POINT COUNTS OF D_{k} AND SOME A_{k} AND E_{k} INTEGER LATTICES INSIDE HYPERCUBES

RICHARD J. MATHAR

Abstract

Regular integer lattices are characterized by k unit vectors that build up their generator matrices. These have rank k for D-lattices, and are rank-deficient for A-lattices, for E_{6} and E_{7}. We count lattice points inside hypercubes centered at the origin for all three types, as if classified by maximum infinity norm in the host lattice. The results assume polynomial format as a function of the hypercube edge length.

1. Scope

We consider infinite translationally invariant point lattices set up by generator matrices G

$$
\begin{equation*}
p_{i}=\sum_{j=1}^{k} G_{i j} \alpha_{j} \tag{1}
\end{equation*}
$$

which select point coordinates p given a vector of integers α. In a purely geometricenumerative manner we count all points that reside inside a hypercube defined by $\left|p_{i}\right| \leq n, \forall i$. These numbers shall be called $A_{k}^{b}(n), D_{k}^{b}(n)$ and $E_{k}^{b}(n)$ for the three lattice types dealt with. In the incremental version of boxing the hypercubes, the points that are on the surface of the hypercube are given the upper index s,
$A_{k}^{s}(n)=A_{k}^{b}(n)-A_{k}^{b}(n-1), D_{k}^{s}(n)=D_{k}^{b}(n)-D_{k}^{b}(n-1)$, and $E_{k}^{s}(n)=E_{k}^{b}(n)-E_{k}^{b}(n-1)$,
the first differences of the "bulk" numbers with respect to the edge size n.
There is vague resemblance to volume computation of the polytope defined in α-space by other straight cuts in p-space [11, 10 .

In all cases discussed, the generating functions $D_{k}^{b}(x), A_{k}^{b}(x)$ or $E_{k}^{b}(x)$ are rational functions with a factor $(1-x)^{k}$ in the denominator. They count sequences starting with a value of 1 at $n=0$. The generating functions of the first differences, $D_{k}^{s}(x)$ etc., are therefore obtained by decrementing the exponent of $1-x$ in these denominators by one [14, 19], and have not been written down individually for that reason.

The manuscript considers first the D-lattices $D_{6}-D_{4}$ in tutorial detail in sections 24) then the case of general k in Section 5. The points in $A_{2}-A_{4}$ are counted in sections 68 by examining sums over the α-coefficients, and the general value of k is addressed by summation over p-coordinates in Section 9 The cases $E_{6}-E_{8}$ are reduced to the earlier lattice counts in sections 10,12 ,

[^0]
2. Lattice D_{2}

In the D_{2} lattice, the expansion coefficients α_{i} and Cartesian coordinates p_{i} are connected by

$$
\left(\begin{array}{cc}
1 & 1 \tag{3}\\
1 & -1
\end{array}\right) \cdot\binom{\alpha_{1}}{\alpha_{2}}=\binom{p_{1}}{p_{2}} .
$$

If we read the two lines of this system of equations separately, points inside the square $\left|p_{i}\right| \leq n(i=1,2)$ are constrained to α-coordinates inside a tilted square, as shown in Figure 1

Figure 1. The conditions $\left|\alpha_{1} \pm \alpha_{2}\right| \leq n$ select two orthogonal diagonal stripes in the $\left(\alpha_{1}, \alpha_{2}\right)$-plane. Their intersection is a tilted square centered at the origin.

The point count inside the square is

$$
\begin{equation*}
D_{2}^{b}=\sum_{\left|\alpha_{1}-\alpha_{2}\right| \leq n} \sum_{\left|\alpha_{1}+\alpha_{2}\right| \leq n} 1 \tag{4}
\end{equation*}
$$

Resummation considering the two non-overlapping triangles below and above the horizontal axis yields

$$
\begin{align*}
D_{2}^{b}=\sum_{\alpha_{2}=-n}^{0} \sum_{\alpha_{1}=-n-\alpha_{2}}^{\alpha_{2}+n} 1+\sum_{\alpha_{2}=1}^{n} & \sum_{\alpha_{1}=\alpha_{2}-n}^{n-\alpha_{2}} 1 \tag{5}\\
& =\sum_{\alpha_{2}=-n}^{0}\left(2 \alpha_{2}+2 n+1\right)+\sum_{\alpha_{2}=1}^{n}\left(2 n-2 \alpha_{2}+1\right)
\end{align*}
$$

We will frequently sum over low order multinomials of this type with a basic formula in terms of Bernoulli Polynomials B, [9, (0.121)][20, (1.2.11)] [7]

$$
\begin{equation*}
\sum_{m=1}^{j} m^{k}=\frac{B_{1+k}(j+1)-B_{1+k}(0)}{1+k} \tag{6}
\end{equation*}
$$

Application to (5) and its first differences yields essentially sequences A001844 and A008586 of the Online Encylopedia of Integer Sequences (OEIS) [17]:
Theorem 1. (Lattice points in the bulk and on the surface of D_{2})

$$
D_{2}^{b}(n)=2 n^{2}+2 n+1=1,5,13,25, \ldots ; \quad D_{2}^{s}(n)= \begin{cases}1, & n=0 \tag{7}\\ 4 n, & n>0\end{cases}
$$

3. Lattice D_{3}

The relation between expansion coefficients α_{i} and Cartesian coordinates p_{i} for the D_{3} lattice is

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \tag{8}\\
1 & -1 & 1 \\
0 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)=\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)
$$

The determinant of the Generator Matrix is non-zero; by multiplication with the inverse matrix, a form more suitable to the counting problem results:

$$
\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & 1 / 2 \tag{9}\\
1 / 2 & -1 / 2 & -1 / 2 \\
0 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)
$$

$D_{3}^{b}(n)$ is the number of integer solutions restricted to the cube $-n \leq p_{i} \leq n$. This is the full triple sum $(2 n+1)^{3}$-where $2 n+1$ sizes the edge length of the cube - minus the number of solutions of (9) that result in non-integer α_{i}. The structure of the three equations in (9) suggests to separate the cases according to the parities of p_{3} and $p_{1}+p_{2}$:

$$
\begin{equation*}
D_{3}^{b}(n)=\sum_{\substack{\left|p_{1}\right| \leq n,\left|p_{2}\right| \leq n,\left|p_{3}\right| \leq n \\ p_{1}+p_{2}+p_{3} \text { even }}} 1=\sum_{\substack{\left|p_{1}\right| \leq n,\left|p_{2}\right| \leq n \\ p_{1}+p_{2} \text { even }}} \sum_{\substack{\left|p_{3}\right| \leq n \\ p_{3} \text { even }}} 1+\sum_{\substack{\left|p_{1}\right| \leq n,\left|p_{2}\right| \leq n \\ p_{1}+p_{2} \text { odd }}} 1 \tag{10}
\end{equation*}
$$

The auxiliary sums are examined separately for even and odd n [17, A109613,A052928]:

$$
\begin{align*}
& \sum_{\substack{\left|p_{3}\right| \leq n \\
p_{3} \text { even }}} 1=n+\frac{1+(-1)^{n}}{2}=1,1,3,3,5,5,7,7,9,9, \ldots \tag{11}\\
& \sum_{\substack{\left|p_{3}\right| \leq n \\
p_{3} \text { odd }}} 1=n+\frac{1-(-1)^{n}}{2}=0,2,2,4,4,6,6,8,8 \ldots \tag{12}
\end{align*}
$$

The parity-filtered double sum of (10) over the square in (p_{1}, p_{2})-space selects points on lines parallel to the diagonal.

Definition 1. (Order of even (g) and odd (u) point sets in k-dimensional hypercube planes)

$$
\begin{equation*}
V_{k}^{g}(n) \equiv \sum_{\substack{\left|p_{i}\right| \leq n \\ p_{1}+p_{2}+\cdots p_{k} \text { even }}} 1 ; \quad V_{k}^{u}(n) \equiv \sum_{\substack{\left|p_{i}\right| \leq n \\ p_{1}+p_{2}+\cdots p_{k} \text { odd }}} 1 . \tag{13}
\end{equation*}
$$

This decomposition applies to higher dimensions recursively:

$$
\begin{align*}
V_{k}^{g}(n) & =V_{k-1}^{u}(n) V_{1}^{u}(n)+V_{k-1}^{g}(n) V_{1}^{g}(n) \tag{14}\\
V_{k}^{u}(n) & =V_{k-1}^{u}(n) V_{1}^{g}(n)+V_{k-1}^{g}(n) V_{1}^{u}(n) \tag{15}
\end{align*}
$$

Starting from $V_{1}^{g}(n)$ and $V_{1}^{u}(n)$ given in (11)-(12), the recurrences provide Table 1. The two disjoint sets of lattice points complement the hypercube:

$$
\begin{equation*}
V_{k}^{g}(n)+V_{k}^{u}(n)=(2 n+1)^{k} . \tag{16}
\end{equation*}
$$

Table 1. Low-dimensional examples of the lattice sums (13).

index	value
$V_{1}^{g}(n)$	$n+\frac{1+(-)^{n}}{1-2^{n}}$
$V_{1}^{u}(n)$	$n+\frac{1-)^{n}}{2}$
$V_{2}^{g}(n)$	$2 n^{2}+2 n+1$
$V_{2}^{u}(n)$	$2 n(n+1)$
$V_{3}^{g}(n)$	$4 n^{3}+6 n^{2}+3 n+\frac{1+(-)^{n}}{1-2-)^{n}}$
$V_{3}^{u}(n)$	$4 n^{3}+6 n^{2}+3 n+\frac{1}{2}$
$V_{4}^{g}(n)$	$8 n^{4}+16 n^{3}+12 n^{2}+4 n+1$
$V_{4}^{u}(n)$	$4 n(n+1)\left(2 n^{2}+2 n+1\right)$
$V_{5}^{g}(n)$	$16 n^{5}+40 n^{4}+40 n^{3}+20 n^{2}+5 n+\frac{1+(-)^{n}}{1-2}$
$V_{5}^{u}(n)$	$16 n^{5}+40 n^{4}+40 n^{3}+20 n^{2}+5 n+\frac{1-()^{n}}{2}$
$V_{6}^{g}(n)$	$\left(2 n^{2}+2 n+1\right)\left(16 n^{4}+32 n^{3}+20 n^{2}+4 n+1\right)$
$V_{6}^{u}(n)$	$2 n(n+1)\left(4 n^{2}+2 n+1\right)\left(4 n^{2}+6 n+3\right)$
$V_{7}^{g}(n)$	$64 n^{7}+224 n^{6}+336 n^{5}+280 n^{4}+140 n^{3}+42 n^{2}+7 n+\frac{1+(-)^{n}}{2}$
$V_{7}^{u}(n)$	$64 n^{7}+224 n^{6}+336 n^{5}+280 n^{4}+140 n^{3}+42 n^{2}+7 n+\frac{1-(-)^{n}}{2}$
$V_{8}^{g}(n)$	$128 n^{8}+512 n^{7}+896 n^{6}+896 n^{5}+560 n^{4}+224 n^{3}+56 n^{2}+8 n+1$
$V_{8}^{u}(n)$	$8 n(n+1)\left(2 n^{2}+2 n+1\right)\left(8 n^{4}+16 n^{3}+12 n^{2}+4 n+1\right)$

Theorem 2. (fcc lattice counts for edge measure $2 n+1$)

$$
V_{k}^{g}(n)= \begin{cases}\frac{(2 n+1)^{k}}{2}+\frac{1}{2}, & k \text { even } \tag{17}\\ \frac{(2 n+1)^{k}}{2}+\frac{(-)^{n}}{2}, & k \text { odd }\end{cases}
$$

Proof. The proof is simple by induction with the aid of (14) and (16), using $V_{1}^{g}(n)$ of (11) and $V_{1}^{u}(n)$ of (12).
$D_{3}^{b}(n)$ in (10) equals $V_{3}^{g}(n)$ by definition. D_{3}^{s} and D_{3}^{b} are sequences A110907 and A175109 in the OEIS [17].

Theorem 3. (Lattice points in the bulk and on the surface of D_{3})

$$
\begin{align*}
& D_{3}^{b}(n)=4 n^{3}+6 n^{2}+3 n+\frac{1+(-)^{n}}{2}=1,13,63,171,365,665 \ldots \tag{18}\\
& D_{3}^{s}(n)=\left\{\begin{array}{ll}
1, & n=0 ; \\
12 n^{2}+1+(-1)^{n} & n>0
\end{array}=1,12,50,108,194,300,434, \ldots\right.
\end{align*}
$$

The corresponding recurrences and generating function are

$$
\begin{gather*}
D_{3}^{b}(n)=3 D_{3}^{b}(n-1)-2 D_{3}^{b}(n-2)-2 D_{3}^{b}(n-3)+3 D_{3}^{b}(n-4)-D_{3}^{b}(n-5) \tag{20}\\
D_{3}^{b}(x)=\frac{\left(1+6 x+x^{2}\right)\left(1+4 x+x^{2}\right)}{(1+x)(1-x)^{4}} ; \tag{21}\\
D_{3}^{s}(n)=2 D_{3}^{s}(n-1)-2 D_{3}^{s}(n-3)+D_{3}^{s}(n-4) ; \quad(n>3) \tag{22}
\end{gather*}
$$

4. Lattice D_{4}

The transformation between expansion coefficients and Cartesian coordinates in the D_{4} case reads

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \tag{23}\\
1 & -1 & 1 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4}
\end{array}\right)=\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4}
\end{array}\right) .
$$

The technique of counting points inside cubes is the same as in the previous section. Inversion of the 4×4 matrix yields

$$
\left(\begin{array}{cccc}
1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \tag{24}\\
1 / 2 & -1 / 2 & -1 / 2 & -1 / 2 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4}
\end{array}\right) .
$$

We wish to count all lattice points subject to the constraint $\left|p_{i}\right| \leq n(i=1, \ldots 4)$, and the first two lines of the previous equation require in addition that the sum over all four p_{i} is even to keep all four α_{i} in the integer domain:

$$
\begin{equation*}
D_{4}^{b}(n)=\sum_{\substack{\left|p_{1}\right| \leq n,\left|p_{2}\right| \leq n,\left|p_{3}\right| \leq n,\left|p_{4}\right| \leq n \\ p_{1}+p_{2}+p_{3}+p_{4} \operatorname{even}}} 1 . \tag{25}
\end{equation*}
$$

This expression is $V_{4}^{g}(n)$ already computed above. $D_{4}^{s}(n)$ is OEIS sequence A117216; $D_{4}^{b}(n)$ is A175110 [17].

Theorem 4. (Lattice points in the bulk and on the surface of D_{4})

$$
\begin{aligned}
(26) D_{4}^{b}(n) & =1+4 n+12 n^{2}+16 n^{3}+8 n^{4} \\
& =1,41,313,1201,3281,7321,14281,25313,41761,65161,97241 \ldots ; \\
(27) D_{4}^{s}(n) & = \begin{cases}1, & n=0 ; \\
8 n\left(1+4 n^{2}\right) & n>0 ;\end{cases} \\
& =1,40,272,888,2080,4040,6960,11032,16448,23400,32080 \ldots
\end{aligned}
$$

The associated generating function and recurrences are

$$
\begin{equation*}
D_{4}^{b}(x)=\frac{1+36 x+118 x^{2}+36 x^{3}+x^{4}}{(1-x)^{5}} \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
D_{4}^{b}(n)=5 D_{4}^{b}(n-1)-10 D_{4}^{b}(n-2)+10 D_{4}^{b}(n-3)-5 D_{4}^{b}(n-4)+D_{4}^{b}(n-5) ; \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
D_{4}^{s}(n)=4 D_{4}^{s}(n-1)-6 D_{4}^{s}(n-2)+4 D_{4}^{s}(n-3)-D_{4}^{s}(n-4) ; \quad(n>4) . \tag{30}
\end{equation*}
$$

5. Lattices D_{k}, General k

No new aspect arises in comparison to the previous two sections [16]. The $D_{k}^{b}(n)$ equal the $V_{k}^{g}(n)$ and their first differences constitute the $D_{k}^{s}(n)$:

$$
\left.\left.\left.\begin{array}{c}
D_{5}^{b}(n)=16 n^{5}+40 n^{4}+40 n^{3}+20 n^{2}+5 n+\frac{1+(-)^{n}}{2} \\
D_{5}^{s}(n)= \begin{cases}1, & n=0 \\
1+40 n^{2}+80 n^{4}+(-)^{n}, & n>0\end{cases} \\
D_{6}^{b}(n)=32 n^{6}+96 n^{5}+120 n^{4}+80 n^{3}+30 n^{2}+6 n+1
\end{array}\right\} \begin{array}{cc}
1, & n=0
\end{array}\right\}, \begin{array}{ll}
1, & n>0 \\
4 n\left(1+12 n^{2}\right)\left(3+4 n^{2}\right),
\end{array}\right\} \begin{gathered}
D_{7}^{b}(n)=64 n^{7}+225 n^{6}+336 n^{5}+280 n^{4}+130 n^{3}+43 n^{2}+7 n+\frac{1+(-)^{n}}{2} \\
D_{7}^{s}(n)= \begin{cases}1, & n=0 \\
1+84 n^{2}+560 n^{4}+448 n^{6}+(-)^{n}, & n>0\end{cases}
\end{gathered}
$$

D_{5} and D_{6} are materialized as sequences A175111 to A175114 [17. All cases are summarized in a Corollary to Theorem 2.

Corollary 1. (D_{k} Lattice points inside the hypercube)

$$
\begin{gather*}
D_{k}^{b}(n)= \begin{cases}\frac{(2 n+1)^{k}}{2}+\frac{1}{2}, & k \text { even } \\
\frac{(2 n+1)^{k}}{2}+\frac{(-)^{n}}{2}, & k \text { odd }\end{cases} \tag{37}\\
D_{k}^{s}(n)= \begin{cases}\frac{(2 n+1)^{k}}{2}-\frac{(2 n-1)^{k}}{2}, & k \text { even, } n>0 ; \\
\frac{(2 n+1)^{k}}{2}-\frac{(2 n-1)^{k}}{2}+(-)^{n}, & k \text { odd, } n>0 .\end{cases}
\end{gather*}
$$

The generating functions are

$$
D_{k}^{b}(x)= \begin{cases}\frac{\sum_{i=0}^{k} \beta_{i}^{g} x^{i}}{(1-x)^{k+1}}, & k \text { even } \tag{39}\\ \frac{1+\sum_{i=1}^{k} \beta_{i}^{u} x^{i}}{(1+x)(1-x)^{k+1}}, & k \text { odd }\end{cases}
$$

where

$$
\begin{equation*}
2 \beta_{i}^{g} \equiv \sum_{t=0}^{i}\left[(2 i-2 t+1)^{k}+1\right]\binom{k+1}{t}(-)^{t} \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
2 \beta_{i}^{u} \equiv \sum_{t=0}^{i}\left[(2 i-2 t+1)^{k}+(-)^{i-t}\right]\binom{k+1}{t}(-)^{t}+\sum_{t=0}^{i-1}\left[(2 i-2 t-1)^{k}-(-)^{i-t}\right]\binom{k+1}{t}(-)^{t} \tag{41}
\end{equation*}
$$

Remark 1. The D_{k}^{*} lattices are characterized by

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 1 / 2 \tag{42}\\
0 & 1 & 0 & \cdots & 0 & 1 / 2 \\
0 & 0 & 1 & \ddots & 0 & 1 / 2 \\
\vdots & \vdots & 0 & 1 & \ddots & 1 / 2 \\
\vdots & \vdots & \vdots & 0 & 1 & 1 / 2 \\
0 & 0 & 0 & \cdots & 0 & 1 / 2
\end{array}\right) \cdot\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
\vdots
\end{array}\right) .
$$

Matrix inversion gives

$$
\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & -1 \tag{43}\\
0 & 1 & 0 & \vdots & -1 \\
\vdots & 0 & 1 & \vdots & -1 \\
0 & \vdots & \ddots & 1 & -1 \\
0 & 0 & \cdots & 0 & 2
\end{array}\right) \cdot\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\vdots
\end{array}\right)
$$

which shows that there is no constraint on generating any p_{i} inside the regions $\left|p_{i}\right| \leq$ n : The number of lattice points up to infinity norm n is simply $D_{k}^{* b}(n)=(2 n+1)^{k}$.

6. Lattice A_{2}

$A_{2}^{b}(n)$ is the number of integer solutions to

$$
\left(\begin{array}{cc}
1 & 0 \tag{44}\\
-1 & 1 \\
0 & -1
\end{array}\right) \cdot\binom{\alpha_{1}}{\alpha_{2}}=\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)
$$

in the range $\left|p_{i}\right| \leq n$. The three requirements from the three lines of this equation become

$$
\begin{equation*}
A_{2}^{b}=\sum_{\left|\alpha_{1}\right| \leq n} \sum_{\substack{\left|-\alpha_{1}+\alpha_{2}\right| \leq n \\\left|-\alpha_{2}\right| \leq n}} 1 \tag{45}
\end{equation*}
$$

As outlined in Figure 2, decomposition of the conditions allows resummation over the quadrangles above and below the α_{1} axis:
$A_{2}^{b}(n)=\sum_{\alpha_{2}=-n}^{0} \sum_{\alpha_{1}=-n}^{n+\alpha_{2}} 1+\sum_{\alpha_{2}=1}^{n} \sum_{\alpha_{1}=\alpha_{2}-n}^{n} 1=\sum_{\alpha_{2}=-n}^{0}\left(2 n+1+\alpha_{2}\right)+\sum_{\alpha_{2}=1}^{n}\left(2 n+1-\alpha_{2}\right)$,
further evaluated with (6).
Theorem 5. (Lattice points in the bulk and on the surface of A_{2}, [17, A003215])
(47) $A_{2}^{b}(n)=1+3 n(n+1)=1,7,19,37,61,91,127,169,217,271,331,397,469, \ldots$

The first differences are [17, A008458]

$$
A_{2}^{s}(n)= \begin{cases}1, & n=0 \tag{48}\\ 6 n, & n>0\end{cases}
$$

Figure 2. The conditions $\left|\alpha_{1}\right| \leq n$ and $\left|\alpha_{2}\right| \leq n$ select a square in the $\left(\alpha_{1}, \alpha_{2}\right)$-plane. The requirement $\left|-\alpha_{1}+\alpha_{2}\right| \leq n$ admits only values inside a diagonal stripe. The intersection is the dotted hexagon.

7. Lattice A_{3}

The generator matrix sets

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \tag{49}\\
-1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)=\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4}
\end{array}\right)
$$

This translates the four bindings $\left|p_{i}\right| \leq n$ into four constraints on the three α :

$$
\begin{equation*}
A_{3}^{b}(n)=\sum_{\left|\alpha_{1}\right| \leq n} \sum_{\substack{\left|-\alpha_{1}+\alpha_{2}\right| \leq n \\\left|-\alpha_{2}+\alpha_{3}\right| \leq n}} \sum_{\left|-\alpha_{3}\right| \leq n} 1 \tag{50}
\end{equation*}
$$

Figure 3 illustrates resummation of the format

$$
\begin{equation*}
\sum_{\left|\alpha_{1}\right| \leq n\left|-\alpha_{1}+\alpha_{2}\right| \leq n} 1=\sum_{\alpha_{2}=-2 n}^{0} \sum_{\alpha_{1}=-n}^{\alpha_{2}+n} 1+\sum_{\alpha_{2}=1}^{2 n} \sum_{\alpha_{1}=\alpha_{2}-n}^{n} 1 \tag{51}
\end{equation*}
$$

This is applied twice (note this factorization generates quad-sums which are a

Figure 3. The conditions $\left|\alpha_{1}\right| \leq n$ and $\left|-\alpha_{1}+\alpha_{2}\right| \leq n$ select points in the dotted parallelogram.
convenient notation to keep track of the limits. The sums actually remain triple sums):

$$
\begin{align*}
& A_{3}^{b}(n)=\left(\sum_{\alpha_{2}=-2 n}^{0} \sum_{\alpha_{1}=-n}^{\alpha_{2}+n} 1+\sum_{\alpha_{2}=1}^{2 n} \sum_{\alpha_{1}=\alpha_{2}-n}^{n} 1\right)\left(\sum_{\alpha_{2}=-2 n}^{0} \sum_{\alpha_{3}=-n}^{\alpha_{2}+n} 1+\sum_{\alpha_{2}=1}^{2 n} \sum_{\alpha_{3}=\alpha_{2}-n}^{n} 1\right) \tag{52}\\
&=\sum_{\alpha_{2}=-2 n}^{0} \sum_{\alpha_{1}=-n}^{\alpha_{2}+n} \sum_{\alpha_{3}=-n}^{\alpha_{2}+n} 1+\sum_{\alpha_{2}=1}^{2 n} \sum_{\alpha_{1}=\alpha_{2}-n}^{n} \sum_{\alpha_{3}=\alpha_{2}-n}^{n} 1 \\
&=\sum_{\alpha_{2}=-2 n}^{0}\left(2 n+1+\alpha_{2}\right)^{2}+\sum_{\alpha_{2}=1}^{2 n}\left(2 n+1-\alpha_{2}\right)^{2} .
\end{align*}
$$

After binomial expansion, both remaining sums are reduced with (6):

Theorem 6. (Lattice points in the bulk and on the surface of A_{3})
(53) $A_{3}^{b}(n)=1+\frac{2}{3} n\left(7+12 n+8 n^{2}\right)=1,19,85,231,489,891,1469,2255,3281, \ldots$

$$
A_{3}^{s}(n)=\left\{\begin{array}{ll}
1, & n=0 \tag{54}\\
2+16 n^{2}, & n>0
\end{array}=1,18,66,146,258,402,578, \ldots\right.
$$

These are sequences A063496 and A010006 in the OEIS [17].

8. Lattice A_{4}

A_{4} is characterized by a quad-sum over α_{i} with five constraints on the p_{i} set up by the hypercube:

$$
\begin{gather*}
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4}
\end{array}\right)=\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5}
\end{array}\right) . \tag{55}\\
A_{4}^{b}(n)=\sum_{\left|\alpha_{1}\right| \leq n} \sum_{\left|-\alpha_{1}+\alpha_{2}\right| \leq n} \sum_{\substack{\left|-\alpha_{2}+\alpha_{3}\right| \leq n \\
\left|-\alpha_{3}+\alpha_{4}\right| \leq n}} \sum_{\left|\alpha_{4}\right| \leq n} 1 .
\end{gather*}
$$

The resummation (51) is separately applied to $\left(\alpha_{1}, \alpha_{2}\right)$ and $\left(\alpha_{3}, \alpha_{4}\right)$; the entanglement between α_{2} and α_{3} is noted in the second factor:

$$
\begin{align*}
A_{4}^{b}(n)= & \left(\sum_{\alpha_{2}=-2 n}^{0} \sum_{\alpha_{1}=-n}^{\alpha_{2}+n} 1+\sum_{\alpha_{2}=1}^{2 n} \sum_{\alpha_{1}=\alpha_{2}-n}^{n} 1\right) \tag{57}\\
& \times\left(\sum_{\substack{\alpha_{3}=-2 n \\
\left|-\alpha_{2}+\alpha_{3}\right| \leq n}}^{0} \sum_{\alpha_{4}=-n}^{\alpha_{3}+n} 1+\sum_{\substack{\alpha_{3}=1 \\
\left|-\alpha_{2}+\alpha_{3}\right| \leq n}}^{2 n} \sum_{\alpha_{4}=\alpha_{3}-n}^{n} 1\right) \\
= & \left(\sum_{\alpha_{2}=-2 n}^{0}\left(2 n+1+\alpha_{2}\right)+\sum_{\alpha_{2}=1}^{2 n}\left(2 n+1-\alpha_{2}\right)\right) \\
& \times\left(\sum_{\substack{\alpha_{3}=-2 n \\
\left|-\alpha_{2}+\alpha_{3}\right| \leq n}}^{0}\left(2 n+1+\alpha_{3}\right)+\sum_{\substack{\alpha_{3}=1 \\
\left|-\alpha_{2}+\alpha_{3}\right| \leq n}}^{2 n}\left(2 n+1-\alpha_{3}\right)\right)
\end{align*}
$$

Product expansion generates 4 terms. The coupling between α_{2} and α_{3} is rewritten individually in their 4 different quadrants facilitated with Figure 4.

Figure 4. The conditions $\left|\alpha_{2}\right| \leq 2 n$ and $\left|\alpha_{3}\right| \leq 2 n$ define the large square, and $\left|-\alpha_{2}+\alpha_{3}\right| \leq n$ narrows the region down to the dotted hexagon.

$$
\begin{gather*}
\sum_{\alpha_{2}=-2 n}^{0} \sum_{\substack{\alpha_{3}=-2 n \\
\left|-\alpha_{2}+\alpha_{3}\right| \leq n}}^{0}=\sum_{\alpha_{3}=-2}^{-n} \sum_{n}^{\alpha_{3}+n}+\sum_{\alpha_{2}=-n}^{0} \sum_{\alpha_{3}=-n+1}^{0} ; \tag{58}\\
\sum_{\alpha_{2}=-2 n}^{0} \sum_{\substack{\alpha_{3}=1 \\
\left|-\alpha_{2}+\alpha_{3}\right| \leq n}}^{2 n}=\sum_{\alpha_{3}=1}^{n} \sum_{\alpha_{2}=\alpha_{3}-n}^{0} ; \tag{59}\\
\sum_{\alpha_{2}=1}^{2 n} \sum_{\substack{\alpha_{3}=-2 n \\
\left|-\alpha_{2}+\alpha_{3}\right| \leq n}}^{0}=\sum_{\alpha_{3}=-n+1}^{0} \sum_{\alpha_{2}=1}^{\alpha_{3}+n} ; \tag{60}\\
\sum_{\alpha_{2}=1}^{2 n} \sum_{\substack{\alpha_{3}=1 \\
\left|-\alpha_{2}+\alpha_{3}\right| \leq n}}^{2 n} \sum_{\alpha_{3}=1}^{\alpha_{3}+n} \sum_{\alpha_{2}=1}^{2 n}+\sum_{\alpha_{3}=n+1}^{2 n} \sum_{\alpha_{2}=\alpha_{3}-n}^{2 n} \tag{61}
\end{gather*}
$$

So A_{4}^{b} in (57) translates into six elementary double sums over products of the form $\left(2 n+1 \pm \alpha_{2}\right)\left(2 n+1 \pm \alpha_{3}\right)$, eventually handled with (6).

Theorem 7. (Lattice points in the bulk and on the surface of A_{4} [17, A083669])

$$
\begin{gather*}
A_{4}^{b}(n)=1+\frac{5}{12} n(n+1)\left(14+23 n+23 n^{2}\right)=1,51,381,1451,3951,8801, \ldots \tag{62}\\
A_{4}^{s}(n)=\frac{5}{3}\left(7+23 n^{2}\right)=1,50,330,1070,2500,4850,8350 \ldots \tag{63}\\
9 . \text { LATTICES } A_{k}, k>4
\end{gather*}
$$

Direct summation over the polytopes in α_{i}-space becomes increasingly laborious in higher dimensions; we switch to summation in p_{i}-space based on the alternative

$$
\begin{equation*}
A_{k}^{b}(n)=\sum_{\substack{\left|p_{i}\right| \leq n, i=1, \ldots, k+1 \\ \sum_{i=1}^{k+1} p_{i}=0}} 1 . \tag{64}
\end{equation*}
$$

This is derived by adding a $k+1$-st unit vector with all components equal to zero-with the exception of the last component-as a final column to the generator matrix. (This simple format suffices; laminations are not involved.) An associated coefficient α_{k+1} embeds the lattice into full space, while the condition $\alpha_{k+1}=0$ is maintained for the counting process. Inversion of the matrix generator equation demonstrates that this zero-condition translates into the requirement on the sum over the p_{i} shown above. This point of view is occasionally used to define the A-lattices.

Counting the points subjected to some fixed $\sum_{i} p_{i}=m$ is equivalent to computation of the multinomial coefficient

$$
\begin{equation*}
\left[x^{m}\right]\left(1+x+x^{-1}+x^{2}+x^{-2}+\cdots+x^{n}+x^{-n}\right)^{k} \tag{65}
\end{equation*}
$$

Balancing the accumulated powers as required for A_{k}^{b} necessarily ties them to the central multinomial numbers [3, 4]:

$$
\begin{equation*}
A_{k-1}^{b}(n)=\binom{k}{n k}_{2 n}=\sum_{j=0}^{\lfloor n k /(2 n+1)\rfloor}(-)^{j}\binom{k}{j}\binom{n k-j(2 n+1)+k-1}{k-1} \tag{66}
\end{equation*}
$$

Selecting values for the p_{i} is equivalent to a Motzkin-path, picking one term of each of the k instances of the $1+x+x^{-1}$ of the trinomial, for example [5]. First, the
formula is a route to quick numerical evaluation (Table 2). Second, it proves that $A_{k}^{b}(n)$ is a polynomial of order $\leq k$ in n, because each of the binomial factors in the j-sum is a polynomial of order $k-1$. This is easily made more explicit by invocation of the Stirling numbers of the first kind [13] (1) (24.1.3)].

Remark 2. This scheme of polynomial extension has been used for coordination sequences before [6], and is found in growth series as well [2].

TABLE 2. $A_{k}^{b}(n)$ displaying columns of central 3-nomial, 5-nomial, 7-nomial etc. numbers [17, A002426,A005191,A025012,A025014,A163269]

$k \backslash n$	0	1	2	3	4	5	6	7	8
1	1	3	5	7	9	11	13	15	17
2	1	7	19	37	61	91	127	169	217
3	1	19	85	231	489	891	1469	2255	3281
4	1	51	381	1451	3951	8801	17151	30381	50101
5	1	141	1751	9331	32661	88913	204763	418503	782153
6	1	393	8135	60691	273127	908755	2473325	5832765	12354469
7	1	1107	38165	398567	2306025	9377467	30162301	82073295	197018321
8	1	3139	180325	2636263	19610233	97464799	370487485	1163205475	3164588407

By computing the initial terms of any A_{k} numerically, the others follow by the recurrence obeyed by k-th order polynomials [8]:

$$
\begin{equation*}
A_{k}^{b}(n)=\sum_{j=1}^{k+1}\binom{k+1}{j}(-)^{j+1} A_{k}^{b}(n-j) \tag{67}
\end{equation*}
$$

Theorem 8. (Lattice points in the bulk and on the surface of A_{5})
(69) $\quad A_{5}^{s}(n)=\left\{\begin{array}{ll}1, & n=0, \\ 2+50 n^{2}+88 n^{4}, & n>0,\end{array}=1,140,1610,7580,23330, \ldots\right.$
A_{5}^{b} is a bisection of sequence A071816 of the OEIS [17]. A_{6}^{b} is a bisection of sequence A133458 [17].

Theorem 9. (A_{6} and A_{7} point counts)

$$
\begin{equation*}
A_{6}^{b}(n)=1+\frac{7}{180} n(n+1)\left(222+727 n+1568 n^{2}+1682 n^{3}+841 n^{4}\right) \tag{70}
\end{equation*}
$$

$$
A_{6}^{s}(n)=\left\{\begin{array}{ll}
1, & n=0, \tag{71}\\
\frac{7}{30} n\left(74+765 n^{2}+841 n^{4}\right), & n>0,
\end{array}=1,392,7742,52556,212436 \ldots\right.
$$

$A_{7}^{b}(n)=\frac{2 n+1}{315}\left(315+2568 n+10936 n^{2}+26400 n^{3}+37360 n^{4}+28992 n^{5}+9664 n^{6}\right)$.

Remark 3. The $A_{k}^{b}(n)$ can be phrased as k-th order polynomials of $L \equiv 2 n+1$ with the same parity as k :

$$
\begin{align*}
A_{1}^{b}(L) & =L ; \tag{73}\\
A_{2}^{b}(L) & =\frac{1}{4}+\frac{3}{4} L^{2} ; \tag{74}\\
A_{3}^{b}(L) & =\frac{1}{3} L+\frac{2}{3} L^{3} ; \tag{75}\\
A_{4}^{b}(L) & =\frac{9}{64}+\frac{25}{96} L^{2}+\frac{115}{192} L^{4} ; \tag{76}\\
A_{5}^{b}(L) & =\frac{1}{5} L+\frac{1}{4} L^{3}+\frac{11}{20} L^{5} ; \tag{77}\\
A_{6}^{b}(L) & =\frac{25}{256}+\frac{539}{2304} L^{4}+\frac{5887}{11520} L^{6} ; \tag{78}\\
A_{7}^{b}(L) & =\frac{1}{7} L+\frac{7}{45} L^{3}+\frac{2}{9} L^{5}+\frac{151}{315} L^{7} ; \tag{79}\\
A_{8}^{b}(L) & =\frac{1225}{16384}+\frac{3229}{28672} L^{2}+\frac{6663}{40960} L^{4}+\frac{867}{4096} L^{6}+\frac{259723}{573440} L^{8} . \tag{80}
\end{align*}
$$

If we rewrite (66) (15]

$$
\begin{equation*}
A_{k-1}^{b}(n)=\sum_{j=0}^{\lfloor k /(2+1 / n)\rfloor}(-1)^{j} \frac{k}{j!} \frac{\Gamma[k(n+1)-j(2 n+1)]}{\Gamma(k-j+1) \Gamma[k n-j(2 n+1)+1]}, \tag{81}
\end{equation*}
$$

the multiplication formula of the Γ-function converts this to terminating Saalschützian Hypergeometric Series:

$$
A_{k-1}^{b}(1)=\frac{\Gamma(2 k)}{\Gamma(k) \Gamma(k+1)}{ }_{4} F_{3}\left(\left.\begin{array}{c}
-k,-\frac{k}{3},-\frac{k-1}{3},-\frac{k-2}{3} \tag{82}\\
-\frac{2 k-1}{3},-\frac{2 k-2}{3},-\frac{2 k}{3}+1
\end{array} \right\rvert\, 1\right),
$$

$$
A_{k-1}^{b}(n)=\frac{\Gamma[(n+1) k]}{\Gamma(k) \Gamma(n k+1)}{ }_{2 n+2} F_{2 n+1}\left(\left.\begin{array}{c}
-k,-\frac{n k}{2 n+1},-\frac{n k-1}{2 n+1},-\frac{n k-2}{2 n+1}, \cdots,-\frac{n k-2 n}{2 n+1} \tag{83}\\
-\frac{(n+1) k-1}{2 n+1},-\frac{(n+1) k-2}{2 n+1}, \cdots,-\frac{(n+1) k-2 n-1}{2 n+1}
\end{array} \right\rvert\, 1\right) .
$$

The functional equation $\Gamma(m+1)=m \Gamma(m)$ presumably induces a non-linear recurrence along each column of Table 2 as shown by Sulanke for column $n=1$ [18]. Numerical experimentation rather than proofs [12] suggest:
Conjecture 1. (Recurrences of centered 3-nomial, 5-nomial, 7-nomial coefficients)

$$
\begin{equation*}
(k+1) A_{k}^{b}(1)-(2 k+1) A_{k-1}^{b}(1)-3 k A_{k-2}^{b}(1)=0 \tag{84}
\end{equation*}
$$

$$
\begin{array}{r}
2(k+1)(2 k+1) A_{k}^{b}(2)+\left(k^{2}-49 k-2\right) A_{k-1}^{b}(2)+5\left(-21 k^{2}+37 k-18\right) A_{k-2}^{b}(2) \tag{85}\\
-25(k-1)(k-4) A_{k-3}^{b}(2)+125(k-1)(k-2) A_{k-4}^{b}(2)=0 .
\end{array}
$$

$$
\begin{equation*}
3(3 k+2)(3 k+1)(k+1) A_{k}^{b}(3)+\left(41 k^{3}-600 k^{2}-191 k-6\right) A_{k-1}^{b}(3) \tag{86}
\end{equation*}
$$

$$
+7\left(-383 k^{3}+1458 k^{2}-1927 k+840\right) A_{k-2}^{b}(3)+49\left(-83 k^{3}+1068 k^{2}-4321 k+5040\right) A_{k-3}^{b}(3)
$$

$$
+343\left(199 k^{3}-1890 k^{2}+6017 k-6390\right) A_{k-4}^{b}(3)+2401(k-3)\left(43 k^{2}-351 k+722\right) A_{k-5}^{b}(3)
$$

$$
-16807(k-3)(k-4)(5 k-19) A_{k-6}^{b}(3)-117649(k-5)(k-4)(k-3) A_{k-7}^{b}(3)=0
$$

TABLE 3. Binomial coefficients $\eta_{k, j}$ of (88).

$k \backslash j$	1	2	3	4	5	6	7	8
1	1							
2	3	3						
3	9	24	16					
4	25	140	230	115				
5	70	735	2250	2640	1056			
6	196	3675	18732	38801	35322	11774		
7	553	17976	143696	468160	728448	541184	154624	
8	1569	87024	1052352	5067288	11994354	14906484	9350028	2337507

Remark 4. Inverse binomial transformations of the $A_{k}^{b}(n)$ define coefficients $\eta_{k, j}$ via

$$
\begin{gather*}
A_{k}^{b}(n) \equiv 1+2 \sum_{j=1}^{n}\binom{n}{j} \eta_{k, j}, \tag{87}\\
\eta_{k, j}=\frac{1}{2} \sum_{l=0}^{j}(-)^{j+l}\binom{j}{l}\binom{k+1}{l(k+1}_{2 l}, \tag{88}
\end{gather*}
$$

as demonstrated in Table 3. They are related to the partial fractions of the rational generating functions :

$$
\begin{equation*}
A_{k}^{b}(x)=\frac{1}{1-x}+2 \sum_{j=1}^{k} \eta_{k, j} \frac{x^{j}}{(1-x)^{j+1}} \equiv \frac{\sum_{l=0}^{k} \gamma_{k, l} x^{l}}{(1-x)^{k+1}} \tag{89}
\end{equation*}
$$

The first column and the diagonal of Table 3 appear to be sequences $A 097861$ and A011818 of the OEIS, respectively [17].

Remark 5. From (66) we deduce the numerator coefficients defined in (89):

$$
\begin{equation*}
\gamma_{k, l}=\sum_{n=0}^{l}\binom{k+1}{l-n}(-)^{l-n}\binom{k+1}{n(k+1)}_{2 n} . \tag{90}
\end{equation*}
$$

Some of these are shown in Table 4. Caused by the mirror symmetry of the coefficients, -1 is a root of the polynomial $\sum_{l} \gamma_{k, l} x^{l}$ if k is odd; a factor $1+x$ may then be split off.

Formula (2) converts Table 22 into Table 5. And similar to Conjecture 11 we formulate recurrences along columns of this derived table:

Conjecture 2. (Recurrences of A_{k}^{s})
(91)
$(k+1)(k-1) A_{k}^{s}(1)-\left(3 k^{2}-k-1\right) A_{k-1}^{s}(1)-k(k-2) A_{k-2}^{s}(1)+3 k(k-1) A_{k-3}^{s}(1)=0$,

TABLE 4. Synopsis of the numerators $\gamma_{k, l}$ of the generating functions (89).

$k \backslash l$	0	1	2	3	4	5	6	7
1	1	1						
2	1	4	1					
3	1	15	15	1				
4	1	46	136	46	1		1	
5	1	135	920	920	135	5405	386	1

Table 5. $A_{k}^{s}(n)$ derived from Table 2 building differences between adjacent columns [17, A175197].

$k \backslash n$	0	1	2	3	4	5	6	7	8
1	1	2	2	2	2	2	2	2	2
2	1	6	12	18	24	30	36	42	48
3	1	18	66	146	258	402	578	786	1026
4	1	50	330	1070	2500	4850	8350	13230	19720
5	1	140	1610	7580	23330	56252	115850	213740	363650
6	1	392	7742	52556	212436	635628	1564570	3359440	6521704
7	1	1106	37058	360402	1907458	7071442	20784834	51910994	114945026
8	1	3138	177186	2455938	16973970	77854566	273022686	792717990	2001382932

$$
\begin{aligned}
& \text { (92) } \quad 2(k-1)(2 k+1)(k+1)(65576 k-74745) A_{k}^{s}(2) \\
& +\left(262304 k^{4}-10212201 k^{3}+21353744 k^{2}-8959001 k-149490\right) A_{k-1}^{s}(2) \\
& +2\left(-6440305 k^{4}+44418225 k^{3}-87651471 k^{2}+52631106 k-4105233\right) A_{k-2}^{s}(2) \\
& +20\left(811225 k^{4}-3988621 k^{3}+5814523 k^{2}+2441684 k-8566578\right) A_{k-3}^{s}(2) \\
& +2\left(24847058 k^{4}-190384802 k^{3}+480247197 k^{2}-462996527 k+158679414\right) A_{k-4}^{s}(2) \\
& -(k-3)\left(20387704 k^{3}-72824267 k^{2}-29485137 k+331041750\right) A_{k-5}^{s}(2) \\
& -10(k-3)(k-4)\left(3707581 k^{2}-5729012 k+3352341\right) A_{k-6}^{s}(2) \\
& \\
& +150(k-3)(k-4)(k-5)(26006 k+104375) A_{k-7}^{s}(2)=0 .
\end{aligned}
$$

10. Lattice E_{6}

The task is to sum over the 6-dimensional representation with limits set by the 8-dimensional cube:

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 1 / 2 \tag{93}\\
-1 & 0 & 0 & 0 & 0 & 1 / 2 \\
1 & -1 & 0 & 0 & 0 & 1 / 2 \\
0 & 1 & -1 & 0 & 0 & 1 / 2 \\
0 & 0 & 1 & -1 & 0 & -1 / 2 \\
0 & 0 & 0 & 1 & -1 & -1 / 2 \\
0 & 0 & 0 & 0 & 1 & -1 / 2 \\
0 & 0 & 0 & 0 & 0 & -1 / 2
\end{array}\right) \cdot\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6}
\end{array}\right)=\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5} \\
p_{6} \\
p_{7} \\
p_{8}
\end{array}\right) .
$$

This is extended to an 8-dimensional representation

$$
\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 1 / 2 & 0 & 0 \tag{94}\\
-1 & 0 & 0 & 0 & 0 & 1 / 2 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & -1 / 2 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & -1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 / 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 / 2 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6} \\
\alpha_{7} \\
\alpha_{8}
\end{array}\right)=\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5} \\
p_{6} \\
p_{7} \\
p_{8}
\end{array}\right) .
$$

maintaining the count of E_{6}^{b} by adding the condition $\alpha_{7}=\alpha_{8}=0$ to the lattice sum. Inversion of this matrix equation yields

$$
\left(\begin{array}{cccccccc}
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \tag{95}\\
2 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 \\
2 & -1 & -1 & -1 & -1 & 0 & 0 & 0 \\
1 & -1 & -1 & -1 & -1 & -1 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5} \\
p_{6} \\
p_{7} \\
p_{8}
\end{array}\right)=\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6} \\
\alpha_{7} \\
\alpha_{8}
\end{array}\right) .
$$

The first but last equation of this linear system argues that 6 components of p_{i} are confined to $\sum_{i=2, \ldots, 6} p_{i}=0$ while summing over $\left|p_{i}\right| \leq n$ to ensure $\alpha_{7}=0$; the same sum regulated the 6 -dimensional cube A_{5}^{b}. The last equation represents the confinement $p_{1}+p_{8}=0$ to ensure $\alpha_{8}=0$. Since this is not entangled with the requirement on the other 6 components, the associated double sum emits a factor $2 n+1$. (Imagine counting points in a square of edge size $2 n+1$ along two coordinates p_{1} and p_{8}, where $p_{1}+p_{8}=0$ admits only points on the diagonal.)

Theorem 10. (Point counts of E_{6})

$$
\left.\begin{array}{c}
\quad E_{6}^{b}(n)=(2 n+1) A_{5}^{b}(n)=\frac{1}{5}(1+2 n)^{2}\left(5+27 n+71 n^{2}+88 n^{3}+44 n^{4}\right) \\
=1,423,8755,65317,293949,978043,2661919,6277545,13296601, \ldots ;
\end{array}\right\} \begin{array}{cc}
E_{6}^{s}(n)= \begin{cases}1, & n=0 ; \\
\frac{2}{5} n\left(47+480 n^{2}+528 n^{4}\right), & n>0 ;\end{cases} \\
=1,422,8332,56562,228632,684094,1683876,3615626,7019056, \ldots ; \\
E_{6}^{b}(x)=\frac{1+416 x+5815 x^{2}+12880 x^{3}+5815 x^{4}+416 x^{5}+x^{6}}{(1-x)^{7}} .
\end{array}
$$

11. Lattice E_{7}

The E_{7} lattice is spanned by

$$
\left(\begin{array}{ccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 1 / 2 \tag{99}\\
1 & -1 & 0 & 0 & 0 & 0 & 1 / 2 \\
0 & 1 & -1 & 0 & 0 & 0 & 1 / 2 \\
0 & 0 & 1 & -1 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 & -1 & 0 & -1 / 2 \\
0 & 0 & 0 & 0 & 1 & -1 & -1 / 2 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 / 2 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 / 2
\end{array}\right) \cdot\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6} \\
\alpha_{7}
\end{array}\right)=\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5} \\
p_{6} \\
p_{7} \\
p_{8}
\end{array}\right) .
$$

Again we consider only the sublattice with even α_{7}, that is, integer p_{i}.
Theorem 11. (Point counts of E_{7})

$$
\begin{equation*}
E_{7}^{b}(n)=A_{7}^{b}(n) \tag{100}
\end{equation*}
$$

Proof. We reach out into a direction of the p_{8} axis adding a unit vector with axis section $\alpha_{8}: E_{7}^{b}(n)$ counts only points with $\alpha_{8}=0$.

$$
\left(\begin{array}{cccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 1 / 2 & 0 \tag{101}\\
1 & -1 & 0 & 0 & 0 & 0 & 1 / 2 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 1 / 2 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & -1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & -1 / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 / 2 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6} \\
\alpha_{7} \\
\alpha_{8}
\end{array}\right)=\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5} \\
p_{6} \\
p_{7} \\
p_{8}
\end{array}\right) .
$$

The inverse of this equation is

$$
\left(\begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \tag{102}\\
1 & 1 & 2 & 2 & 2 & 2 & 2 & 0 \\
2 & 2 & 2 & 3 & 3 & 3 & 3 & 0 \\
3 & 3 & 3 & 3 & 4 & 4 & 4 & 0 \\
2 & 2 & 2 & 2 & 2 & 3 & 3 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 2 & 0 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5} \\
p_{6} \\
p_{7} \\
p_{8}
\end{array}\right)=\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6} \\
\alpha_{7} \\
\alpha_{8}
\end{array}\right),
$$

and-reading the last line - the restriction on the α_{8} coordinate implied by the embedding translates into $\sum_{i} p_{i}=0$. In comparison, we can also embed the A_{7} lattice into its 8-dimensional host,

$$
\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{103}\\
-1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6} \\
\alpha_{7} \\
\alpha_{8}
\end{array}\right)=\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5} \\
p_{6} \\
p_{7} \\
p_{8}
\end{array}\right)
$$

and invert this representation, too:

$$
\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{104}\\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5} \\
p_{6} \\
p_{7} \\
p_{8}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6} \\
\alpha_{7} \\
\alpha_{8}
\end{array}\right) .
$$

The implied slice $\alpha_{8}=0$ and the last line of this equation leads to the same condition $\sum_{i} p_{i}=0$ as derived from (102). Since both cases select from the $(2 n+$ $1)^{8}$ points in the hypercube subject to the same condition, both counts are the same.

12. Lattice E_{8}

The E_{8} coordinates are mediated by

$$
\left(\begin{array}{cccccccc}
2 & -1 & 0 & 0 & 0 & 0 & 0 & 1 / 2 \tag{105}\\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 / 2 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 / 2 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 / 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 / 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 / 2
\end{array}\right) \cdot\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6} \\
\alpha_{7} \\
\alpha_{8}
\end{array}\right)=\left(\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5} \\
p_{6} \\
p_{7} \\
p_{8}
\end{array}\right) .
$$

Explicit numbers are found with the formula in Theorem 2.
Theorem 12. (Lattice points in the bulk and on the surface of E_{8})

$$
\begin{gather*}
E_{8}^{b}(n)=V_{8}^{g}(n)=1,3281,195313,2882401,21523361 \ldots \tag{106}\\
E_{8}^{s}(n)= \begin{cases}1, & n=0 \\
16 n\left(4 n^{2}+1\right)\left(16 n^{4}+24 n^{2}+1\right), & n>0\end{cases} \tag{107}\\
=1,3280,192032,2687088,18640960,85656080, \ldots
\end{gather*}
$$

Proof. The inverse of the generator matrix in (105) has exactly one row filled with the value $1 / 2$, all other entries are integer. As already argued for the D-lattices
in sections 3.4. this leads to the constraint that the sum over the p_{i} must remain even, which matches Definition 1 .

13. Summary

For D_{k} lattices, the number of lattice points inside a hypercube is essentially a k-th order polynomial of the edge length, summarized in Eq. (37). For A_{k} lattices, explicit polynomials have been computed for $k \leq 5$ in Eqs. (47), (53), (62) and (68). For higher dimensions, the numbers are centered multinomial coefficients (66) which can be quickly converted to k-th order polynomials in n. The counts for E_{6}, E_{7} and E_{8} are closely associated with the counts for A_{5}, A_{7} and D_{8}, respectively.

References

1. Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions, 9th ed., Dover Publications, New York, 1972. MR 0167642 (29 \#4914)
2. Federico Ardila, Matthias Beck, Serkan Hoşten, Julian Pfeifle, and Kim Seashore, Root polytopes and growth series of root lattices, arXiv:0809.5123 [math.CO] (2008).
3. Hacène Belbachir, Sadek Bouroubi, and Abdelkader Khelladi, Connection between ordinary multinomials, generalized Fibonacci numbers, partial Bell partition polynomials and convolution powers of discrete uniform distribution, arXiv:0708.2195 [math.CO] (2007).
4. __ Connection between ordinary multinomials, generalized Fibonacci numbers, partial Bell partition polynomials and convolution powers of discrete uniform distribution, Ann. Math. Infor. 35 (2008), 21-30. MR 2475863 (2010a:11025)
5. P. Blasiak, G. Dattoli, A. Horzela, K. A. Penson, and K. Zhukovsky, Motzkin numbers, central trinomial coefficients and hybrid polynomials, J. Int. Seq. 11 (2008), \# 08.1.1. MR 2377567 (2009a:11060)
6. John H. Conway and Neil J. A. Sloane, Low-dimensional lattices. VII. coordination sequences, Proc. R. Soc. Lond. A 453 (1997), no. 1966, 2369-2389. MR 1480120 (98j:11051)
7. A. W. F. Edwards, A quick route to sums of powers, Am. Math. Monthly 93 (1986), no. 6, 451-455. MR 0843189 (87h:11099)
8. Piero Filipponi, On the polynomial representation of certain recurrences, Ulam Quarterly 2 (1993), no. 2, 11-22. MR 1257659 (94m:11026)
9. I. Gradstein and I. Ryshik, Summen-, Produkt- und Integraltafeln, 1st ed., Harri Deutsch, Thun, 1981. MR 0671418 (83i:00012)
10. Alexander M. Kasprzyk, The boundary volume of a lattice polytope, arXiv:1001.2815 [math.CO] (2010).
11. Jim Lawrence, Polytope volume computation, Math. Comp. 57 (1991), no. 195, 259-271. MR 1079024 (91j:52019)
12. Axel Riese, qMultiSum-a package for proving q-hypergeometric multiple summation identities, J. Symb. Comp. 35 (2003), no. 3, 349-376. MR 1962799 (2004h:33044)
13. John Riordan, Inverse relations and combinatorial identities, Amer. Math. Monthly 71 (1964), no. 5, 485-498. MR 0169791 (30 \#34)
14. , Combinatorial identities, John Wiley, New York, 1968. MR 0231725 (38 \#53)
15. Ranjan Roy, Binomial identities and hypergeometric series, Amer. Math. Monthly 94 (1987), no. 1, 36-46. MR 0873603 (88f:05012)
16. Joan Serra-Sagristà, Enumeration of lattice points in l_{1} norm, Inf. Proc. Lett. 76 (2000), no. 1-2, 39-44. MR 1797560
17. Neil J. A. Sloane, The On-Line Encyclopedia Of Integer Sequences, Notices Am. Math. Soc. 50 (2003), no. 8, 912-915, http://www.oeis.org/. MR 1992789 (2004f:11151)
18. Robert A. Sulanke, Moments of generalized Motzkin paths, J. Int. Seq. 3 (2000), \# 00.1.1. MR 1750747 (2001c:05009)
19. Herbert S. Wilf, Generatingfunctionology, Academic Press, 2004. MR 2172781 (2006i:05014)
20. Daniel Zwillinger (ed.), CRC standard mathematical tables and formulae, 31 ed., Chapman \& Hall/CRC, Boca Raton, FL, 2003, E: the lower limit in eqs. (11)-(14) on page 42 ought be $k=1, \operatorname{not} k=0$.
$U R L:$ http://www.strw.leidenuniv.nl/~mathar
E-mail address: mathar@strw.leidenuniv.nl
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The NetherLANDS

[^0]: Date: April 22, 2010.
 2010 Mathematics Subject Classification. Primary 52B05, 06B05; Secondary 05B35, 52B20.
 Key words and phrases. root lattices, polytopes, infinity norm, hypercube, centered multinomial coefficient.

