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Abstract

A two-dimensional arrangement of toothpicks is constructed by the fol-
lowing iterative procedure. At stage 1, place a single toothpick of length 1
on a square grid, aligned with the y-axis. At each subsequent stage, for ev-
ery exposed toothpick end, place a perpendicular toothpick centered at that
end. The resulting structure has a fractal-like appearance. We will analyze
the toothpick sequence, which gives the total number of toothpicks after n
steps. We also study several related sequences that arise from enumerat-
ing active cells in cellular automata. Some unusual recurrences appear: a
typical example is that instead of the Fibonacci recurrence, which we may
write as a(2 + i) = a(i) + a(i+ 1), we set n = 2k + i (0 ≤ i < 2k), and then
a(n) = a(2k + i) = 2a(i)+a(i+1). The corresponding generating functions

look like
∏

k≥0(1 + x2
k−1 + 2x2

k

) and variations thereof.

Keywords: cellular automata (CA), enumeration, Holladay-Ulam CA,
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1. Introduction

We start with an infinite sheet of graph paper and an infinite supply of line
segments of length 1, called “toothpicks.” At stage 1, we place a toothpick
on the y-axis and centered at the origin. Each toothpick we place has two
ends, and an end is said to be “exposed” if this point on the plane is neither
the end nor the midpoint of any other toothpick.

At each subsequent stage, for every exposed toothpick end, we place a
toothpick centered at that end and perpendicular to that toothpick. The
toothpicks placed at odd-numbered stages are therefore all parallel to the
y-axis, while those placed at even-numbered stages are parallel to the x-
axis.

Fig. 1 shows the first ten stages of the evolution of the toothpick struc-
ture and Figs. 2, 3 show the structure after respectively 53 and 64 stages.

Figure 1: First ten stages of the evolution of the toothpick structure.
The numbers of toothpicks in the successive stages, T (1), . . . , T (10), are
1, 3, 7, 11, 15, 23, 35, 43, 47, 55.

Let t(n) (n ≥ 1) denote the number of toothpicks added at the nth
stage, with t(0) = 0, and let T (n) :=

∑n
i=0 t(i) be the total number of

toothpicks after n stages. The initial values of t(n) and T (n) are shown
in Table 1. These two sequences respectively form entries A139251 and
A139250 in [8].

The first question is, what are the numbers t(n) and T (n)? We start by
finding recurrences that they satisfy. As the number of stages grows, the
array of toothpicks has a recursive, fractal-like structure, as suggested by
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Figure 2: The toothpick structure after 53 stages (there are T (53) = 1379
toothpicks).

Figs. 1, 2, 3. (For a dramatic illustration of the fractal structure, see the
movie linked to entry A139251 in [8].) In order to analyze this structure,
we consider a variant, the “corner” sequence, which starts from a half-
toothpick protruding from one quadrant of the plane. In §2 we establish
a recurrence for the corner sequence (Theorem 1) and in §3 we use this to
find recurrences for t(n) and T (n) (Theorem 2, Corollary 3). Section §4
gives a similar recurrence for the number of squares and rectangles that are
created in the toothpick structure at the nth stage, and §5 gives a more
precise description of the fractal-like behavior and discusses the asymptotic
growth of T (n).

The recurrences make it easy to compute a large number of values of
t(n) and T (n), so in a sense the initial problem has now been solved.

However, the toothpick structure is reminiscent of another, simpler,
two-dimensional structure, the arrangement of square cells produced by the
Ulam-Warburton cellular automaton (Ulam [17], Singmaster [13], Stanley
and Chapman [15], Wolfram [22, p. 928]). For this structure there is an
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Figure 3: The toothpick structure after 64 stages (there are T (64) = 2731
toothpicks).

explicit formula for the number of ON cells at the nth stage, and a simple
generating function for these numbers, as we will see in §6, Theorem 6.

This hint led us to look for a similar generating function and an explicit
formula for the toothpick sequence. Our first attempt was a failure, but
provided an surprising connection with the Sierpiński triangle, described in
§7.

The generating functions for the toothpick sequence and for a number
of related sequences have an interesting form: they can be written as

x(α+ βx)
∏
k≥ε

(1 + γx2
k−1 + δx2

k

) , (1)

for appropriate integers α, β, γ, δ, ε. In §8 we describe the relationship be-
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n 0 1 2 3 4 5 6 7 8 9
t(n) 0 1 2 4 4 4 8 12 8 4
T (n) 0 1 3 7 11 15 23 35 43 47
n 10 11 12 13 14 15 16 17 18 19
t(n) 8 12 12 16 28 32 16 4 8 12
T (n) 55 67 79 95 123 155 171 175 183 195
n 20 21 22 23 24 25 26 27 28 29
t(n) 12 16 28 32 20 16 28 36 40 60
T (n) 207 223 251 283 303 319 347 383 423 483
n 30 31 32 33 34 35 36 37 38 39
t(n) 88 80 32 4 8 12 12 16 28 32
T (n) 571 651 683 687 695 707 719 735 763 795
n 40 41 42 43 44 45 46 47 48 49
t(n) 20 16 28 36 40 60 88 80 36 16
T (n) 815 831 859 895 935 995 1083 1163 1199 1215

Table 1: The toothpick sequences t(n) and T (n) for 0 ≤ n ≤ 49.

tween such generating functions and recurrences for the underlying sequence
(Theorem 7). The generating function for the toothpick sequence is then
established in Theorem 8.

Generating functions of the form
∏

k≥1(1 + gkx
k) have been used in

combinatorics and number theory for a long time (for a survey see [5]),
but generating functions of the form (1) may be new—at least, until the
commencement of this work, there were essentially no examples among the
170,000 entries in [8].

The following section, §9, gives a general method for obtaining explicit
formulas from the generating functions (Theorem 9), and the particular
formula for the toothpick sequence is given in Theorem 10.

Both the toothpick structure and the Ulam-Warburton structure are
examples of cellular automata defined on graphs, and we discuss this general
framework in §10. We have not been able to find much earlier work on the
enumeration of active cells in cellular automata—the Stanley and Chapman
American Mathematical Monthly problem [15] and the Singmaster article
[13] being exceptions. We would appreciate hearing of any references we
have overlooked.

Of course, two well-known examples show that one cannot hope to enu-
merate the active states in arbitrary cellular automata: the one-dimensional
cellular automaton defined by Wolfram’s “Rule 30” [19], [20], [22] behaves
chaotically, and the two-dimensional cellular automaton corresponding to
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Conway’s “Game of Life” [2] is a universal Turing machine.
However, we were able to apply our techniques (with varying degrees of

success) to a number of other cellular automata defined on graphs, and the
last four sections discuss some of these. Section 11 discusses a structure
built using T-shaped toothpicks. Sections 12-14 discusses variations on the
Ulam-Warburton cellular automaton. Section 12 deals with the “Maltese
cross” or Holladay-Ulam structure studied in [17], as well as some other
structures mentioned in that paper. Section 13 considers what happens if
we change the rule for the Ulam-Warburton cellular automaton of §6 so
that a cell is turned ON if and only if one or four of its neighbors is ON.
The final section (§14) discusses what happens if we change the definition
of the Ulam-Warburton cellular automaton to allow all eight neighbors of
a square to affect the next stage. There is another variation that could
have been included here, in which the rule is that a cell changes state if
exactly one of its four neighbors is ON. Again we have a formula for the
number of ON cells after n generations—see entries A079315, A079317 in
[8]. Many further examples of sequences based on generalized toothpick
structures and cellular automata are listed in [14].

Notation. Our cellular automata are synchronous, and we normally use
the symbol n to index the successive stages. Cells are either ON or OFF.
In all the examples we consider here, once a cell is ON it stays ON. Lower
case letters (e.g. a(n)) will denote the number of toothpicks added, or
cells whose state is changed from OFF to ON, at the nth stage, and the
corresponding upper case letters (e.g. A(n)) will denote the total number
of toothpicks or ON cells after n stages (the partial sums of the a(n)). By
the generating function for a sequence a(n) (say), we will always mean
the ordinary generating function A(x) :=

∑∞
n=0 a(n)xn. If A(x) is the

generating function for a(n), then A(x)/(1− x) is the generating function
for A(n).

Remarks. 1. A common dilemma in combinatorics is whether to index
the first counting step with n = 0 or n = 1. In this paper we have consis-
tently started the enumerations with zero objects (toothpicks or ON cells)
at stage 0, adding the initial object at stage 1. This seems natural, and is
the indexing used for most of these sequences in [8]. On the other hand,
this is responsible for the leading factor of x in the generating functions (1),
(15), (17), etc., and for the fact that in the recurrences (2), (4), etc., the
exceptional cases occur at the beginning of each block of 2k terms, rather
than at the end. If they had occurred at the ends of the blocks, the be-
ginnings of all the blocks would have agreed, which would have made the
triangular arrays such as that in Table 3 look rather nicer (compare Table
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7). Probably there is no perfect solution to the problem, and so we have
followed the indexing used in [8].

2. Reference [8] contains several hundred sequences related to the tooth-
pick problem, many more than could be mentioned here. For a full list see
[14] and also the entries in the index to [8] under “cellular automata.”

3. The computer language Mathematica R© [21] has a collection of com-
mands that can often be used to display structures produced by cellular
automata and to count the ON states. For example, the command

Map[Function[Apply[Plus,Flatten[#1]]],CellularAutomaton[{
686,{2,{{0,2,0},{2,1,2},{0,2,0}}},{1,1}},{{{1}},0},200]]

produces the first 200 terms of the sequence U(n) giving the number of ON
states in the Ulam-Warburton cellular automaton discussed in §6.

Figure 4: Stages 0 through 7 of the evolution of the corner structure.
The numbers of toothpicks in the successive stages, C(0), . . . , C(7), are
0, 1, 3, 6, 9, 13, 20, 28.

2. The corner sequence

In order to understand the toothpick structure, it is helpful to first consider
what happens if one quadrant of the plane is excluded. We impose the rule
that no toothpick may cross into the third quadrant of the plane, and only
ends of toothpicks may touch the negative x- or y-axes. At stage 0, we
place a half-toothpick extending horizontally from the origin to the point
( 1
2 , 0). The structure is then allowed to grow using the rule for the original

toothpick sequence. The corner sequence is relevant because it describes
how the main toothpick structure grows.
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Let c(n) (n ≥ 1) denote the number of toothpicks added at the nth stage,
with c(0) = 0, and let C(n) :=

∑n
i=0 c(i) be the total number of toothpicks

after n stages. These are respectively entries A152980 and A153006 in [8].
Fig. 4 shows stages 0 through 7 of the evolution of the corner structure.

Note that the first toothpick added, at stage 1 (with midpoint at the end
of the initial half-toothpick), matches the initial toothpick of the original
toothpick sequence, except that it is shifted a half-unit to the left. The
initial values of c(n) and C(n) are shown in Table 2.

n 0 1 2 3 4 5 6 7 8 9
c(n) 0 1 2 3 3 4 7 8 5 4
C(n) 0 1 3 6 9 13 20 28 33 37
n 10 11 12 13 14 15 16 17 18 19
c(n) 7 9 10 15 22 20 9 4 7 9
C(n) 44 53 63 78 100 120 129 133 140 149
n 20 21 22 23 24 25 26 27 28 29
c(n) 10 15 22 21 14 15 23 28 35 52
C(n) 159 174 196 217 231 246 269 297 332 384
n 30 31 32 33 34 35 36 37 38 39
c(n) 64 48 17 4 7 9 10 15 22 21
C(n) 448 496 513 517 524 533 543 558 580 601

Table 2: The corner sequences c(n) and C(n) for 0 ≤ n ≤ 39.

Figure 5: The corner toothpick structure after 2k−1 stages, for k = 2, 3, 4.

An examination of Fig. 4 and pictures of later stages in the evolution
reveals that after 2k − 1 stages (for k ≥ 2) the structure consists of an
essentially solid rectangle of toothpicks with one quadrant removed. The
first few cases are shown in Figs. 5. More precisely, we have:
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Theorem 1. After 2k − 1 stages, for k ≥ 2, the corner toothpick structure
is bounded by a rectangle of dimensions (height × width) = (2k−1 − 1

2 ) ×
(2k−1 − 1) with the lower left (2k−2 − 1

2 )× (2k−2 − 1) corner removed and
with an additional half-toothpick protruding downwards from the lower right
corner, in which all the boundary edges are solid rows of toothpicks except
for the top edge which contains no horizontal toothpicks, with a row of 2k−1

exposed vertical toothpick ends along the top edge, and with no exposed
toothpick ends in the interior. Furthermore, for k ≥ 2, the number of
toothpicks added at the successive stages while going from stage 2k to stage
2k+1 − 1 is given by:

c(2k + i) =


2k−1 + 1, if i = 0;

2c(i) + c(i+ 1), if i = 1, . . . , 2k − 2;

2c(i) + c(i+ 1)− 1, if i = 2k − 1.

(2)

Proof. We use induction on k. The case k = 2 is readily checked (cf.
Figs. 4, 5). Suppose the theorem is true for k, so that after the first 2k − 1
stages we have the structure described in the theorem. We consider the
next 2k stages in the evolution of the bottom right quadrant and the top
two quadrants separately.

First, the bottom right quadrant looks like the starting configuration
for the corner structure, with its protruding half-toothpick, except rotated
clockwise by 90◦. So by the induction hypothesis, after further 2k−1 stages
we reach a 90◦-rotated copy of the (2k − 1)-stage structure. One further
step then fills in the right-hand edge, leaving a half-toothpick protruding
downwards from the bottom right corner. Second, consider what happens
to the top half of the structure. At the first step, the 2k−1 vertical exposed
toothpick ends will be covered, producing overhanging half-toothpicks at
the left- and right-hand ends of the top edge. Again these look like the
starting configuration for the corner structure, with the first quadrant a
mirror image of the second quadrant. So again, by induction, after a further
2k − 1 steps we reach the top half of the desired structure for k + 1. This
completes the proof of the first assertion of the theorem. (The process is
depicted schematically in Figs. 6, 7 and 8.)

The recurrence formula (2) now follows by keeping track of the number
of toothpicks that are added at successive steps as we progress from stage
2k to stage 2k+1 − 1.

It is worth remarking that this growth in three quadrants, one of which
is a step ahead of the other two, is responsible for the terms of the form

2f(i) + f(i+ 1) (3)

which appear in the recurrences in Theorems 1, 2 and 4.
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Figure 6: Schematic of corner structure after 2k − 1 stages.

Figure 7: Schematic of corner structure after 2k+1 − 2 stages in the third
quadrant and 2k stages in the upper half.
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Figure 8: Schematic of corner structure after 2k+1 − 1 stages.

Figure 9: Schematic of evolution of toothpick structure: after 2k stages
(left-hand figure), after a further 2k − 1 stages (center) and after one more
stage (right-hand figure).
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3. The toothpick sequences

Similar recurrences hold for the toothpick sequences t(n) and T (n).

Theorem 2. For the toothpick structure discussed in §1, the number of
toothpicks added at the nth stage is given by t(0) = 0, t(1) = 1, and, for
k ≥ 1,

t(2k + i) =

{
2k, if i = 0;

2t(i) + t(i+ 1), if i = 1, . . . , 2k − 1.
(4)

Proof. An inductive argument similar to that used in the proof of Theorem
1 shows that after 2k steps, for k ≥ 2, the toothpick structure is bounded by
a 2k−1 × (2k−1 − 1) rectangle, with half-toothpicks protruding horizontally
from the four corners, in which all the boundary edges are solid rows of
toothpicks, and with no exposed toothpick ends in the interior. (The cases
k = 2 and 3 can be seen in Fig. 1.) In the induction step, each quadrant
grows like a suitably rotated version of the corner structure. (The evolution
is depicted schematically in Fig. 9.) The recurrence formula (4) now follows
by keeping track of the number of toothpicks that are added as we progress
from stage 2k to stage 2k+1 − 1.

Corollary 3. For the toothpick sequence T (n), we have T (0) = 0, and, for
k ≥ 0,

T (2k + i) =

{
1
3 (22k+1 + 1) if i = 0;

T (2k) + 2T (i) + T (i+ 1)− 1, if i = 1, . . . , 2k − 1.
(5)

Proof. This follows easily from T (n) =
∑n

i=0 t(i),

2k+1−1∑
i=2k

t(i) = 2k(2k+1 − 1),

and (4). We omit the details.
A convenient way to visualize the recurrences (2), (4) and (5) is to write

the sequences c(n), t(n) and T (n) as triangular arrays, with 1, 1, 2, 4, 8,
16, 32, . . . terms in the successive rows. For example, the initial terms of
the t(n) sequence are shown in the array in Table 3. The row labeled 8, for
instance, begins with t(8) = 8, and then, using (4) and referring back to
the top of the triangle, continues with the values t(9) = 2t(1) + t(2) = 4,
t(10) = 2t(2) + t(3) = 8, t(11) = 2t(3) + t(4) = 12, and so on (a kind of
“bootstrap” process).

To see a direct connection between the toothpick sequences and the
corner sequences, it is convenient to define Q(n) := (T (n) − 3)/4 (n ≥ 3),

12



k terms 2k, 2k + 1, . . . , 2k+1 − 1
0 0
1 1
2 2 4
4 4 4 8 12
8 8 4 8 12 12 16 28 32
16 16 4 8 12 12 16 28 32 20 16 28 36 40 60 88 80
. . . . . .

Table 3: Initial terms of toothpick sequence t(n) arranged in triangular
form.

with Q(0) = Q(1) = 0. This is the number of toothpicks whose centers
are in the interior of the first (or second, third or fourth) quadrants of the
toothpick structure. Also let q(n) := Q(n)−Q(n−1) (n ≥ 1) with q(0) = 0.
The argument used in the proof of Theorem 1 shows that

C(n) = 2Q(n) +Q(n+ 1) + 2, for n ≥ 2 . (6)

Hence by taking differences we have q(n) = t(n)/4,

c(n) = 2q(n) + q(n+ 1), for n ≥ 3 , (7)

and

c(n) =
1

2
t(n) +

1

4
t(n+ 1), for n ≥ 1 . (8)

4. Rectangles in the toothpick structure

Examination of Figs. 1–3 suggests that, after any finite number of stages,
the toothpick structure divides the plane into an unbounded region and a
number of squares and rectangles (and no other closed polygonal regions
appear). Let R(n) denote the number of squares and rectangles in the
toothpick structure after n stages, and let r(n) := R(n) − R(n − 1) be
the number of squares and rectangles that are added at the nth stage.
Similarly, let ρ(n) be the number of squares and rectangles that are added
to the corner structure at the nth stage. The initial values of ρ(n), r(n)
and R(n) are shown in Table 4 (these are entries A168131, A160125 and
A160124 in [8]).

Then an inductive argument, similar to that used to establish Theorem
1, shows the following.
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ρ(n) 0 0 1 2 1 1 5 7 3 1 4 5 3 7 18 19
r(n) 0 0 0 2 2 0 4 10 6 0 4 8 4 4 20 30
R(n) 0 0 0 2 4 4 8 18 24 24 28 36 40 44 64 94

Table 4: The sequences ρ(n), r(n) and R(n) for 0 ≤ n ≤ 15.

Theorem 4. All internal regions in the corner and toothpick structures are
squares and rectangles. Furthermore, ρ(0) = ρ(1) = 0, ρ(2) = 1, ρ(3) = 2,
and, for k ≥ 2,

ρ(2k + i) =


2k−1 − 1, if i = 0;

2ρ(i) + ρ(i+ 1), if i = 1, . . . , 2k − 3;

2ρ(i) + ρ(i+ 1) + 1, if i = 2k − 2.

2ρ(i) + ρ(i+ 1) + 2, if i = 2k − 1;

(9)

and r(0) = r(1) = r(2) = 0, r(3) = 2, and, for k ≥ 2,

r(2k + i) =


2k − 2, if i = 0;

4ρ(i), if i = 1, . . . , 2k − 2;

4ρ(i) + 2, if i = 2k − 1.

(10)

We omit the proof.

5. The fractal-like structure

The recursive structure established in the proofs of Theorems 1 and 2 also
explains the fractal-like appearance of the toothpick array. After applying
one round of the corner recursion to each quadrant and then rescaling, we
have the transformation shown schematically in Fig. 10 (an “F” is used
to indicate orientation of the various pieces), and in a specific example in
Fig. 11. Note that four of the blocks (the sideways “F”s) are shifted by
a half-toothpick towards the center. Because of this shift the toothpick
structure is not strictly self-similar (cf. [3]) and so is not a true fractal.
The same is true for all the structures we will meet in this paper: they
have a fractal-like growth, but are not strictly self-similar.

A plot of T (0), . . . , T (2k − 1) for increasing values of k shows that the
points lie roughly on a parabola, with irregularities caused by the fractal-
like behavior (see for example Fig. 12). Benôıt Jubin [6] has investi-
gated limT (n)/n2 and limT (n)/n2. His numerical results suggest that
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Figure 10: Fractal-like transformation recursion, general step.

Figure 11: Fractal-like recursion going from stage 8 to stage 16.
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Figure 12: Plot of toothpick sequence T (0), . . . , T (1023).

limT (n)/n2 = 2/3, with local maxima at the values n = 2k − 1, and
limT (n)/n2 ≈ 0.4513058 with local minima at the following values of n:

1, 2, 5, 12, 21, 44, 89, 180, 362, 728, 1459, 2921, . . .

(see A170927 for further terms). His upper limit can be established from
Corollary 3:

Theorem 5. For n ≥ 1,

T (n)

n2
≤ 2

3
+

1

3n
, (11)

with equality if and only if n = 2k−1 for some k. Hence limT (n)/n2 = 2/3.

Proof. The result is true for n ≤ 3, and for n > 3 for the special values
n = 2k − 1, when T (n) = (2k − 1)(2k+1 − 1)/3, so

T (n)

n2
=

2

3
+

1

3n
,

and n = 2k, when T (n) = (22k+1 + 1)/3, so

T (n)

n2
=

2

3
+

1

3n2
<

2

3
+

1

3n
.
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For the general case we use induction, and assume that (11) holds for all
n ≤ 2k. Let n = 2k + i, 1 ≤ i ≤ 2k − 2. Then (11) follows from (5) and the
induction hypothesis.

Jubin also observes that there is a continuous function on [0, 1] that
describes the asymptotic behavior of T (n). This is the function whose
graph is the Hausdorff limit of the finite sets Ek consisting of the points

(x = i
2k
, f(x) = T (n)

n2 ) for n = 2k + i, 0 ≤ i < 2k. This function takes the

value 2
3 at x = 0 and x = 1, and has its minimum at around (0.427451,

0.4513058). It is non-differentiable at the dyadic rational points between 0
and 1. Figure 13 shows E14.

Figure 14: Stages 1 through 8 of the evolution of the Ulam-Warburton
structure. The numbers of ON cells in the successive stages, U(1), . . . , U(8),
are 1, 5, 9, 21, 25, 37, 49, 85.

6. The Ulam-Warburton cellular automaton

As we will see in §10, the toothpick structure can be modeled by a cellular
automaton on a planar graph. In this section, we consider a simpler example
of the same type, the arrangement of square cells generated by the Ulam-
Warburton cellular automaton (Ulam [17], Singmaster [13], Stanley and
Chapman [15], Wolfram [22, p. 928]). The cells are the squares in an infinite
square grid, and the neighbors of each cell are defined to be the four squares
which share an edge with it. (This is the von Neumann neighborhood of
the cell, in the notation of [7].) At stage 0, no cells are ON. At stage 1,

18



a single cell is turned ON. Thereafter, a cell is changed from OFF to ON at
stage n if and only if exactly one of its four neighbors was ON at stage n−1.
Once a cell is ON it stays ON. This is “Rule 686” in the notation of [9], [22].

Let u(n) (n ≥ 0) denote the number of cells that are changed from OFF

to ON at the nth stage, and let U(n) :=
∑n

i=0 u(i) be the total number of
ON cells after n stages. The initial values of u(n) and U(n) are shown in
Table 5. These sequences are respectively entries A147582 and A147562 in
[8]. Fig. 14 shows stages 1 through 8 of the evolution of the this structure.
(As is suggested by Fig. 14 and more particularly by the movie linked to
entry A147562, this structure also has a fractal-like growth.)

n 0 1 2 3 4 5 6 7 8 9
u(n) 0 1 4 4 12 4 12 12 36 4
U(n) 0 1 5 9 21 25 37 49 85 89
n 10 11 12 13 14 15 16 17 18 19

u(n) 12 12 36 12 36 36 108 4 12 12
U(n) 101 113 149 161 197 233 341 345 357 369
n 20 21 22 23 24 25 26 27 28 29

u(n) 36 12 36 36 108 12 36 36 108 36
U(n) 405 417 453 489 597 609 645 681 789 825
n 30 31 32 33 34 35 36 37 38 39

u(n) 108 108 324 4 12 12 36 12 36 36
U(n) 933 1041 1365 1369 1381 1393 1429 1441 1477 1513
n 40 41 42 43 44 45 46 47 48 49

u(n) 108 12 36 36 108 36 108 108 324 12
U(n) 1621 1633 1669 1705 1813 1849 1957 2065 2389 2401

Table 5: The sequences u(n) and U(n) from the Ulam-Warburton cellular
automaton, for 0 ≤ n ≤ 49.

Theorem 6. (i) The number of cells that turn from OFF to ON at stage n of
the Ulam-Warburton cellular automaton satisfies the recurrence u(0) = 1,
u(1) = 1, and, for k ≥ 0,

u(2k + 1 + i) =

{
4, if i = 0;

3u(i), if i = 1, . . . , 2k − 1.
(12)

(ii) There is an explicit formula: u(0) = 0, u(1) = 1 and

u(n) = 4·3wt(n−1) − 1, n ≥ 2 , (13)
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where wt(n), the “binary weight” of n, is the number of 1’s in the binary
expansion of n (entry A000120 in [8]).
(iii) The u(n) have generating function

x(−1

3
+

4

3

∏
k≥0

(1 + 3x2
k

)) . (14)

Proof. Part (i) follows by an inductive argument similar to that used
in the proofs of Theorems 1 and 2. The appropriate “corner sequence” is
A048883, in which the nth term is 3wt(n−1) (n ≥ 1), with partial sums given
by A130665. Part (ii) follows from (i) by induction on n. Part (iii) follows

from the generating function for A048883, which is
∏

k≥0(1 + 3x2
k

).

Remarks. 1. Now the corner sequence has three quadrants that grow in
synchronism, so the 2c(i) + c(i+ 1) terms in (2) are replaced by the 3u(i)
term in (12).

2. Parts (i) and (ii) of the theorem can be found in Singmaster [13] and
Stanley and Chapman [15], and part (i) at least was probably known to J.
C. Holladay and Ulam. On page 216 of [17], Ulam remarks that for certain
structures similar to this one (exactly which ones is left unspecified), J. C.
Holladay showed that “at generations whose index number n is of the form
n = 2k, the growth is cut off everywhere except on the ‘stems’, i.e. the
straight lines issuing from the original point.” This is certainly consistent
with the recurrence (12).

3. Two properties of the Ulam-Warburton structure given in [15] are
worth mentioning here. (i) When considered as a subgraph of the infinite
square grid, the structure is a tree. This is also true for the toothpick
structure—see §10. (ii) Let n − 1 =

∑w
i=1 2ri (r1 > r2 > · · · > rw ≥ 0) be

the binary expansion of n − 1. Then a necessary and sufficient condition
for the cell at P = (x, y) ∈ Z × Z to be turned from OFF to ON at stage
n > 1 is that P =

∑w
i=1 2rivi, where vi ∈ {(−1, 0), (1, 0), (0,−1), (0, 1)},

subject to vi 6= −vi−1 for i > 1. We have no such characterization of the
toothpicks added at the nth stage. It is a consequence of this (although it
is not mentioned in [15]) that the cells that are turned ON at some stage
are the cells (x, y) with x = 0 or y = 0, and the cells with xy 6= 0 for which
the highest power of 2 dividing x is different from the highest power of 2
dividing y. Again we know of no analog for the toothpick structure.

7. Leftist toothpicks

Stimulated by Theorem 6, we set out to look for analogues of (13) and 14
for the toothpick sequence t(u). Our first attempt was a failure, but led to
an interesting connection with Sierpiński’s triangle.
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We define the “leftist toothpick” structure as follows. We start with
a single horizontal toothpick at stage 1, and extend the structure using
the toothpick rule of §1, except that if a toothpick is horizontal, a new
toothpick can be added only at its left-hand end. Let l(n) (n ≥ 1) denote
the number of toothpicks added at the nth stage, with l(0) = 0, and let
L(n) :=

∑n
i=0 l(i) be the total number of toothpicks after n stages. These

are respectively entries A151565 and A151566 in [8]. The initial values of
l(n) and L(n) are shown in Table 6. Figure 15 shows the first 15 stages
of the evolution (the starting toothpick is the apex of the triangle, at the
right).

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
l(n) 0 1 1 2 2 2 2 4 4 2 2 4 4 4 4 8
L(n) 0 1 2 4 6 8 10 14 18 20 22 26 30 34 38 46

Table 6: The leftist toothpick sequences l(n) and L(n) for 0 ≤ n ≤ 15.

Figure 15: Stages 1 through 15 of the evolution of the leftist toothpick
structure.

The reason for investigating this structure is that, at least for the early
stages, the part of the toothpick structure of §1 in the 90◦ sector x −
2 ≤ y ≤ 2 − x is essentially equal to the leftist structure. This breaks
down, however, at stage 14. Nevertheless, the leftist structure has some
interest. For if we rotate the structure anticlockwise by 90◦ and erase all the
horizontal toothpicks, we obtain a triangle in which the vertical toothpicks
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correspond exactly to the positions of the 1s in Sierpiński’s triangle (i.e.,
Pascal’s triangle read modulo 2 [4], [10], [12], [22, Chap. 3]), and the gaps
between the vertical toothpicks to the 0s. Once observed, this is easy to
prove.

Gould’s sequence, entry A001316 in [8], gives the number of odd entries
in row n of Pascal’s triangle, which is 2wt(n), with generating function∏

k≥0(1 + 2x2
k

). Allowing for the different offset, we conclude that the

leftist toothpick sequence l(n) is given by l(2n− 1) = l(2n) = 2wt(n−1).

8. Generating functions

The following theorem suggests why generating functions of the form (1)
arise in connection with recurrences of the form (2), (4).

Theorem 7. Given integers α, β, γ, δ, let the Taylor series expansion of

x(α+ βx)
∏
k≥1

(1 + γx2
k−1 + δx2

k

) (15)

be a(0) + a(1)x + a(2)x2 + · · · . Then we have a(0) = 0, a(1) = α, and for
n ≥ 2,

a(2k + i) =


αγ + βδk−1 if i = 0;

δa(i) + γa(i+ 1), if i = 1, . . . , 2k − 2;

δa(i) + γa(i+ 1)− αγ2, if i = 2k − 1.

(16)

Proof. The generating function is

x(α+ βx)(1 + γx+ δx2)(1 + γx3 + δx4)(1 + γx7 + δx8) · · · .

Consider the coefficient of x10, say. The only way to build up x10 is to
combine the term δx8 with a(2)x2, or the term γx7 with a(3)x3. Hence
a(23 + 2) = δa(2) + γa(3). Similar arguments holds for the general case,
although adjustments are needed when i = 0 or 2k − 1. We omit the
details.

An analogous result holds if the product in (15) starts at k = 0.
Notice the resemblance between Equations (2), (4) and (16). In partic-

ular, we have:

Theorem 8. The generating function for the corner sequence c(n) is

C(x) := x(1 + x)
∏
k≥1

(1 + x2
k−1 + 2x2

k

) . (17)
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The generating function for the toothpick sequence t(n) is

T (x) :=
x

1 + 2x
{1 + 4x(1 + x)

∏
k≥1

(1 + x2
k−1 + 2x2

k

)}

=
x

1 + 2x
{1 + 2x

∏
k≥0

(1 + x2
k−1 + 2x2

k

)} , (18)

and therefore the generating function for the toothpick sequence T (n) is

x

(1− x)(1 + 2x)
{1 + 2x

∏
k≥0

(1 + x2
k−1 + 2x2

k

)} . (19)

Proof. For the first assertion, we set α = β = γ = 1, δ = 2 in Theorem
7 and use (2). For the second assertion, we note that (7) implies that the
generating functions for c(n) and q(n) are related by

C(x) = x+ x2 + (2 +
1

x
)Q(x) , (20)

and by definition we have

T (x) = x+ 2x2 +Q(x) . (21)

Eliminating Q(x), we obtain (18).

Remark. Equation (19) was conjectured by Gary W. Adamson [1]. Con-
sider the sequence 1, 1, 2, 1, 3, 4, 4, 1, 3, 4, 5, . . . with generating function∏

k≥1

(1 + x2
k−1 + 2x2

k

)

(entry A151550 in [8]). Adamson discovered that if this sequence is con-
volved with the sequence 1, 2, 2, 2, 2, 2, . . ., the result appeared to coincide
with the corner sequence C(n). When expressed in terms of generating
functions, his conjecture is essentially equivalent to (19).

9. Explicit formulas

A second comment in [8], this time from Hagen von Eitzen, was instru-
mental in the discovery of explicit formulas for many of these sequences.
Von Eitzen [18] contributed the sequence 2, 3, 3, 3, 5, 6, 4, 3, 5, 6, 6, . . . with

generating function
∏

k≥0(1 +x2
k−1 +x2

k

) to [8] (it is entry A160573) and
provided an elegant explicit formula for the nth term:∑

m≥0

(
wt(n+m)

m

)
. (22)
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This can be generalized. For this it is convenient to omit the initial
linear factors from (1) but to start the product at k = 0.

Theorem 9. Let the Taylor series expansion of∏
k≥0

(1 + γx2
k−1 + δx2

k

) (23)

be a(0) + a(1)x+ a(2)x2 + · · · . Then

a(n) =
∑
m≥0

γmδwt(n+m)−m
(

wt(n+m)

m

)
. (24)

Proof. (Based on von Eitzen’s proof of (22).) First, observe that

∏
k≥0

(1 + δx2
k

) =

∞∑
n=0

δwt(n)xn , (25)

since when getting a term xn, we pick up a factor of δ for every 1 in the
binary expansion of n. When we expand∏

k≥0

(1 + γx2
k−1 + δx2

k

) , (26)

instead of the product in (25), each time we replace a term δx2
k

by γx2
k−1

,
we lose a factor of x in the product, but we gain because there may be
several ways to choose the factors in which to do the replacement. Suppose
we do this replacement in m of the terms in (26). Then we must increase

n to n + m, we gain by a factor of
(
wt(n+m)

m

)
, but we have to replace m

factors of δ by γs, for a net contribution of γmδwt(n+m)−m(wt(n+m)
m

)
to the

sum.

Remark. Note that there are only finitely many nonzero terms in the
summations (22) and (24). For large n the number of nonzero terms is
roughly log2 n. More precisely, the number of nonzero terms for any n is
given by entry A100661 in [8].

We can use Theorem 9 to obtain an explicit formula for the toothpick
sequence t(n).

Theorem 10.

t(2k + 1 + i) =

{
2
∑

m≥0 2wt(i+m)−m(wt(i+m)
m

)
, if 0 ≤ i ≤ 2k − 2;

2k+1, if i = 2k − 1.
(27)
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Proof. This theorem is an instance where our decision to start enumera-
tions at n = 0 rather than n = 1 (as discussed in Remark 1 in §1) causes
complications. The result would be more elegant if we had made the other
choice. So, just for this proof, let us define t̂(n) = t(n+ 1) for n ≥ 0. Then
from Theorem 2, t̂(n) satisfies the recurrence

t̂(2k + i) =

{
2t̂(i) + t̂(i+ 1), if i = 0, . . . , 2k − 2;

2k+1, if i = 2k − 1.
(28)

k terms 2k, 2k + 1, . . . , 2k+1 − 1
0 1
1 2
2 4 4
4 4 8 12 8
8 4 8 12 12 16 28 32 16
16 4 8 12 12 16 28 32 20 16 28 36 40 60 88 80 32
. . . . . .

Table 7: Initial terms of sequence t̂(n) arranged in triangular form.

The initial terms of the t̂(n) sequence are shown in triangular array form
in Table 7. The initial 2k − 1 terms of the kth row are the initial 2k − 1
terms of the next row, so the rows converge to a sequence

4, 8, 12, 12, 16, 28, 32, 20, 16, 28, 36, . . .

that we will denote by F (n), n ≥ 0 (this is entry A147646 in [8]). It
follows from the definition that F (n) is defined by the recurrence F (0) = 4,
F (1) = 8, F (2) = F (3) = 12, and for n ≥ 4,

F (2k + i) =


2F (i) + F (i+ 1), if 0 ≤ i ≤ 2k − 3;

2F (i) + F (i+ 1)− 4, if i = 2k − 2;

2k+2 + 4, if i = 2k − 1.

(29)

Also, for 0 ≤ i ≤ 2k − 2,
t̂(2k + i) = F (i) . (30)

Comparing (29) with Theorem 7, we see (taking α = β = 4, γ = 1, δ = 2
in that theorem) that F (n) has generating function

4(1 + x)
∏
k≥1

(1 + x2
k−1 + 2x2

k

) = 2
∏
k≥0

(1 + x2
k−1 + 2x2

k

) . (31)
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It follows from Theorem 9 that

F (i) = 2
∑
m≥0

2wt(i+m)−m
(

wt(i+m)

m

)
. (32)

Then (30) and (32) imply (27).

10. Cellular automata defined on graphs

Cellular automata defined on graphs were introduced by von Neumann and
Ulam in 1949 [16], and the toothpick structure (§1), the corner toothpick
structure (§2), the leftist structure (§7), the Ulam-Warburton cellular au-
tomaton (§6), etc., can all be described in this language. Let G be an
infinite directed (or undirected) graph with finite in-degree and out-degree
(or degree) at each node. Nodes are either in the OFF state or the ON state,
and we just need to give a rule for deciding when the nodes change state.

For the toothpick structure, the nodes of G are the vertices (x, y) ∈ Z×Z
of the square grid. There are two kinds of nodes: “even” nodes, with x+ y
even, which have edges directed to nodes (x, y± 1), and “odd” nodes, with
x+ y odd, which have edges directed to nodes (x± 1, y). Initially all nodes
are OFF, at stage 1 we turn ON node (0, 0), and thereafter a node turns ON

if it has an incoming edge from exactly one ON node. This is easily seen to
be equivalent to the toothpick structure, with the even (resp. odd) nodes
representing the midpoints of vertical (resp. horizontal) toothpicks. The
induced subgraph of G joining the ON nodes is a directed tree (and remains
a tree if the arrows on the edges are removed).

For the Ulam-Warburton cellular automaton, of course, G is the undi-
rected graph with vertices (x, y) ∈ Z× Z, with each node connected to its
four neighbors (or, in the case of the cellular automaton analyzed in §14,
its eight neighbors). As already mentioned in §6, the induced subgraph
joining the ON nodes is also a tree.

For the natural generalization of the Ulam-Warburton cellular automa-
ton to higher dimensions, with G = Zd, g ≥ 1, and each node adjacent to
its 2d neighbors, there is an analog of Theorem 6. The number of cells that
turn from OFF to ON at stage n is given by u(0) = 0, u(1) = 1, and, for
n ≥ 2,

u(n) = 2d (2d− 1)wt(n−1)−1 (33)

(Stanley and Chapman [15]; see also entries A151779, A151781 in [8]). On
the other hand, for the face-centered cubic lattice graph, where each node
has 12 neighbors, there is no obvious formula (see A151776, A151777).

The number of possibilities is endless: see [14] and [22] for further ex-
amples.
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Figure 16: Stages 1 through 4 of the evolution of the T-toothpick structure.

11. T-shaped toothpicks

One may consider “toothpicks” of many other shapes. Here we consider just
one example: we define a “T-toothpick” to consist of three line segments
of length 1, forming a “T”. Using an obvious terminology, we will speak of
the “crossbar” (which has length 2) and the “stem” (of length 1) of the T,
and refer to the midpoint of the crossbar as the “midpoint.” A T-toothpick
has three endpoints, and an endpoint is said to be “exposed” if it is not the
midpoint or endpoint of any other T-toothpick.

We start at stage 1 with a single T-toothpick in the plane, with its
stem vertical and pointing downwards. Thereafter, at stage n we place a
T-toothpick at every exposed endpoint, with the midpoint of the new T-
toothpick touching the exposed endpoint and with its stem pointing away
from the existing T-toothpick. Figure 16 shows the first four stages of
the evolution. Let τ(n) denote the number of T-toothpicks added to the
structure at the nth stage (this is A160173).

Theorem 11. We have τ(0) = 0, τ(1) = 1, τ(2) = 3, and, for n ≥ 3,

τ(n) =
2

3
{3wt(n−1) + 3wt(n−2)}+ 1 . (34)

Proof. This is easily established from Theorem 6 by observing that the
structures in the four quadrants defined by the the initial T are essentially
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equivalent to copies of the Ulam-Warburton structure. The copies in the
first and second quadrants are one stage behind those in the third and
fourth quadrants.

The analogous structure using Y-shaped toothpicks has resisted our
attempts to analyze it—see A160120 in [8].

12. The “Maltese cross” or Holladay-Ulam structure

On page 217 of [17], Ulam discusses another structure that he and J. C.
Holladay had studied. To construct this, one first builds the infinite Ulam-
Warburton structure described in §6, and then replaces each ON cell by a
Maltese cross consisting of a central ON cell surrounded by four other ON

cells. Now label the cells of the new infinite structure, starting by labeling
the central square 1, then the four adjacent cells 2, and so on, always moving
outwards from the center. Figure 17 shows the cells with labels 1 through
5.

5 2

3

5 4

5

1

2

3

4

5

5

5

53 42345

5

5

2

5

5

Figure 17: Stages 1 through 5 of the evolution of the Maltese cross structure.

Holladay and Ulam then give a set of rules for a cellular automaton that
will build up this structure, starting with the cell labeled 1. We found their
rules (stated on pages 216 and 222) somewhat hard to understand, so it
may be helpful to the reader if we give our version of them here.

For a candidate cell to be turned ON it is necessary (though not sufficient)
that it share exactly one edge with an ON cell of the previous generation.
The two vertices of the candidate cell that touch that edge we will call its
inner vertices, and the other two vertices we call its outer vertices.
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The rules are as follows. Cells are in one of three states, OFF, ON or
DEAD. Once a cell is ON or DEAD it remains in that state. Initially all cells
are OFF, and at stage 1 a single cell is turned ON.

At stage n, consider OFF cells X (the “candidates”) that share at least
one edge with an ON cell of the previous generation. If a candidate X is
edge-adjacent to two ON cells, X is declared DEAD. If two candidates X and
X ′ share an outer vertex, both X and X ′ are declared DEAD. If a candidate
X is edge-adjacent to a DEAD cell, then X is declared DEAD, except that
when n ≡ 2 (mod 3), this rule obtains only if X is edge-adjacent to a cell
that was declared DEAD at the previous generation. If a candidate is not
excluded by these conditions, it is turned ON.

Figure 18 is an annotated picture showing the first eight stages of the
evolution of this structure in the first quadrant, with letters identifying the
first few DEAD cells. The letters ‘a’ and ‘d’ indicate candidate cells that are
DEAD because they are edge-adjacent to two ON cells, and ‘b’ and ‘e’ indicate
candidate cells that are DEAD because they are edge-adjacent to a DEAD cell
and n is not congruent to 2 (mod 3). The ‘5’ cells not on the main axes are
ON because 5 ≡ 2 (mod 3). The two ‘c’ cells are DEAD because they would
share a common outer vertex; and so on.

8

12 2 3 4 5 6 7 8

2 a b 5

c

d e 8

5 82

3 b

45 5 c

d5

6 e

7

8

8

Figure 18: Annotated version of stages 1 through 8 of the Maltese cross
structure in the first quadrant.

Of course, the original definition of this structure makes it easy to give
a formula for the number of cells, m(n), say, that are added at the nth
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stage. From (13) we have m(0) = 0, m(1) = 1, m(2) = 4, and, for t ≥ 1,

m(3t) = m(3t+ 1) = 4·3wt(t)−1, m(3t+ 2) = 4·3wt(t). (35)

(This is entry A151906 in [8].)
We conclude this section by listing some related cellular automata stud-

ied by Ulam and his colleagues Holladay and Schrandt in [11] and [17]. Since
we have not even found recurrences for them, we will give no details.

Reference [11] mentions a cellular automaton which is intermediate in
complexity between the Ulam-Warburton structure and the Maltese cross
structure discussed above. This Schrandt-Ulam cellular automaton is de-
scribed in entries A170896 and A170897 in [8]; another version is given in
A151895, A151896.

Analogous structures based on triangles or hexagons rather than squares
are described in Examples 3 through 6 of [17] (see also Wolfram [22, p. 371]),
and in entries A151723, A151724, A161644, A161645 of [8]. We invite the
reader to find recurrences or generating functions for any of them.

13. Rule 942

On page 928 of [22], Wolfram considers (among other examples) what hap-
pens if the rule for the Ulam-Warburton cellular automaton is modified so
that a cell turns ON if and only if either exactly one or all four of its four
neighbors is ON (this is “Rule 942” in the notation of [9], [22]).

Let w(n) denote the number of cells that are changed from OFF to ON

at stage n. Since the four-neighbor part of the rule is invoked only after
an OFF cell is completely surrounded by ON cells, w(n) ≥ u(n) for all n.
In fact, w′(n) := w(n) − u(n) is always a multiple of 4, and w(n) = u(n)
except when n ≡ 1 (mod n). Table 8 shows the initial values of w(n), u(n),
w′(n) and δ(n) := 1

4 (w(4n+ 1)− u(4n+ 1)) (cf. A169648 and A169689 in
[8]).

n 0 1 2 3 4 5 6 7 8 9 10 11 12 12 14 15
w(n) 0 1 4 4 12 8 12 12 36 28 12 12 36 28 36 36
u(n) 0 1 4 4 12 4 12 12 36 4 12 12 36 12 36 36
w′(n) 0 0 0 0 0 4 0 0 0 24 0 0 0 16 0 0
δ(n) 0 1 6 4 24 4 20 12 84 4 20 12 76 12 60 36

Table 8: The sequences w(n), u(n), w′(n0 := w(n)−u(n), δ(n) for 0 ≤ n ≤
15.

There is a simple explicit formula for δ(n) and hence, via (13), for w(n).
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Theorem 12. We have δ(0) = 0, δ(1) = 1, δ(2) = 6. For n ≥ 3, let
n = 2k + j with 1 ≤ j ≤ 2k, where j = 2m(2l + 1) (say). Then

δ(n) = 4(3m+1 − 2m+1)3wt(l) , (36)

except that if j = 2k then

δ(n) = 4·3k+1 − 3·2k+1 . (37)

We omit the proof, which is similar to those of Theorems 1 and 2.

14. Square grid with eight neighbors

Our final example is also based on the Ulam-Warburton cellular automaton,
except that now we take the neighbors of a cell to consist of the eight cells
surrounding it. (This is the Moore neighborhood of the cell, in the notation
of [7].) Otherwise the rules are the same as in §6: a cell turns ON if exactly
one of its eight neighbors is ON.

Let v(n) (n ≥ 0) denote the number of cells that are changed from
OFF to ON at the nth stage of the evolution, and let V (n) :=

∑n
i=0 v(i) be

the total number of ON cells after n stages. The initial values of v(n) and
V (n) are shown in Table 9 below. These sequences are respectively entries
A151726 and A151725 in [8]. Figure 19 shows stages 1 through 8 of the
evolution of the this structure.

Since each cell now has two kinds of neighbors, it is perhaps not surpris-
ing that this problem is more difficult to analyze than the Ulam-Warburton
structure. In order to understand the growth, it is convenient to define two
versions of “corner sequences,” analogous to that introduced in §2.

So that we can refer to individual cells, we will label each square cell
by the grid point at its upper left corner. That is, we define cell (i, j) to
consist of the square {(x, y) ∈ R× R | i ≤ x ≤ i+ 1, j − 1 ≤ y ≤ j}.

For the first corner sequence, we exclude the third quadrant of the
plane, and at stage 1 we turn ON the cell immediately to the right of that
quadrant (see Fig. 20). More precisely, at stage 1, we turn ON the cell (0, 0),
and thereafter extend the structure using the eight-neighbor rule, with the
proviso that after the first stage, no ON cell may be adjacent to any of the
third-quarter cells—meaning the cells (i, j) ∈ Z× Z with i ≤ −1, j ≤ 0.

The second corner sequence is similar to the first, except that at stage 1
we turn ON the cell (0, 1), just up and to the right of the excluded quadrant
(Fig. 21).

Let v1(n) (resp. v2(n)) denote the number of cells that are changed
from OFF to ON at the nth stage of the evolution of the first (resp. second)
corner sequence. The initial values of v1(n) and v2(n) are also shown in
Table 9. These sequences are respectively entries A151747 and A151728 in
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Figure 19: Stages 1 through 8 of the evolution of the eight-neighbor struc-
ture. The numbers of ON cells in the successive stages, V (1), . . . , V (8), are
1, 9, 13, 33, 37, 57, 77, 121.

[8]. Figures 20 and 21 shows stages 1 through 5 of the evolution of the two
corner sequences.

The following theorem gives recurrences for all three of these sequences.

Theorem 13. The eight-neighbor sequences v1(n), v2(n) and v(n) satisfy
the following recurrences:

v1(0) = 0, v1(1) = 1, v1(2) = 3, v1(3) = 5, and, for k ≥ 2,

v1(2k + i) =


(3k + 1) 2k−2 + 1, if i = 0;

3·2k−1 + 3, if i = 1;

2 v1(i) + v1(i+ 1), if i = 2, . . . , 2k − 2;

2 v1(i) + v1(i+ 1)− 1, if i = 2k − 1;

(38)

v2(0) = 0, v2(1) = 1, and, for k ≥ 1,

v2(2k + i) =


3·2k − 1, if i = 0;

v2(i) + 2 v1(i+ 1), if i = 1, . . . , 2k − 2;

v2(i) + 2 v1(i+ 1)− 2, if i = 2k − 1;

(39)
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Figure 20: Stages 1 through 8 of the evolution of the first corner sequence
v1(n).

Figure 21: Stages 1 through 8 of the evolution of the second corner sequence
v2(n).
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n 0 1 2 3 4 5 6 7 8 9
v(n) 0 1 8 4 20 4 20 20 44 4
V (n) 0 1 9 13 33 37 57 77 121 125
v1(n) 0 1 3 5 8 9 11 17 21 15
v2(n) 0 1 5 5 11 7 15 19 23 7
n 10 11 12 13 14 15 16 17 18 19
v(n) 20 20 44 28 60 76 92 4 20 20
V (n) 145 165 209 237 297 373 465 469 489 509
v1(n) 11 18 25 29 39 54 53 27 11 18
v2(n) 15 21 29 29 49 59 47 7 15 21
n 20 21 22 23 24 25 26 27 28 29
v(n) 44 28 60 76 92 28 60 84 116 116
V (n) 553 581 641 717 809 837 897 981 1097 1213
v1(n) 25 29 39 55 57 41 40 61 79 97
v2(n) 29 29 49 61 53 29 51 71 87 107

Table 9: The 8-neighbor sequences v(n) and V (n), and the two “corner”
sequences v1(n), v2(n), for 0 ≤ n ≤ 23.

v(0) = 0, v(1) = 1, and, for k ≥ 1,

v(2k + i) =

{
6·2k − 4, if i = 0;

4 v2(i), if i = 1, . . . , 2k − 1.
(40)

Again we omit the proof. We have not found generating functions or
explicit formulas for any of these sequences.
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