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Dickman polylogarithms and their constants
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Abstract

The Dickman function F (α) gives the asymptotic probability that a large integer N has
no prime divisor exceeding Nα. It is given by a finite sum of generalized polylogarithms
defined by the exquisite recursion Lk(α) = −

∫ 1/k
α dxLk−1(x/(1 − x))/x with L0(α) = 1.

The behaviour of these Dickman polylogarithms as α → 0 defines an intriguing series of
constants, Ck. I conjecture that exp(γz)/Γ(1−z) is the generating function for

∑
k≥0Ckz

k.
I obtain high-precision evaluations of F (1/k), for integers k < 11, and compare the
Dickman problem with problems in condensed matter physics and quantum field theory.

1 Introduction

The fraction of positive integers less than N with no prime divisor greater than Nα tends
to a finite limit F (α) as N → ∞. Clearly F (α) = 1 for α ≥ 1. For 0 < α < 1, the
Dickman [21] function F (α) satisfies the remarkable differential equation [18, 35, 16, 26]

F ′(α) =
1

α
F

(
α

1− α

)
(1)

and may be computed as a finite sum of terms

F (α) =

K(α)∑

k=0

Lk(α) (2)

where L0(α) = 1, K(α) is the largest integer such that αK(α) < 1, and the recursion

Lk(t) = −

∫ 1

k

t
Lk−1

(
x

1− x

)
dx

x
(3)

defines the Dickman polylogarithm of weight k > 0 as an iterated integral. I shall prove
two theorems that allow me to obtain at least 100 digits of Lk(t) for all weights k < 10
and hence shall conjecture the generating function for the Dickman constants

Ck = lim
t→0


Lk(t)−

k∑

j=1

Ck−j log
j(t)

j!


 (4)

where C0 = 1 and Ck is determined by the boundary condition Lk(
1
k ) = 0 for k > 0.
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2 Dickman trilogs from standard trilogs

Since L1(t) = log(t), we have C1 = 0 and F (1/2) = 1 − log(2). Moreover, we easily
obtain [17]

L2(t) = −

∫ 1

2

t
log

(
x

1− x

)
dx

x
= Li2(t) +

1

2
log2(t)−

π2

12
(5)

where Lik(t) =
∑

n>0 t
n/nk is the standard polylogarithm of weight k and C2 = −π2

12
ensures that L2(

1
2 ) = 0. Thus

F (1/3) = 1− log(3) +
∞∑

n=1

1

n23n
+

1

2
log2(3)−

π2

12
(6)

≈ 0.048608388291131566907183039343407421354329580478141 (7)

may be computed with great facility.

After considerable effort, I shall prove in Section 5 that

L3(t) = Li3(2t− 1)− Li3(1− 2t)− Li3(t)− Li3(2− 1/t)

+ log

(
t

1− 2t

)
L2(t) +

π2

6
log(t)−

1

6
log3(t) +

17

12
ζ(3) (8)

and hence obtain the Dickman constant

C3 = lim
t→0

(
L3(t) +

π2

12
log(t)−

1

6
log3(t)

)
= −

1

3
ζ(3). (9)

It follows from (2,5,8) that F (α) reduces to standard polylogs for α ≥ 1
4 . In particular,

the asymptotic probability that an integer N has no prime divisor greater than N
1

4 is

F (1/4) = 1− 2 log(2) + Li2

(
1

4

)
+ 2 log2(2)−

π2

12

− Li3

(
1

4

)
− Li2

(
1

4

)
log(2) −

2

3
log3(2) +

13

24
ζ(3) (10)

≈ 0.0049109256477608323527391509236151860324842974176929 (11)

with 800 good digits obtainable in less than 10 milliseconds.

3 Conjecture for the Dickman constants

I shall show, in later sections, how to evaluate F (α), for 1
4 > α ≥ 1

10 , and the intriguing
constants Ck, for 3 < k < 10, by one-dimensional numerical quadrature, at precisions well
in excess of 100 decimal digits. This is amply sufficient to obtain very reliable conjectures
for the analytic form of Ck. The complexity of these calculations is in marked contrast to
the final simplicity of the conjectured results. For example,

C4 =

∫ 1

2

0

(
log

(
x

1 + 2x

)
Li2(x) +

1

2
log2(x) Li1(−2x)

)
dx

x(1 + x)
+ 3Li4

(
1

2

)

−
3

8
Li4

(
1

4

)
−

3 log(2)

4
Li3

(
1

4

)
+

π2 − 9 log2(2)

12
Li2

(
1

4

)
+

21 log(2)ζ(3)

8

+
π2 log2(2)

24
−

π2 log(2) log(3)

6
+

log3(2) log(3)

2
−

5 log4(2)

8
(12)
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has a very simple conjectural evaluation as 1
10C

2
2 , which holds at 800-digit precision. The

complexity of evaluation (12) results from delicate integration by parts, so as to remove
divergent terms at the lower limit of integration as t → 0 in (3) and leave a finite integral
whose integrand contains no trilogs.

The constant C8 is of particular interest, since that is the first case where a multiple
zeta value (MZV) [40, 9, 10, 11, 6] might have occurred. However, after far more intricate
numerical quadratures, the LLL [29] algorithm implemented by the Pari-GP [19] procedure
lindep gave the conjectured evaluation

C8
?
=

ζ(5)ζ(3)

15
−

[ζ(3)π]2

216
−

67π8

29030400
(13)

which is free of the irreducible MZV of lowest weight, namely ζ(5, 3) =
∑

m>n>0 1/(m
5n3).

After noticing that −67 is the first non-unit integer in the sequence 1, −1, 1, −1, −67, −1,
given by Neil Sloane [37] in OEIS entry A008991, for numerators of coefficients in the
expansion of

√
sin(x)

x
= 1−

x2

12
+

x4

1440
−

x6

24192
−

67x8

29030400
−

x10

5677056
+ O

(
x12
)
, (14)

I was led to conjecture the wonderfully compact generating function

G(z) ≡
exp(γz)

Γ(1− z)
?
=

∞∑

k=0

Ckz
k (15)

where γ is Euler’s constant. The equivalent, yet more illuminating, formula

G(z) =

√
sin(πz)

πz
exp

(
−
∑

n>0

ζ(2n+ 1)

2n + 1
z2n+1

)
(16)

neatly accounts for Sloane’s tell-tale integer 67 in (13) and leads to the conjecture

C9
?
= −

ζ(9)

9
+

π2ζ(7)

84
−

π4ζ(5)

7200
+

π6ζ(3)

72576
−

[ζ(3)]3

162
(17)

which was tested by numerical quadrature of a product of Dickman tetralogarithms,
thanks to the following theorem.

4 Integration by parts

I define an auxiliary family of functions by the recursion

fn+1(t) = −

∫ 1

n+1

t

fn(x) dx

x(1− nx)
(18)

with f0(t) = 1. Then f1(t) = log(t) = L1(t) and the dilogarithm

f2(t) = −

∫ 1

2

t

log(x) dx

x(1− x)
= log

(
t

1− t

)
log(t)− L2(t) (19)
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is easily related to L2(t), using integration by parts.

Theorem 1: Let

Mk,n(t) ≡ −

∫ 1

k

t
Lk−n−1

(
x

1− (n+ 1)x

)
fn(x) dx

x(1− nx)
(20)

for any pair of integers k > n ≥ 0. Then this integral evaluates to

Mk,n(t) =
n∑

m=0

(−1)n−mLk−m

(
t

1−mt

)
fm(t). (21)

Proof: At n = 0, definition (20) gives Mk,0(t) = Lk(t), by virtue of recursion (3) for
Lk(t). Hence (21) holds at n = 0. For k > n+ 1 > 0, recursion (18) for fn+1(t) allows an
integration by parts in definition (20), to obtain

Mk,n(t) = Lk−n−1

(
t

1− (n+ 1)t

)
fn+1(t)−Mk,n+1(t) (22)

with a vanishing constant term, since the Lk−n−1 term vanishes at t = 1/k, where its
argument t/(1− (n+1)t) evaluates to 1/(k−n− 1). Hence I prove (21) by induction, for
all k > n ≥ 0.

Comment: This is a very powerful result, peculiar to the Dickman problem. For
example, it allows us to compute the Dickman heptalogarithm L7(t) very accurately, as
a single integral of a product of trilogarithms, instead of having to evaluate a four-fold
iterated integral of trilogs.

The key to the method is to observe that fn+1(t) = Mn+1,n(t). To prove this, I set
k = n+ 1 in the definition (20) of Mk,n(t) and then use recursion (18) for fn+1(t). I thus
prove the claimed result (19) for f2(t) by setting k = 2 and n = 1 in the evaluation (21)
of Theorem 1. Similarly, yet much more importantly, I obtain

f3(t) = log

(
t

1− 2t

)
f2(t)− L2

(
t

1− t

)
log(t) + L3(t) (23)

by setting k = 3 and n = 2, thereby avoiding duplication of the considerable effort
expended in obtaining the trilogarthmic result (8) for L3(t). Then, by setting k = 7 and
n = 3 in the theorem, I obtain the Dickman heptalogarithm

L7(t) = L6

(
t

1− t

)
log(t)− L5

(
t

1− 2t

)
f2(t) + L4

(
t

1− 3t

)
f3(t)

+

∫ 1

7

t
L3

(
x

1− 4x

)
f3(x) dx

x(1− 3x)
(24)

with a one-dimensional quadrature of products of known trilogs, in the final term. More-
over, there are two methods of evaluating L6(t) as an integral of products of known dilogs
and trilogs, using the pair (L2, f3) or the pair (L3, f2) in the final integrand. For L5(t)
there are three methods, using (L3, f1), (L2, f2) or (L1, f3). Of these, the (L2, f2) pair
is the most efficient. For L4(t) there are four methods, using (L3, f0), (L2, f1), (L1, f2)
or (L0, f3), where L0(t) = f0(t) = 1. Efficiency dictates that one should use either the
second or third pair; caution suggests that one should use all four methods to check the
accuracy of numerical quadrature.
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5 Dickman heptalogs from standard trilogs

To justify this methodology, I must first prove the claimed result (8), which reduces the
Dickman trilog L3 to standard trilogs and establishes my claim that C3 = −1

3ζ(3). I begin
by proving the rather simple identity

L3(t) = C3 + C2 log(t) +
1

6
log3(t)− Li3(t) + Li2(t) log(t)

+

∫ t

0

(
Li2

(
x

1− x

)
+

1

2
Li21(x)

)
dx

x
(25)

where C2 = −π2

12 was determined by (5) and C3 is an integration constant, to be deter-
mined later by the requirement that L3(

1
3) = 0. The proof of (25) is symptomatic: we

simply differentiate with respect to t and check that L′
3(t) = L2(t/(1 − t))/t, as required

by (3). Here, as ever, I use the relation Li′k(t) = Lik−1(t)/t, with Li1(t) = − log(1− t).

Next comes a harder part, namely to perform the integration in (25). Using integra-
tion by parts, I was able to reduce the problem to an instance of equation 8.111 in the
fascinating and enormously informative book by Leonard Lewin [30], long since sadly out
of print. Here, I am content to state and then to prove that

7

4
ζ(3) =

∫ t

0

(
Li2

(
x

1− x

)
+

1

2
Li21(x)

)
dx

x

+ Li3(1− 2t)− Li3(2t− 1) + Li3

(
−t

1− 2t

)

+

(
−Li2(t) +

1

6
Li21(2t)−

1

2
Li1(2t) Li1(1− t) +

3

2
Li2(1)

)
Li1(2t) . (26)

This is clearly true at t = 0, since Li3(1) = ζ(3) and Li3(−1) = −3
4ζ(3). Thus it is sufficient

to show that the right hand side of (26) has a vanishing derivative. This derivative is of
the form D1(t)/t+D2(t)/(1− 2t), where D1 and D2 are rather complicated combinations
of dilogs and products of logs. However, it is easy to show that D1(0) = D2(0) = 0.
Hence, to prove (26), it is sufficient to show that D′

1(t) = D′
2(t) = 0, which may be done

by elementary manipulation of logs.

Inverting the argument of Li3(−t/(1 − 2t)), in (26), and imposing the boundary con-
dition L3(

1
3 ) = 0, in (25), I arrive at the claimed result (8) for L3(t) and the claimed

evaluation 3C3 = −ζ(3), provided that

3

(
2Li3

(
1

3

)
− Li3(−3)

)
− log3(3) =

13

2
ζ(3). (27)

The final hurdle of proving (27) was the most challenging. Spencer Bloch and Herbert
Gangl told me that they expected the combination 2Li3(

1
3 )−Li3(−3) to evaluate to some

rational multiple of ζ(3), “modulo logarithms”. Yet it appears that such rational numbers
are as distressingly hard to derive from first principles as they are disturbingly easy to
guess from low precision numerical computation. My claim that C3 = −1

3ζ(3) requires
this rational multiple to be 13

6 , with a denominator divisible by 3. It was rather hard to
see how a simple functional equation for trilogs of a single variable might produce such
a denominator. Accordingly, I resorted to the Spence–Kummer functional relation for 9
trilogs of a pair of variables, given in equation 6.107 of Lewin’s book [30]. Setting x = −1

5



and y = 1
3 in that ornate identity and inverting the argument of Li3(−

1
3 ), I proved (27),

obtaining the combination 2Li3(1)− 6Li3(−1) on the right hand side. Thus the “morally
rational” coefficient of ζ(3) for the combination 2Li3(

1
3 ) − Li3(−3) is now proven to be

1
3(2−6(−3

4)) =
13
6 , thereby rescuing this particular problem from what Sasha Beilinson [4]

memorably referred to as “the burdock thicket of generalities”.

Having thus proven the trilogarthmic input for the method of Theorem 1, I am able
to compute F (α) for α ≥ 1

8 , with great ease, and have provided 800 good digits for

F (1/5) ≈ 3.5472470045603972983389451077062356095164361057262 × 10−4 (28)

F (1/6) ≈ 1.9649696353955289651754986129204522894596719809623 × 10−5 (29)

F (1/7) ≈ 8.7456699532939166955802835727699721733804719764580 × 10−7 (30)

F (1/8) ≈ 3.2320693042261037725997853617282161576194751628024 × 10−8 (31)

at the web page http://physics.open.ac.uk/˜dbroadhu/cert/smoctic.txt .

A significant amount of LLL analysis produced no simple integer relation of F (1/5)
to values of standards polylogs and their products. It might be interesting to investigate
this issue more intensively, using David Bailey’s parallelization [3] of Helaman Fergu-
son’s PSLQ [22] algorithm, since more than 800 digits of L4(1/5) may now be computed
from (3), using the explicit trilogarithms in (8). My own opinion, however, is that the
Dickman probability F (1/5) does not reduce to standard polylogs.

6 Dickman octalogs from Dickman tetralogs

It was rather frustrating that Theorem 1 did not provide a method for computing Dickman
octalogs as single integrals of products of standard polylogs, since it was precisely at weight
8 that I wished to have high-quality numerical data with which to determine whether the
first MZV, namely ζ(5, 3), might show up in C8. It was moral support fromMike Oakes [34]
that determined me to push the investigation above weight 7.

The barrier that must now be surmounted stems from the fact that

M4(y) ≡

∫ y

0

(
log

(
x

1 + 2x

)
Li2(x) +

1

2
log2(x) Li1(−2x)

)
dx

x(1 + x)
(32)

appears in the Dickman tetralog, since L4(t) − C4 + M4(t/(1 − 2t)) may be reduced to
standard polylogs and their products. It is an easy matter to evaluate a single instance
of (32) to high precision. For example, M4(

1
2 ) in (12) was computed to 800 digits, in order

to determine the value of C4 that results from the boundary condition L4(
1
4) = 0. However,

it is quite another matter to obtain good results for C8 and C9, which are integrals with
M4 in their integrands. When t is significantly less than 1

4 , one may efficiently evaluate
M4(t/(1− 2t)) by using Taylor series for log(1+2x) and 1/(1+x) under the integral sign
in (32). Yet to compute C8 and C9 we need L4(t) for all arguments 0 < t < 1

4 , inside
the integrals for L8 and L9. So the remaining problem involves an investigation of the
behaviour of L4(t) in the neighbourhood of t = 1

4 .

Theorem 2: Let gn(z) ≡ Ln(
1
n − z) for n > 0. Then gn(z) has a Taylor series with

rational coefficients, beginning with gn(z) = Gnz
n+O(zn+1), where Gn = (−1)n(nn/n!)2.

6
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Proof: We know that g1(z) = log(1−z) = −z+O(z2) has a Taylor series with rational
coefficients. Setting k = n+ 1 in recursion (3) and transforming variables, I obtain

gn+1(z) = −

∫ z

0
gn

(
(n+ 1)2y

n2 + n(n+ 1)y

)
(n+ 1)dy

1− (n+ 1)y
. (33)

Now suppose that the claim is true for gn. Then, by binomial expansion under the
integral sign in (33), it is also true for gn+1, since Gn+1/Gn = −((n + 1)2/n2)n. Hence,
by induction, the claim is true for all n > 0.

Comment: Starting with g1(z) = log(1−z), I used three iterations of recursion (33) to
compute sufficient terms in the rational Taylor series for g4(z) =

1024
9 z4+O(z5) to achieve

at least 240 digits of precision for L4(t) = g4(
1
4 − t) in the region 1

4 > t > t4 = 0.2358.
Then, for t < t4, I proceeded as follows.

Let an = (−bn + (−1)ncn)/n, where

bn = −
3

n3
+

n∑

k=1

2kk + (−1)k−1n

k2n2
(34)

and cn is the coefficient of zn in the Taylor series for log(1 + 2z)Li2(z)/(1 + z). Then,
with x ≡ t/(1− t) and y ≡ t/(1− 2t), the summation in

L4(t)− C4 =
∞∑

n=2

{an + bn log(y)} (−y)n + L3(x) log(t) + Li2(−y) log2(y)

+

(
Li2(−x) +

1

2
log2(x)

)(
π2

12
−

1

2
log2(y)

)
+

1

8
log4(y) (35)

provides a viable method for computing L4(t) for t < t4 = 0.2358.

A sanity check was provided by comparing the two strategies at t = t4 and verifying
that 240 good digits of the conjectured value 1

10C
2
2 were obtained for C4. To achieve this,

I expanded g4(z) up to O(z300) and took 4800 terms in the summation over powers of
−y = −t/(1− 2t) in (35). The relatively small number of terms used for g4 resulted from
the fact that it is rather laborious to perform three rational binomial iterations of recur-
sion (33). By storing coefficients of the expansions, I am able to evaluate 240 good digits
of the Dickman tetralog L4 in less than 50 milliseconds and hence can efficiently com-
pute the Dickman octalog, L8, and the nonalog, L9, as one-dimensional quadratures with
integrands that call the procedure for L4. By these means, I arrived at conjecture (13)
for C8 and then, thanks to OEIS sequence A008991, inferred the wonderfully compact
conjectured generating function exp(γz)/Γ(1 − z) for

∑
k≥0Ckz

k, which then gave con-
jecture (17) for C9, also now verified at high precision. Finally, I record 50 good digits of
the Dickman probabilities

F (1/9) ≈ 1.0162482827378365465348539356956957838244399586581 × 10−9 (36)

F (1/10) ≈ 2.7701718377259589887581212006343423263430066501156 × 10−11 (37)

noting that 6 good digits were given in [32], which corrected serious errors in [5].

7



7 Context and conclusion

Thus far, I have spared the gentle reader explicit reference to quantum field theory (QFT)
or to condensed matter physics. I trust that s/he will now permit me to reveal the physics
context for investigating Dickman’s mathematical [21, 18, 35, 16, 27, 26, 1, 12] problem.

The collision of a pair of protons in the large hadron collider (LHC) [31], at energies
never before achieved in a particle accelerator, is described by QFT in terms of the collision
of quarks, or gluons, carrying a fraction x of the momentum of a proton. The key thing
that we need to know, to make sense of the possible outcomes of these LHC collisions,
is the probability distribution function (PDF) in x. This is not known a priori; rather
it is inferred from electron-proton collisions at lower energies, where half of the problem,
namely the electron, is already well understood. Yet the input PDF, from electron-
proton collisions, is not immediately usable at the LHC. Rather, it must be “evolved”,
up to the higher LHC energy. The procedure for doing this is completely understood,
in principle, yet involves formidable mathematical challenges, in practice [2, 39]. It is
performed as a perturbation expansion in the coupling constant of the strong interaction
between quarks and gluons. At successive orders in this compelling expansion, generalized
polylogarithms [36, 24] in x make their appearance.

From the perspective of QFT, the Dickman problem might seem to be rather routine:
as soon as the polylogarithmic structure of the recursion (3) for Lk is exposed, it is clear
that the formidable technical machinery of QFT [36, 24, 25, 33, 6, 38, 20, 28] has much to
offer to the computation of this problem in number theory. The fascinating circumstance
is that each iteration (3) of the Dickman polylog Lk brings its own distinctive constant
Ck in (4). This also mimics QFT, where limiting values of generalized polylogarithms are
likewise zeta values, until one reaches weight 8, when a multiple zeta value appears [14,
13, 15, 6]. The Dickman problem would have shared even more features with QFT had C8

contained this first irreducible MZV, namely ζ(5, 3) =
∑

m>n>0 1/(m
5n3). In this paper I

have shown, with overwhelming probability, that ζ(5, 3) does not appear in C8. Moreover,
I have conjectured that Ck is, most wonderfully, the coefficient of zk in the expansion of
exp(γz)/Γ(1 − z) and hence zeta-valued for all k.

This does not, however, mean that the Dickman problem now lacks interest for physi-
cists. On the contrary, it resembles fascinating problems in condensed matter physics.
In the study of quantum spin chains [7], hugely demanding calculations gave zeta-valued
results up to weight 7. When Dirk Kreimer and I asked Valdimir Korepin to climb the
next cliff, up to weight 8, we genuinely did not know whether an MZV would appear. In
fact it did not [8]. Thus the Dickman problem sits very well with the study of spin chains.

In conclusion, I suggest that the current investigation has added to our understanding
of the Dickman function and has also confirmed how much more demanding is the poly-
logarithmic structure of QFT, which appears to surpass the Dickman function of number
theory, and the spin chains of condensed matter physics, both in its grand challenge and,
I believe, in its eventually to be comprehended great beauty [23].
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