

16k
≡p2

2
Ep−3 (mod p3). (1.10)
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Furthermore,

(−1)(p−1)/2

(p−1)/2
∑

k=0

(

2k
k

)2

16k
≡ 1− 3

8
p

(p−1)/2
∑

k=1

(

2k
k

)

k
(mod p4) (1.11)

and

(p−1)/2
∑

k=0

k
(

2k
k

)2

16k
≡(−1)(p+1)/2

4
+

p2

4
(2p − 1)

+ (−1)(p−1)/2 3

32
p

(p−1)/2
∑

k=1

(

2k
k

)

k
(mod p4).

(1.12)

Remark 1.3. The reason why we don’t include (1.6) in Theorem 1.1 is that
its proof is similar to that of (1.11) and (1.12). For any prime p > 3, R.
Osburn and C. Schneider [OS] used Jacobi sums and the p-adic Γ-function
to prove that

(−1)(p−1)/2

(p−1)/2
∑

k=0

(

2k
k

)2

16k
≡ 1− 3

8
p

(p−1)/2
∑

k=1

(

2k
k

)

k
(mod p3).

The author observed that a combination of (1.11) and (1.12) yields that

(p−1)/2
∑

k=0

4k + 1

16k

(

2k

k

)2

≡ p2(2p − 1) (mod p4)

for any prime p > 3. After reading this, Tauraso noted the following
identity

n
∑

k=0

4k + 1

16k

(

2k

k

)2

=
(n+ 1)2

16n

(

2n+ 1

n

)2

=
(2n+ 1)2

16n

(

2n

n

)2

,

which can be easily proved by induction. This identity implies the author’s
following observation:

∑

p/2<k<p

4k + 1

16k

(

2k

k

)2

≡ 6p2(1− 2p−1) (mod p4)

for each odd prime p.
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Conjecture 1.2. Let p be an odd prime and let a ∈ Z+. If p ≡ 1 (mod 4)
or a > 1, then

⌊ 3

4
pa⌋
∑

k=0

(

2k
k

)

(−4)k
≡
(

2

pa

)

(mod p2) and

⌊ 3

4
pa⌋
∑

k=0

(

2k
k

)2

16k
≡
(−1

pa

)

(mod p3).

(1.13)
If p > 3, and p ≡ 1, 3 (mod 8) or a > 1, then

⌊ r

8
pa⌋
∑

k=0

(

2k
k

)2

16k
≡
(−1

pa

)

(mod p3) for r = 5, 7. (1.14)

Here is our third theorem.

Theorem 1.3. Let p be a prime and let a ∈ Z+. Then

1

pa

pa−1
∑

k=0

(21k + 8)

(

2k

k

)3

≡ 8 + 16p3Bp−3 (mod p4), (1.15)

where B−1 is regarded as zero.

Remark 1.4. In [S11a] the author conjectured that for any odd prime p we
have

p−1
∑

k=0

(

2k

k

)3

≡
{

4x2 − 2p (mod p2) if ( p7 ) = 1 & p = x2 + 7y2 (x, y ∈ Z),

0 (mod p2) if ( p7 ) = −1, i.e., p ≡ 3, 5, 6 (mod 7).

Let p be a prime with ( p7 ) = −1. We also conjecture that 1
n

∑n−1
k=0

(

2k
k

)3
is

a p-adic integer for any n ∈ Z+, and that

pa−1
∑

k=0

(

2k

k

)3

≡
{

0 (mod pa+1) if a ∈ {1, 3, 5, . . .},
pa (mod pa+3−δp,3) if a ∈ {2, 4, 6, . . .},

where the Kronecker symbol δp,3 takes 1 or 0 according as p = 3 or not.

In a previous version of this paper, the author conjectured that for any
positive integer n the arithmetic mean

sn :=
1

n

n−1
∑

k=0

(21k + 8)

(

2k

k

)3

(1.16)

is always an integer divisible by 4
(

2n
n

)

, and observed the recursion

n3(n+1)sn+1 = n4sn+8(2n−1)3(21n+8)

(

2(n− 1)

n− 1

)3

(n = 1, 2, 3, . . . ).
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On Feb. 11, 2010, Kasper Andersen noted that this recurrence relation
yields the following recursion for tn := sn/(4

(

2n
n

)

):

(4n+ 2)tn+1 − ntn = (21n+ 8)

(

2n− 1

n

)2

(n = 1, 2, 3, . . . ).

Then Andersen used Zeilberger’s algorithm (cf. [PWZ]) to find that

rn :=

n−1
∑

k=0

(

n+ k − 1

k

)2

(n = 1, 2, 3, . . . ) (1.17)

satisfies the same recursion and hence he obtained that tn = rn ∈ Z
since t1 = r1. Thanks to Andersen’s discovery, we are now able to prove
Theorem 1.3 which was an earlier conjecture of the author.

We guess that any integer n > 1 satisfying sn ≡ 8 (mod n3) must be a
prime; this has been verified for n 6 104. It seems that tn 6≡ 3 (mod 4),
and tn is composite for all n = 3, 4, . . . . It is interesting to compare sn
and tn with Apéry numbers (cf. [Po]).

Conjecture 1.3. If p is a prime and a is a positive integer with pa ≡
1 (mod 3), then

⌊ 2

3
pa⌋
∑

k=0

(21k + 8)

(

2k

k

)3

≡ 8pa (mod pa+5+(−1)p). (1.18)

Also, for each prime p > 5 we have

p−1
∑

k=1

21k − 8

k3
(

2k
k

)3 +
p− 1

p3
≡ Hp−1

p2
(15p− 6) +

12

5
p2Bp−5 (mod p3). (1.19)

It is interesting to compare Theorem 1.3 and Conjecture 1.3 with the
following elegant identity

∞
∑

k=1

21k − 8

k3
(

2k
k

)3 = ζ(2) =
π2

6

obtained by D. Zeilberger [Z] via the WZ method. In the same spirit, we
formulate the following conjecture inspired by our observations of some
congruences (see Conjectures 5.3-5.6, Remark 5.2 and Conj. 5.15(i) in
Section 5).
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Conjecture 1.4. We have

∞
∑

k=1

(10k − 3)8k

k3
(

2k
k

)2(3k
k

)

=
π2

2
,

∞
∑

k=1

(11k − 3)64k

k3
(

2k
k

)2(3k
k

)

= 8π2,

∞
∑

k=1

(35k − 8)81k

k3
(

2k
k

)2(4k
2k

)

= 12π2.

(1.20)
Also,

∞
∑

k=1

(15k − 4)(−27)k

k3
(

2k
k

)2(3k
k

)

= −27K and

∞
∑

k=1

(5k − 1)(−144)k

k3
(

2k
k

)2(4k
2k

)

= −45

2
K,

(1.21)
where

K := L
(

2,
( ·
3

))

=
∞
∑

k=1

(k3 )

k2
= 0.781302412896486296867187429624 . . . .

Moreover,

∞
∑

n=0

18n2 + 7n+ 1

(−128)n

(

2n

n

)2 n
∑

k=0

(−1/4

k

)2(−3/4

n− k

)2

=
4
√
2

π2
(1.22)

and

∞
∑

n=0

40n2 + 26n+ 5

(−256)n

(

2n

n

)2 n
∑

k=0

(

n

k

)2(
2k

k

)(

2(n− k)

n− k

)

=
24

π2
. (1.23)

One can easily check the identities in Conjecture 1.4 numerically. Let
us take the first identity in (1.20) as an example. The series converges
rapidly since

(

2k

k

)2(
3k

k

)

∼
√
3

2
· 108k

(kπ)1.5
(k → +∞)

by Stirling’s formula. Via Mathematica we find that

∣

∣

∣

∣

2

π2

200
∑

k=1

(10k − 3)8k

k3
(

2k
k

)2(3k
k

)

− 1

∣

∣

∣

∣

<
1

10227
.

This provides a powerful evidence to support the first identity in (1.20).

We will show Theorems 1.1–1.3 in Sections 2-4 respectively; our new
approach to super congruences is of combinatorial nature. In Section 5 we
will raise many new conjectures for further research.
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2. Proof of Theorem 1.1

Proof of (1.1). By [ST1, (2.1)], we have

p−1
∑

k=0

(

2k

k

)

2p−1−k =

p−1
∑

k=0

(

2p

k

)

up−k,

where u0 = 0, u1 = 1 and un+1 = −un−1 for n = 1, 2, 3, . . . . Clearly
u2n = 0 and u2n+1 = (−1)n for all n ∈ N. Thus

p−1
∑

k=0

(

2k

k

)

2p−1−k =

(p−1)/2
∑

k=0

(

2p

2k

)

(−1)(p−2k−1)/2. (2.1)

For k = 1, . . . , (p− 1)/2, we have

(

2p

2k

)

=
2p

2k

(

2p− 1

2k − 1

)

=
p

k

2k−1
∏

j=1

2p− j

j
= −p

k

2k−1
∏

j=1

(

1− 2p

j

)

≡− p

k
(1− 2pH2k−1) =

p

k
(1− 2(1− pH2k−1))

≡p

k

(

1 + 2

(

p− 1

2k − 1

))

= 4

(

p

2k

)

+
p

k
(mod p3).

Thus

(−1)(p−1)/2

p−1
∑

k=0

(

2k

k

)

2p−1−k − 1

≡
(p−1)/2
∑

k=1

(−1)k
(

4

(

p

2k

)

+
p

k

)

= p

(p−1)/2
∑

k=1

(−1)k

k
+ 4

p−1
∑

k=1
2|k

(

p

k

)

(−1)k/2 (mod p3).

By Lehmer [L],

H(p−1)/2 ≡ −2qp(2) + p q2p(2) (mod p2). (2.2)

In view of [S2, Corollary 3.3] we also have

H⌊p/4⌋ ≡ −3qp(2) +
3

2
p q2p(2)− (−1)(p−1)/2pEp−3 (mod p2). (2.3)

Therefore

(p−1)/2
∑

k=1

(−1)k

k
=

(p−1)/2
∑

k=1

1 + (−1)k

k
−

(p−1)/2
∑

k=1

1

k
= H⌊p/4⌋ −H(p−1)/2

≡− qp(2) +
p

2
q2p(2) + (−1)(p+1)/2pEp−3 (mod p2).
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Note also that

p−1
∑

k=1
2|k

(

p

k

)

(−1)k/2 =

(

2

p

)

2(p−1)/2 − 1

by [S02, (3.2)]. Combining the above we obtain

((−1

p

) p−1
∑

k=0

(

2k
k

)

2k
− 1

)

2p−1 + 2p−1 − 1

≡4

((

2

p

)

2(p−1)/2 − 1

)

− p qp(2) +
p2

2
q2p(2) + (−1)(p+1)/2p2Ep−3 (mod p3).

Observe that

2

((

2

p

)

2(p−1)/2 − 1

)

− p qp(2)

=2

(

2

p

)

2(p−1)/2 − 2p−1 − 1 = −
((

2

p

)

2(p−1)/2 − 1

)2

.

Therefore

(−1
p )
∑p−1

k=0

(

2k
k

)

/2k − 1

p2

≡− 2

(

( 2
p
)2(p−1)/2 − 1

p

)2

+
q2p(2)

2
+ (−1)(p+1)/2Ep−3 (mod p).

Since

qp(2) =
( 2
p
)2(p−1)/2 − 1

p

((

2

p

)

2(p−1)/2 + 1

)

≡ 2×
( 2
p
)2(p−1)/2 − 1

p
(mod p),

we finally obtain (1.1). �

Lemma 2.1. Let p be an odd prime. Then, for any k = 1, . . . , p− 1 we
have

k

(

2k

k

)(

2(p− k)

p− k

)

≡ (−1)⌊2k/p⌋−12p (mod p2). (2.4)

Proof. For k = 1, . . . , (p− 1)/2, if

(p− k)

(

2(p− k)

p− k

)(

2k

k

)

≡ (−1)⌊2(p−k)/p⌋−12p = 2p (mod p2)
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then

k

(

2k

k

)(

2(p− k)

p− k

)

≡ −2p = (−1)⌊2k/p⌋−12p (mod p2)

since
(

2(p−k)
p−k

)

≡ 0 (mod p). So it suffices to show (2.4) for any k =

(p+ 1)/2, . . . , p− 1.

Let k ∈ {(p+ 1)/2, . . . , p− 1}. Then

1

p

(

2k

k

)

=
1

p
× (2k)!

(k!)2
=

1

p
× p!(p+ 1) · · · (p+ (2k − p))

((p− 1)!/
∏p−1−k

j=1 (p− j))2

=
1

(p− 1)!

2k−p
∏

i=1

(p+ i)×
p−1−k
∏

j=1

(p− j)2

≡ (2k − p)!

(p− 1)!
((p− 1− k)!)2 =

((p− 1− k)!)2
∏2(p−k)−1

j=1 (p− j)

≡− ((p− 1− k)!)2

(2(p− k)− 1)!
= − 2

(p− k)
(

2(p−k)
p−k

)
≡ 2

k
(

2(p−k)
p−k

)
(mod p)

and hence

k

(

2k

k

)(

2(p− k)

p− k

)

≡ 2p (mod p2)

as desired. �

Remark 2.1. [T2] contains certain technique similar to Lemma 2.1.

Lemma 2.2. For any n ∈ Z+ we have

n
∑

k=1

(

2k
k

)

k
=

n+ 1

3

(

2n+ 1

n

) n
∑

k=1

1

k2
(

n
k

)2 (2.5)

and

n
∑

k=1

(−1)k

k2
(

n
k

)(

n+k
k

) = (−1)n−1

(

3

n
∑

k=1

1

k2
(

2k
k

) + 2

n
∑

k=1

(−1)k

k2

)

. (2.6)

Remark 2.2. These two identities are known results. (2.5) is due to T.
B. Staver [Sta] (see also (5.2) of [Go, p. 50]), and (2.6) was discovered by
Apéry (see [Ap] and [Po]) during his study of the irrationality of ζ(3) =
∑∞

n=1 1/n
3.
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Lemma 2.3. We have the new combinatorial identity

n
∑

k=1

1

k2
(

n+k
k

) = 3

n
∑

k=1

1

k2
(

2k
k

) −
n
∑

k=1

1

k2
. (2.7)

Proof. Observe that

n
∑

k=1

1

k2
(

n+k
k

) −
n
∑

k=1

1

k2
(

n+1+k
k

)

=
n
∑

k=1

(

n+k+1
k

)

−
(

n+k
k

)

k2
(

n+k
k

)(

n+k+1
k

) =
n
∑

k=1

(

n+k
k−1

)

k2
(

n+k
k

)(

n+k+1
k

)

=
n
∑

k=1

n!(k − 1)!

(n+ k + 1)!
=

n−1
∑

j=0

n!j!

(n+ 2 + j)!
=

1

(n+ 1)(n+ 2)

n−1
∑

k=0

1
(

n+2+k
n+2

) .

By (2.26) of [Go, p. 21],

m
∑

k=0

1
(

x+k
l

) =
l

l − 1

(

1
(

x−1
l−1

) − 1
(

x+m
l−1

)

)

for any l ∈ Z+. So we have

n
∑

k=1

1

k2
(

n+k
k

)−
n
∑

k=1

1

k2
(

n+1+k
k

) =
1

(n+ 1)(n+ 2)
×n+ 2

n+ 1

(

1− 1
(

(n+2)+n−1
n+1

)

)

and hence

n+1
∑

k=1

1

k2
(

n+1+k
k

) −
n
∑

k=1

1

k2
(

n+k
k

) =
1

(n+ 1)2
(

2n+2
n+1

) − 1

(n+ 1)2

(

1− 1
(

2n+1
n

)

)

=
3

(n+ 1)2
(

2n+2
n+1

) − 1

(n+ 1)2
.

Therefore (2.7) follows by induction. �

The following lemma is essentially known, but we will include a simple
proof.

Lemma 2.4. For any prime p > 3 we have

(p−1)/2
∑

k=1

1

k2
≡ 0 (mod p) and

(p−1)/2
∑

k=1

(−1)k

k2
≡ (−1)(p−1)/2 2Ep−3 (mod p).
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Proof. Since
∑p−1

j=1 1/(2j)
2 ≡

∑p−1
k=1 1/k

2 (mod p), we have the well-known

congruence
∑p−1

k=1 1/k
2 ≡ 0 (mod p). Thus

(p−1)/2
∑

k=1

1

k2
≡ 1

2

(p−1)/2
∑

k=1

(

1

k2
+

1

(p− k)2

)

=
1

2

p−1
∑

k=1

1

k2
≡ 0 (mod p).

By Lehmer [L, (20)],

⌊p/4⌋
∑

k=1

1

k2
≡ (−1)(p−1)/2 4Ep−3 (mod p).

Therefore

(p−1)/2
∑

k=1

1 + (−1)k

k2
=

⌊p/4⌋
∑

j=1

2

(2j)2
≡ (−1)(p−1)/2 2Ep−3 (mod p)

and hence the second congruence in Lemma 2.4 also holds. �

Proof of (1.2)-(1.5). Note that (1.4) and (1.5) hold trivially when p = 3.
Below we assume that p = 2n+ 1 > 3.

With the help of Lemma 2.1, we have

p−1
∑

k=n+1

(

2k
k

)

k
=

p−1
∑

k=n+1

k
(

2k
k

)

k2

≡
p−1
∑

k=n+1

2p

k2
(

2(p−k)
p−k

)
=

n
∑

j=1

2p

(p− j)2
(

2j
j

) ≡
n
∑

k=1

2p

k2
(

2k
k

) (mod p2).

As
∑p−1

k=0

(

2k
k

)

/k ≡ 0 (mod p2) by [ST1], we obtain that

n
∑

k=1

(

2k
k

)

k
≡ −

p−1
∑

k=n+1

(

2k
k

)

k
≡ −2p

n
∑

k=1

1

k2
(

2k
k

) (mod p2). (2.8)

In view of (2.5),

n
∑

k=1

(

2k
k

)

k
=

2n+ 1

3

(

2n

n

) n
∑

k=1

1

k2
(

n
k

)2 ≡ p

3
(−1)n

n
∑

k=1

1

k2
(

n
k

)2 (mod p2).

(2.9)
Since

(

n+ k

k

)

(−1)k =

(−n− 1

k

)

≡
(

p− n− 1

k

)

=

(

n

k

)

(mod p)
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for every k = 1, . . . , n, (2.6) yields that

n
∑

k=1

1

k2
(

n
k

)2 ≡ (−1)n−1

(

3

n
∑

k=1

1

k2
(

2k
k

) + 2

n
∑

k=1

(−1)k

k2

)

(mod p). (2.10)

Combining (2.8)–(2.10) we get

3
n
∑

k=1

(

2k
k

)

k
+ 2p

n
∑

k=1

(−1)k

k2
≡ −3p

n
∑

k=1

1

k2
(

2k
k

) ≡ 3

2

n
∑

k=1

(

2k
k

)

k
(mod p2).

(2.11)
In view of Lemma 2.4,

n
∑

k=1

(−1)k

k2
≡ (−1)n2Ep−3 (mod p).

So, we have (1.2) and (1.3) by (2.11) and (2.8).
By Lemma 2.1, (1.4) and (1.5) are equivalent. Since

∑n
k=1 1/k

2 ≡
0 (mod p) (by Lemma 2.4) and

(

n+ k

k

)

≡
(

k − 1/2

k

)

=

(

2k
k

)

4k
for every k = 1, . . . , n,

we obtain (1.4) from (2.7) and (1.3). �

3. Proof of Theorem 1.2

Lemma 3.1. Let p = 2n+ 1 be an odd prime. For k = 0, . . . , n we have
(

n+ k

2k

)

− p
(

n
k

)

4k+1
(Hn+k −Hn−k) ≡

(

2k
k

)

(−16)k
(mod p3) (3.1)

and
(

n

k

)(

n+ k

k

)

(−1)k
(

1− p

4
(Hn+k −Hn−k)

)

≡
(

2k
k

)2

16k
(mod p4). (3.2)

Proof. Both (3.1) and (3.2) hold trivially when k = 0. Below we fix
k ∈ {1, . . . , n}.

As noted by the author’s brother Z. H. Sun,

(

n+ k

2k

)

=

∏k
j=1(p

2 − (2j − 1)2)

4k × (2k)!

=

∏k
j=1(−(2j − 1)2)

4k × (2k)!

k
∏

j=1

(

1− p2

(2j − 1)2

)

≡
(

2k
k

)

(−16)k

(

1−
k
∑

j=1

p2

(2j − 1)2

)

(mod p4).
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Observe that

Hn+k −Hn−k =Hn +

k
∑

j=1

1

n+ j
−Hn +

k
∑

j=1

1

n+ 1− j

=

k
∑

j=1

2n+ 1

(n+ j)(n+ 1− j)
=

k
∑

j=1

p

p2/4− (j − 1/2)2

≡− 4

k
∑

j=1

p

(2j − 1)2
(mod p3).

Therefore

(

n+ k

2k

)

≡
(

2k
k

)

(−16)k

(

1 +
p

4
(Hn+k −Hn−k)

)

(mod p4). (3.3)

Note that p(Hn+k −Hn−k) ≡ 0 (mod p2) and

(

n

k

)

≡
(−1/2

k

)

=

(

2k
k

)

(−4)k
(mod p).

Thus (3.1) follows from (3.3) immediately.

In light of (3.3), we have

(

n

k

)(

n+ k

k

)

(−1)k =

(

n+ k

2k

)(

2k

k

)

(−1)k

≡
(

2k
k

)2

16k

(

1 +
p

4
(Hn+k −Hn−k)

)

≡
(

2k
k

)2

16k
+

(

n

k

)(

n+ k

k

)

(−1)k
p

4
(Hn+k −Hn−k) (mod p4).

(Recall that p(Hn+k −Hn−k) ≡ 0 (mod p2).) So (3.2) also holds. �

Lemma 3.2. For any n ∈ Z+ we have

(−1)n
n
∑

k=0

(

n

k

)

(−2)n−k(Hn+k −Hn−k) =

n
∑

k=1

(−1)k

k
− Hn

2
, (3.4)

(−1)n
n
∑

k=0

(

n

k

)(

n+ k

k

)

(−1)k(Hn+k −Hn−k) =
3

2

n
∑

k=1

(

2k
k

)

k
(3.5)
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and

(−1)n
n
∑

k=0

(

n

k

)(

n+ k

k

)

(−1)kk(Hn+k −Hn−k)

=(2n+ 1)

(

1−
(

2n

n

))

+
3

2
n(n+ 1)

n
∑

k=1

(

2k
k

)

k
.

(3.6)

Proof. Via the software Sigma we find the identities

n
∑

k=0

(

n

k

)

(−2)n−kHn+k =(−1)n
Hn

2
, (3.7)

n
∑

k=0

(

n

k

)

(−2)n−kHn−k =(−1)nHn − (−1)n
n
∑

k=1

(−1)k

k
,

(3.8)
n
∑

k=0

(

n

k

)(

n+ k

k

)

(−1)kHn−k =2(−1)nHn − 3

2
(−1)n

n
∑

k=1

(

2k
k

)

k
.
(3.9)

These identities can be easily proved by the WZ method (see, e.g., [PWZ]).
(The reader may consult [OS] to see how to produce such identities.) Also,
it is known that (cf. [OS] and [Pr])

n
∑

k=0

(

n

k

)(

n+ k

k

)

(−1)kHn+k = (−1)n2Hn.

By [OS, (36) and (37)], we have

(−1)n
n
∑

k=0

(

n

k

)(

n+ k

k

)

(−1)kkHn+k = 2n(n+ 1)Hn − n2

and

(−1)n
n
∑

k=0

(

n

k

)(

n+ k

k

)

(−1)kkHn−k

=(2n+ 1)

(

2n

n

)

− (n+ 1)2 + 2n(n+ 1)Hn − 3

2
n(n+ 1)

n
∑

k=1

(

2k
k

)

k
.

In view of the above six identities we immediately obtain the desired
(3.4)-(3.6). �

Remark 3.1. S. Ahlgren and Ono [AO] employed the identity

n
∑

k=1

(

n

k

)2(
n+ k

k

)2

(1 + 2k(Hn+k +Hn−k)− 4kHk) = 0
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to prove a super congruence conjectured by F. Beukers [Be].

Proof of Theorem 1.2. Set n = (p − 1)/2. In light of (3.1) and (3.4), we
have

n
∑

k=0

(

2k
k

)

8k
−

n
∑

k=0

(−2)k
(

n+ k

2k

)

≡− p

4

n
∑

k=0

(

n
k

)

(−2)k
(Hn+k −Hn−k)

=
p

4× 2n

(

Hn

2
−

n
∑

k=1

(−1)k

k

)

(mod p3).

By a known identity (cf. (1.62) of [Go, p.8]),

n
∑

k=0

(−1)k
(

2n− k

k

)

(2 cosx)2(n−k) =
sin((2n+ 1)x)

sinx

and hence

n
∑

k=0

(−2)k
(

n+ k

2k

)

=

n
∑

k=0

(−1)n−k

(

2n− k

k

)

(

2 cos
π

4

)2(n−k)

=(−1)n
sin((2n+ 1)π/4)

sin(π/4)
=

(

2

2n+ 1

)

=

(

2

p

)

.

In view of (2.2) and (2.3), we also have

Hn

2
−

n
∑

k=1

(−1)k

k
=
3

2
Hn −

n
∑

k=1

1 + (−1)k

k

=
3

2
H(p−1)/2 −H⌊p/4⌋

≡(−1)(p−1)/2pEp−3 (mod p2).

Therefore

n
∑

k=0

(

2k
k

)

8k
−
(

2

p

)

≡ p

4× 2n

(−1

p

)

pEp−3 ≡ p2

4

(−2

p

)

Ep−3 (mod p3).

This proves (1.6).
By (3.2) and (3.5),

n
∑

k=0

(

2k
k

)2

16k
−

n
∑

k=0

(

n

k

)(

n+ k

k

)

(−1)k ≡ −p

4
(−1)n

3

2

n
∑

k=1

(

2k
k

)

k
(mod p4).
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With the help of the Chu-Vandermonde identity (cf. [GKP, p. 169]),

n
∑

k=0

(

n

k

)(

n+ k

k

)

(−1)k =
n
∑

k=1

(

n

n− k

)(−n− 1

k

)

=

(−1

n

)

= (−1)n.

Thus
n
∑

k=0

(

2k
k

)2

16k
− (−1)n ≡ −(−1)n

3

8
p

n
∑

k=1

(

2k
k

)

k
(mod p4)

which gives (1.11).

By the Chu-Vandermonde identity we also have

n
∑

k=0

k

(

n

k

)(

n+ k

k

)

(−1)k

=n

n
∑

k=1

(

n− 1

k − 1

)(−n− 1

k

)

= n

n
∑

k=0

(

n− 1

n− k

)(−n− 1

k

)

=n

(−2

n

)

= (−1)nn(n+ 1).

Recall Morley’s congruence (cf. [Mo] and [P])

(

2n

n

)

≡ (−1)n4p−1 (mod p3).

Note also that n(n+ 1) = (p2 − 1)/4 and

n
∑

k=1

(

2k
k

)

k
≡

p−1
∑

k=1

(

2k
k

)

k
≡ 0 (mod p).

Therefore, by (3.2) and (3.6) we have

n
∑

k=0

k
(

2k
k

)2

16k
− (−1)n

p2 − 1

4

≡− p

4

(

p((−1)n − 4p−1) + (−1)n
3

2
· p

2 − 1

4

n
∑

k=1

(

2k
k

)

k

)

≡p2

4
(4p−1 − (−1)n) +

3

32

(−1

p

)

p
n
∑

k=1

(

2k
k

)

k
(mod p4)
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and hence
n
∑

k=0

k
(

2k
k

)2

16k
+

(−1)n

4

≡p2

4
(1 + (2p−1 − 1))2 +

3

32

(−1

p

)

p
n
∑

k=1

(

2k
k

)

k

≡p2

4
(2p − 1) +

3

32

(−1

p

)

p
n
∑

k=1

(

2k
k

)

k
(mod p4).

This proves (1.12).
In light of (1.2), clearly (1.7) and (1.8) follow from (1.11) and (1.12)

respectively.
Now we prove (1.9). By Lemma 2.1,

1

p2

∑

p/2<k<p

(

2k
k

)2

16k
≡

∑

p/2<k<p

4/
(

2(p−k)
p−k

)2

k216k
=

n
∑

k=1

4

(p− k)2
(

2k
k

)2
16p−k

≡1

4

n
∑

k=1

16k

k2
(

2k
k

)2 ≡ 1

4

n
∑

k=1

1

k2
(

n
k

)2 (mod p).

This, together with (2.9) and (1.2), yields (1.9).
By Tauraso’s identity mentioned in Remark 1.3,

∑

p/2<k<p

4k + 1

16k

(

2k

k

)2

=
p2

16p−1

(

2p− 1

p− 1

)2

− p2

4p−1

(

p− 1

(p− 1)/2

)2

≡ 0 (mod p3).

So (1.10) follows from (1.9).

The proof of Theorem 1.2 is now complete. �

4. Proof of Theorem 1.3

As we mentioned in the paragraph after Remark 1.4, based on the
author’s conjecture that tn ∈ Z for all n ∈ Z+, Kasper Andersen obtained
the following lemma.

Lemma 4.1 (Kasper Andersen). For any n ∈ Z+ the number

tn :=
1

4n
(

2n
n

)

n−1
∑

k=0

(21k + 8)

(

2k

k

)3

is indeed an integer as conjectured by Z. W. Sun; in fact,

tn =

n−1
∑

k=0

(

n+ k − 1

k

)2

.

We also need the following result.
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Lemma 4.2. Let p > 3 be a prime. Then

p−1
∑

k=1

1 + 2pHk−1

k2
≡ 8

3
pBp−3 (mod p2).

Proof. Note that
p−1
∑

k=1

1

(−2k)3
≡

p−1
∑

j=1

1

j3
(mod p)

and hence
∑p−1

k=1 1/k
3 ≡ 0 (mod p) since 1− (−2)3 6≡ 0 (mod p). By [ST1,

(5.3)], we have
p−1
∑

k=1

1 + 2pHk

k2
≡ 8

3
pBp−3 (mod p2).

As Hk = Hk−1 + 1/k for k ∈ Z+, the desired result follows. �

Proof of Theorem 1.3. In light of Lemma 4.1,

1

pa

pa−1
∑

k=0

(21k + 8)

(

2k

k

)3

= 4

(

2pa

pa

) pa−1
∑

k=0

(

pa + k − 1

k

)2

.

So we turn to determining 1
2

(

2pa

pa

)

and
∑pa−1

k=1

(

pa+k−1
k

)2
modulo p4.

By a result of Glaisher [G1,G2], if p > 3 then

1

2

(

2p

p

)

=

(

2p− 1

p− 1

)

≡ 1− 2

3
p3Bp−3 (mod p4).

In view of [SD, Lemma 3.2],

1

2

(

2pi+1

pi+1

)

≡ 1

2

(

2pi

pi

)

(mod p2i+2) for every i = 1, 2, 3, . . . .

Thus

1

2

(

2pa

pa

)

≡ 1

2

(

2p

p

)

≡
{

p2 + (−1)p−1 (mod p4) if p ∈ {2, 3},
1− 2

3
p3Bp−3 (mod p4) if p > 3.

Observe that

pa−1
∑

k=1

(

pa + k − 1

k

)2

=

pa−1
∑

k=1

(

pa

k

∏

0<j<k

(

1 +
pa

j

))2

≡
pa−1
∑

k=1

(

pa

k

)2
∏

0<j<k

(

1 + 2
pa

j

)

≡
p−1
∑

k=1

(

pa

pa−1k

)2
∏

0<j<k

(

1 + 2
pa

pa−1j

)

≡p2
p−1
∑

k=1

1 + 2pHk−1

k2
≡
{

p2/(p− 1) (mod p4) if p ∈ {2, 3},
8p3Bp−3/3 (mod p4) if p > 3.
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(In the last step we apply Lemma 4.2.)

Combining the above we see that

1

pa

pa−1
∑

k=0

(21k + 8)

(

2k

k

)3

≡
{

8(p2 + (−1)p−1)(p2/(p− 1) + 1) (mod p4) if p ∈ {2, 3},
8(1− 2

3
p3Bp−3)(1 +

8
3
p3Bp−3) (mod p4) if p > 3,

≡8(1 + 2p3Bp−3) (mod p4).

This proves (1.15). �

5. More conjectures

In 1914 S. Ramanujan [R] found the following curious identities (see
[BB], [B, pp. 353-354] and [BBC] for more such series):

∞
∑

k=0

(6k + 1)

(

2k
k

)3

256k
=

4

π
,

∞
∑

k=0

(6k + 1)

(

2k
k

)3

(−512)k
=

2
√
2

π
,

and
∞
∑

k=0

(42k + 5)

(

2k
k

)3

4096k
=

16

π
.

(They are usually stated in terms of Gaussian hypergeometric series.) For
an odd prime p, L. van Hamme [vH] conjectured the following p-adic ana-
logues of the above three identities of Ramanujan:

(p−1)/2
∑

k=0

(6k + 1)

(

2k
k

)3

256k
≡p

(−1

p

)

(mod p4) if p > 3,

(p−1)/2
∑

k=0

(6k + 1)

(

2k
k

)3

(−512)k
≡p

(−2

p

)

(mod p3),

(p−1)/2
∑

k=0

(42k + 5)

(

2k
k

)3

4096k
≡5p

(−1

p

)

(mod p4).

The first of these was recently shown by L. Long [Lo]; the second and the
third remain open.

Motivated by Theorem 1.3 and Lemma 4.1, we propose the following
conjecture.
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Conjecture 5.1. (i) For each n = 2, 3, . . . we have

2n

(

2n

n

)
∣

∣

∣

∣

n−1
∑

k=0

(3k + 1)

(

2k

k

)3

(−8)n−1−k,

2n

(

2n

n

)
∣

∣

∣

∣

n−1
∑

k=0

(3k + 1)

(

2k

k

)3

16n−1−k,

2n

(

2n

n

)
∣

∣

∣

∣

n−1
∑

k=0

(6k + 1)

(

2k

k

)3

256n−1−k,

2n

(

2n

n

)
∣

∣

∣

∣

n−1
∑

k=0

(6k + 1)

(

2k

k

)3

(−512)n−1−k,

2n

(

2n

n

)
∣

∣

∣

∣

n−1
∑

k=0

(42k + 5)

(

2k

k

)3

4096n−1−k.

(ii) Let p > 3 be a prime. Then

p−1
∑

k=0

3k + 1

(−8)k

(

2k

k

)3

≡p

(−1

p

)

+ p3Ep−3 (mod p4),

(p−1)/2
∑

k=0

3k + 1

16k

(

2k

k

)3

≡p+ 2

(−1

p

)

p3Ep−3 (mod p4),

p−1
∑

k=0

6k + 1

256k

(

2k

k

)3

≡p

(−1

p

)

− p3Ep−3 (mod p4),

(p−1)/2
∑

k=0

6k + 1

(−512)k

(

2k

k

)3

≡p

(−2

p

)

+
p3

4

(

2

p

)

Ep−3 (mod p4),

p−1
∑

k=0

42k + 5

4096k

(

2k

k

)3

≡5p

(−1

p

)

− p3Ep−3 (mod p4),

and

(p−1)/2
∑

k=0

3k + 1

(−8)k

(

2k

k

)3

≡ 4

(

2

p

) p−1
∑

k=0

6k + 1

(−512)k

(

2k

k

)3

− 3p

(−1

p

)

(mod p4).

Also, for any a ∈ Z+ we have

1

pa

pa−1
∑

k=0

3k + 1

16k

(

2k

k

)3

≡ 1 +
7

6
p3Bp−3 (mod p4)
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and

1

pa

(pa−1)/2
∑

k=0

42k + 5

4096k

(

2k

k

)3

≡
(−1

pa

)(

5− 3

4
pHp−1

)

(mod p5).

Each of Ishikawa [I], van Hamme [vH], Ahlgren [A] and Mortenson
[M05] confirmed the following conjecture of Rodriguez-Villegas via certain
advanced tools:

p−1
∑

k=0

(

2k
k

)3

64k
≡ a(p) (mod p2) for any odd prime p,

where the sequence {a(n)}n>1 is defined by

∞
∑

n=1

a(n)qn = q
∞
∏

n=1

(1− q4n)6 (|q| < 1)

and related to the Dedekind η-function in the theory of modular forms.
In 1892 F. Klein and R. Fricke proved that (cf. [SB, Theorem 14.2])

a(p) =

{

4x2 − 2p if p = x2 + y2 with 2 ∤ x and 2 | y,
0 if p ≡ 3 (mod 4).

Let p be an odd prime. Since
(

−1/2
k

)

=
(

2k
k

)

/(−4)k (k = 0, 1, 2, . . . ), for
any integer x 6≡ 0 (mod p) we have

p−1
∑

k=0

(

2k
k

)3

64k
xk ≡

(p−1)/2
∑

k=0

(

(p− 1)/2

k

)3

(−x)k

=

(p−1)/2
∑

j=0

(

(p− 1)/2

j

)3

(−x)(p−1)/2−j

≡
p−1
∑

k=0

(

2k
k

)3

64k

(−x

p

)

x−k (mod p).

Via computation we find that

p−1
∑

k=0

(

2k
k

)3

64k

(

xk −
(−x

p

)

x−k

)

≡ 0 (mod p2)

for x = 1, 4,−8, 64. (Note that the case x = 1 is clear.) This leads us to
propose the following conjecture.
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Conjecture 5.2. Let p be an odd prime.
(i) If p ≡ 1 (mod 4), then

p−1
∑

k=0

(

2k
k

)3

(−8)k
≡

p−1
∑

k=0

(

2k
k

)3

64k
≡
(

2

p

) p−1
∑

k=0

(

2k
k

)3

(−512)k
(mod p3);

if p ≡ 3 (mod 4) then

p−1
∑

k=0

(

2k
k

)3

(−8)k
≡

p−1
∑

k=0

(

2k
k

)3

(−512)k
≡ 0 (mod p2).

(ii) If p ≡ 1 (mod 3) and p = x2 + 3y2 with x, y ∈ Z, then

p−1
∑

k=0

(

2k
k

)3

16k
≡
(−1

p

) p−1
∑

k=0

(

2k
k

)3

256k
(mod p3)

≡4x2 − 2p (mod p2);

if p ≡ 2 (mod 3), then

p−1
∑

k=0

(

2k
k

)3

16k
≡

p−1
∑

k=0

(

2k
k

)3

256k
≡ 0 (mod p2).

(iii) If p ≡ 1, 2, 4 (mod 7) (i.e., ( p
7
) = 1), then

p−1
∑

k=0

(

2k

k

)3

≡
(−1

p

) p−1
∑

k=0

(

2k
k

)3

4096k
(mod p3);

if p ≡ 3, 5, 6 (mod 7) (i.e., ( p7 ) = −1), then

p−1
∑

k=0

(

2k
k

)3

4096k
≡ 0 (mod p2).

(iv) We have

p−1
∑

k=0

(

2k
k

)3

(−64)k
≡
{

(−1
p
)(4x2 − 2p) (mod p2) if (−2

p
) = 1 & p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if (−2
p ) = −1, i.e., p ≡ 5, 7 (mod 8).

Remark 5.1. Let p be an odd prime. By the theory of binary quadratic
forms (cf. Cox [C]), if p ≡ 1 (mod 3) then there are unique x, y ∈ Z+

such that p = x2 + 3y2; if p ≡ 1, 3 (mod 8) (i.e., (−2
p
) = 1) then there are

unique x, y ∈ Z+ such that p = x2 + 2y2.
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Conjecture 5.3. Let p > 3 be a prime. Then

p−1
∑

k=0

(

2k
k

)2(4k
2k

)

81k
≡
{

∑p−1
k=0

(

2k
k

)3
(mod p3) if ( p7 ) = 1,

0 (mod p2) if ( p7 ) = −1.

Also,

1

pa

(pa−1)/2
∑

k=0

35k + 8

81k

(

2k

k

)2(
4k

2k

)

≡ 8× 3p−1 (mod p2)

and

1

pa

pa−1
∑

k=0

35k + 8

81k

(

2k

k

)2(
4k

2k

)

≡ 8 +
416

27
p3Bp−3 (mod p4)

for all a ∈ Z+. Furthermore, for each n = 1, 2, 3, . . . we have

1

4n(2n+ 1)
(

2n
n

)

n−1
∑

k=0

(35k + 8)

(

2k

k

)2(
4k

2k

)

81n−1−k ∈ 3−δ(2n+1)Z,

where δ(m) takes 1 or 0 according as m is a power of 3 or not.

The author [S11a] made a conjecture on
∑p−1

k=0

(

2k
k

)2(3k
k

)

/64k mod p2

for any odd prime p. Here we give a related conjecture.

Conjecture 5.4. (i) For any odd prime p and positive integer a, we have

1

pa

pa−1
∑

k=0

11k + 3

64k

(

2k

k

)2(
3k

k

)

≡ 3 +
7

2
p3Bp−3 (mod p4).

Moreover,

1

n(2n+ 1)
(

2n
n

)

n−1
∑

k=0

(11k + 3)

(

2k

k

)2(
3k

k

)

64n−1−k ∈ Z

for all n = 2, 3, . . . .
(ii) If p > 3 is a prime, then

p

(p−1)/2
∑

k=1

(11k − 3)64k

k3
(

2k
k

)2(3k
k

)

≡ 32qp(2)−
64

3
p2Bp−3 (mod p3).



SUPER CONGRUENCES AND EULER NUMBERS 27

Conjecture 5.5. Let p be an odd prime. Then

p−1
∑

k=0

(

2k
k

)2(3k
k

)

8k

≡
{

4x2 − 2p (mod p2) if (−2
p
) = 1 & p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if (−2
p
) = −1.

Also, for any a ∈ Z+ we have

1

pa

pa−1
∑

k=0

10k + 3

8k

(

2k

k

)2(
3k

k

)

≡ 3 +
49

8
p3Bp−3 (mod p4).

Moreover, for each n = 2, 3, . . . we have

1

n(2n+ 1)
(

2n
n

)

n−1
∑

k=0

(10k + 3)

(

2k

k

)2(
3k

k

)

8n−1−k ∈ Z.

For n ∈ N the Bernoulli polynomial of degree n is given by

Bn(x) =

n
∑

k=0

(

n

k

)

Bkx
n−k.

Conjecture 5.6. Let p > 3 be a prime. Then

p−1
∑

k=0

(

2k
k

)2(3k
k

)

(−27)k

≡











4x2 − 2p (mod p2) if p ≡ 1, 4 (mod 15) & p = x2 + 15y2 (x, y ∈ Z),

2p− 12x2 (mod p2) if p ≡ 2, 8 (mod 15) & p = 3x2 + 5y2 (x, y ∈ Z),

0 (mod p2) if ( p
15) = −1;

p−1
∑

k=0

(

2k
k

)2(3k
k

)

(−192)k

≡
{

x2 − 2p (mod p2) if p ≡ 1 (mod 3) & 4p = x2 + 27y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 2 (mod 3);

p−1
∑

k=0

(

2k
k

)2(3k
k

)

216k
≡
(p

3

)

p−1
∑

k=0

(

2k
k

)2(4k
2k

)

482k

(

mod p(5+(−6

p
))/2
)

≡











4x2 − 2p (mod p2) if p ≡ 1, 7 (mod 24) & p = x2 + 6y2 (x, y ∈ Z),

8x2 − 2p (mod p2) if p ≡ 5, 11 (mod 24) & p = 2x2 + 3y2 (x, y ∈ Z),

0 (mod p2) if (−6
p ) = −1, i.e., p ≡ 13, 17, 19, 23 (mod 24);
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p−1
∑

k=0

(

2k
k

)2(4k
2k

)

284k
≡
{

4x2 − 2p (mod p2) if (−2
p ) = 1 & p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if p 6= 7 and p ≡ 5, 7 (mod 8);

p−1
∑

k=0

(

2k
k

)2(4k
2k

)

(−2123)k

≡











4x2 − 2p (mod p2) if 12 | p− 1, p = x2 + y2, 3 ∤ x and 3 | y,
−(xy3 )4xy (mod p2) if 12 | p− 5 and p = x2 + y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 3 (mod 4).

Also, for any a ∈ Z+ we have

1

pa

pa−1
∑

k=0

15k + 4

(−27)k

(

2k

k

)2(
3k

k

)

≡4

(

pa

3

)

+

(

pa−1

3

)

4

3
p2Bp−2

(

1

3

)

(mod p3),

1

pa

pa−1
∑

k=0

5k + 1

(−192)k

(

2k

k

)2(
3k

k

)

≡
(

pa

3

)

+

(

pa−1

3

)

5

18
p2Bp−2

(

1

3

)

(mod p3),

1

pa

pa−1
∑

k=0

6k + 1

216k

(

2k

k

)2(
3k

k

)

≡
(

pa

3

)

−
(

pa−1

3

)

5

12
p2Bp−2

(

1

3

)

(mod p3),

1

pa

pa−1
∑

k=0

8k + 1

482k

(

2k

k

)2(
4k

2k

)

≡
(

pa

3

)

−
(

pa−1

3

)

5

24
p2Bp−2

(

1

3

)

(mod p3),

1

pa

pa−1
∑

k=0

40k + 3

284k

(

2k

k

)2(
4k

2k

)

≡3

(

pa

3

)

−
(

pa−1

3

)

5p2

392
Bp−2

(

1

3

)

(mod p3) if p 6= 7,

1

pa

pa−1
∑

k=0

28k + 3

(−2123)k

(

2k

k

)2(
4k

2k

)

≡3

(

pa

3

)

+

(

pa−1

3

)

5

24
p2Bp−2

(

1

3

)

(mod p3).

and
1

pa

∑

pa/2<k<pa

8k + 1

482k

(

2k

k

)2(
4k

2k

)

≡ 0 (mod p2).

Remark 5.2. (i) In view of Conjecture 5.6, we also have conjectures such
as

1

2n(2n+ 1)
(

2n
n

)

n−1
∑

k=0

(15k + 4)

(

2k

k

)2(
3k

k

)

(−27)n−1−k ∈ 3−δ(2n+1)Z
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and
1

2n(2n+ 1)
(

2n
n

)

n−1
∑

k=0

(40k + 3)

(

2k

k

)2(
4k

2k

)

284(n−1−k) ∈ Z,

where n is any integer greater than one. In addition, we guess that for
any prime p > 3 and a ∈ Z+ we have

1

pa

pa−1
∑

k=0

5k + 1

(−144)k

(

2k

k

)2(
4k

2k

)

≡
(

pa

3

)

+

(

pa−1

3

)

5

12
p2Bp−2

(

1

3

)

(mod p3).

(ii) The following Ramanujan-type series are closely related to some
congruences in Conj. 5.6.

∞
∑

k=0

5k + 1

(−192)k

(

2k

k

)2(
3k

k

)

=
4
√
3

π
,

∞
∑

k=0

6k + 1

216k

(

2k

k

)2(
3k

k

)

=
3
√
3

π
,

∞
∑

k=0

8k + 1

482k

(

2k

k

)2(
4k

2k

)

=
2
√
3

π
,

∞
∑

k=0

40k + 3

284k

(

2k

k

)2(
4k

2k

)

=
49

3
√
3π

,

and
∞
∑

k=0

28k + 3

(−2123)k

(

2k

k

)2(
4k

2k

)

=
16√
3 π

.

For the sake of brevity, below we will omit remarks like Remarks 5.1
and 5.2.

For n ∈ N the Euler polynomial of degree n is given by

En(x) =

n
∑

k=0

(

n

k

)

Ek

2k

(

x− 1

2

)n−k

.

Conjecture 5.7. Let p be an odd prime. Then

p−1
∑

k=0

(

2k
k

)2(4k
2k

)

(−210)k

≡











4x2 − 2p (mod p2) if p ≡ 1, 9 (mod 20) & p = x2 + 5y2 (x, y ∈ Z),

2p− 2x2 (mod p2) if p ≡ 3, 7 (mod 20) & 2p = x2 + 5y2 (x, y ∈ Z),

0 (mod p2) if (−5
p
) = −1, i.e., p ≡ 11, 13, 17, 19 (mod 20).

and

1

pa

pa−1
∑

k=0

20k + 3

(−210)k

(

2k

k

)2(
4k

2k

)

≡ 3

(−1

pa

)

+3

( −1

pa−1

)

p2Ep−3 (mod p3) for all a ∈ Z+.
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Provided p > 3, we have

p−1
∑

k=0

(

2k
k

)2(4k
2k

)

124k

≡











4x2 − 2p (mod p2) if p ≡ 1, 9, 11, 19 (mod 40) & p = x2 + 10y2 (x, y ∈ Z),

2p− 8x2 (mod p2) if p ≡ 7, 13, 23, 37 (mod 40) & p = 2x2 + 5y2 (x, y ∈ Z),

0 (mod p2) if (−10
p ) = −1, i.e., p ≡ 3, 17, 21, 27, 29, 31, 33, 39 (mod 40),

and

1

pa

pa−1
∑

k=0

10k + 1

124k

(

2k

k

)2(
4k

2k

)

≡
(−2

pa

)

−
( −2

pa−1

)

p2

48
Ep−3

(

1

4

)

(mod p3)

for all a ∈ Z+. When p > 5, we have

p−1
∑

k=0

(

2k
k

)2(4k
2k

)

(−214345)k

≡











4x2 − 2p (mod p2) if p ≡ 1, 9 (mod 20), p = x2 + y2, 5 ∤ x and 5 | y,
4xy (mod p2) if p ≡ 13, 17 (mod 20), p = x2 + y2 and 5 | x+ y,

0 (mod p2) if p ≡ 3 (mod 4).

Conjecture 5.8. Let p be an odd prime. Then

p−1
∑

k=0

(

6k
3k

)(

3k
k

)(

2k
k

)

(−215)k

≡
{

(−2
p )(x2 − 2p) (mod p2) if ( p

11) = 1 & 4p = x2 + 11y2 (x, y ∈ Z),

0 (mod p2) if ( p
11) = −1, i.e., p ≡ 2, 6, 7, 8, 10 (mod 11).

Also, for any a ∈ Z+ we have

1

pa

pa−1
∑

k=0

154k + 15

(−215)k

(

6k

3k

)(

3k

k

)(

2k

k

)

≡15

(−2

pa

)

+

( −2

pa−1

)

15

16
p2Ep−3

(

1

4

)

(mod p3).

Moreover, for each n = 2, 3 . . . we have

1

2n(2n+ 1)
(

2n
n

)

n−1
∑

k=0

(154k + 15)

(

6k

3k

)(

3k

k

)(

2k

k

)

(−215)n−1−k ∈ Z.
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Conjecture 5.9. Let p be an odd prime and let a ∈ Z+. If p ≡ 1 (mod 3),
then

pa−1
∑

k=0

9k + 2

108k

(

2k

k

)2(
3k

k

)

≡ 0 (mod p2a).

If p ≡ 1, 3 (mod 8), then

pa−1
∑

k=0

16k + 3

256k

(

2k

k

)2(
4k

2k

)

≡ 0 (mod p2a+δp,3).

If p ≡ 1 (mod 4), then

pa−1
∑

k=0

4k + 1

64k

(

2k

k

)3

≡ 0 (mod p2a)

and
pa−1
∑

k=0

36k + 5

123k

(

6k

3k

)(

3k

k

)(

2k

k

)

≡ 0 (mod p2a+δp,5).

Remark 5.3. The reader may consult conjectures of Rodriguez-Villegas

[RV] (see also [M05]) on
∑p−1

k=0

(

2k
k

)2(3k
k

)

/108k,
∑p−1

k=0

(

2k
k

)2(4k
2k

)

/256k and
∑p−1

k=0

(

6k
3k

)(

3k
k

)(

2k
k

)

/123k modulo p2, where p > 3 is a prime.

We will give more conjectures similar to Conjectures 5.1-5.9 in the forth-
coming survey [S11b]. Now we turn to sums of products of two binomial
coefficients.

Conjecture 5.10. (i) For any prime p ≡ 1 (mod 3) and positive integer
a, we have

pa−1
∑

k=0

k
(

2k
k

)(

3k
k

)

54k
≡ 0 (mod pa+1).

(ii) Let p ≡ 1, 3 (mod 8) be a prime and write p = x2 + 2y2 with
x ≡ 1 (mod 4). Then

p−1
∑

k=0

(

2k
k

)(

4k
2k

)

128k
≡ (−1)⌊(p+5)/8⌋

(

2x− p

2x

)

(mod p2).

Also, for any a ∈ Z+ we have

pa−1
∑

k=0

k
(

2k
k

)(

4k
2k

)

128k
≡ 0 (mod pa+1+δp,3).
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(iii) Let p ≡ 1 (mod 4) be a prime and write p = x2 + y2 with x ≡
1 (mod 4) and y ≡ 0 (mod 2). Then

p−1
∑

k=0

(

6k
3k

)(

3k
k

)

864k
≡
{

(−1)⌊x/6⌋(2x− p/(2x)) (mod p2) if p ≡ 1 (mod 12),

(xy3 )(2y − p/(2y)) (mod p2) if p ≡ 5 (mod 12).

Also, for any a ∈ Z+ we have

pa−1
∑

k=0

k
(

6k
3k

)(

3k
k

)

864k
≡ 0 (mod pa+1) and

1

5a+2

5a−1
∑

k=0

k
(

6k
3k

)(

3k
k

)

864k
≡ 3 (mod 5).

Conjecture 5.11. Let p > 3 be a prime.

(i) If p ≡ 7 (mod 12) and p = x2 + 3y2 with y ≡ 1 (mod 4), then

p−1
∑

k=0

(

k

3

)

(

2k
k

)2

(−16)k
≡ (−1)(p−3)/4

(

4y − p

3y

)

(mod p2)

and we can determine y mod p2 via the congruence

p−1
∑

k=0

(

k

3

)

k
(

2k
k

)2

(−16)k
≡ (−1)(p+1)/4y (mod p2).

(ii) If p ≡ 1 (mod 12), then

p−1
∑

k=0

(

p− 1

k

)(

k

3

)

(

2k
k

)2

16k
≡ 0 (mod p2).

If p ≡ 11 (mod 12), then

p−1
∑

k=0

(

k

3

)

(

2k
k

)2

(−16)k
≡ 0 (mod p).

Remark 5.4. The author could prove that
∑p−1

k=0(
k
3 )
(

2k
k

)2
/(−16)k ≡ 0

(mod p2) for any prime p ≡ 1 (mod 4).
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Conjecture 5.12. Let p be an odd prime and let a ∈ Z+.
(i) We have

pa−1
∑

k=0

(

2k
k

)(

4k
2k

)

64k
≡
(−2

pa

)

−
( −2

pa−1

)

3p2

16
Ep−3

(

1

4

)

(mod p3)

and
pa−1
∑

k=0

(

2k
k

)

C2k

64k
≡
(−1

pa

)

−
( −1

pa−1

)

3p2Ep−3 (mod p3),

where Cn stands for the Catalan number 1
n+1

(

2n
n

)

=
(

2n
n

)

−
(

2n
n+1

)

.

(ii) Suppose p > 3. Then

pa−1
∑

k=0

(

6k
3k

)(

3k
k

)

432k
≡
(−1

pa

)

−
( −1

pa−1

)

25

9
p2Ep−3 (mod p3)

and
pa−1
∑

k=0

(

6k
3k

)

C
(2)
k

432k
≡
(

pa

3

)

(mod p2),

where

C
(2)
k =

(

3k
k

)

2k + 1
=

(

3k

k

)

− 2

(

3k

k − 1

)

is a second-order Catalan number.
(iii) Assume p > 3. Then

pa−1
∑

k=1

(

2k
k+1

)(

3k
k+1

)

27k
≡2

(

pa

3

)

− 7 (mod p),

pa−1
∑

k=1

(

2k
k−1

)(

3k
k−1

)

27k
≡
(

pa

3

)

− pa (mod p2),

pa−1
∑

k=0

(

2k
k

)(

3k
k

)

27k
≡
(

pa

3

)

−
(

pa−1

3

)

p2

3
Bp−2

(

1

3

)

(mod p3),

pa−1
∑

k=0

(

2k
k

)

C
(2)
k

27k
≡
(

pa

3

)

−
(

pa−1

3

)

2

3
p2Bp−2

(

1

3

)

(mod p3).

Furthermore,

pa−1
∑

k=0

(4k + 1)

(

2k
k

)

C
(2)
k

27k
≡
(

pa

3

)

(mod p4).
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Remark 5.5. For a prime p > 3, Rodriguez-Villegas’ conjecture (cf. [RV])
on

p−1
∑

k=0

(

2k
k

)(

3k
k

)

27k
,

p−1
∑

k=0

(

2k
k

)(

4k
2k

)

64k
,

p−1
∑

k=0

(

6k
3k

)(

3k
k

)

432k

modulo p2 were proved by Mortenson [M03b]. By Gosper’s algorithm (cf.
[PWZ]) we find that

n
∑

k=0

9k + 2

27k

(

2k

k

)(

3k

k

)

=
(3n+ 1)(3n+ 2)

27n

(

2n

n

)(

3n

n

)

and
n
∑

k=0

36k + 5

432k

(

6k

3k

)(

3k

k

)

=
(6n+ 1)(6n+ 5)

432n

(

6n

3n

)(

3n

n

)

.

Conjecture 5.13. Let p > 3 be a prime. Then

p−1
∑

k=0

(

2k
k

)(

3k
k

)

24k
≡
(p

3

)

p−1
∑

k=0

(

2k
k

)(

3k
k

)

(−216)k
≡
{
(

2(p−1)/3
(p−1)/3

)

(mod p2) if p ≡ 1 (mod 3),

p/
(

2(p+1)/3
(p+1)/3

)

(mod p2) if p ≡ 2 (mod 3).

Also,

p−1
∑

k=0

(

3k
k

)

Ck

24k
≡ 1

9

(p

3

)

p−1
∑

k=0

(

3k
k

)

Ck

(−216)k
≡ 1

2

(

2(p− ( p3 ))/3

(p− ( p3 ))/3

)

(mod p).

When p ≡ 1 (mod 3) and 4p = x2+27y2 with x, y ∈ Z and x ≡ 2 (mod 3),
we have

x ≡
p−1
∑

k=0

k + 2

24k

(

2k

k

)(

3k

k

)

≡
p−1
∑

k=0

9k + 2

(−216)k

(

2k

k

)(

3k

k

)

(mod p2).

Conjecture 5.14. Let p > 3 be a prime.
(i) We always have

p−1
∑

k=0

(

2k
k

)(

4k
2k+1

)

48k
≡ 0 (mod p2).

If p ≡ 1 (mod 3) and p = x2 + 3y2 with x ≡ 1 (mod 3), then

p−1
∑

k=0

(

2k
k

)(

4k
2k

)

48k
≡ 2x− p

2x
(mod p2),

p−1
∑

k=0

k + 1

48k

(

2k

k

)(

4k

2k

)

≡ x (mod p2).
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If p ≡ 2 (mod 3), then

p−1
∑

k=0

(

2k
k

)(

4k
2k

)

48k
≡ 3p

2
(

(p+1)/2
(p+1)/6

)
(mod p2).

(ii) If ( p7 ) = 1 and p = x2 + 7y2 with (x7 ) = 1, then

p−1
∑

k=0

(

2k
k

)(

4k
2k

)

63k
≡
(p

3

)(

2x− p

2x

)

(mod p2),

p−1
∑

k=0

k + 8

63k

(

2k

k

)(

4k

2k

)

≡ 8
(p

3

)

x (mod p2).

If ( p
7
) = −1, then

p−1
∑

k=0

(

2k
k

)(

4k
2k

)

63k
≡

p−1
∑

k=0

(

2k
k

)(

4k
2k

)2

63k
≡ 0 (mod p).

(iii) If p ≡ 1 (mod 4) and p = x2 + y2 with x ≡ 1 (mod 4) and
y ≡ 0 (mod 2), then

p−1
∑

k=0

(

2k
k

)(

4k
2k

)

72k
≡
(

6

p

)

(

2x− p

2x

)

(mod p2),

p−1
∑

k=0

1− k

72k

(

2k

k

)(

4k

2k

)

≡
(

6

p

)

x (mod p2).

If p ≡ 3 (mod 4), then

p−1
∑

k=0

(

2k
k

)(

4k
2k

)

72k
≡
(

6

p

)

2p

3
(

(p+1)/2
(p+1)/4

)
(mod p2).

Remark 5.6. Let p > 3 be a prime. Concerning part (i) the author could
prove that

p−1
∑

k=0

(

2k
k

)(

4k
2k

)

(−192)k
≡
(−2

p

) p−1
∑

k=0

(

2k
k

)(

4k
2k

)

48k
(mod p2)

and
p−1
∑

k=0

k
(

2k
k

)(

4k
2k

)

(−192)k
≡ 1

4

(−2

p

) p−1
∑

k=0

k
(

2k
k

)(

4k
2k

)

48k
(mod p2).



36 ZHI-WEI SUN

We have similar things related to parts (ii) and (iii) of Conj. 5.14.

Finally, we mention that we also have some conjectural super congru-
ences involving quadratic polynomials and sums of products of more than
three binomial coefficients. For example, inspired by the identity

∞
∑

k=1

(−1)k(205k2 − 160k + 32)

k5
(

2k
k

)5 = −2ζ(3)

due to T. Amdeberhan and D. Zeilberger [AZ], on April 4, 2010 the author
(cf. [S10a]) conjectured that

(p−1)/2
∑

k=0

(205k2 + 160k + 32)(−1)k
(

2k

k

)5

≡ 32p2 +
896

3
p5Bp−3 (mod p6)

for any prime p > 3. Also, (1.22) and (1.23) in Conjecture 1.4 were moti-
vated by the first and the second congruences in our following conjecture.

Conjecture 5.15. (i) For any odd prime p, we have

p−1
∑

n=0

18n2 + 7n+ 1

(−128)n

(

2n

n

)2 n
∑

k=0

(−1/4

k

)2(−3/4

n− k

)2

≡ p2
(

2

p

)

(mod p3),

p−1
∑

n=0

40n2 + 26n+ 5

(−256)n

(

2n

n

)2 n
∑

k=0

(

n

k

)2(
2k

k

)(

2(n− k)

n− k

)

≡ 5p2 (mod p3),

p−1
∑

n=0

12n2 + 11n+ 3

(−32)n

n
∑

k=0

(

n

k

)4(
2k

k

)(

2(n− k)

n− k

)

≡ 3p2 +
7

4
p5Bp−3 (mod p6).

(ii) If p > 3 is a prime, then

p−1
∑

n=0

3n2 + n

16n

n
∑

k=0

(

n

k

)2(
2k

k

)(

2(n− k)

n− k

)

≡ −4p4qp(2)+6p5qp(2)
2 (mod p6).

For any integer m > 1, we have

am :=
1

2m3(m− 1)

m−1
∑

n=0

(3n2+n)16m−1−n
n
∑

k=0

(

n

k

)2(
2k

k

)(

2(n− k)

n− k

)

∈ Z;

moreover, am is odd if and only if m is a power of two.
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for proving the author’s conjecture that 1
n

∑n−1
k=0(21k + 8)

(

2k
k

)3
is always
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2n
n
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