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Abstract. Given a permutation pattern p and an equivalence relation on
permutations, we study the corresponding equivalence classes all of whose

members avoid p. Four relations are studied: Conjugacy, order isomorphism,

Knuth-equivalence and toric equivalence. Each of these produces a known
class of permutations or a known counting sequence. For example, involu-

tions correspond to conjugacy, and permutations whose insertion tableau is

hook-shaped with 2 in the first row correspond to Knuth-equivalence. These
permutations are equinumerous with certain congruence classes of graph en-

domorphisms. In the case of toric equivalence we find a class of permutations

that are counted by the Euler totient function, with a subclass counted by the
number-of-divisors function. We also provide a new symmetry for bivincular

patterns that produces some new non-trivial Wilf equivalences
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1. Introduction

Let Sn be the permutation group on n letters. We will mostly use one-line
notation for the elements of this group, i.e., the permutation in S4 that sends
1 7→ 2, 2 7→ 4, 3 7→ 1, 4 7→ 3 will be written 2413. This corresponds to the bottom
line in the two-line notation

1 2 3 4
2 4 1 3.

In usual pattern avoidance and matching one studies and counts the permuta-
tions in Sn that avoid or match a particular pattern. These permutations belong
to two sets:

An(p) = {π ∈ Sn |π avoids p},
Mn(p) = {π ∈ Sn |π matches p}.

This work is supported by grant no. 090038011 from the Icelandic Research Fund.
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For example if the chosen pattern is p = 123 (an increasing subsequence of three
letters) we have

A4(p) = {1432, 2143, 2413, 2431, 3142, 3214, 3241,

3412, 3421, 4132, 4213, 4231, 4312, 4321},
M4(p) = {1234, 1243, 1324, 1342, 1423, 2134, 2341,

2314, 3124, 4123},

where we have marked an occurrence of the pattern by underlining the letters.
Note that we do not care if the pattern appears as a subsequence whose entries are
adjacent or not in the permutation. In general the number of permutations in Sn

that avoid 123 is the n-th Catalan number, see e.g., Simion and Schmidt (1985),

|An(p)| = Cn =
1

n+ 1

(
2n

n

)
.

The permutations that match (or contain) the same pattern are the remaining
permutations, giving |Mn(p)| = n! − Cn. This fact remains true for any pattern
from S3.

In this paper we will explore how pattern avoidance interacts with equivalence
relations. More precisely, given an equivalence relation and a pattern we will study
and count the equivalence classes that do not contain any permutations that match
the pattern. Similarly we will look at equivalence classes that only contain permu-
tations that match the pattern. In short, we will be studying the two sets

Ãn (p) = {π ∈ Sn |π and every equivalent permutation avoids p},

M̃n (p) = {π ∈ Sn |π and every equivalent permutation matches p}.

If the relation can be extended to patterns we will also study the sets

An (p̃) = {π ∈ Sn |π avoids p and every equivalent pattern},
Mn (p̃) = {π ∈ Sn |π matches p and every equivalent pattern}.

The motivation for this work came about somewhat by accident when I was
studying Knuth-equivalent permutations and occurrences of patterns in them. Two
permutations are Knuth-equivalent if they have the same insertion tableaux, see e.g.,
Fulton (1997). I was trying to see how the occurrence of the pattern 231 could be
seen on the tableau and because of a bug in the code I had written I generated
permutations whose entire class avoids the pattern. So I had generated the set

Ãn (231). It turns out that the permutations in this set correspond to hook-shaped
tableaux, with 1, 2, . . . k in the first line, such as

1 2 3 4
5
6

Now, the equivalence class of the pattern 231 is {231, 213} and it is possible to
show that a permutation avoids these two patterns if and only if it has an insertion
tableau of the type described above. So we now have (see Proposition 5.9 and
Corollary 5.11)

Ãn (231) = An(231, 213) = An(2̃31).

A pattern with this property will be called stable below. Since the hook-length
formula can be used to count the number of tableaux of a particular shape it can
be used to count the sets above, giving

|An(231, 213)| = 2n−1,
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which is well-known, and in fact (Reifegerste, 2004, Proposition 5.3) used a similar
method to prove it.

Knuth-equivalence is one of four equivalence relations we will look at here, see
the overview below for some examples of the results.

1.1. Overview and main results. The question of how patterns interact with
equivalence relations seems to only become interesting when we consider so-called
bivincular patterns, which generalize and subsume classical patterns. They are
defined in section 2, but roughly speaking they are classical patterns with additional
requirements on what positions and values are allowed in the occurrence of the
pattern.

The next section deals with generalities that can be applied to any equivalence
relation. The main result there is Proposition 2.5, which reduces the number of
patterns one needs to look at. For example, let πr be the permutation π read
backwards. If for any permutations π and µ we have π is equivalent to µ if and

only if πr is equivalent to µr, then the proposition shows that |Ãn (p) | = |Ãn (pr) |,
|M̃n (p) | = |M̃n (pr) |. This means that if we are interested in counting then there
are half as many patterns to look at.

The next four sections deal with a particular equivalence relation each. The
ordering of the sections is based on the difficulty of the proofs.

In section 3 we regard two permutations as equivalent if they have the same cycle
type, or equivalently, π ∼ µ if there exists a permutation σ such that π = σµσi. A
particular result from that section is that permutations whose entire class avoids
the bivincular pattern 1 2 3

2 3 1 are the involutions. (Recall that bivincular patters are

defined in section 2 below.)
In section 4 we regard two permutations as equivalent if they have the same

order so the equivalence classes here will be unions of conjugacy classes. The
results in this section will rely on results from the previous one. Here’s an example:

permutations whose entire class avoids 1 2 3 ··· k
2 3 ··· k 1 are permutations with order that

can not be written k ·m with k - m.
In section 5 we regard two permutations as equivalent if they are Knuth-equivalent,

meaning that they have the same insertion tableau. For another characterization
of this equivalence relation, see Definition 5.1. The result mentioned in the intro-
duction is from this section. Another is that permutations whose entire class avoids
1 2 3
2 3 1 are permutations whose insertion tableau is hook-shaped and has 2 in the first

row. These permutations are counted with 1 + 1
2

(
2n−2
n−1

)
and are equinumerous with

certain congruence classes of graph endomorphisms, see Proposition 5.13 and Open
Problem 4. Finally, in Corollary 5.11, we show that every classical pattern from
S3 is stable.

In section 6 we regard two permutations as equivalent if they are in the same
toric class, which is defined rigorously below, but very roughly speaking this means
that two permutations are equivalent if their permutation matrices become the same
when they are wrapped around a torus. There are three main results in this section.
The first is Proposition 6.8, which provides a new symmetry relation for certain
bivincular patterns, which produces some new non-trivial Wilf-equivalences. Then
there are two related results, the first showing that the permutations whose entire
class avoids 1 2 3

2 1 3 have a rich structure and are enumerated by the Euler totient

function, φ(n + 1), see Theorem 6.28; and that the subset of permutations whose

entire class avoids 1 2 3
2 1 3 are equinumerous with the divisors of n, see Theorem 6.31.

These two results allow us to state a conjecture that is equivalent to the Riemann
Hypothesis, see Conjecture 6.33.
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In the last section, 7, we mention some other equivalence relations we have
considered.

2. Generalities

Below we will recall the definition of bivincular patterns, but first recall that
given a pattern p we say that it occurs in a permutation π, or that π matches p,
if π contains a subsequence whose letters are in the same order as the letters in
the pattern. If a permutation does not match a pattern we say that it avoids the
pattern.

Example 2.1. The permutation π = 241635 has four occurrences of the pattern
123, given by the subsequences 246, 245, 135 and 235. It has two occurrences of the
pattern 231, given by the subsequences 241 and 463. It avoids the pattern 321.

A vincular pattern is like a classical pattern but it can have requirements on
which letters must be adjacent in the occurrence. More precisely if two adjacent
letters in the pattern are underlined then the corresponding letters in the occur-
rence must be adjacent. These were introduced in full generality by Babson and
Steingŕımsson (2000), although special cases had been considered earlier.

Example 2.2. The permutation π = 241635 has two occurrences of the pattern
1 2 3, given by the subsequences 135 and 235. These are also occurrences of the
pattern 1 2 3 since they appear at the end of the permutation. It avoids 1 2 3.

A bivincular pattern is a further generalization where requirements on the values
that must be in the occurrence are allowed. Here we use two-line notation and
bars on adjacent letters in the top line mean that the corresponding letters in the
occurrence must have adjacent values. These were introduced by Bousquet-Mélou
et al. (2008).

Example 2.3. The permutation π = 241635 has one occurrence of the pattern
1 2 3
1 2 3, given by the subsequence 235. This is also an occurrence of 1 2 3

1 2 3 , with the
hook in the top line signifying that the largest letter in the permutation is in the
occurrence. It has one occurrence of 1 2 3

1 2 3 given by the subsequence 245, which is

also an occurrence of 1 2 3
1 2 3. It avoids 1 2 3

1 2 3.

We will also use the notation of Bousquet-Mélou et al. (2008) to write bivincular
patterns: A bivincular pattern consists of a triple (p,X, Y ) where p is a permutation
in Sk and X,Y are subsets of J0, kK. An occurrence of this bivincular pattern in a
permutation π = π1 · · ·πn in Sn is a subsequence πi1 · · ·πik such that the letters
in the subsequence are in the same relative order as the letters of p and

• for all x in X, ix+1 = ix + 1; and
• for all y in Y , jy+1 = jy + 1, where {πi1 , . . . , πik} = {j1, . . . , jk} and
j1 < j2 < · · · < jk.

By convention we put i0 = 0 = j0 and ik+1 = n+ 1 = jk+1.
The bivincular patterns behave well with respect to the operations reverse, com-

plement and inverse: Given a bivincular pattern (p,X, Y ) we define

(p,X, Y )r = (pr, k −X,Y ),

(p,X, Y )c = (pc, X, k − Y ),

(p,X, Y )i = (pi, Y,X),

where pr is the usual reverse of the permutation of p, pc is the usual complement
of the permutation of p, and pi is the usual inverse of the permutation of p. Here
k −M = {k −m |m ∈M}.

We get a very simple but useful Lemma:
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Lemma 2.4. Let a denote one of the operations above (or their compositions).
Then a permutation π avoids the bivincular pattern p if and only if the permutation
πa avoids the bivincular pattern pa. �

The following proposition will allow us to reduce the number of patterns that
we need to look at.

Proposition 2.5. Below a is one of r, c, i, or a composition of them.

(1) Assume that for any permutations π, µ,

πa ∼ µa implies π ∼ µ.

Then the maps a: Ãn (p)→ Ãn (pa), a: M̃n (p)→ M̃n (pa) are injections.
(2) Assume that for any permutations π, µ,

π ∼ µ implies πa ∼ µa.

Then the maps a−1 : Ãn (pa)→ Ãn (p), a−1 : M̃n (pa)→ M̃n (p) are injec-
tions.

(3) Assume that for any permutations π, µ,

π ∼ µ if and only πa ∼ µa.

Then the maps a: Ãn (p)→ Ãn (pa), a: M̃n (p)→ M̃n (pa) are bijections.

Proof. It suffices to prove (1) for the avoiding classes, since the other cases are

similar. We first prove that the image of the map a is actually in Ãn (pa). Take

π in Ãn (p), so π and all equivalent permutations avoid the pattern p. We must
show that πa and all equivalent permutations avoid pa. But if ρ is equivalent to πa

and contains pa then ρa−1

is equivalent to (πa)a−1

= π and contains (pa)a−1

= p,
which is a contradiction. Since the map a is a bijection (on Sn) it follows that it’s

restriction to Ãn (p) is an injection. �

Often part (3) will be implied by using:

Lemma 2.6. Assume that for any permutation π we have π ∼ πa. Then π ∼ µ if

and only πa ∼ µa and the maps a: Ãn (p) → Ãn (pa), a: M̃n (p) → M̃n (pa) are
bijections.

The proposition above is mostly useful when one is looking for patterns p that

give interesting sets Ãn (p). If for example we were interested in toric equivalence
and decide to look at all bivincular patterns of length 3, without referring the
proposition, we would have to go through the entire list of 1536 bivincular patterns.
By Theorem 6.6 we can reduce by all the basic symmetries, which leaves us with
only 212 patterns to look at, making the problem much more tractable.

For the rest of the section we assume that the equivalence relation has been
extended to patterns.

Lemma 2.7. (1) Let p be a pattern and assume that for any q ∼ p we have

Ãn (p) ⊆ Ãn (q) .

Then Ãn (p) ⊆ An (p̃).
(2) Let p be a pattern and assume that for any q ∼ p we have

M̃n (p) ⊆ M̃n (q) .

Then M̃n (p) ⊆Mn (p̃).

Proof. This is obvious. �



6 HENNING ARNÓR ÚLFARSSON

Proposition 2.8. Assume that for any permutations π, µ,

π ∼ µ if and only πa ∼ µa,

and that the same is still true if π, µ are replaced with patterns. Then the pattern
p is stable if and only if pa is stable.

Proof. We assume p is stable. The statement follows from following the composition
below from left to right.

Ãn (pa) → Ãn (p) = An (p̃)→ Ãn(p̃a) = An
(
p̃a
)
. �

Whenever we reference integer sequences of the form Axxxxxx we are always
referring to the Online Encyclopedia of Integer Sequences, Sloane (2010).

3. Conjugacy

Here we will regard two permutations as equivalent if they have the same cycle
type, or equivalently, π ∼ µ if there exists a permutation σ such that π = σµσi. We
start by examining which symmetries behave nicely with respect to this equivalence
relation.

3.1. Symmetry. Since π and πi have the same cycle type (write π as a product
of disjoint cycles, then obtain πi by reversing each cycle), we see that conjugacy is
compatible with inverses.

It is also easy to see that π and πrc have the same cycle type. This can be seen
by representing permutations as matrices.

Example 3.1. Let π = 948167523. Then the permutation matrix of π is

Mπ =



0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0


.

To write π as a product of disjoint cycles we start in the first row and use the
position of the 1 in that row to tell us which row to visit next. Stop when we loop
around. This gives us

π = (193824)(567).

When we apply reverse and then complement it is like reading the matrix from the
bottom up, from right to left. We see that we will get the same cycle structure, with
i replaced by n+ 1− i.

By Proposition 2.5 we get the following theorem.

Theorem 3.2. Let a be a composition of elements from the set {i, rc}. Then the

map a : Ãn (p)→ Ãn (pa) is a bijection for all n.

3.2. Number of classes. The number of equivalence classes in Sn is

1, 2, 3, 5, 7, 11, 15, 22, 30 . . . n = 1, 2, 3 . . . .

This is just the number of conjugacy classes in Sn or equivalently the number of
partitions of n, A000041.
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3.3. Pattern avoidance. We start with a very easy result.

Proposition 3.3. (1) The pattern p = 12 gives

Ãn (p) = ∅ (n ≥ 3).

(2) The pattern p = 1 2
1 2 gives

Ãn (p) =

{
idr if n = 2,

id otherwise.

Proof.

(1) Take any permutation that avoids this pattern. It must be n(n−1) · · · 321.
This pattern has cycle type (2, 2, . . . , 2, 1) if n is odd and (2, 2, . . . , 2, 2)
if n is even. The permutations 2143 · · · (n − 1)(n − 2)n (if n is odd) or
2143 · · ·n(n − 1) (if n is even) have the same cycle type, but contain the
pattern. Therefore the count is always zero. This argument works for n ≥ 3
but not in S1 and S2.

(2) I claim that Ãn (p) consists of the identity permutation, except when n = 2
then it is replaced by 21. It is clear that these permutations are in the set,
we just need to show that there are no others. To do this we must show
that we can for any cycle type different from (1, 1 . . . , 1) (for the identity)
we can create a permutation π = (n− 1) · · ·n · · · with that cycle type. So
take a permutation π′ that contains a cycle of length ≥ 2. Let (ab · · · ) be
the start of that cycle. Now just conjugate with the (1a)(b(n− 1)) and we
have preserved the cycle type and put n− 1 and the beginning in one-line
notation. �

The next result is a special case of Proposition 3.5).

Proposition 3.4. The pattern p = 1
1 = (1, {0}, {0}) gives

Ãn (p) = derangements in Sn

|Ãn (p) | = 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, . . . , n = 1, 2, 3, . . .

which is sequence A000166. This sequence has the generating function e−x

1−x .

Proof. A permutation has no fixed points if and only its cycle type contains no 1.
Call the set of derangements in Sn, Dn.

(Dn ⊆ Sn): Take π not in Dn, then some permutation with the same cycle type
as π contains the pattern. This implies that π has a 1 in its cycle type so π has a
fixed point. Therefore π is not in Dn.

(Sn ⊆ Dn): Take π not in Sn, so π has a fixed point and therefore its cycle
type contains a 1. Let a be the fixed point. Swap 1 and a in the one-line notation
for π and we turn 1 into a fixed point, while preserving the cycle type. �

By (Stanley, 1986, Exercise 7, Chapter 2) we have that the number of permuta-
tions of JnK that have no k-cycle is given by the generating function

e−x
k/k

1− x
.

The proposition above is the special case k = 1 which means the permutations
have no 1-cycles, i.e., fixed points. It turns out that the pattern that appears in
the proposition is part of a family of patterns:
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Proposition 3.5. Let k ≥ 1 The pattern

p =1 2 3 · · · k
2 3 · · · k 1

gives

Ãn (p) = permutations in of JnK that do not contain a k-cycle,

the count has generating function e−xk/k

1−x . For k = 1, . . . , 7 we get sequences
A000166, A000266, A000090, A000138, A060725, A060726, A060727.

Proof. This is a slight generalization of the proof above and omitted. �

The next two propositions have similar proofs to Proposition 3.4, so we omit the
proofs.

Proposition 3.6. The pattern p = 1 2 3
2 3 1 gives

Ãn (p) = involutions in Sn

|Ãn (p) | = 1, 2, 4, 10, 26, 76, 232, 764, 2620, . . . , n = 1, 2, 3, . . .

which is A000085. This sequence has the generating function exp(x+ x2/2).

It turns out that this pattern is also part of a family of patterns:

Proposition 3.7. Let k ≥ 1 The pattern

p = 1 2 3 · · · k
2 3 · · · k 1

gives

Ãn (p) = permutations in of Sn only containing cycles of length < k,

the count has the generating function

exp

(
x+

x2

2
+
x3

3
+ · · ·+ xk−1

k − 1

)
.

For k = 1, . . . , 7 we get sequences A000004 (The zero sequence), A000012 (The all
1’s sequence), A000085, A057693, A070945, A070946, A070947.

Proposition 3.8. The pattern p = 1 2
2 1 gives

Ãn (p) = id and transpositions in Sn

|Ãn (p) | = 1, 1, 4, 7, 11, 16, 22, 29, 37, . . . , n = 1, 2, 3, . . .

If we count from n = 3 we get T (n+ 1) + 1 where T (n) = n(n+1)
2 is A000217, the

triangular numbers.

Proof. I claim that Ãn (p) consists of permutations with cycle type (1, 1, . . . , 1) or
(2, 1, . . . , 1). Call the set with those kinds of cycle type Yn.

(Yn ⊆ Ãn (p)): Ãn (p) clearly contains the identity permutation with the for-
mer cycle type. So consider any permutation π with the latter cycle type. This
permutation will consist of a transposition and then everything else is fixed. A
permutation of this type clearly avoids p.

(Ãn (q) ⊆ Yn): Take π that is not in Yn. Then we must consider two cases

(1) The cycle type of π has a cycle of length ≥ 3: Let this cycle start with
(abc · · · ). Then just conjugate π with (c1)(bn)((n − 1)a), which preserves
the cycle type but introduces an occurrence of the pattern.
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(2) The cycle type of π has two cycles, both of length ≥ 2. We can assume
these cycles have length exactly 2, since if they were larger we can just
apply the argument above to either one of them. So let these cycles be (ab)
and (cd). Then just conjugate π with (a1)(b(n− 1))(c(n− 2))(dn). �

Proposition 3.9. The pattern p = 1 2 3
2 3 1 gives

Ãn (p) = permutations moving at most two letters

|Ãn (p) | = 1, 2, 4, 7, 11, 16, 22, 29, 37, . . . , n = 1, 2, 3, . . .

This is A000124: Central polygonal numbers, n(n− 1)/2 + 1.

Proof. Let Xn be the set on the right. It is clear that Xn ⊆ Ãn (p). The other
implication is also simple: given a cycle of length 3 or more we can conjugate to
produce a permutation in the same class that looks like 2n · · · 1 · · · . Finally, given
two 2-cycles we can conjugate to produce 3n1 · · · 2. �

Open Problem 1. The permutations above are equinumerous (but not equal to)
permutations avoiding 132- and 321-avoiding permutations. It would be interesting
to produce a bijection.

The next three propositions have proofs that are similar to the proof of Propo-
sition 3.9, so we omit their proofs.

Proposition 3.10. The pattern p = 1 2 3
1 3 2 gives

Ãn (p) = fixed point free involutions

|Ãn (p) | = 1, 2, 3, 4, 1, 16, 1, 106, 1 . . . , n = 1, 2, 3, . . .

=

{
1 if n is odd,

(n− 1)!! + 1 if n is even.

The even subsequence is A001147: Double factorial numbers.

Proposition 3.11. The pattern p = 1 2 3
1 3 2 gives

Ãn (p) = the identity and 3-cycles

|Ãn (p) | = 1, 2, 3, 9, 21, 41, 71, 113, 169 . . . , n = 1, 2, 3, . . .

= 1 + 2

(
n

3

)
.

From n = 3 this is A007290 plus 1.

Proposition 3.12. The pattern p = 1 2 3
2 3 1 gives

Ãn (p) = the identity, 2-cycles and 3-cycles

|Ãn (p) | = 1, 2, 4, 15, 31, 56, 92, 141, 205, . . . , n = 1, 2, 3, . . .

From n = 4 this is A000330 plus 1, where A000330 are the square pyramidal num-

bers, n(n+1)(2n+1)
6 .

Open Problem 2. The number of permutations avoiding 132 that contain the pat-
tern 321 exactly once is counted by the square pyramidal numbers. Find a bijection
to the permutations above (leaving out the identity).

4. Order

Here we will regard two permutations as equivalent if they have the same order.
Clearly the equivalence classes here will be unions of conjugacy classes and therefore
the results in this section will rely on results from the previous one.
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4.1. Symmetry. The following is a direct consequence of Theorem 3.2:

Theorem 4.1. Let a be a composition of elements from the set {i, rc}. Then

a : Ãn (p)→ Ãn (pa) is a bijection for all n.

4.2. Number of classes. The number of equivalence classes in Sn is

1, 2, 3, 4, 6, 6, 9, 11, 14 n = 1, . . . 9.

Of course this is just A009490: Number of distinct orders of permutations of n
objects.

4.3. Pattern avoidance.

Proposition 4.2. The pattern p = 1
1 gives

Ãn (p) = permutations with order that can not be obtained from

permutations with a fixed point (1-cycle).

= permutations with order that can not be written
∏

ai

with 1 +
∑

ai = n.

|Ãn (p) | = 0, 1, 2, 6, 44, 0, 1644, 7728, 84384, . . . , n = 1, 2, 3, . . .

Proof. This follows directly from Proposition 3.4. �

This result can also be generalized in the same way as Proposition 3.4 above:

Proposition 4.3. Let k ≥ 1 The pattern p = 1 2 3 · · · k
2 3 · · · k 1 gives

Ãn (p) = permutations with order that can not be obtained from

permutations with a k-cycle,

= permutations with order that can not be written k ·m with k - m.

Proof. This follows directly from Proposition 3.5. �

Proposition 4.4. The pattern p = 1 2 3
2 31 gives

Ãn (p) = involutions in JnK

|Ãn (p) | = 1, 2, 4, 10, 26, 76, 232, 764, 2620, . . . , n = 1, 2, 3, . . .

which is A000085 in OEIS. This sequence has the generating function exp(x+x2/2).

Proof. This follows directly from Proposition 3.6. �

This generalizes in a similar way we saw with Proposition 4.2 above, but we omit
it.

5. Knuth-equivalence

Definition 5.1. Let A be an alphabet with an ordering.

(1) An elementary Knuth-transformation on a word with letters from A applies
one of the transformations below, or their inverses, to three consecutive
letters in the word.
K1 yzx 7→ yxz if x < y ≤ z,
K2 xzy 7→ zxy if x ≤ y < z.

(2) Two words w and w′ are said to be Knuth-equivalent if they can be changed
into each other by a sequence of elementary Knuth-transformations. We
write w ≡ w′ if this is the case.
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In this paper we will only consider the alphabet A = N = {1, 2, 3, . . . } so K1 means
we can interchange zx if the next letter to the left fits between them; and K2 means
that we can interchange xz if the next letter to the right fits between them. E.g.,
24135 ≡ 21435 ≡ 21453.

As is shown in Fulton (1997), two permutations π and µ are Knuth-equivlent if
and only if they have the same insertion tableau. Below we will denote the insertion
tableau of π with P (π) and the recording tableau with Q(π).

5.1. Symmetry. It is easy to see from Definition 5.1 that if a = r or a = c then
π ∼ µ if and only if πa ∼ µa. Then Proposition 2.5 implies the following theorem.

Theorem 5.2. Let a be a composition of elements from the set {r, c}. Then a :

Ãn (p)→ Ãn (pa) is a bijection for all n.

5.2. Number of classes. The number of equivalence classes in Sn is

1, 2, 4, 10, 26, 76, 232, 764, 2620 . . . n = 1, . . . .

This is A000085: number of Young tableaux with n cells.

5.3. Pattern avoidance. Here we extend the relation to patterns by saying that
two patterns (p,X, Y ), (p′, X ′, Y ′) are equivalent if and only if p and p′ are equiv-
alent, and X = X ′, Y = Y ′.

Proposition 5.3. For k ≥ 1 we have that the pattern p = 12 · · · k satisfies

Ãn (p) = An(p).

The members of these sets are permutations whose longest increasing subsequence is
of length less than k. For n = 1, . . . 7 we get the sequences A000004 (zero sequence),
A000012 (the 1’s sequence), A000108 (the Catalan numbers), A005802 (number of
vexillary permutations), A047889, A047890, A052399. These sequences are studied
in Bergeron and Gascon (2000).

Proof. We always have Ãn (p) ⊆ An(p) so take a permutation π ∈ An(p). This
implies that the first row of the tableau P (π) has length ≤ k. The same is then true
for every equivalent permutation which implies that every equivalent permutation
also avoids the pattern. �

Corollary 5.4. The pattern p = 12 · · · k is stable for k ≥ 1.

Proof. Since p̃ = {p} for these patterns the result follows from Proposition 5.3. �

Proposition 5.5. For k ≥ 1 we have that

Ãn
(
12 · · · k) = Ãn (12 · · · k) .

This implies that the patterns 12 · · · k are not stable, unless k = 1, 2.

Proof. We obviously have Ãn
(
12 · · · k) ⊇ Ãn (12 · · · k), so assume π is a permuta-

tion that is not in the set on the right. This means that the first row of P (π) is
of length ≥ k. To construct an equivalent permutation that contains the consecu-
tive pattern, apply the inverse RSK-correspondance to the tableaux-pair (P (π), Q)
where Q is filled in trivially (by reading from left to right, the top row first). �

Proposition 5.6. For k ≥ 1 we have that the pattern p = 1 2···k
1 2···k gives

Ãn (p) = permutations whose insertion tableu does not start with p

these are permutations whose longest increasing subsequence is of length less than
k.

Proof. Similar to the proof above. �
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Open Problem 3. The count for the permutations above seems to be given by
n!− n!

k! for k ≥ n. Prove this.

Proposition 5.7. For k ≥ 1 we have that the pattern p = 1 2···k
1 2···k satisfies

Ãn (p) = An(p).

For n = 1, . . . , 7 we get the sequences A000004 (zero sequence), A000012 (the 1’s
sequence), A049774, A117158, A177523, A177533, A177553. These sequences have
been studied in by Hardin (2010)

Proof. We obviously have Ãn (p) ⊆ An(p), so assume π is a permutation that
is not in the set on the left. Let π′ be an equivalent permutation that contains
the pattern. This means that there is a row of P (π′) that contains the sequence
`, ` + 1, . . . , ` + k − 1 in adjacent boxes. Since P (π) = P (π′) we see that π must
also contain the pattern. �

Corollary 5.8. The pattern p = 1 2···k
1 2···k is stable for k ≥ 1.

Proof. Since p̃ = {p} for these patterns the result follows from Proposition 5.7. �

Proposition 5.9. The pattern p = 231 gives

Ãn (p) = permutations with hook-shaped insertion tableaux, filled in trivially

|Ãn (p) | = 1, 2, 4, 8, 16, 32, 64, 128, 256 . . . , n = 1, 2, 3, . . .

which is A000079: 2n−1.

Before we start proving this we make a technical definition for convenience:

Definition 5.10. Let p be a pattern. Given an occurrence of p in a permutation
π we define the area of the occurrence as the distance from the first letter in the
occurrence to the last. A minimal occurrence of a pattern p in a permutation π is
an occurrence of p with the least possible area.

Proof. We begin by showing that the permutations in the set on the left are exactly
the permutations that avoid 231 and 213. Then (Reifegerste, 2004, Proposition 5.3)
implies the result.

Now, let π be a permutation belonging to the set on the left. We need to show
that π avoids the pattern 213. First note that π must avoid the pattern 2 1 3 since
an occurrence of 2 1 3 can be changed into an occurrence of 2 3 1 by an elementary
transformation. It therefore suffices to show that an occurrence of 213 can be
changed into an occurrence of 2 1 3 by elementary transformations. Let

π = · · · x̌ · · · y̌ · · · ž · · ·
be a minimal occurrence of 213; so y < x < z, every letter w between x and y
satisfies w > z and every letter w between y and z satisfies y < w < x. Now any
w between x and y with w > z would give an occurrence of 231 so x and y are
actually adjacent. If y and z are adjacent we are done, otherwise let w be the first
letter to the left of y.

π = · · · x̌y̌w · · · ž · · · .
We can swap x and y by an elementary transformation and we still have an occur-
rence of 213

π ≡ · · · yx̌w̌ · · · ž · · · ,
and the number of letters between w and z is now one less than the number of letters
that were between y and z in π. We can now perform elementary transformations
until we have gotten rid of all the letters between x and z, but one, and this will
be an occurrence of 2 1 3.
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Now let π be a permutation belonging to the union on the right. We need to
show that any permutation Knuth-equivalent to π also avoids 231. It suffices to
consider a permutation ρ that differs from π by one elementary transformation. We
must look at two cases:

(1)

ρ = · · ·xyz · · · ≡ · · · yxz · · · = π,

with x < z < y. If ρ has an occurrence of 231 then it would either have to
be

ρ = · · · x̌yž · · · w̌ · · · ,
or

ρ = · · · x̌y̌z · · · w̌ · · · .
The first scenario would immediately give an occurrence of 231 in π, which
is a contradiction, and the second scenario we would have also get an oc-
currence of 231:

π = · · · yx̌ž · · · w̌ · · · .
(2)

ρ = · · · zxy · · · ≡ · · · zyx · · · = π,

This case is similar to the previous one and left to the reader. �

Corollary 5.11. Every classical pattern in S3 is stable.

Proof. The case p = 123 follows from Proposition 5.4 and the proof of the Proposi-
tion above implies the case p = 231. By taking reverse and complement and using
Proposition 2.8 we get the rest of S3. �

We will need an obvious lemma regarding hook-shaped tableaux in the proof of
the next proposition:

Lemma 5.12. If the tableau P (π) is hook-shaped then in each step of it’s construc-
tion when an element is bumped from row i, it is smaller than the current element
in row i+ 1.

Proposition 5.13. The pattern p = 1 2 3
2 3 1 gives

Ãn (p) = permutations with hook-shaped insertion tableaux

with 2 in the first row, as well as idr,

|Ãn (p) | = 1, 2, 4, 11, 36, 127, 463, 1717, 6436 . . . , n = 1, 2, 3, . . . 9

which is (from n = 3) A112849: Number of congruence classes (epimorphisms/vertex
partitionings induced by graph endomorphisms) of undirected cycles of even length:
|C(C2n)|. See Michels and Knauer (2009).

Proof. Assume π is not in the set on the left, and let π′ be an equivalent permutation
that matches the pattern. We can write

π′ = · · · j · · · k · · · 1 · · · , j ≤ k.

We can assume that j and k are adjacent. If 2 appears before 1 in π′ then it will
be bumped from the first row (by 1), and then π′ and π would not be in the set on
the right. So assume that 2 appears after 1. Then the tableaux P (π′) = P (π) will
not be hook-shaped by Lemma 5.12.

Now assume π is not in the set on the right. We need to look at two cases:
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(1) 2 is not in the first row of P (π). This means that 1 appears after 2 in π. If
1 and 2 are not adjacent in π then we get an occurrence of the pattern so
we can assume that they are adjacent. If the block 21 is not at the end of
the permutation then an elementary Knuth-swap can be made to produce
the pattern, so we can assume that π = · · · 21. It is now clear that π avoids
the pattern if and only if π = idr.

(2) Now assume that that P (π) is not hook-shaped. The permutation we get
from

P (π),

1 2 · · · ·
3 4 · ·
· ·
·
·

by the RSK-correspondence will be equivalent to π. It is easy to see that
it will contain the pattern. �

Michels and Knauer (2009) give a formula for their sequence:

1 +
1

2

(
2n− 3

n− 2

)
+

1

2

(
2n− 3

n− 1

)
.

It is more natural to count the tableaux that appear with

1 +

n∑
i=2

(
n− 2

i− 2

)
·
(
n− 1

i− 1

)
= 1 +

1

n− 1

2∑
i=2

(i− 1)

(
n− 1

i− 1

)2

= 1 +
1

2

(
2n− 2

n− 1

)
,

which gives the same numbers as their formula.

Open Problem 4. Find a bijection between the permutations above and the class
enumerated in Michels and Knauer (2009).

5.4. Pattern matching. Before moving to the next equivalence we state and prove
a result on equivalence classes that contain only permutations matching a certain
pattern.

Proposition 5.14. The pattern p = 1 2
1 2 gives

M̃n (p) = permutations of the form (n− 1)ρ where ρ avoids 123

|M̃n (p) | = 1, 2, 5, 14, 42, 132, 429, 1430, . . . , n = 2, . . .

which is A000108 in OEIS, the Catalan numbers, except this is shifted, so we get 2
permutations in S3, for example.

Proof. The enumeration is obvious if we can prove the equality of the two sets.
Assume that π is not in the set on the left, and that π does start with n − 1. We
can find a π′, equivalent to π, that does not match the pattern, and we can assume
that π′ is just one elementary swap from π. We have

π = (n− 1)k` · · ·n · · ·
π′ = k(n− 1)` · · ·n · · · ,

where k < ` < n− 1 (we can not have k, ` = n). Then π contains 123.
Now assume that π is not in the set on the right and that π starts with n − 1.

Since π contains the pattern 123 we see that the first row of P (π) has at least three
boxes. The equivalent permutation we get from RSK of

P (π),

1 2 · · · k
· ·
· ·
·
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does not start with n− 1, so π is not in the set on the left. �

It is well-known that the Catalan numbers enumerate tableaux of shape (2, n)
so that explains what tableaux appear above.

6. Toric equivalence

I learned about this equivalence relation from Anthony Labarre, who responded
to my question on MO (2010).

If λ is a circular permutation of J0, nK then λ◦ denotes the permutation in Sn

we get by reading λ from 0. E.g., if λ = 130254 then λ◦ = 25413.
Our definition of toric equivalence follows Eriksson et al. (2001), but as noted

there, an equivalent class of objects was studied by Steggall (1907). Here the rela-
tion can be roughly viewed as declaring two permutations to be equivalent if their
permutation matrices become equal when they are wrapped around a torus. More
precisely, given a permutation π of Sn we define π◦ as the circular permutation 0π
of J0, nK. Then for any m = 0, 1, . . . , n we define a new circular permutation

π◦ ⊕m = (0 +m)(π1 +m)(π2 +m) · · · (πn +m) mod (n+ 1).

(Here every letter is reduced modulo n+ 1). It is also convenient to define

π ⊕m = (π◦ ⊕m)◦.

Then the toric class of the original permutation π is defined as the set

π◦◦ = {π ⊕m |m = 0, 1, . . . , n}.

Example 6.1. Let π = 1243. Then π◦ = 01243 and

π◦ ⊕ 0 = 01243, π◦ ⊕ 1 = 12304, π◦ ⊕ 2 = 23410,

π◦ ⊕ 3 = 34021, π◦ ⊕ 4 = 40132.

The toric class of π is π◦◦ = {1243, 4123, 2341, 2143, 1324}.

6.1. Symmetry.

Lemma 6.2. If λ is a circular permutation of J0, nK and π, ρ are two representa-
tions then πi ≡ ρi.

Note that when we take the complement of a permutation of J0, nK (modulo
n+ 1) then 0 and stays fixed, and it is the only letter that does so if n is even; if n
is odd then (n+ 1)/2 also stays fixed.

Lemma 6.3. For any permutation π of J1, nK we have:

(1) Taking reverse commutes with the ◦-operator:

(πr)◦ ≡ (π◦)r, or equivalently ((π◦)r)◦ = πr.

Also, for any circular permutation λ of J0, nK we have

λr ⊕m ≡ (λ⊕m)r.

(2) Taking complement commutes with the ◦-operator:

(πc)◦ ≡ (π◦)c, or equivalently ((π◦)c)◦ = πc.

Also, for any circular permutation λ of J0, nK we have

λc ⊕m ≡ (λ	m)c.
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(3) Taking inverse commutes with the ◦-operator:

(πi)◦ ≡ (π◦)i, or equivalently ((π◦)i)◦ = πi.

Also, for any circular permutation λ of J0, nK we have

λi ⊕ x ≡ (λ⊕ 1)i,

where x is the distance (counter-clock-wise) from n to 0 in λ. More gener-
ally, we have

λi ⊕mx ≡ (λ⊕m)i,

where x has the same value as above.

Proof. Parts (1) and (2) are left to the reader, and we only prove part (3). It
suffices to prove that part in the case m = 1 as the other cases can be deduced
by induction. The first element after 0 on the right-hand side is the location of 1
(from 0) in λ⊕ 1. This equals the location of 0 (from n) in λ.

The first element after 0 on the left-hand side equals (the first element after
n+ 1− x in λi)+x. Now the first element after n+ 1− x in λi records the location
of the element in λ that is one larger than the element at location n+ 1− x. But
the element at location n+ 1− x is n, so the first element after n+ 1− x records
the location of 0, which is at location 0. When we add x to this we get x back.
This argument generalizes to every location from 0. �

Example 6.4. Let λ = 04372156. Here the distance from n to 0 is x = 5. Then
λ ⊕ 1 = 15403267 and (λ ⊕ 1)i = 63405217. This is the right-hand side of part
(3) above. To calculate the left-hand side we first have λi = 05421673 and then
λi ⊕ 5 = 52176340.

Some of the equations in Lemma 6.3 are also true when regarding the permutations
as usual permutations of J0, nK, and not just as circular.

Proposition 6.5. Let a be any composition of the operations r, c, i. The permuta-
tions π and µ in Sn are torically equivalent if and only if πa and µa are torically
equivalent.

Proof. It clearly suffices to prove this for a ∈ {r, c, i}, and since any such a is its
own inverse, it suffices to prove just one direction.

We start with a = r. Since π and µ are torically equivalent there exists m ∈ J0, nK
such that π◦ ⊕m = µ◦. But by Lemma 6.3, part (1), we have

(πr)◦ ⊕m ≡ (π◦)r ⊕m ≡ (π◦ ⊕m)r ≡ (µ◦)r ≡ (µr)◦,

so πr and µr are torically equivalent.
Now consider a = c. Since π and µ are torically equivalent there exists m ∈ J0, nK

such that π◦ ⊕m = µ◦. But by Lemma 6.3, part(2), we have

(πc)◦ 	m ≡ (π◦)c 	m ≡ (π◦ ⊕m)c ≡ (µ◦)c ≡ (µc)◦,

so πr and µr are torically equivalent.
Now consider a = i. Since π and µ are torically equivalent there exists m ∈ J0, nK

such that π◦ ⊕m = µ◦. Let x be the distance (counter-clock-wise) from n to 0 in
π◦. Then by Lemma 6.3, part(3), we have

(πi)◦ ⊕mx ≡ (π◦)i ⊕mx ≡ (π◦ ⊕m)i ≡ (µ◦)i ≡ (µi)◦,

so πr and µr are torically equivalent. �

Then Proposition 2.5 implies the following theorem.

Theorem 6.6. Let a be a composition of elements from the set {r, c, i}. Then

a : Ãn (p)→ Ãn (pa) is a bijection for all n.
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We further define, for a pattern p = (p,X, Y ), of rank r, such that the letter r
is at position ` in p (so ` equals the last letter of pi)

p⊕ 1 = (p⊕ 1, X ⊕ (r + 1− `), Y ⊕ 1) = (p⊕ 1, X 	 `, Y ⊕ 1),

where the addition on the sets is done modulo r + 1 as usual. Here is the reason
for making this definition:

Example 6.7. Let π = 76128543 and

p = (3421, {2, 3}, {1, 2, 4}) = 1 2 3 4
3 4 2 1.

Then π has an occurrence of p shown here 76128543. Now π ⊕ 1 = 65418723 has
an occurrence of

p⊕ 1 = (3214, {0, 1}, {0, 2, 3}) = 12 3 4
3 21 4

shown here 65418723.

This example is a special case of the following:

Proposition 6.8. Let p = (p,X, Y ) be a pattern of rank r such that r ∈ Y . The
permutation π avoids the pattern p if and only if the permutation π ⊕ 1 avoids the
pattern p⊕ 1.

Proof. Assume the permutation π contains the pattern p. Then when we add 1
modulo n+ 1 the permutation and the pattern are split up and reassembled at the
same spot, so the permutation π ⊕ 1 will contain p⊕ 1. Reverse this argument to
show the other implication. �

The last Proposition gives a new way to prove Wilf-equivalences for bivincular
patterns:

Corollary 6.9. Let p = (p,X, Y ) be a pattern of rank r such that r ∈ Y . The map

⊕1: An(p)→ An(p⊕ 1)

is a bijection, and Ãn (p) = Ãn (p⊕ 1).

This can be iterated as long as we have r ∈ Y and also combined with the basic
symmetries as the following Example shows.

Example 6.10.

(1) Consider the two patterns

p = (12,∅, {0, 2}) = 12
1 2 , q = (12,∅, {0, 1}) = 1 2

1 2

that were shown to be Wilf-equivalent in (Parviainen, 2009, subsection 3.4).
This can not be done only in terms of the basic symmetries, but follows from
p⊕ 1 = q.

(2) Consider the two patterns

p = (132,∅, {0, 1, 2}) = 1 2 3
1 3 2, q = (132,∅, {0, 2, 3}) = 12 3

1 3 2

that were shown to be Wilf-equivalent in (Parviainen, 2009, subsection
5.17). This can not be done only in terms of the basic symmetries, but
using the ⊕1 map we get

(pc ⊕ 1)r = ((312,∅, {1, 2, 3})⊕ 1)r = (231,∅, {0, 2, 3})r

= (132,∅, {0, 2, 3}) = q.
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(3) Consider the two patterns

p = (123, {0}, {0, 3}) = 12 3
12 3, q = (123, {1}, {0, 1}) = 1 23

1 2 3

that were shown to be Wilf-equivalent in (Parviainen, 2009, subsection
5.18). This can not be done only in terms of the basic symmetries, but
follows from p⊕ 1 = q.

(4) Here is an example showing that we really need to have r in Y . Let p =
1 3 2 4 = (1324, {2},∅). Then p⊕ 1 = (1243, {3},∅) = 1 2 4 3 and

|A6(p)| = 549, |A6(p⊕ 1)| = 550.

(5) The patterns in Example 6.7 above are Wilf-equivalent by Corollary 6.9
and this is very likely a new result (since to my knowledge the question of
Wilf-equivalence of bivincular patterns has only been considered up to length
3).

Although the ⊕1 map isn’t as useful when we don’t have rank(p) in the vertical
set it still gives us:

Lemma 6.11. Fix an occurrence of a bivincular pattern p in a permutation π.
Assume p has rank r and let k be the letter in the occurrence that corresponds to
r. Then the permutation π 	 k contains p⊕ 1.

Theorem 6.12. For any pattern p we have Ãn (p) ⊆ An (p̃)

Proof. Assume π is not in the set on the right, so π contains a pattern p′ that is
torically equivalent to p. We can assume that p = p′ ⊕ 1. By Lemma 6.11 we see
that a permutation π′ that is torically equivalent to π contains p. This shows that
π is not in the set on the left. �

This theorem will be crucial when we prove Theorems 6.27, 6.28, 6.31 below.

6.2. Number and size of classes. The number of equivalence classes in Sn are

1, 2, 3, 8, 24, 108, 640, 4492, . . . n = 0, 1, 2, 3, . . . .

This is A002619: Number of 2-colored patterns on an (n+1)×(n+1) board. Instead
of proving that this is indeed true, let us prove a stronger result, that enumerates
the number of classes of a particular size:

For each n we can write n! =
∑

(number of classes of size i) · i. For n = 1, . . . , 8
this gives us the following equations,

1! = 1 · 1,
2! = 1 · 2,
3! = 1 · 2 + 4 · 1,
4! = 1 · 4 + 5 · 4,
5! = 1 · 2 + 2 · 2 + 3 · 2 + 6 · 18,

6! = 1 · 6 + 7 · 102,

7! = 1 · 4 + 2 · 2 + 4 · 10 + 8 · 624,

8! = 1 · 6 + 3 · 10 + 9 · 4476.

The following theorem gives us a way to explain the number that appear above,
i.e., how many classes of size i there are.

Theorem 6.13. The number of classes in Sn of size k is

1

(n+ 1)k

∑
d|k

µ(d)U(n+ 1,
k

d
)
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if k|(n+ 1) but zero otherwise. Here U(n+ 1, `) = φ(n+1
l )
(
n+1
l

)`
`!

Before proving this, say that a a permutation π in Sn is cyclically invariant
under ⊕k if π and π ⊕ k are the same when considered as circular permutations.

Proof. Everything needed to prove this is in Steggall (1907), except the last step
where we apply the Möbius inversion formula. We also adapt Steggall’s arguments
to our notation. Steggall showed that the number of permutations in Sn that are
cyclically invariant under ⊕k is

U(n, k) =

{
φ(nk )

(
n
k

)k
k! if k|n,

0 otherwise.

This number includes permutations that are cyclically invariant under ⊕d, where d
is factor of k. Let u(n, d) count the permutations that are cyclicly invariant under
d, but no smaller factor. We therefore have

U(n, k) =
∑
d|k

u(n, d).

Steggall inverts this formula, writing u(n, d) in terms of U(n, k) for some special
cases. We can combine these by applying the Möbius inversion formula

u(n, k) =
∑
d|k

µ(d)U(n,
k

d
),

where µ is the Möbius function. We now have a formula that counts the number of
permutations in Sn that are cyclically invariant under ⊕k and no smaller factor.
Turning these into cyclic permutations their number is u(n, k)/n and the action of
⊕1 breaks this set into orbits of size k, each one corresponding to a toric class of
size k in Sn−1. �

Here is the array we get by calculating a few values of the number of classes in
Sn, starting from n = 0:

1
1 0
2 0 0
2 0 0 1
4 0 0 0 4
2 2 2 0 0 18
6 0 0 0 0 0 102
4 2 0 10 0 0 0 624
6 0 10 0 0 0 0 0 4476

It is easy to verify that for k = 1 we get φ(n + 1) classes of size 1 from the
formula in Theorem toricthm:fromSteggall. The permutations that lie in these one
element classes will be important later; see Lemma 6.24 below, which gives another
proof of the enumeration of these classes.

I should note that in Vella (2002/03) toric classes appear in a disguise as (n+1)-
orbits. The author shows that the total number of these orbits is

1

(n+ 1)2

∑
kp=n+1

φ(p)2k!pk,

by the orbit counting lemma. This gives A002619 in OEIS, and is equal to the row
sums of the array above.

6.3. Pattern avoidance.
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Patterns and modular sequences. A modular k sequence is sequence of letters `1, `2, . . . , `k
such that `i+1 = `i + 1 mod (n+ 1).

Proposition 6.14. If p = 1
1 then the set Ãn (p) is equinumerous with the set C ′J0,nK

of circular permutations of J0, nK that have no modular 2-sequences, i.e., i is never
followed by i+ 1 mod (n+ 1).

Modular 2-sequences are sometimes called successor pairs. The enumeration
corresponds to sequence A000757:

0, 1, 1, 8, 36, 229, 1625, 13208, . . . , n = 1, 2, 3, . . . .

Proof. We will construct a bijection between Ãn (p) and the set of circular permu-
tations of J0, nK without successor pairs. We do this as follows:

f : Ãn (p)→ C ′J0,nK

We let f(π) = π◦ = 0π. We first need to show that the image of f is in the set
on the right. So assume f(π) has a successor pair, i(i + 1) mod (n+ 1). Then
(f(π) ⊕ (n + 1 − i))◦ is torically equivalent to π and starts with 1, but that is
impossible, since all permutations torically equivalent to π avoid p = (1, {0}, {0}).

Now there is a map in the other direction g(λ) = λ◦. A similar argument to the
one above shows that the image of g is actually in the set on the left. The maps
are obviously inverses of each other so we are done. �

Proposition 6.15. If p = 1 2
1 2 then the set Ãn (p) is equinumerous with the set

C ′′J0,nK of circular permutations of J0, nK that have no modular 3-sequences, i.e., i is

never followed by i+ 1 and i+ 2 mod(n+ 1).

The enumeration is

|Ãn (p) | = 1, 1, 5, 18, 95, 600, 4307, 35168, (n = 1, 2, 3, 4, 5, 6, 7, 8).

This corresponds to sequence A165962.

Proof. We will construct a bijection between Ãn (p) and the set of circular permu-
tations of J0, nK without modular 3-sequences. We do this as follows:

f : Ãn (p)→ C ′′J0,nK

We let f(π) = π◦ = 0π. We first need to show that the image of f is in the set on
the right. So assume f(π) has a modular 3-sequence, i(i + 1)(i + 2) mod (n+ 1).
Then (f(π)⊕ (n+ 1− i))◦ is torically equivalent to π and starts with 12, but that
is impossible, since all permutations torically equivalent to π avoid p.

Now there is a map in the other direction g(λ) = λ◦. A similar argument to the
one above shows that the image of g is actually in the set on the left. The maps
are obviously inverses of each other so we are done. �

It then turns out that you can keep going (the proof is an easy generalization of
the proofs above and we omit it):

Proposition 6.16. For k ≥ 1, let p = 1 2···k
1 2···k. The set Ãn (p) is equinumerous with

the set of circular permutations of J0, nK that have no modular (n+ 1)-sequences.
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Patterns with connections to number theory. Before we look at the next pattern we
have some definitions to make.

Definition 6.17. Let n ≥ 1 be fixed.

(1) For any k coprime to n+1 we define a permutation νk,n first by constructing
a circular permutation λk,n of J0, nK as follows: Place 0 anywhere, then place
1 by moving k steps from 0 (so there are k − 1 empty positions between
0 and 1), then place 2 by moving k steps from 1 and keep going until you
place n. Then define νk,n = (λk,n)◦. We call the permutation constructed
in this way the natural permutation (corresponding to k) in Sn.

(2) If k is a divisor of n we write δk|n = νk,n and call δk|n the divisor permutation
(corresponding to k|n) in Sn.

The condition that k be coprime to n + 1 is a necessary and sufficient con-
dition for constructing νk,n. The reason for calling these permutations natural
is that the permutation νk,n behaves like the natural number k when multiplied
with other natural permutations (see Proposition 6.25 below). The construction of
the natural permutations is slightly reminiscent of the Josephus problem, see e.g.,
Shams-Baragh (2002).

Example 6.18. Let n = 6. The coprime integers to n+ 1 = 7 are 1, 2, 3, 4, 5 and
6. We construct λ1,6 as follows:

0 = 01 = 012 = · · · = 0123456,

so ν1,6 = 123456 = δ1|6. Next we construct λ2,6:

0 = 0 1 = 0 1 2 = 0 1 2 3 = 041 2 3 = 04152 3 = 0415263,

so ν2,6 = 415263 = δ2|6. Similarly we get

ν3,6 = 531642 = δ3|6,

ν4,6 = 246135,

ν5,6 = 362514,

ν6,6 = 123456 = δ6|6.

Below we give list of all the natural permutations in S1 to S10

Note that by definition the location of 1 in νk,n and δk|n is k, or equivalently,
the first letter of inverse of these permutations is k. They also have other good
properties:

Lemma 6.19.

(1) For a natural permutation ν = νk,n the difference between subsequent let-
ters,

j = ν(`+ 1)− ν(`)

is independent of ` and equals the first letter of ν.
(2) If ν is a divisor permutation then j = −n/k mod (n+ 1). In general this

difference is the smallest positive integer j such that kj = 1 mod (n+ 1).

Proof. (1) The letter that lands at ` equals

`+ (n+ 1)s`
k

where s` is chosen as the least integer to make this an integer. The letter
that lands at `+ 1 equals

`+ 1 + (n+ 1)s`+1

k
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where s`+1 is chosen as the least integer to make this an integer. The
difference is

1− (n+ 1)(s`+1 − s`)
k

which is independent of `. This difference must equal the first letter since
if we add 0 at the front the difference is the same as the first element.

(2) This can be done by examining the difference above: If k|n then we choose
s`+1 = s` − 1 and the difference becomes n/k. The general case is similar.

�

In view of the last Lemma we will call the first letter of a natural permutation
ν the increment of the permutation and denote it by jν or just j if there are no
other natural permutations around.

Lemma 6.20.

(1) νr
k,n = νn+1−k,n = νc

k,n.

(2) νi
k,n = νj,n, where j is the increment of νk,n.

Proof. This follows directly from Definition 6.17 and Lemma 6.19. Note that k is
coprime to n+ 1 if and only if n+ 1− k is coprime to n+ 1. �

Lemma 6.21. Let ν = νk,n be a natural permutation.

(1) ν1 + νn = n+ 1.
(2) If k|n then νn = n/k, and in general νn = −j mod (n+ 1), where j is the

increment of ν.

Proof. Note that νn = (νr)1 and the first letter of νr is the smallest positive solution
of (n+ 1− k)x ≡ 1 mod (n+ 1). Clearly this is n+ 1− j. �

Lemma 6.22. If δk|n is a divisor permutation then it consists of k increasing
subsequences of length n/k. These sequences are

1, 2, . . . , n/k,

n/k + 1, n/k + 2, . . . , 2n/k,

. . . ,

n− n/k + 1, n− n/k + 2, . . . , n.

They lie inside the permutation in such a way that the `-th one starts at k − `+ 1
and is placed at locations k − `+ 1 + dk, where d = 0, . . . , n/k − 1.

Proof. This is obvious from the construction of the divisor permutations. �

Example 6.23. Consider the divisor permutation

δ3|12 = 951(10)62(11)73(12)84,

it consists of 3 increasing subsequences of lenght 12/3 = 4. We underline the second
one.

Lemma 6.24. The natural permutations are the permutations with a toric class of
size 1.

Proof. It is easy to see from the construction of the natural permutations that they
have a toric class of size 1. So assume π is a permutation with toric class size 1,
which is equivalent to π ⊕ 1 = π, which is equivalent to π◦ ⊕ 1 ≡ π◦. Now let ` be
the distance between 0 and 1 in π◦. This becomes the distance between 1 and 2
in π◦ ⊕ 1 = π◦. By iterating this we have shown that the distance between k and
k + 1 mod (n+ 1) is fixed. This implies that π is a natural permutation. �
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Proposition 6.25. The natural permutations multiply like the natural numbers
modulo n+ 1, i.e., νk, n ◦ νk′,n = νkk′,n, where kk′ has been reduced modulo n+ 1.

Proof. This is easy to see using the increment. �

Example 6.26. For example

δ2|6 ◦ δ2|6 = ν4,6 and ν4,6 ◦ ν5,6 = δ6|6.

Proposition 6.27. The set Ãn (213) consists of the identity and its reverse.

Proof. It is clear that the identity and its reverse are in this set. By Theorem 6.12
a permutation in this set must avoid the classical patterns 2−1−3, 1−3−2, 3−1−2
and 2−3−1, so the only possibilities are the identity and its reverse. �

Theorem 6.28. Let p = 1 2 3
2 1 3. The set Ãn (p) consists of the natural permutations

in Sn. In particular

|Ãn (p) | = φ(n+ 1),

where φ is Euler’s totient function, and the map νk,n 7→ k, Ãn (p) → Un+1 is a
homomorphism of groups, where Un+1 is the group of units in Z/(n+ 1)Z.

Proof. We start by showing that the natural permutations avoid this pattern. Fix
such a permutation ν = νk,n with k coprime to n+ 1. It suffices to show that given
an integer 2 ≤ ` ≤ n− 1 such that `− 1 occurs after ` in the permutation, then n
appears before `− 1. Let j be the increment of ν so we can write

ν = j, 2j, 3j, . . . ,mj, . . . , (m+ h)j, . . . , nj mod (n+ 1)

where mj = ` mod (n+ 1) and (m+ h)j = `− 1 mod (n+ 1). Then we must have
hj = −1 mod (n+ 1) which implies hj = n mod (n+ 1) so n is at location h in ν
and therefore appears before `− 1.

We must now show that any permutation that avoids this pattern must be a
natural permutation. This relies on Lemmas 6.29 and 6.30. They show that π =
x(2x)(3x) · · · and is therefore natural. �

Lemma 6.29. If π is in the set Ãn

(
1 2 3
2 1 3

)
and π = x · · · 1y · · · then y = 1 +

x mod (n+ 1).

Proof. Note that if x = n then π = idr, so we can assume that x 6= n. Assume
y 6= 1 +x mod (n+ 1). Then 1 +x must appear after y in π, otherwise we have the
pattern p⊕ 3.

0x

1
y···

·
·
·
· ·

·
·

1 + x

Figure 1. The circular permutation π◦.

Consider what values y could take. It can not be 2 since that would produce the
pattern in p⊕ 1 in π 	 1. It can not be 3 since that would mean 2 was between x
and 1 in π and π 	 2 would contain p ⊕ 1. Similarly for any k < x we can show
y 6= k. Therefore we must have y > 1 +x. If y = 2 +x then 1, 2 +x, 1 +x in π give
the pattern p ⊕ 1. The letter 2 + x must therefore be between 1 + x and 0 in π◦

above. We can now see that y can not be 3 + x either. By induction we can show
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that y can not be any letter larger than 1 + x. This gives us a contradiction so we
must have y = 1 + x. �

Lemma 6.30. If π is in the set Ãn

(
1 2 3
2 1 3

)
and π = x · · · zy · · · then y = z +

x mod (n+ 1).

Proof. We do this by induction on z. This is known for z = 1 from Lemma 6.29.
Assume it is true for z − 1 and consider π = x · · · zy · · · . Then π 	 1 = · · ·n(x −
1) · · · (z − 1)(y − 1) · · · . This permutation must then start with y − z. So in π we
have · · · 1(y−z+1) · · · . But π starts with x so we get y−z+1 = 1+x or y = z+x
as we wanted. �

Theorem 6.31. Let p = 1 2 3
2 1 3. The set Ãn (p) consists of the divisor permutations

in Sn. In particular

|Ãn (p) | = d(n),

where d(n) counts the number of divisors in n.

Proof. If a divisor permutation contains the pattern 1 2
2 1 then the letter correspond-

ing to 1 must be at the end of a subsequence and the letter corresponding to 2 at
the start of the next subsequence (see Lemma 6.22). But everything after the end
of a subsequence is smaller than the elements in the subsequence so the pattern can

not be completed to 1 2 3
2 1 3. Since a divisor permutation is alone in its toric class we

are done.
Now suppose we have a permutation that is in the set on the left. Then it must

be a natural permutation, νk,n, by Theorem 6.28. To finish the proof we need
to show that k|n. Suppose not. Then the first subsequence in νk,n consisting of
1, 2, 3, . . . ` does not terminate at the last position of the permutation, meaning that
something larger than ` appears there. This clearly gives us an occurrence of the
pattern, which is a contradiction. �

Recall that the location of 1 in νk,n and δk|n is k, or equivalently, the first letter
of inverse of these permutations is k. This property combined with Theorem 6.31
gives us a way to write the sum-of-divisors function σ(n) as

σ(n) =
∑

δ∈Ãn

(
1 2 3
2 1 3

)(location of 1 in δ).

Now consider the following theorem due to Robin (1984).

Theorem 6.32 (Robin’s theorem). Let σ(n) denote the sum of the divisors of n.
The Riemann Hypothesis is true if and only if

σ(n) < eγ log log n,

holds for all n ≥ 5041. Here γ is the Euler-Mascheroni constant.

This allows us to state the Riemann Hypothesis in terms of pattern avoidance:

Conjecture 6.33 (Equivalent to RH). The inequality∑
δ∈Ãn

(
1 2 3
2 1 3

)(location of 1 in δ) < eγ log log n,

holds for all n ≥ 5041.
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The largest known n for which the inequality in Robin’s theorem is violated is
5040, so it suffices to start exploring in S5041. I should mention that permutations
have been shown before to have connections with the Riemann Hypothesis, for
example using the Redheffer matrix in Wilf (2004/06), probabilistic methods in
Aldous and Diaconis (1999) (see also Stopple), and group theory in Massias et al.
(1988).

Natural permutations in S1 to S10. In S1 we have

ν1,1 = 1 = δ1|1

In S2 we have

ν1,2 = 12 = δ1|2

ν2,2 = 21 = δ2|2

In S3 we have

ν1,3 = 123 = δ1|3

ν3,3 = 321 = δ3|3

In S4 we have

ν1,4 = 1234 = δ1|4

ν2,4 = 3142 = δ2|4

ν3,4 = 2413

ν4,4 = 4321 = δ4|4

In S5 we have

ν1,5 = 12345 = δ1|5

ν5,5 = 54321 = δ5|5

In S6 we have

ν1,6 = 123456 = δ1|6

ν2,6 = 415263 = δ2|6

ν3,6 = 531642 = δ3|6

ν4,6 = 246135

ν5,6 = 362514

ν6,6 = 654321 = δ6|6

In S7 we have

ν1,7 = 1234567 = δ1|7

ν3,7 = 3614725

ν5,7 = 5274163

ν7,7 = 7654321 = δ7|7

In S8 we have

ν1,8 = 12345678 = δ1|8

ν2,8 = 51627384 = δ2|8

ν4,8 = 75318642 = δ4|8

ν5,8 = 24681357

ν7,8 = 48372615

ν8,8 = 87654321 = δ8|8
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In S9 we have

ν1,9 = 123456789 = δ1|9

ν3,9 = 741852963 = δ3|9

ν7,9 = 369258147

ν9,9 = 987654321 = δ9|9

In S10 we have

ν1,10 = 123456789(10) = δ1|10

ν2,10 = 61728394(10)5 = δ2|10

ν3,10 = 4815926(10)37

ν4,10 = 369147(10)258

ν5,10 = 97531(10)8642 = δ5|10

ν6,10 = 2468(10)13579

ν7,10 = 852(10)741963

ν8,10 = 73(10)6295184

ν9,10 = 5(10)49382716

ν10,10 = (10)987654321 = δ10|10

7. Other equivalence relations

I have looked at many other equivalence relations besides the one we study above.
Below are just two conjectures concerning two of them.

Conjecture 7.1. Regard two permutations as equivalent if their descents appear
at the same positions. The pattern p = 321 gives

Ãn (p) = Grassmannian permutations

|Ãn (p) | = 1, 2, 5, 12, 27, 58, 121, 248, 503, . . . , n = 1, 2, 3, . . .

= 2n − n.
This is A000325.

Recall that a Grassmannian permutation has at most one descent

Conjecture 7.2. Regard two permutations as equivalent if they give the same
volume partition, see Young (2010). The pattern p = 1 2 3

1 2 3 gives

|Ãn (p) | = 1, 2, 5, 18, 84, 480, 3240, 25200, . . . , n = 1, 2, 3, . . .

which is (from n = 2) A038720: Next-to-last diagonal of A038719, which counts
chains in a specific poset.
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