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1 Introduction

The Al-Karaji arithmetic triangle is the triangle consisting of the binomial
coefficients

(

n
k

)

(n, k ∈ N, n ≥ k). Precisely, for each n ∈ N, the nth row of that
triangle is:

(

n

0

) (

n

1

)

. . .

(

n

n

)

,

where
(

n

k

)

:=
n!

k!(n− k)!
=

n× (n− 1)× · · · × (n− k + 1)

1× 2× · · · × k
(1)

So the beginning of the arithmetic (or binomial) triangle is given by:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
...

...
...

...
...

...
. . .

Note that the construction of the triangle rests on the property that each number
of a given row is the sum of the numbers which are situated just above. Explicitly,
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we have:
(

n

k

)

=

(

n− 1

k − 1

)

+

(

n− 1

k

)

(∀k, n such that n ≥ k ≥ 1) (2)

Historically, the first mathematician who discovered the binomial triangle
was the pioneer arabic mathematician Al-Karaji (953 - 1029 AD). He drew this
triangle until its 12th row and noted the process of its recursive construction by
pointing out (2). More interestingly, Al-Karaji discovered the binomial formula:

(x+ y)n =
n

∑

k=0

(

n

k

)

xkyn−k (∀n ∈ N) (3)

After Al-Karaji, several other mathematicians of the Islamic civilization repro-
duced that very important triangle (Al-Khayyam, Al-Samawal, Al-Tusi, Al-Farisi,
Ibn Al-Banna, Ibn Munaim, Al-Kashi, . . . ). The same triangle have been dis-
covered again in China (Yang Hui in the 13th century). In Europ (16th century),
several mathematicians remarked the importance of Al-Karaji’s triangle (Stifel,
Tartaglia, Pascal, . . . ).

In this paper, we are going to obtain the analog of Al-Karaji’s triangle by
substituting in Formula (1) the products by the least common multiples. If we
use the formula

(

n
k

)

= n!
k!(n−k)!

, the lcm-analog of the binomial coefficient
(

n
k

)

would be:
lcm(1, 2, . . . , n)

lcm(1, 2, . . . , k)× lcm(1, 2, . . . , n− k)
.

But this analogy is not quite interesting because those last numbers are not all
integers. For example, for n = 6, k = 3, we have:

lcm(1, 2, . . . , 6)

lcm(1, 2, 3)× lcm(1, 2, 3)
=

5

3
6∈ Z.

In order to obtain an interesting analogy, we will use rather the formula
(

n
k

)

=
n×(n−1)×···×(n−k+1)

1×2×···×k
. So, the lcm-analog of a binomial coefficient

(

n
k

)

which we
must consider is:

[

n
k

]

:=
lcm(n, n− 1, . . . , n− k + 1)

lcm(1, 2, . . . , k)
(4)

(We naturally conventione that lcm(∅) = 1).

Notice that a table of the numbers [nk] was already given by A. Murthy (2004)
and extended by E. Deutsch (2006) in the On-Line Encyclopedia of Integer Se-
quences (see the sequence A093430 of OEIS). However, to my knowledge, no
property was already proved about those numbers in comparison with their analog
binomial numbers.
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2 Results

We begin with the easy result showing that the rational numbers [nk], defined
by (4), are all integers. We have the following:

Proposition 1 For all natural numbers n, k such that n ≥ k, the positive

rational number [nk] is an integer.

Proof. Let n, k be natural numbers such that n ≥ k. Among the k consecutive
integers n, n − 1, . . . , n − k + 1, one at least is a multiple of 1, one at least
is a multiple of 2, . . . , and one at least is a multiple of k. This implies that
lcm(n, n−1, . . . , n−k+1) is a multiple of each of the positive integers 1, 2, . . . , k.
Consequently lcm(n, n−1, . . . , n−k+1) is a multiple of lcm(1, 2, . . . , k), which
confirms that [nk] is an integer. The proposition is proved. �

Definition. Throughout this paper, we call the numbers [nk]: “the lcm-binomial
numbers” and we call the triangle consisting of them: “the lcm-binomial trian-
gle”.

The beginning of the lcm-binomial triangle is given in the following:

1
1 1
1 2 1
1 3 3 1
1 4 6 2 1
1 5 10 10 5 1
1 6 15 10 5 1 1
...

...
...

...
...

...
. . .

(Here the colored numbers in green are those that are different from their analog
binomial numbers).

Now, we are going to establish less obvious results concerning the lcm-
binomial numbers.

Theorem 2 For all natural numbers n, k such that n ≥ k, the lcm-binomial

number [nk] divides the binomial number
(

n
k

)

.

Proof. Actually the theorem can be immediately showed by using a result of S.
Hong and Y. Yang [3] which states that for all integers k, n (with k ≥ 0, n ≥ 1),
the positive integer gk(1) divides the positive integer gk(n), where gk denotes
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the Farhi arithmetical function1 (see Lemma 2.4 of [3]). But in order to put the
reader at their ease, we give in what follows an independent and complete proof.
Let n, k ∈ N such that n ≥ 1 and n ≥ k. The statement of the theorem is
clearly equivalent to the following inequalities:

vp

((

n

k

))

≥ vp

([

n
k

])

(for all prime number p) (5)

(where vp denotes the usual p-adic valuation).
Let us show (5) for a given prime number p. On the one hand, we have:

vp

((

n

k

))

= vp

(

n!

k!(n− k)!

)

= vp(n!)− vp(k!)− vp((n− k)!)

=

∞
∑

α=1

⌊

n

pα

⌋

−
∞
∑

α=1

⌊

k

pα

⌋

−
∞
∑

α=1

⌊

n− k

pα

⌋

=

∞
∑

α=1

(⌊

n

pα

⌋

−

⌊

k

pα

⌋

−

⌊

n− k

pα

⌋)

(6)

(where ⌊.⌋ represents the integer part function).
It is important to stress that each of the terms (⌊ n

pα
⌋ − ⌊ k

pα
⌋ − ⌊n−k

pα
⌋) (α ≥ 1),

of the last sum, is nonnegative. indeed, for all positive integer α, we have:
⌊

k

pα

⌋

+

⌊

n− k

pα

⌋

≤
k

pα
+

n− k

pα
=

n

pα
.

But since ⌊ k
pα
⌋ + ⌊n−k

pα
⌋ is an integer, then we have even:

⌊

k

pα

⌋

+

⌊

n− k

pα

⌋

≤

⌊

n

pα

⌋

,

which confirms the stressed fact.
Now, on the other hand, we have:

vp

([

n
k

])

= vp

(

lcm(n, n− 1, . . . , n− k + 1)

lcm(1, 2, . . . , k)

)

= a− b,

where

a := vp(lcm(n, n− 1, . . . , n− k + 1)) and

b := vp(lcm(1, 2, . . . , k)).

1By definition: gk(n) :=
n(n+1)···(n+k)

lcm(n,n+1,...,n+k) (∀k, n).
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Note that because [nk] is an integer (according to Proposition 1), we have a ≥ b.
By definition, a is the greatest exponent α of p for which pα divides at least
an integer of the range (n − k, n]. Since for all α ∈ N, the number of integers
belonging to the range (n− k, n], which are multiples of pα, is exactly equal to
⌊ n
pα
⌋ − ⌊n−k

pα
⌋, then we have:

a = max

{

α ∈ N :

⌊

n

pα

⌋

−

⌊

n− k

pα

⌋

≥ 1

}

(7)

Similarly, b is (by definition) the greatest exponent α of p for which pα divides
at least an integer of the range [1, k]. But since for all α ∈ N, the number of
integers belonging to the range [1, k], which are multiples of pα, is exactly equal
to ⌊ k

pα
⌋, then we have:

b = max

{

α ∈ N :

⌊

k

pα

⌋

≥ 1

}

(8)

Remarking that the sequence
(

⌊ n
pα
⌋ − ⌊n−k

pα
⌋
)

α∈N
is non-increasing (since each

of the terms ⌊ n
pα
⌋ − ⌊n−k

pα
⌋ represents the number of integers lying in the range

(n− k, n], which are multiples of pα), we have:

∀α ∈ N, α ≤ a :

⌊

n

pα

⌋

−

⌊

n− k

pα

⌋

≥ 1.

Further, from the definition of b, we have:

∀α ∈ N, α > b :

⌊

k

pα

⌋

= 0.

Consequently, we have:

∀α ∈ N ∩ (b, a] :

⌊

n

pα

⌋

−

⌊

n− k

pα

⌋

−

⌊

k

pα

⌋

≥ 1.

According to (6), it follows that:

vp

((

n

k

))

=

∞
∑

α=1

(⌊

n

pα

⌋

−

⌊

n− k

pα

⌋

−

⌊

k

pα

⌋)

≥
∑

b<α≤a

(⌊

n

pα

⌋

−

⌊

n− k

pα

⌋

−

⌊

k

pα

⌋)

≥
∑

b<α≤a

1

= a− b

= vp

([

n
k

])

,
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which confirms (5) and completes this proof. �

Now, by Theorem 2, we see that the ratios
(

n
k

)

/[nk] are actually positive
integers. But it certainly remains several other profound properties to discover
about those numbers. We can ask for example about the couples (n, k) satisfying
the equality

(

n
k

)

= [nk].
The following theorem shows a very important property for the ratios

(

n
k

)

/[nk]. We
derive from it for example that for a fixed column k, the numbers (

(

n
k

)

/[nk])n≥k

lie in a finite set of positive integers.

Theorem 3 For all k ∈ N, the sequence of positive integers

(

(nk)
[nk]

)

n≥k

is periodic

and its smallest period Tk is given by:

Tk =
∏

p prime, p < k

pαp ,

where

αp =







0 if vp(k) ≥ max
1≤i<k

vp(i)

max
1≤i<k

vp(i) otherwise
(∀p prime, p < k).

As an important consequence, we derive the following:

Corollary 4 For all k ∈ N, the positive integer lcm(1, 2, . . . , k − 1) is a period

of the sequence

(

(nk)
[nk]

)

n≥k

.

Admitting Theorem 3, the proof of Corollary 4 becomes obvious: it suf-
fices to remark that the exact period Tk, given by Theorem 3, of the sequence
((

n
k

)

/ [nk]
)

n≥k
clearly divides lcm(1, 2, . . . , k − 1).

To prove Theorem 3, we use the arithmetical functions gk (k ∈ N) introduced
by the author in [1] and studied later by Hong and Yang [3] and by Farhi and
Kane [2]. For a given k ∈ N, the function gk is defined by:

gk : N \ {0} −→ N \ {0}

n 7−→ gk(n) :=
n(n+1)···(n+k)

lcm(n,n+1,...,n+k)
·

In [1], it is just remarked that gk is periodic and that k! is a period of gk. Then
Hong and Yang [3] improved that period to lcm(1, 2, . . . , k) and recently, Farhi
and Kane [2] have obtained the exact period of gk which is given by:

Pk =
∏

p prime, p≤k

p











0 if vp(k + 1) ≥ max1≤i≤k vp(i)

max1≤i≤k vp(i) otherwise
.
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Knowing this result, the proof of Theorem 3 becomes easy:

Proof of Theorem 3. For a fixed k ∈ N, a simple calculus shows that for any
n ∈ N, we have:

(

n
k

)

[nk]
=

gk−1(n− k + 1)

gk−1(1)
.

This last identity clearly shows that for any given k ∈ N, the sequence
((

n
k

)

/[nk]
)

n≥k

is periodic and that its exact period is equal to the exact period of gk−1. So by
the Farhi-Kane theorem, the exact period of

((

n
k

)

/[nk]
)

n≥k
is Pk−1, as claimed in

Theorem 3. �

We end this section by giving the lcm-binomial triangle until its 12th row.

1
1 1
1 2 1
1 3 3 1
1 4 6 2 1
1 5 10 10 5 1
1 6 15 10 5 1 1
1 7 21 35 35 7 7 1
1 8 28 28 70 14 14 2 1
1 9 36 84 42 42 42 6 3 1
1 10 45 60 210 42 42 6 3 1 1
1 11 55 165 330 462 462 66 33 11 11 1
1 12 66 110 165 66 462 66 33 11 11 1 1
...

...
...

...
...

...
...

...
...

...
...

...
. . .

The lcm-analog of Al-Karaji’s triangle

Note that The lcm-binomial numbers colored in green are those that are different
from their analog binomial numbers.

3 Some remarks and open problems about the

lcm-binomial numbers

1) Can we prove Theorem 2 without use prime number arguments?

2) Describe the set of all the couples (n, k) (n ≥ k ≥ 0) satisfying [nk] =
(

n
k

)

.
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3) Let n ∈ N. Since for any k ∈ {0, 1, . . . , n}, we have [nk] ≤
(

n
k

)

(because [nk]
divides

(

n
k

)

, according to Theorem 2) then for all nonnegative real number
x, we have:

n
∑

k=0

[

n
k

]

xk ≤
n

∑

k=0

(

n

k

)

xk = (1 + x)n,

that is:
n

∑

k=0

[

n
k

]

xk ≤ (1 + x)n (∀x ≥ 0) . (9)

Taking x = 1 in (9), we deduce in particular that for all n ∈ N, we
have [ n

⌈n/2⌉] ≤ 2n (where ⌈.⌉ denotes the ceiling function). But since

[ n
⌈n/2⌉] =

lcm(n,n−1,...,n−⌈n/2⌉+1)
lcm(1,2,...,⌈n/2⌉)

is an integer (according to Proposition 1),

then lcm(n, n−1, . . . , n−⌈n/2⌉+1) is a multiple of lcm(1, 2, . . . , ⌈n/2⌉).
Consequently we have lcm(n, n− 1, . . . , n− ⌈n/2⌉ + 1) = lcm(n, n − 1,
. . . , n − ⌈n/2⌉ + 1; 1, 2, . . . , ⌈n/2⌉) = lcm(1, 2, . . . , n). So [ n

⌈n/2⌉] ≤ 2n

gives:

lcm(1, 2, . . . , n) ≤ 2nlcm(1, 2, . . . ⌈n/2⌉) (∀n ∈ N).

The iteration of the last inequality gives:

lcm(1, 2, . . . , n) ≤ 2n+⌈n/2⌉+⌈n/4⌉+... ≤ 22n+log
2
(n) = n4n (∀n ≥ 1).

Hence:
lcm(1, 2, . . . , n) ≤ n4n (∀n ≥ 1),

which is a nontrivial upper bound of lcm(1, 2, . . . , n).
The question which we pose is the following:

Can we more judiciously use Relation (9) to prove a nontriv-
ial upper bound for the least common multiple of consecutive
integers that is significatively better than the previous one?

4) It is easy to see that unfortunately there is no an internal composition law ⋆
of N which satisfies for any positive integers n, k (n ≥ k):

[

n
k

]

=

[

n− 1
k − 1

]

⋆

[

n− 1
k

]

(the analog of (2)).
Indeed, if we suppose that such a law ⋆ exists then we would have on the
one hand [21]⋆ [

2
2] = [32], that is 2⋆1 = 3 and on the other hand [43]⋆ [

4
4] = [54],

that is 2 ⋆ 1 = 5; which gives a contradiction.
The problem which we pose is the following:
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Find an iterative construction (i.e., a construction row by row)
for the lcm-binomial triangle.

5) For a given positive integer d, let Ω(d) denote the number of prime factors
of d, counting with their multiplicities.
In this item, we look at the diagonals of the lcm-binomial triangle. We
constat that the first diagonal (which we note by D0) contains only the
1’s; in other words, we have:

∀d ∈ D0 : Ω(d) = 0 ≤ 0.

The second diagonal (noted D1) is consisted only on the 1’s and the prime
numbers; in other words, we have:

∀d ∈ D1 : Ω(d) ≤ 1.

Also, the third diagonal of the lcm-binomial triangle (noted D2) is consisted
of positive integers having at most two prime factors (counting with their
multiplicities); in other words, we have:

∀d ∈ D2 : Ω(d) ≤ 2.

More generally, we have the following:

Proposition 5 For k ∈ N, let Dk denote the (k + 1)th diagonal of the

lcm-binomial triangle. Then, we have:

∀d ∈ Dk : Ω(d) ≤ k.

The proof of this proposition is actually very easy and leans only on the
following simple fact:

∀n ∈ N :
lcm(1, 2, . . . , n, n+ 1)

lcm(1, 2, . . . , n)
=

{

p if n+ 1 is a power of a prime p

1 otherwise
.

Proof of Proposition 5. Let k ∈ N fixed and let d ∈ Dk. So, we can
write d as: d = [n+k

n ] = lcm(k+1,k+2,...,k+n)
lcm(1,2,...,n)

(for some n ∈ N). It follows that

d divides the positive integer lcm(1,2,...,n+k)
lcm(1,2,...,n)

. But we constat that the last

number is the product of the k positive integers lcm(1,2,...,n+i)
lcm(1,2,...,n+i−1)

(1 ≤ i ≤ k)

each of which is either a prime number or equal to 1 (according to the fact
mentioned just before this proof). So, it follows that:

Ω(d) ≤ Ω

(

lcm(1, 2, . . . , n+ k)

lcm(1, 2, . . . , n)

)

≤ k.

The proposition is proved. �
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Note that by using prime number theory, we can improve the obvious upper
bound of Proposition 5 to:

∀d ∈ Dk : Ω(d) ≤ c
k

log k
,

where c is an absolute positive constant (effectively calculable).
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