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Abstract. In this paper we initiate the study of products and sums di-
visible by central binomial coefficients. We show that
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for all n = 1, 2, 3, . . . .

Also, for any nonnegative integers k and n we have
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where Cm denotes the Catalan number 1

m+1
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)

=
(

2m

m
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−

(

2m

m+1

)

. On the

basis of these results, we obtain certain sums divisible by central binomial
coefficients.

1. Introduction

Central binomial coefficients are given by
(

2n
n

)

with n ∈ N = {0, 1, 2, . . .}.
The Catalan numbers

Cn =
1

n+ 1

(

2n

n

)

=

(

2n

n

)

−
(

2n

n+ 1

)

(n = 0, 1, 2, . . . )

play important roles in combinatorics. (See, e.g., [St].) There are many
sophisticated congruences involving central binomial coefficients and Cata-
lan numbers (cf. [ST1,ST2] and [S10a,S10b]).
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In this paper we investigate a new kind of divisibility problems involving
central binomial coefficients.

Our first theorem is as follows.

Theorem 1.1. (i) For any positive integer n we have
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. (1.1)

(ii) Let k and n be nonnegative integers. Then
(
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k

)
∣

∣

∣

∣

(

4n+ 2k + 2

2n+ k + 1

)(

2n+ k + 1

2k

)(

2n− k + 1

n

)

(1.2)

and
(

2k

k

)
∣

∣

∣

∣

(2n+ 1)

(

2n

n

)

Cn+k

(

n+ k + 1

2k

)

. (1.3)

In view of (1.1) it is worth introducing the sequence

Sn =

(

6n
3n

)(

3n
n

)

2(2n+ 1)
(

2n
n

) (n = 1, 2, 3, . . . ).

Here we list the values of S1, . . . , S8:

5, 231, 14568, 1062347, 84021990,

7012604550, 607892634420, 54200780036595.

The author has created this sequence as A176898 at N.J.A Sloane’s OEIS
(cf. [S10c]). By Stirling’s formula, Sn ∼ 108n/(8n

√
nπ) as n → +∞. Set

S0 = 1/2. Using Mathematica we find that

∞
∑

k=0

Skx
k =

sin( 23 arcsin(6
√
3x))

8
√
3x

(

0 < x <
1

108

)

and in particular
∞
∑

k=0

Sk

108k
=

3
√
3

8
.

Mathematica also yields that

∞
∑

k=0

Sk

(2k + 3)108k
=

27
√
3

256
.

It would be interesting to find a combinatorial interpretation or recursion
for the sequence {Sn}n>1.

One can easily show that Sp ≡ 15 − 30p + 60p2 (mod p3) for any odd
prime p. Below we present a conjecture concerning congruence properties
of the sequence {Sn}n>1.
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Conjecture 1.1. (i) Let n ∈ Z+ = {1, 2, 3, . . .}. Then Sn is odd if and

only if n is a power of two. Also, 3Sn ≡ 0 (mod 2n+ 3).
(ii) For any prime p > 3 we have

p−1
∑

k=1

Sk

108k
≡

{

0 (mod p) if p ≡ ±1 (mod 12),

−1 (mod p) if p ≡ ±5 (mod 12).

Remark. Part (i) of Conjecture 1.1 might be shown by our method for
proving Theorem 1.1(i), but we are not interested in writing the details.

Our following conjecture is concerned with a companion sequence of
{Sn}n>0.

Conjecture 1.2. There are positive integers T1, T2, T3, . . . such that

∞
∑

k=0

Skx
2k+1 +

1

24
−

∞
∑

k=1

Tkx
2k =

cos( 2
3
arccos(6

√
3x))

12

for all real x with |x| 6 1/(6
√
3). Also, Tp ≡ −2 (mod p) for any prime

p.

Here we list the values of T1, . . . , T8:

1, 32, 1792, 122880, 9371648,

763363328, 65028489216, 5722507051008.

In 1914 Ramanujan [R] obtained that

∞
∑

k=0

4k + 1

(−64)k

(

2k

k

)3

=
2

π

and
∞
∑

k=0

(20k + 3)

(

2k
k

)2(4k
2k

)

(−210)k
=

8

π
.

(See also [BB], [BBC] and B. C. Berndt [Be] for such series.) Actually the
first identity was originally proved by G. Bauer in 1859. Both identities
can be proved via the WZ (Wilf-Zeilberger) method (see M. Petkovšek, H.
S. Wilf and D. Zeilberger [PWZ], and Zeilberger [Z] for this method), for
example, Guillera [G] used the WZ method to prove the second identity.
van Hammer [vH] conjectured that the first identity has a p-adic analogue.
This conjecture was first proved by E. Mortenson [M], and recently re-
proved in [Zu] via the WZ method.

On the basis of Theorem 1.1, we deduce the following result which was
conjectured by the author in [S10b].
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Theorem 1.2. For any positive integer n we have

4(2n+ 1)

(

2n

n

)
∣

∣

∣

∣

n
∑

k=0

(4k + 1)

(

2k

k

)3

(−64)n−k (1.4)

and

4(2n+ 1)

(

2n

n

)
∣

∣

∣

∣

n
∑

k=0

(20k + 3)

(

2k

k

)2(
4k

2k

)

(−210)n−k. (1.5)

Remark. In 1998 N. J. Calkin [C] proved that
(

2n
n

)

|
∑n

k=−n(−1)k
(

2n
n+k

)m

for any m,n ∈ Z+. See also V.J.W. Guo, F. Jouhet and J. Zeng [GJZ],
and H.Q. Cao and H. Pan [CP] for further extensions of Calkin’s result.

Now we raise two more conjectures.

Conjecture 1.3. (i) For any n ∈ Z+ we have

an :=
1

8n2
(

2n
n

)2

n−1
∑

k=0

(205k2 + 160k + 32)(−1)n−1−k

(

2k

k

)5

∈ Z+.

(ii) Let p be an odd prime. If p 6= 3 then

(p−1)/2
∑

k=0

(205k2 + 160k + 32)(−1)k
(

2k

k

)5

≡ 32p2 +
896

3
p5Bp−3 (mod p6),

where B0, B1, B2, . . . are Bernoulli numbers. If p 6= 5 then

p−1
∑

k=0

(205k2 + 160k + 32)(−1)k
(

2k

k

)5

≡ 32p2 + 64p3Hp−1 (mod p7),

where Hp−1 =
∑p−1

k=1 1/k.

Remark. Note that a1 = 1 and

4(2n+1)2an+1+n2an = (205n2+160n+32)

(

2n− 1

n

)3

for n = 1, 2, . . . .

The author created the sequence {an}n>0 at OEIS as A176285 (cf. [S10c]).
In 1997 T. Amdeberhan and D. Zeilberger [AZ] used the WZ method to
obtain

∞
∑

k=1

(−1)k(205k2 − 160k + 32)

k5
(

2k
k

)5 = −2ζ(3).
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Conjecture 1.4. (i) For any odd prime p, we have

p−1
∑

k=0

28k2 + 18k + 3

(−64)k

(

2k

k

)4(
3k

k

)

≡ 3p2 − 7

2
p5Bp−3 (mod p6),

and

(p−1)/2
∑

k=0

28k2 + 18k + 3

(−64)k

(

2k

k

)4(
3k

k

)

≡ 3p2 + 6

(−1

p

)

p4Ep−3 (mod p5),

where E0, E1, E2, . . . are Euler numbers.

(ii) For any integer n > 1, we have

n−1
∑

k=0

(28k2+18k+3)

(

2k

k

)4(
3k

k

)

(−64)n−1−k ≡ 0

(

mod (2n+1)n2

(

2n

n

)2)

.

Also,
∞
∑

k=1

(28k2 − 18k + 3)(−64)k

k5
(

2k
k

)4(3k
k

)

= −14ζ(3).

Remark. The conjectured series for ζ(3) =
∑

∞

n=1 1/n
3 was first announced

by the author in a message to Number Theory Mailing List (cf. [S10d])
on April 4, 2010.

For more conjectures similar to Conjectures 1.3 and 1.4 the reader may
consult [S09] and [S10c].

In the next section we will establish three auxiliary inequalities involving
the floor function. Sections 3 and 4 are devoted to the proofs of Theorem
1.1 and Theorem 1.2 respectively.

2. Three auxiliary inequalities

In this section, for a rational number x we let {x} = x − ⌊x⌋ be the
fractional part of x, and set {x}m = m{x/m} for any m ∈ Z+.

Theorem 2.1. Let m > 1 be an integer. Then for any n ∈ Z we have

⌊ n

m

⌋

+

⌊

6n

m

⌋

>

⌊

2n

m

⌋

+

⌊

2n+ 1

m

⌋

+

⌊

3n

m

⌋

. (2.1)

Proof. Let Am(n) denote the left-hand side of (2.1) minus the right-hand
side. Then

Am(n) =

{

2n

m

}

+

{

2n+ 1

m

}

+

{

3n

m

}

− 1

m
−

{ n

m

}

−
{

6n

m

}

,
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which only depends on n modulo m. So, without any loss of generality
we may simply assume that n ∈ {0, . . . , m− 1}. Hence Am(n) > 0 if and
only if

{

2n

m

}

+

{

2n+ 1

m

}

+

{

3n

m

}

>
n+ 1

m
. (2.2)

(Note that 2n+ (2n+ 1) + 3n− (n+ 1) = 6n.)
(2.1) is obvious when n = 0. If 1 6 n < m/2, then {2n/m} = 2n/m >

(n + 1)/m and hence (2.2) holds. In the case n > m/2, (2.2) can be
simplified as

3n

m
+

{

3n

m

}

> 2,

which holds since 3n > m+m/2.
By the above we have proved (2.1). �

Theorem 2.2. Let m ∈ Z+ and k, n ∈ Z. Then we have

⌊

4n+ 2k + 2

m

⌋

−
⌊

2n+ k + 1

m

⌋

+2

⌊

k

m

⌋

−2

⌊

2k

m

⌋

>

⌊ n

m

⌋

+

⌊

n− k + 1

m

⌋

,

(2.3)
unless 2 | m and k ≡ n + 1 ≡ m/2 (mod m) in which case the right-hand

side of the inequality equals the left-hand side plus one.

Proof. Since

(4n+ 2k + 2)− (2n+ k + 1) + 2k − 2(2k) = n+ (n− k + 1),

(2.3) has the following equivalent form:

{

4n+ 2k + 2

m

}

−
{

2n+ k + 1

m

}

+2

{

k

m

}

−2

{

2k

m

}

6

{ n

m

}

+

{

n− k + 1

m

}

.

(2.4)
Note that this only depends on k and n modulo m. So, without any loss
of generality, we may simply assume that k, n ∈ {0, . . . , m− 1}.

Case 1. k < m/2 and {2n+ k + 1}m < m/2.
In this case, (2.4) can be simplified as

n+ 2k

m
+

{

n− k + 1

m

}

>

{

2n+ k + 1

m

}

,

which is true since the left-hand side is nonnegative and (n + 2k) + (n −
k + 1) ≡ 2n+ k + 1 (mod m).

Case 2. k < m/2 and {2n+ k + 1}m > m/2.
In this case, (2.4) can be simplified as

n+ 2k

m
+

{

n− k + 1

m

}

>

{

2n+ k + 1

m

}

− 1,
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which holds trivially since the right-hand side is negative.
Case 3. k > m/2 and {2n+ k + 1}m < m/2.
In this case, (2.4) can be simplified as

n+ 2k

m
+

{

n− k + 1

m

}

> 2 +

{

2n+ k + 1

m

}

.

Since (n+ 2k) + (n− k + 1) = 2n+ k + 1, this is equivalent to

n+ 2k + {n− k + 1}m > 2m.

If k > n+ 1, then

n+2k+ {n− k+1}m = n+2k+ (n− k+1+m) = 2n+ k+1+m > 2m

since 2n+ k + 1 > k > m/2 and {2n+ k + 1}m < m/2.
Now assume that k 6 n+ 1. Clearly

n+ 2k + {n− k + 1}m = n+ 2k + (n− k + 1) = 2n+ k + 1 > 3k − 1.

If k > m/2 then 3k − 1 > 3(m + 1)/2 − 1 > 3m/2. If k 6 n then
2n+ k + 1 > 3k > 3m/2. So, except the case k = n+ 1 = m/2 we have

n+ 2k + {n− k + 1}m = 2n+ k + 1 > 3m/2

and hence n+2k+{n−k+1}m = 2n+k+1 > 2m since {2n+k+1}m < m/2.
When k = n+1 = m/2, the left-hand side of (2.4) minus the right-hand

side equals

m− 2

m
− m/2− 1

m
+ 2

m/2

m
− m/2− 1

m
= 1.

Case 4. k > m/2 and {2n+ k + 1}m > m/2.
In this case, clearly m 6= 1, and (2.4) can be simplified as

n+ 2k

m
+

{

n− k + 1

m

}

> 1 +

{

2n+ k + 1

m

}

which is equivalent to

n+ 2k + {n− k + 1}m > m.

If k 6 n+ 1, then

n+2k+{n−k+1}m = n+2k+(n+1−k) = 2n+k+1 > 3k−1 >
3m

2
−1 > m.

If k > n+ 1, then

n+2k+ {n− k+1}m = n+ 2k+ (n+ 1− k) +m = 2n+ k+1+m > m.

In view of the above, we have completed the proof of Theorem 2.2.
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Theorem 2.3. Let m ∈ Z+ and k, n ∈ Z. Then we have

⌊

2n+ 2k

m

⌋

−
⌊

n+ k

m

⌋

+ 2

⌊

k

m

⌋

− 2

⌊

2k

m

⌋

> 2
⌊ n

m

⌋

−
⌊

2n+ 1

m

⌋

+

⌊

n− k + 1

m

⌋

,

(2.5)

unless 2 | m and k ≡ n + 1 ≡ m/2 (mod m) in which case the right-hand

side of the inequality equals the left-hand side plus one.

Proof. Since

2n+ 2k − (n+ k) + 2k − 2(2k) = 2n− (2n+ 1) + (n− k + 1),

(2.5) is equivalent to the following inequality:

{

2n+ 2k

m

}

−
{

n+ k

m

}

+ 2

{

k

m

}

− 2

{

2k

m

}

6 2
{ n

m

}

−
{

2n+ 1

m

}

+

{

n− k + 1

m

}

.

(2.6)

As (2.6) only depends on k and n modulo m, without loss of generality we
simply assume that k, n{0, . . . , m− 1}.

Case 1. k < m/2 and {n+ k}m < m/2.
In this case, (2.6) can be simplified as

2n+ 2k

m
+

{

n− k + 1

m

}

>

{

2n+ 1

m

}

+

{

n+ k

m

}

which holds since

2n+ 2k

m
−

{

n+ k

m

}

+

{

n− k + 1

m

}

> 0

and 2n+ 2k − (n+ k) + (n− k + 1) = 2n+ 1.
Case 2. k < m/2 and {n+ k}m > m/2.
In this case, (2.6) can be simplified as

2n+ 2k

m
+

{

n− k + 1

m

}

>

{

2n+ 1

m

}

+

{

n+ k

m

}

− 1

which holds since

2n+ 2k

m
>

n+ k

m
>

{

n+ k

m

}

and

{

n− k + 1

m

}

> 0 >

{

2n+ 1

m

}

− 1.
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Case 3. k > m/2 and {n+ k}m < m/2.
In this case, we must have n+ k > m and hence {n+ k}m = n+ k−m.

Thus (2.6) can be simplified as

n+ k −m

m
+

{

n− k + 1

m

}

>

{

2n+ 1

m

}

which holds trivially since n+ k −m+ (n− k + 1) ≡ 2n+ 1 (mod m).
Case 4. k > m/2 and {n+ k}m > m/2.
In this case, (2.6) can be simplified as

2n+ 2k

m
−

{

n+ k

m

}

+

{

n− k + 1

m

}

> 1 +

{

2n+ 1

m

}

which is equivalent to

2(n+ k)

m
−

{

n+ k

m

}

+

{

n− k + 1

m

}

> 1 (2.7)

since 2n+ 2k − (n+ k) + (n− k + 1) = 2n+ 1.
Clearly (2.7) holds if n+ k > m. If n+ k < m and k > n+ 1, then the

left-hand side of the inequality (2.7) is

n+ k

m
+

n+ 1− k

m
+ 1 =

2n+ 1

m
+ 1 > 1.

Now assume that n + k < m and k 6 n + 1. Then (2.7) is equivalent
to 2n+ 1 > m. If k 6 n then 2n+ 1 > 2k > m. If k = n+ 1 6= m/2, then
k = n+ 1 > (m+ 1)/2 and hence 2n+ 1 = 2(n+ 1)− 1 > m.

When k = n+1 = m/2, the left-hand side of (2.6) minus the right-hand
side equals

m− 2

m
− m− 1

m
+ 2

m/2

m
− 2

m/2− 1

m
+

m− 1

m
= 1.

Combining the discussion of the four cases we obtain the desired re-
sult. �

3. Proof of Theorem 1.1

For a prime p, the p-adic evaluation of an integer m is given by

νp(m) = sup{a ∈ N : pa | m}.

For a rational number x = m/n with m ∈ Z and n ∈ Z+, we set νp(x) =
νp(m)−νp(n) for any prime p. Note that a rational number x is an integer
if and only if νp(x) > 0 for all primes p.
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Proof of Theorem 1.1. (i) Fix n ∈ Z+, and define Am(n) for m > 1 as in
the proof of Theorem 2.1. Observe that

Q :=

(

6n
3n

)(

3n
n

)

(2n+ 1)
(

2n
n

) =
n!(6n)!

(2n)!(2n+ 1)!(3n)!
.

So, for any prime p we have

νp(Q) =
∞
∑

i=1

Api(n) > 0

by Theorem 2.1. Therefore Q is an integer.
Choose j ∈ Z+ such that 2j−1 6 n < 2j. As 2n + 1 6 2(2j − 1) + 1 <

2j+1, we have

⌊ n

2j+1

⌋

+

⌊

6n

2j+1

⌋

−
⌊

2n

2j−1

⌋

−
⌊

2n+ 1

2j−1

⌋

−
⌊

3n

2j−1

⌋

=

⌊

3n

2j

⌋

−
⌊

3n

2j+1

⌋

=

⌊

3n+ 2j

2j+1

⌋

>

⌊

2n+ 2j

2j+1

⌋

> 1.

Therefore

ν2(Q) =

∞
∑

i=1

A2i(n) > A2j+1(n) > 1.

and hence Q is even. This proves (1.1). �

(ii) (1.2) and (1.3) are obvious in the case k = 0. If k > n+ 1, then

(

2n+ k + 1

2k

)

=

(

n+ k + 1

2k

)

= 0

and hence (1.2) and (1.3) hold trivially. Below we assume that 1 6 k 6

n+ 1.
Recall that for any nonnegative integer m and prime p we have

νp(m!) =
∞
∑

i=1

⌊

m

pi

⌋

.

Since
(

4n+2k+2
2n+k+1

)(

2n+k+1
2k

)(

2n+k+1
n

)

(

2k
k

) =
(4n+ 2k + 2)!(k!)2

(2n+ k + 1)!((2k)!)2n!(n− k + 1)!

and

(2n+ 1)
(

2n
n

)

Cn+k

(

n+k+1
2k

)

(

2k
k

) =
(2n+ 1)!(2n+ 2k)!(k!)2

(n!)2(n+ k)!((2k)!)2(n− k + 1)!
,
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it suffices to show that for any prime p we have

∞
∑

i=1

Cpi(n, k) > 0 and
∞
∑

i=1

Dpi(n, k) > 0,

where

Cm(n, k) =

⌊

4n+ 2k + 2

m

⌋

−
⌊

2n+ k + 1

m

⌋

+ 2

⌊

k

m

⌋

− 2

⌊

2k

m

⌋

−
⌊ n

m

⌋

−
⌊

n− k + 1

m

⌋

and

Dm(n, k) =

⌊

2n+ 2k

m

⌋

−
⌊

n+ k

m

⌋

+ 2

⌊

k

m

⌋

− 2

⌊

2k

m

⌋

− 2
⌊ n

m

⌋

+

⌊

2n+ 1

m

⌋

−
⌊

n− k + 1

m

⌋

.

(a) By Theorem 2.2, Cpi(n, k) > 0 unless p = 2 and k ≡ n + 1 ≡
2i−1 (mod 2i) in which case C2i(n, k) = −1. Suppose that k ≡ n + 1 ≡
2i−1 (mod 2i), k = 2i−1k0 and n+ 1 = 2i−1n0, where 1 6 k0 6 n0 and k0
and n0 are odd. If i > 2, then

C2i−1(n, k) = 4n0+2k0−1−(2n0+k0−1)+2k0−4k0−(n0−1)−(n0−k0) = 1

and hence C2i−1(n, k)+C2i(n, k) = 1+(−1) = 0. So it remains to consider
the case k ≡ n+ 1 ≡ 1 (mod 2).

Assume that k is odd and n is even. Write k + 1 = 2jk1 and n = 2n1

with k1, n1 ∈ Z+ and 2 ∤ k1. Then it is easy to check that

C2j+1(n, k) =

⌊

4n1

2j

⌋

+ k1 −
⌊

2n1 − 2j−1 + 2j−1(k1 − 1)

2j

⌋

+ 2

⌊

k1
2

⌋

− 2

⌊

2jk1 − 1

2j

⌋

−
⌊n1

2j

⌋

−
⌊

n1 + 1− 2j−1k1
2j

⌋

=

⌊

4n1

2j

⌋

+ k1 −
⌊

2n1 − 2j−1

2j

⌋

− k1 + 1

2
+ k1 − 1− 2(k1 − 1)

−
⌊n1

2j

⌋

−
⌊

n1 + 1 + 2j−1

2j

⌋

+
k1 + 1

2

=1 +

⌊

n1 + (n1 + 1 + 2j−1) + (2n1 − 2j−1)

2j

⌋

−
⌊n1

2j

⌋

−
⌊

n1 + 1 + 2j−1

2j

⌋

−
⌊

2n1 − 2j−1

2j

⌋

>1
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and hence C2(n, k) + C2j+1(n, k) > 0.
By the above, we do have

∑

∞

i=1 Cpi(n, k) > 0 for any prime p. So (1.2)
holds.

(b) By Theorem 2.2, Dpi(n, k) > 0 unless p = 2 and k ≡ n + 1 ≡
2i−1 (mod 2i) in which case D2i(n, k) = −1. So, to prove (1.2) it suffices
to find a positive integer j such that D2j (n, k) > 1.

Clearly there is a unique positive integer j such that 2j−1 6 n+k < 2j.
Note that k 6 (n+ k)/2 < 2j−1 and

D2j (n, k) = 1 +

⌊

2n+ 1

2j

⌋

> 1.

This concludes the proof of (1.3).
The proof of Theorem 1.1 is now complete. �

4. Proof of Theorem 1.2

Proof of Theorem 1.2. (i) We first prove (1.4). For k, n ∈ N define

F (n, k) =
(−1)n+k(4n+ 1)

43n−k

(

2n

n

)2
(

2n+2k
n+k

)(

n+k
2k

)

(

2k
k

)

and

G(n, k) =
(−1)n+k(2n− 1)2

(

2n−2
n−1

)2

2(n− k)43(n−1)−k

(

2(n− 1 + k)

n− 1 + k

)

(

n−1+k
2k

)

(

2k
k

) .

Clearly F (n, k) = G(n, k) = 0 if n < k. By [Zu],

F (n, k − 1)− F (n, k) = G(n+ 1, k)−G(n, k)

for all k ∈ Z+ and n ∈ N.
Fix a positive integer N . Then

N
∑

n=0

F (n, 0)− F (N,N) =
N
∑

n=0

F (n, 0)−
N
∑

n=0

F (n,N)

=

N
∑

k=1

( N
∑

n=0

F (n, k − 1)−
N
∑

n=0

F (n, k)

)

=
N
∑

k=1

N
∑

n=0

(G(n+ 1, k)−G(n, k)) =
N
∑

k=1

G(N + 1, k).
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Note that
N
∑

n=0

F (n, 0) =

N
∑

n=0

4n+ 1

(−64)n

(

2n

n

)3

and

F (N,N) =
4N + 1

42N

(

2N

N

)(

4N

2N

)

=
(4N + 1)(2N + 1)

42N

(

2N

N

)

C2N .

Also,

N
∑

k=1

G(N + 1, k) =
(2N + 1)2

2

N
∑

k=1

(−1)N+k+1

43N−k

(

2N

N

)2

CN+k

(

N+k+1
2k

)

(

2k
k

)

=
2(2N + 1)

(

2N
N

)

(−64)N

N
∑

k=1

(−4)k−1 (2N + 1)
(

2N
N

)

CN+k

(

N+k+1
2k

)

(

2k
k

) .

and

(

2N
N

)

CN+1

(

N+2
2

)

(

2
1

) =

(

2N − 1

N − 1

)(

2N + 2

N + 1

)

N + 1

2

=

(

2N − 1

N − 1

)(

2N + 1

N + 1

)

(N + 1)

=

(

2N − 1

N − 1

)

(2N + 1)

(

2N

N

)

=2(2N + 1)

(

2N − 1

N − 1

)2

≡ 0 (mod 2).

So, with the help of (1.3) we see that
∑N

n=0(4n + 1)
(

2n
n

)3
(−64)N−n is

divisible by 4(2N + 1)
(

2N
N

)

.
(ii) Now we turn to the proof of (1.5).
For n, k ∈ N, define

F (n, k) :=
(−1)n+k(20n− 2k + 3)

45n−k
·
(

2n
n

)(

4n+2k
2n+k

)(

2n+k
2k

)(

2n−k
n

)

(

2k
k

) .

and

G(n, k) :=
(−1)n+k

45n−4−k
·
n
(

2n
n

)(

4n+2k−2
2n+k−1

)(

2n+k−1
2k

)(

2n−k−1
n−1

)

(

2k
k

) .

Clearly F (n, k) = G(n, k) = 0 if n < k. By [Zu],

F (n, k − 1)− F (n, k) = G(n+ 1, k)−G(n, k)
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for all k ∈ Z+ and n ∈ N.

Fix a positive integer N . As in part (i) we have

N
∑

n=0

F (n, 0)− F (N,N) =
N
∑

k=1

G(N + 1, k).

Observe that

N
∑

n=0

F (n, 0) =
N
∑

n=0

20n+ 3

(−210)n

(

2n

n

)2(
4n

2n

)

and

F (N,N) =
18N + 3

28N

(

6N

3N

)(

3N

N

)

.

Also,

N
∑

k=1

G(N+1, k) =
2(2N + 1)

(

2N
N

)

(−210)N

N
∑

k=1

(−4)k−1

(

4N+2k+2
2N+k+1

)(

2N+k+1
2k

)(

2N−k+1
N

)

(

2k
k

) .

Note that

(

4N+4
2n+2

)(

2N+2
2

)(

2N
N

)

(

2
1

) = 2

(

4N + 3

2N + 1

)(

2N + 2

2

)(

2N − 1

N − 1

)

≡ 0 (mod 2).

Applying (1.2) we see that (−210)N
∑N

k=1 G(N + 1, k) is a multiple of

4(2N + 1)
(

2N
N

)

. By (1.1),

(−210)N
18N + 3

28N

(

6N

3N

)(

3N

N

)

is divisible by 8(2N + 1)
(

2N
N

)

. Therefore

N
∑

n=0

(20n+ 3)

(

2n

n

)2(
4n

2n

)

(−210)N−n

is a multiple of 4(2N + 1)
(

2N
N

)

.

Combining the above, we have completed the proof of Theorem 1.2. �
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