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ON STRONGER CONJECTURES THAT IMPLY

THE ERDŐS-MOSER CONJECTURE

BERND C. KELLNER

Abstract. The Erdős-Moser conjecture states that the Diophantine equation Sk(m) =
mk, where Sk(m) = 1k+2k + · · ·+(m− 1)k, has no solution for positive integers k and m

with k ≥ 2. We show that stronger conjectures about consecutive values of the function
Sk, that seem to be more naturally, imply the Erdős-Moser conjecture.

1. Introduction

Let k and m be positive integers throughout this paper. Define

Sk(m) = 1k + 2k + · · ·+ (m− 1)k.

Conjecture 1 (Erdős-Moser). The Diophantine equation

Sk(m) = mk (1)

has only the trivial solution (k,m) = (1, 3) for positive integers k, m.

In 1953 Moser [6] showed that if a solution of (1) exists for k ≥ 2, then k must be even
and m > 1010

6

. Recently, this bound has been greatly increased to m > 1010
9

by Gallot,
Moree, and Zudilin [2]. So it is widely believed that non-trivial solutions do not exist.
Comparing Sk with the integral

∫

xkdx, see [2], one gets an easy estimate that

k < m < 2k. (2)

A general result of the author [4, Prop. 8.5, p. 436] states that

mr+1 | Sk(m) ⇐⇒ mr | Bk (3)

for r = 1, 2 and even k, where Bk denotes the k-th Bernoulli number. Thus a non-trivial
solution (k,m) of (1) has the property that m2 must divide the numerator of Bk for k ≥ 4;
this result concerning (1) was also shown in [5] in a different form.

Because the Erdős-Moser equation is very special, one can consider properties of consec-
utive values of the function Sk in general. This leads to two stronger conjectures, described
in the next sections, that imply the conjecture of Erdős-Moser.
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2. Preliminaries

We use the following notation. We write pr || m when pr | m but pr+1 ∤ m, i.e., r = ordp m
where p always denotes a prime. Next we recall some properties of the Bernoulli numbers
and the function Sk.

The Bernoulli numbers Bn are defined by

z

ez − 1
=

∞
∑

n=0

Bn

zn

n!
, |z| < 2π.

These numbers are rational where Bn = 0 for odd n > 1 and (−1)
n
2
+1Bn > 0 for even

n > 0. A table of the Bernoulli numbers up to index 20 are given in [4, p. 437]. The
denominator of Bn for even n is described by the von Staudt-Clausen theorem, see [3,
p. 233], that

denom(Bn) =
∏

p−1|n

p. (4)

The function Sk is closely related to the Bernoulli numbers and is given by the well-known
formula, cf. [3, p. 234]:

Sk(m) =

k
∑

ν=0

(

k

ν

)

Bk−ν

mν+1

ν + 1
. (5)

3. Stronger conjecture — Part I

The strongly monotonically increasing function Sk is a polynomial of degree k + 1 as a
result of (5). One may not expect that consecutive values of Sk have highly common prime
factors, such that Sk(m+ 1)/Sk(m) is an integer for sufficiently large m.

Conjecture 2. Let k,m be positive integers with m ≥ 3. Then

Sk(m+ 1)

Sk(m)
∈ N ⇐⇒ (k,m) ∈ {(1, 3), (3, 3)}.

Note that we have to require m ≥ 3, since Sk(1) = 0 and Sk(2) = 1 for all k ≥ 1. Due to
the well-known identity S1(m)2 = S3(m), a solution for k = 1 implies a solution for k = 3.
Hereby we have the only known solutions

1 + 2 + 3

1 + 2
= 2 and

13 + 23 + 33

13 + 23
= 4 (6)

based on some computer search. Since Sk(m+ 1)/Sk(m) → 1 as m → ∞, it is clear that
we can only have a finite number of solutions for a fixed k.

Proposition 1. Conjecture 2 implies Conjecture 1 as a special case.

Proof. The equation Sk(m) = mk can be rewritten as 2Sk(m) = Sk(m + 1) after adding
Sk(m) on both sides. Conjecture 2 states that Sk(m + 1)/Sk(m) is not a positive integer
except for the cases (k,m) = (1, 3) and (k,m) = (3, 3) as given in (6). This implies
Conjecture 1, which predicts Sk(m+ 1)/Sk(m) 6= 2 for k ≥ 2. �
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4. Stronger conjecture — Part II

The connection between the function Sk and the Bernoulli numbers leads to the following
theorem, which we will prove later. In the following we always write Bk = Nk/Dk in lowest
terms with Dk > 0 for even k.

Theorem 1. Let k,m be positive integers with even k. Define

gk(m) =
gcd(Sk(m), Sk(m+ 1))

m
.

Then

min
m≥ 2

gk(m) =
1

Dk

and max
m≥ 2

gk(m) ≥ |Nk|.

Generally

gk(m) = 1 ⇐⇒ gcd(DkNk, m) = 1

and special values are given by

gk(Dk) =
1

Dk

and gk(|Nk|) = |Nk|.

Moreover, if Nk is square free, then

max
m≥ 2

gk(m) = |Nk|.

Remark 1. It is well-known that |Nk| = 1 exactly for k ∈ {2, 4, 6, 8}. Known indices
k, where |Nk| is prime, are recorded as sequence A092132 in [7]: 10, 12, 14, 16, 18, 36, 42.
Sequence A090997 in [7] gives the indices k, where Nk is not square free: 50, 98, 150, 196,
228, . . . . By this, all Nk are square free for 2 ≤ k ≤ 48.

Since Sk(m+ 1) = Sk(m) +mk, we have

gcd(Sk(m), Sk(m+ 1)) = gcd(Sk(m), mk), (7)

giving a connection with (1). The function gk heavily depends on the Bernoulli number
Bk. One may speculate that this happens in a suitable form for all even k, which results
in the following conjecture being true for 2 ≤ k ≤ 48 and some higher indices k.

Conjecture 3. Let k,m be positive integers with even k. Then

min
m≥ 2

gk(m) · max
m≥ 2

gk(m) = |Bk|.

Proposition 2. Conjecture 3 implies Conjecture 1.

Proof. Let k,m be positive integers with even k. In view of Theorem 1, Conjecture 3 states
in fact that

max
m≥ 2

gk(m) = |Nk|. (8)

According to Remark 1, we have for k = 2, 4, 6, 8 that maxm≥ 2 gk(m) = 1. For those m,
where gk(m) = 1, we obtain by (7) that

gcd(Sk(m), mk) = m.
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This implies that m2 ∤ Sk(m) and consequently that there is no solution of (1) for these
cases. For now on we can assume that k ≥ 10. Combining (7) and (8), there exist some m
such that

gcd(Sk(m), mk) = mcm

with integers cm depending on m where 1 ≤ cm ≤ |Nk|. A possible solution of (1) must
trivially satisfy

mk = gcd(Sk(m), mk).

We then obtain the equation
mk = mcm.

Our goal is to show an estimate on an upper bound of m. Therefore we can assume that
cm = |Nk| is maximal. Thus

m ≤ k−1

√

|Nk|. (9)

Using the relation of Bk to the Riemann zeta function by Euler’s formula, cf. [3, p. 231],
we have

|Bk| = 2ζ(k)
k!

(2π)k
.

Since ζ(s) → 1 monotonically as s → ∞ and ζ(2) = π2/6, we obtain

|Nk| <
π2

3

k!

(2π)k
Dk.

Due to the fact that Dk | 2(2k − 1), see [1], we have Dk < 2k+1. Furthermore, it is easy to
see that k! < kk−1 for k ≥ 4. Putting all together, we derive that

|Nk| <
2π

3

(

k

π

)k−1

.

Using (9) we finally deduce that

m ≤ k−1

√

|Nk| <
2

π
k.

Hence m < k, which contradicts (2) requiring k < m. Consequently, there is no solution
of (1) for k ≥ 10. �

To prove Theorem 1, we shall need some preparations. Recall Eq. (3). Since we need
a refinement of this result, we give a revised reprint of the proof here. The following
proposition plays a crucial role, which gives a statement about the common prime factors
of numerators and denominators of Bernoulli numbers having indices close to each other.

Proposition 3 ([4, Prop. 8.4, p. 435]). Let S = {2, 4, 6, 8, 10, 14}. Let k, s be even positive

integers with s ∈ S and k − s ≥ 2. Then

C = gcd(Nk, Dk−s) implies C | k.

Moreover, if C > 1 then C = p1 · · ·pr with some r ≥ 1. The primes p1, . . . , pr are pairwise

different and pν ∤ Ds, pν ∤ Bk/k for ν = 1, . . . , r.
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Proposition 4 ([4, Prop. 8.5, pp. 436–437]). Let m, k be positive integers with even k. For
r = 1, 2 we have

mr+1 | Sk(m) ⇐⇒ mr | Bk.

Proof. We can assume that m > 1, since m = 1 is trivial. The case k = 2 follows by
B2 =

1

6
and that

m2 ∤
1

6
m(m− 1)(2m− 1) = S2(m) (10)

for m > 1. For now we assume that k ≥ 4. From (5) we have

Sk(m) = Bk m+

(

k

2

)

Bk−2

m3

3
+

k
∑

ν=3

(

k

ν

)

Bk−ν

mν+1

ν + 1
. (11)

By von Staudt-Clausen (4) and the cases B0 = 1 and B1 = −1

2
the denominator of all

nonzero Bernoulli numbers is squarefree. For each prime power factor ps || m and ν where
Bk−ν 6= 0 (2 ≤ ν ≤ k) we have the estimate

ordp

((

k

ν

)

Bk−ν

mν+1

ν + 1

)

≥ s(ν + 1)− 1− ordp(ν + 1) ≥ λ s (12)

with the following cases:

(1) λ = 1 for ν ≥ 2, p ≥ 2;
(2) λ = 2 for ν ≥ 2, p ≥ 5;
(3) λ = 3 for ν ≥ 4, p ≥ 5.

The critical cases to consider are p = 2, 3, 5 and s = 1, which follow by a simple counting
argument. Now, we are ready to evaluate (11) (mod mr) for r = 1, 2.

Case r = 1: By (12) (case ν ≥ 2, p ≥ 2) we obtain

Sk(m) ≡ Bk m (mod m). (13)

Assume that gcd(m,Dk) > 1. Then

Sk(m) ≡ Bk m ≡
Nk

Dk

m 6≡ 0 (mod m).

Therefore, gcd(m,Dk) = 1 must hold, which implies that 2 ∤ m, 3 ∤ m, and p ≥ 5. Hence,
by (12) (case ν ≥ 2, p ≥ 5), we can write

Sk(m) ≡ Bk m (mod m2). (14)

This yields
m2 | Sk(m) ⇐⇒ m | Bk. (15)

Case r = 2: We have m | Bk and (m, 6) = 1, because either m2 | Bk or m3 | Sk(m)
is assumed. The latter case implies m2 | Sk(m) and therefore m | Bk by (15). Since
|N4| = 1, we can assume that k ≥ 6. We then have Bk−3 = 0 and we can apply (12) (case
ν ≥ 4, p ≥ 5) to obtain

Sk(m) ≡ Bk m+
k(k − 1)Nk−2

6Dk−2

m3 (mod m3). (16)
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Our goal is to show that the second term of the right side of (16) vanishes, but the
denominator Dk−2 could possibly remove prime factors from m. Proposition 3 asserts that
gcd(Nk, Dk−2) | k. We also have gcd(m,Dk−2) | k since m | Bk. This means that the factor
k contains those primes which Dk−2 possibly removes from m. Therefore the second term
of (16) vanishes (mod m3). The rest follows by Sk(m) ≡ Bk m ≡ 0 (mod m3). �

Corollary 1. Let k,m be positive integers with even k. Then

Sk(m) ≡ Bk m (mod m), if k ≥ 2,

Sk(m) ≡ Bk m (mod m2), if k ≥ 4 and gcd(Dk, m) = 1,

Sk(m) ≡ Bk m (mod m3), if k ≥ 6 and m | Bk.

More precisely for pr || m:

Sk(m) ≡ Bk m (mod p2r), if k ≥ 4 and p ∤ Dk,

Sk(m) ≡ Bk m (mod p3r), if k ≥ 6 and p | Bk.

Proof. This follows by exploiting the proof of Proposition 4 and considering (13) (also valid
for k = 2 by (10)), (14), and (16) for the several cases. �

Proposition 5. Let k,m be positive integers with even k. Then

gcd(Sk(m), m) =
m

gcd(Dk, m)
.

Proof. From Corollary 1 we have

Sk(m) ≡
Nk

Dk

m (mod m).

For each prime power pep || m, we then infer that pep | Sk(m), if p ∤ Dk; otherwise
pep−1 | Sk(m), since Dk is square free due to (4). �

Corollary 2. Let k,m be positive integers with even k. Then

min
m≥ 2

gk(m) =
1

Dk

.

Proof. Using Proposition 5 and (7), we deduce the relation

gk(m) =
gcd(Sk(m), mk)

m
≥

gcd(Sk(m), m)

m
=

1

gcd(Dk, m)
.

If m = Dk, then we even have

gcd(Sk(m), mk) = gcd(Sk(m), m) = 1,

giving the minimum with gk(m) = 1/Dk. �

Proposition 6. Let k,m be positive integers with even k. Then

gcd(Sk(m), m2)

m
=

gcd(Nk, m)

gcd(Dk, m)
.
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Proof. The case k = 2 follows by (10), B2 =
1

6
, and gcd((m− 1)(2m− 1), m) = 1. Now let

k ≥ 4 and assume that gcd(Dk, m) = 1. Applying Corollary 1 for this case we then have

Sk(m) ≡
Nk

Dk

m (mod m2). (17)

Thus we deduce that
gcd(Sk(m), m2) = m gcd(Nk, m).

Now let m be arbitrary. Using Proposition 5 we have the relation

gcd(Sk(m), m2) = ck,m gcd(Sk(m), m) = ck,m
m

gcd(Dk, m)

with some integer ck,m ≥ 1. Since gcd(Nk, Dk) = 1, those factors of gcd(Nk, m) can only
give a contribution to the factor ck,m; while other factors of m are reduced by gcd(Dk, m).
To be more precise, we consider two cases of primes p where pr || m:

First, p | Dk. Assume to the contrary that

ordp gcd(Sk(m), m2) > ordp gcd(Sk(m), m) = r − 1,

where the right side follows by Proposition 5. Thus ordp gcd(Sk(m), m2) ≥ r. But this
implies that we also have ordp gcd(Sk(m), m) = r. Contradiction.

Second, p ∤ Dk. By Corollary 1 Eq. (17) remains valid (mod p2r). Hence ck,m =
gcd(Nk, m), which yields the result. �

Corollary 3. Let m be a positive integer. For k = 2, 4, 6, 8 we have

max
m≥ 2

gk(m) = 1.

Proof. For these k we know that |Nk| = 1. By Proposition 6 we then deduce that

gcd(Sk(m), m2) =
m

gcd(Dk, m)
.

This implies for gcd(Dk, m) = 1 that

m = gcd(Sk(m), m2) = gcd(Sk(m), mk).

By (7) this shows the result. �

Proposition 7. Let k,m be positive integers with even k. Then

gcd(Sk(m), m3)

m
=

gcd(Nk, m
2)

gcd(Dk, m)
.

Proof. For the cases k = 2, 4, 6, 8 this is compatible with Corollary 3, since |Nk| = 1. Now
let k ≥ 10 and assume that m | Nk. Using Corollary 1 we have for this case that

Sk(m) ≡
Nk

Dk

m (mod m3). (18)

This shows that
gcd(Sk(m), m3) = m gcd(Nk, m

2).
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Now let m be arbitrary. Using Proposition 6 we have the relation

gcd(Sk(m), m3) = dk,m gcd(Sk(m), m2) = dk,mm
gcd(Nk, m)

gcd(Dk, m)

with some integer dk,m ≥ 1. Again, we distinguish between two cases of primes p where
pr || m. First case p ∤ Nk: We have

ordp gcd(Sk(m), m2) ≤ r,

which also implies that
ordp gcd(Sk(m), m3) ≤ r.

Otherwise we would get a contradiction. Thus this prime p gives no contribution to dk,m.
Second case p | Nk: For this prime p (17) and (18) remain valid (mod p2r) and (mod p3r),
respectively, using Corollary 1. So a power of p gives a contribution to dk,m. Counting the
prime powers, which fulfill both (17) and (18), we then deduce that

dk,m =
gcd(Nk, m

2)

gcd(Nk, m)
. �

Corollary 4. Let k,m be positive integers with even k. Then

gcd(Sk(m), mk) = ek,m gcd(Sk(m), m3),

where ek,m is a positive integer with the property that p | ek,m implies that p | Nk.

Proof. As in the proof of Proposition 7, we can use the same arguments. A prime p with
p ∤ Nk cannot give a contribution to ek,m anymore. �

Proof of Theorem 1. Let k,m be positive integers with even k. The first part, the minimum
of gk and that gk(Dk) = 1/Dk, is already shown by Corollary 2. The cases k = 2, 4, 6, 8
are handled by Corollary 3. Now we show for k ≥ 10 that

max
m≥ 2

gk(m) ≥ |Nk|. (19)

We set m = |Nk| and can apply Corollary 1 to obtain

Sk(m) ≡ Bk m ≡
±1

Dk

m2 (mod m3).

Thus we derive that

m2 = gcd(Sk(m), m3) = gcd(Sk(m), mk).

This finally shows with (7) that
gk(m) = |Nk|,

also giving the estimate in (19). As a consequence of Proposition 7 and Corollary 4, it
follows for arbitrary m that gk(m) = 1 if and only if gcd(DkNk, m) = 1.

It remains the case where Nk is squarefree. Then we have gcd(Nk, m
2) = gcd(Nk, m) for

arbitrary m. Combining Propositions 6 and 7, we deduce that

m
gcd(Nk, m)

gcd(Dk, m)
= gcd(Sk(m), m2) = gcd(Sk(m), m3) = gcd(Sk(m), mk).
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Hence
max
m≥ 2

gk(m) = |Nk|. �

Proposition 3 has played a key role to obtain a formula for gcd(Sk(m), m3)/m. The next
milestone would be to show a formula for

gcd(Sk(m), m4)

m
,

which seems to need some new ideas.
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