ON STRONGER CONJECTURES THAT IMPLY THE ERDŐS-MOSER CONJECTURE

BERND C. KELLNER

Abstract

The Erdős-Moser conjecture states that the Diophantine equation $S_{k}(m)=$ m^{k}, where $S_{k}(m)=1^{k}+2^{k}+\cdots+(m-1)^{k}$, has no solution for positive integers k and m with $k \geq 2$. We show that stronger conjectures about consecutive values of the function S_{k}, that seem to be more naturally, imply the Erdős-Moser conjecture.

1. Introduction

Let k and m be positive integers throughout this paper. Define

$$
S_{k}(m)=1^{k}+2^{k}+\cdots+(m-1)^{k} .
$$

Conjecture 1 (Erdős-Moser). The Diophantine equation

$$
\begin{equation*}
S_{k}(m)=m^{k} \tag{1}
\end{equation*}
$$

has only the trivial solution $(k, m)=(1,3)$ for positive integers k, m.
In 1953 Moser [6] showed that if a solution of (1) exists for $k \geq 2$, then k must be even and $m>10^{10^{6}}$. Recently, this bound has been greatly increased to $m>10^{10^{9}}$ by Gallot, Moree, and Zudilin [2]. So it is widely believed that non-trivial solutions do not exist. Comparing S_{k} with the integral $\int x^{k} d x$, see [2], one gets an easy estimate that

$$
\begin{equation*}
k<m<2 k . \tag{2}
\end{equation*}
$$

A general result of the author [4, Prop. 8.5, p. 436] states that

$$
\begin{equation*}
m^{r+1}\left|S_{k}(m) \quad \Longleftrightarrow \quad m^{r}\right| B_{k} \tag{3}
\end{equation*}
$$

for $r=1,2$ and even k, where B_{k} denotes the k-th Bernoulli number. Thus a non-trivial solution (k, m) of (1) has the property that m^{2} must divide the numerator of B_{k} for $k \geq 4$; this result concerning (1) was also shown in [5] in a different form.

Because the Erdős-Moser equation is very special, one can consider properties of consecutive values of the function S_{k} in general. This leads to two stronger conjectures, described in the next sections, that imply the conjecture of Erdős-Moser.

[^0]
2. Preliminaries

We use the following notation. We write $p^{r} \| m$ when $p^{r} \mid m$ but $p^{r+1} \nmid m$, i.e., $r=\operatorname{ord}_{p} m$ where p always denotes a prime. Next we recall some properties of the Bernoulli numbers and the function S_{k}.

The Bernoulli numbers B_{n} are defined by

$$
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n} \frac{z^{n}}{n!}, \quad|z|<2 \pi .
$$

These numbers are rational where $B_{n}=0$ for odd $n>1$ and $(-1)^{\frac{n}{2}+1} B_{n}>0$ for even $n>0$. A table of the Bernoulli numbers up to index 20 are given in [4, p. 437]. The denominator of B_{n} for even n is described by the von Staudt-Clausen theorem, see [3, p. 233], that

$$
\begin{equation*}
\operatorname{denom}\left(B_{n}\right)=\prod_{p-1 \mid n} p \tag{4}
\end{equation*}
$$

The function S_{k} is closely related to the Bernoulli numbers and is given by the well-known formula, cf. [3, p. 234]:

$$
\begin{equation*}
S_{k}(m)=\sum_{\nu=0}^{k}\binom{k}{\nu} B_{k-\nu} \frac{m^{\nu+1}}{\nu+1} . \tag{5}
\end{equation*}
$$

3. Stronger conjecture - Part I

The strongly monotonically increasing function S_{k} is a polynomial of degree $k+1$ as a result of (5). One may not expect that consecutive values of S_{k} have highly common prime factors, such that $S_{k}(m+1) / S_{k}(m)$ is an integer for sufficiently large m.
Conjecture 2. Let k, m be positive integers with $m \geq 3$. Then

$$
\frac{S_{k}(m+1)}{S_{k}(m)} \in \mathbb{N} \quad \Longleftrightarrow \quad(k, m) \in\{(1,3),(3,3)\}
$$

Note that we have to require $m \geq 3$, since $S_{k}(1)=0$ and $S_{k}(2)=1$ for all $k \geq 1$. Due to the well-known identity $S_{1}(m)^{2}=S_{3}(m)$, a solution for $k=1$ implies a solution for $k=3$. Hereby we have the only known solutions

$$
\begin{equation*}
\frac{1+2+3}{1+2}=2 \quad \text { and } \quad \frac{1^{3}+2^{3}+3^{3}}{1^{3}+2^{3}}=4 \tag{6}
\end{equation*}
$$

based on some computer search. Since $S_{k}(m+1) / S_{k}(m) \rightarrow 1$ as $m \rightarrow \infty$, it is clear that we can only have a finite number of solutions for a fixed k.

Proposition 1. Conjecture 2 implies Conjecture 1 as a special case.
Proof. The equation $S_{k}(m)=m^{k}$ can be rewritten as $2 S_{k}(m)=S_{k}(m+1)$ after adding $S_{k}(m)$ on both sides. Conjecture 2 states that $S_{k}(m+1) / S_{k}(m)$ is not a positive integer except for the cases $(k, m)=(1,3)$ and $(k, m)=(3,3)$ as given in (6). This implies Conjecture 1, which predicts $S_{k}(m+1) / S_{k}(m) \neq 2$ for $k \geq 2$.

4. Stronger conjecture - Part II

The connection between the function S_{k} and the Bernoulli numbers leads to the following theorem, which we will prove later. In the following we always write $B_{k}=N_{k} / D_{k}$ in lowest terms with $D_{k}>0$ for even k.

Theorem 1. Let k, m be positive integers with even k. Define

$$
g_{k}(m)=\frac{\operatorname{gcd}\left(S_{k}(m), S_{k}(m+1)\right)}{m} .
$$

Then

$$
\min _{m \geq 2} g_{k}(m)=\frac{1}{D_{k}} \quad \text { and } \quad \max _{m \geq 2} g_{k}(m) \geq\left|N_{k}\right|
$$

Generally

$$
g_{k}(m)=1 \quad \Longleftrightarrow \quad \operatorname{gcd}\left(D_{k} N_{k}, m\right)=1
$$

and special values are given by

$$
g_{k}\left(D_{k}\right)=\frac{1}{D_{k}} \quad \text { and } \quad g_{k}\left(\left|N_{k}\right|\right)=\left|N_{k}\right| .
$$

Moreover, if N_{k} is square free, then

$$
\max _{m \geq 2} g_{k}(m)=\left|N_{k}\right| .
$$

Remark 1. It is well-known that $\left|N_{k}\right|=1$ exactly for $k \in\{2,4,6,8\}$. Known indices k, where $\left|N_{k}\right|$ is prime, are recorded as sequence A092132 in [7]: 10, 12, 14, 16, 18, 36, 42. Sequence A090997 in [7] gives the indices k, where N_{k} is not square free: $50,98,150,196$, $228, \ldots$. By this, all N_{k} are square free for $2 \leq k \leq 48$.

Since $S_{k}(m+1)=S_{k}(m)+m^{k}$, we have

$$
\begin{equation*}
\operatorname{gcd}\left(S_{k}(m), S_{k}(m+1)\right)=\operatorname{gcd}\left(S_{k}(m), m^{k}\right) \tag{7}
\end{equation*}
$$

giving a connection with (1). The function g_{k} heavily depends on the Bernoulli number B_{k}. One may speculate that this happens in a suitable form for all even k, which results in the following conjecture being true for $2 \leq k \leq 48$ and some higher indices k.
Conjecture 3. Let k, m be positive integers with even k. Then

$$
\min _{m \geq 2} g_{k}(m) \cdot \max _{m \geq 2} g_{k}(m)=\left|B_{k}\right|
$$

Proposition 2. Conjecture 3 implies Conjecture 1.
Proof. Let k, m be positive integers with even k. In view of Theorem 1, Conjecture 3 states in fact that

$$
\begin{equation*}
\max _{m \geq 2} g_{k}(m)=\left|N_{k}\right| . \tag{8}
\end{equation*}
$$

According to Remark 1, we have for $k=2,4,6,8$ that $\max _{m \geq 2} g_{k}(m)=1$. For those m, where $g_{k}(m)=1$, we obtain by (7) that

$$
\operatorname{gcd}\left(S_{k}(m), m^{k}\right)=m
$$

This implies that $m^{2} \nmid S_{k}(m)$ and consequently that there is no solution of (1) for these cases. For now on we can assume that $k \geq 10$. Combining (7) and (8), there exist some m such that

$$
\operatorname{gcd}\left(S_{k}(m), m^{k}\right)=m c_{m}
$$

with integers c_{m} depending on m where $1 \leq c_{m} \leq\left|N_{k}\right|$. A possible solution of (1) must trivially satisfy

$$
m^{k}=\operatorname{gcd}\left(S_{k}(m), m^{k}\right)
$$

We then obtain the equation

$$
m^{k}=m c_{m}
$$

Our goal is to show an estimate on an upper bound of m. Therefore we can assume that $c_{m}=\left|N_{k}\right|$ is maximal. Thus

$$
\begin{equation*}
m \leq \sqrt[k-1]{\left|N_{k}\right|} \tag{9}
\end{equation*}
$$

Using the relation of B_{k} to the Riemann zeta function by Euler's formula, cf. [3, p. 231], we have

$$
\left|B_{k}\right|=2 \zeta(k) \frac{k!}{(2 \pi)^{k}}
$$

Since $\zeta(s) \rightarrow 1$ monotonically as $s \rightarrow \infty$ and $\zeta(2)=\pi^{2} / 6$, we obtain

$$
\left|N_{k}\right|<\frac{\pi^{2}}{3} \frac{k!}{(2 \pi)^{k}} D_{k}
$$

Due to the fact that $D_{k} \mid 2\left(2^{k}-1\right)$, see [1], we have $D_{k}<2^{k+1}$. Furthermore, it is easy to see that $k!<k^{k-1}$ for $k \geq 4$. Putting all together, we derive that

$$
\left|N_{k}\right|<\frac{2 \pi}{3}\left(\frac{k}{\pi}\right)^{k-1}
$$

Using (9) we finally deduce that

$$
m \leq \sqrt[k-1]{\left|N_{k}\right|}<\frac{2}{\pi} k
$$

Hence $m<k$, which contradicts (2) requiring $k<m$. Consequently, there is no solution of (1) for $k \geq 10$.

To prove Theorem 1, we shall need some preparations. Recall Eq. (3). Since we need a refinement of this result, we give a revised reprint of the proof here. The following proposition plays a crucial role, which gives a statement about the common prime factors of numerators and denominators of Bernoulli numbers having indices close to each other.
Proposition 3 ([4, Prop. 8.4, p. 435]). Let $\mathcal{S}=\{2,4,6,8,10,14\}$. Let k, se even positive integers with $s \in \mathcal{S}$ and $k-s \geq 2$. Then

$$
C=\operatorname{gcd}\left(N_{k}, D_{k-s}\right) \quad \text { implies } \quad C \mid k .
$$

Moreover, if $C>1$ then $C=p_{1} \cdots p_{r}$ with some $r \geq 1$. The primes p_{1}, \ldots, p_{r} are pairwise different and $p_{\nu} \nmid D_{s}, p_{\nu} \nmid B_{k} / k$ for $\nu=1, \ldots, r$.

Proposition 4 ([4, Prop. 8.5, pp. 436-437]). Let m, k be positive integers with even k. For $r=1,2$ we have

$$
m^{r+1}\left|S_{k}(m) \quad \Longleftrightarrow \quad m^{r}\right| B_{k} .
$$

Proof. We can assume that $m>1$, since $m=1$ is trivial. The case $k=2$ follows by $B_{2}=\frac{1}{6}$ and that

$$
\begin{equation*}
m^{2} \nmid \frac{1}{6} m(m-1)(2 m-1)=S_{2}(m) \tag{10}
\end{equation*}
$$

for $m>1$. For now we assume that $k \geq 4$. From (5) we have

$$
\begin{equation*}
S_{k}(m)=B_{k} m+\binom{k}{2} B_{k-2} \frac{m^{3}}{3}+\sum_{\nu=3}^{k}\binom{k}{\nu} B_{k-\nu} \frac{m^{\nu+1}}{\nu+1} . \tag{11}
\end{equation*}
$$

By von Staudt-Clausen (4) and the cases $B_{0}=1$ and $B_{1}=-\frac{1}{2}$ the denominator of all nonzero Bernoulli numbers is squarefree. For each prime power factor $p^{s} \| m$ and ν where $B_{k-\nu} \neq 0(2 \leq \nu \leq k)$ we have the estimate

$$
\begin{equation*}
\operatorname{ord}_{p}\left(\binom{k}{\nu} B_{k-\nu} \frac{m^{\nu+1}}{\nu+1}\right) \geq s(\nu+1)-1-\operatorname{ord}_{p}(\nu+1) \geq \lambda s \tag{12}
\end{equation*}
$$

with the following cases:
(1) $\lambda=1$ for $\nu \geq 2, p \geq 2$;
(2) $\lambda=2$ for $\nu \geq 2, p \geq 5$;
(3) $\lambda=3$ for $\nu \geq 4, p \geq 5$.

The critical cases to consider are $p=2,3,5$ and $s=1$, which follow by a simple counting argument. Now, we are ready to evaluate (11) $\left(\bmod m^{r}\right)$ for $r=1,2$.

Case $r=1$: By (12) (case $\nu \geq 2, p \geq 2$) we obtain

$$
\begin{equation*}
S_{k}(m) \equiv B_{k} m \quad(\bmod m) \tag{13}
\end{equation*}
$$

Assume that $\operatorname{gcd}\left(m, D_{k}\right)>1$. Then

$$
S_{k}(m) \equiv B_{k} m \equiv \frac{N_{k}}{D_{k}} m \not \equiv 0 \quad(\bmod m)
$$

Therefore, $\operatorname{gcd}\left(m, D_{k}\right)=1$ must hold, which implies that $2 \nmid m, 3 \nmid m$, and $p \geq 5$. Hence, by (12) (case $\nu \geq 2, p \geq 5$), we can write

$$
\begin{equation*}
S_{k}(m) \equiv B_{k} m \quad\left(\bmod m^{2}\right) \tag{14}
\end{equation*}
$$

This yields

$$
\begin{equation*}
m^{2}\left|S_{k}(m) \Longleftrightarrow m\right| B_{k} \tag{15}
\end{equation*}
$$

Case $r=2$: We have $m \mid B_{k}$ and $(m, 6)=1$, because either $m^{2} \mid B_{k}$ or $m^{3} \mid S_{k}(m)$ is assumed. The latter case implies $m^{2} \mid S_{k}(m)$ and therefore $m \mid B_{k}$ by (15). Since $\left|N_{4}\right|=1$, we can assume that $k \geq 6$. We then have $B_{k-3}=0$ and we can apply (12) (case $\nu \geq 4, p \geq 5$) to obtain

$$
\begin{equation*}
S_{k}(m) \equiv B_{k} m+\frac{k(k-1) N_{k-2}}{6 D_{k-2}} m^{3} \quad\left(\bmod m^{3}\right) \tag{16}
\end{equation*}
$$

Our goal is to show that the second term of the right side of (16) vanishes, but the denominator D_{k-2} could possibly remove prime factors from m. Proposition 3 asserts that $\operatorname{gcd}\left(N_{k}, D_{k-2}\right) \mid k$. We also have $\operatorname{gcd}\left(m, D_{k-2}\right) \mid k$ since $m \mid B_{k}$. This means that the factor k contains those primes which D_{k-2} possibly removes from m. Therefore the second term of (16) vanishes $\left(\bmod m^{3}\right)$. The rest follows by $S_{k}(m) \equiv B_{k} m \equiv 0\left(\bmod m^{3}\right)$.
Corollary 1. Let k, m be positive integers with even k. Then

$$
\begin{aligned}
& S_{k}(m) \equiv B_{k} m \quad(\bmod m), \quad \text { if } k \geq 2, \\
& S_{k}(m) \equiv B_{k} m \quad\left(\bmod m^{2}\right), \quad \text { if } k \geq 4 \text { and } \operatorname{gcd}\left(D_{k}, m\right)=1, \\
& S_{k}(m) \equiv B_{k} m \quad\left(\bmod m^{3}\right), \quad \text { if } k \geq 6 \text { and } m \mid B_{k} .
\end{aligned}
$$

More precisely for $p^{r} \| m$:

$$
\begin{array}{ll}
S_{k}(m) \equiv B_{k} m & \left(\bmod p^{2 r}\right), \\
S_{k}(m) \equiv B_{k} m & \left(\bmod p^{3 r}\right), \\
\text { if } k \geq 6 \text { and } p \nmid D_{k}, \\
\text { and } p \mid B_{k} .
\end{array}
$$

Proof. This follows by exploiting the proof of Proposition 4 and considering (13) (also valid for $k=2$ by (10)), (14), and (16) for the several cases.

Proposition 5. Let k, m be positive integers with even k. Then

$$
\operatorname{gcd}\left(S_{k}(m), m\right)=\frac{m}{\operatorname{gcd}\left(D_{k}, m\right)}
$$

Proof. From Corollary 1 we have

$$
S_{k}(m) \equiv \frac{N_{k}}{D_{k}} m \quad(\bmod m)
$$

For each prime power $p^{e_{p}} \| m$, we then infer that $p^{e_{p}} \mid S_{k}(m)$, if $p \nmid D_{k}$; otherwise $p^{e_{p}-1} \mid S_{k}(m)$, since D_{k} is square free due to (4).
Corollary 2. Let k, m be positive integers with even k. Then

$$
\min _{m \geq 2} g_{k}(m)=\frac{1}{D_{k}}
$$

Proof. Using Proposition 5 and (7), we deduce the relation

$$
g_{k}(m)=\frac{\operatorname{gcd}\left(S_{k}(m), m^{k}\right)}{m} \geq \frac{\operatorname{gcd}\left(S_{k}(m), m\right)}{m}=\frac{1}{\operatorname{gcd}\left(D_{k}, m\right)}
$$

If $m=D_{k}$, then we even have

$$
\operatorname{gcd}\left(S_{k}(m), m^{k}\right)=\operatorname{gcd}\left(S_{k}(m), m\right)=1
$$

giving the minimum with $g_{k}(m)=1 / D_{k}$.
Proposition 6. Let k, m be positive integers with even k. Then

$$
\frac{\operatorname{gcd}\left(S_{k}(m), m^{2}\right)}{m}=\frac{\operatorname{gcd}\left(N_{k}, m\right)}{\operatorname{gcd}\left(D_{k}, m\right)}
$$

Proof. The case $k=2$ follows by (10), $B_{2}=\frac{1}{6}$, and $\operatorname{gcd}((m-1)(2 m-1), m)=1$. Now let $k \geq 4$ and assume that $\operatorname{gcd}\left(D_{k}, m\right)=1$. Applying Corollary 1 for this case we then have

$$
\begin{equation*}
S_{k}(m) \equiv \frac{N_{k}}{D_{k}} m \quad\left(\bmod m^{2}\right) \tag{17}
\end{equation*}
$$

Thus we deduce that

$$
\operatorname{gcd}\left(S_{k}(m), m^{2}\right)=m \operatorname{gcd}\left(N_{k}, m\right)
$$

Now let m be arbitrary. Using Proposition 5 we have the relation

$$
\operatorname{gcd}\left(S_{k}(m), m^{2}\right)=c_{k, m} \operatorname{gcd}\left(S_{k}(m), m\right)=c_{k, m} \frac{m}{\operatorname{gcd}\left(D_{k}, m\right)}
$$

with some integer $c_{k, m} \geq 1$. Since $\operatorname{gcd}\left(N_{k}, D_{k}\right)=1$, those factors of $\operatorname{gcd}\left(N_{k}, m\right)$ can only give a contribution to the factor $c_{k, m}$; while other factors of m are reduced by $\operatorname{gcd}\left(D_{k}, m\right)$. To be more precise, we consider two cases of primes p where $p^{r} \| m$:

First, $p \mid D_{k}$. Assume to the contrary that

$$
\operatorname{ord}_{p} \operatorname{gcd}\left(S_{k}(m), m^{2}\right)>\operatorname{ord}_{p} \operatorname{gcd}\left(S_{k}(m), m\right)=r-1,
$$

where the right side follows by Proposition 5. Thus $\operatorname{ord}_{p} \operatorname{gcd}\left(S_{k}(m), m^{2}\right) \geq r$. But this implies that we also have $\operatorname{ord}_{p} \operatorname{gcd}\left(S_{k}(m), m\right)=r$. Contradiction.

Second, $p \nmid D_{k}$. By Corollary 1 Eq. (17) remains valid $\left(\bmod p^{2 r}\right)$. Hence $c_{k, m}=$ $\operatorname{gcd}\left(N_{k}, m\right)$, which yields the result.
Corollary 3. Let m be a positive integer. For $k=2,4,6,8$ we have

$$
\max _{m \geq 2} g_{k}(m)=1
$$

Proof. For these k we know that $\left|N_{k}\right|=1$. By Proposition 6 we then deduce that

$$
\operatorname{gcd}\left(S_{k}(m), m^{2}\right)=\frac{m}{\operatorname{gcd}\left(D_{k}, m\right)}
$$

This implies for $\operatorname{gcd}\left(D_{k}, m\right)=1$ that

$$
m=\operatorname{gcd}\left(S_{k}(m), m^{2}\right)=\operatorname{gcd}\left(S_{k}(m), m^{k}\right)
$$

By (7) this shows the result.
Proposition 7. Let k, m be positive integers with even k. Then

$$
\frac{\operatorname{gcd}\left(S_{k}(m), m^{3}\right)}{m}=\frac{\operatorname{gcd}\left(N_{k}, m^{2}\right)}{\operatorname{gcd}\left(D_{k}, m\right)}
$$

Proof. For the cases $k=2,4,6,8$ this is compatible with Corollary 3 , since $\left|N_{k}\right|=1$. Now let $k \geq 10$ and assume that $m \mid N_{k}$. Using Corollary 1 we have for this case that

$$
\begin{equation*}
S_{k}(m) \equiv \frac{N_{k}}{D_{k}} m \quad\left(\bmod m^{3}\right) \tag{18}
\end{equation*}
$$

This shows that

$$
\operatorname{gcd}\left(S_{k}(m), m^{3}\right)=m \operatorname{gcd}\left(N_{k}, m^{2}\right)
$$

Now let m be arbitrary. Using Proposition 6 we have the relation

$$
\operatorname{gcd}\left(S_{k}(m), m^{3}\right)=d_{k, m} \operatorname{gcd}\left(S_{k}(m), m^{2}\right)=d_{k, m} m \frac{\operatorname{gcd}\left(N_{k}, m\right)}{\operatorname{gcd}\left(D_{k}, m\right)}
$$

with some integer $d_{k, m} \geq 1$. Again, we distinguish between two cases of primes p where $p^{r} \| m$. First case $p \nmid N_{k}$: We have

$$
\operatorname{ord}_{p} \operatorname{gcd}\left(S_{k}(m), m^{2}\right) \leq r,
$$

which also implies that

$$
\operatorname{ord}_{p} \operatorname{gcd}\left(S_{k}(m), m^{3}\right) \leq r .
$$

Otherwise we would get a contradiction. Thus this prime p gives no contribution to $d_{k, m}$. Second case $p \mid N_{k}$: For this prime $p(17)$ and (18) remain valid $\left(\bmod p^{2 r}\right)$ and $\left(\bmod p^{3 r}\right)$, respectively, using Corollary 1. So a power of p gives a contribution to $d_{k, m}$. Counting the prime powers, which fulfill both (17) and (18), we then deduce that

$$
d_{k, m}=\frac{\operatorname{gcd}\left(N_{k}, m^{2}\right)}{\operatorname{gcd}\left(N_{k}, m\right)} .
$$

Corollary 4. Let k, m be positive integers with even k. Then

$$
\operatorname{gcd}\left(S_{k}(m), m^{k}\right)=e_{k, m} \operatorname{gcd}\left(S_{k}(m), m^{3}\right)
$$

where $e_{k, m}$ is a positive integer with the property that $p \mid e_{k, m}$ implies that $p \mid N_{k}$.
Proof. As in the proof of Proposition 7, we can use the same arguments. A prime p with $p \nmid N_{k}$ cannot give a contribution to $e_{k, m}$ anymore.
Proof of Theorem 1. Let k, m be positive integers with even k. The first part, the minimum of g_{k} and that $g_{k}\left(D_{k}\right)=1 / D_{k}$, is already shown by Corollary 2 . The cases $k=2,4,6,8$ are handled by Corollary 3. Now we show for $k \geq 10$ that

$$
\begin{equation*}
\max _{m \geq 2} g_{k}(m) \geq\left|N_{k}\right| \tag{19}
\end{equation*}
$$

We set $m=\left|N_{k}\right|$ and can apply Corollary 1 to obtain

$$
S_{k}(m) \equiv B_{k} m \equiv \frac{ \pm 1}{D_{k}} m^{2} \quad\left(\bmod m^{3}\right)
$$

Thus we derive that

$$
m^{2}=\operatorname{gcd}\left(S_{k}(m), m^{3}\right)=\operatorname{gcd}\left(S_{k}(m), m^{k}\right)
$$

This finally shows with (7) that

$$
g_{k}(m)=\left|N_{k}\right|,
$$

also giving the estimate in (19). As a consequence of Proposition 7 and Corollary 4, it follows for arbitrary m that $g_{k}(m)=1$ if and only if $\operatorname{gcd}\left(D_{k} N_{k}, m\right)=1$.

It remains the case where N_{k} is squarefree. Then we have $\operatorname{gcd}\left(N_{k}, m^{2}\right)=\operatorname{gcd}\left(N_{k}, m\right)$ for arbitrary m. Combining Propositions 6 and 7, we deduce that

$$
m \frac{\operatorname{gcd}\left(N_{k}, m\right)}{\operatorname{gcd}\left(D_{k}, m\right)}=\operatorname{gcd}\left(S_{k}(m), m^{2}\right)=\operatorname{gcd}\left(S_{k}(m), m^{3}\right)=\operatorname{gcd}\left(S_{k}(m), m^{k}\right)
$$

Hence

$$
\max _{m \geq 2} g_{k}(m)=\left|N_{k}\right|
$$

Proposition 3 has played a key role to obtain a formula for $\operatorname{gcd}\left(S_{k}(m), m^{3}\right) / m$. The next milestone would be to show a formula for

$$
\frac{\operatorname{gcd}\left(S_{k}(m), m^{4}\right)}{m}
$$

which seems to need some new ideas.

Acknowledgement

The author wishes to thank both the Max Planck Institute for Mathematics at Bonn for an invitation for a talk in February 2010 and especially Pieter Moree for the organization and discussions on the Erdős-Moser equation.

References

1. S. Chowla and P. Hartung, An "exact" formula for the m-th Bernoulli number, Acta Arith. 22 (1972), 113-115.
2. Y. Gallot, P. Moree, and W. Zudilin, The Erdős-Moser equation $1^{k}+2^{k}+\cdots+(m-1)^{k}=m^{k}$ revisited using continued fractions, to appear in Math. Comp., arXiv:0907.1356, 2009.
3. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, GTM 84, SpringerVerlag, 2nd edition, 1990.
4. B. C. Kellner, On irregular prime power divisors of the Bernoulli numbers, Math. Comp. 76 (2007), 405-441.
5. P. Moree, H. J. J. te Riele, and J. Urbanowicz, Divisibility Properties of Integers x and k Satisfying $1^{k}+2^{k}+\cdots+(x-1)^{k}=x^{k}$, CWI Reports and Notes, Numerical Mathematics, 1992.
6. L. Moser, On the Diophantine equation $1^{n}+2^{n}+3^{n}+\cdots+(m-1)^{n}=m^{n}$, Scripta Math. 19 (1953), 84-88.
7. N. J. A. Sloane, Online Encyclopedia of Integer Sequences (OEIS), electronically published at: http://www.research.att.com/~njas/sequences.

Mathematisches Institut, Universität Göttingen, Bunsenstr. 3-5, 37073 Göttingen, GerMANY

E-mail address: bk@bernoulli.org

[^0]: 2000 Mathematics Subject Classification. Primary 11B83; Secondary 11A05, 11B68.
 Key words and phrases. Erdős-Moser equation, consecutive values of polynomials.

