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TWO NEW INTERPRETATIONS OF THE FISHBURN NUMBERS AND
THEIR REFINED GENERATING FUNCTIONS

PAUL LEVANDE

Abstract. We show that two classes of combinatorial objects–inversion tables with no
subsequence of decreasing consecutive numbers and matchings with no 2-nestings–are enu-
merated by the Fishburn numbers. In particular, we give a simple bijection between match-
ings with no 2-nestings and inversion tables with no subsequence of decreasing consecutive
numbers. We then prove using the involution principle that inversion tables with no subse-
quence of decreasing consecutive numbers have the same generating function as the Fishburn
numbers. The Fishburn numbers have previously been shown by Bousquet-Mélou, Claesson,
Dukes and Kitaev to enumerate (2+2)-avoiding posets, matchings with no left- or right-
nestings, permutations avoiding a particular pattern, and so-called ascent sequences, and
by Dukes and Parviainen to enumerate upper triangular matrices with non-negative entries
and no empty rows or columns. Claesson and Linusson conjectured they also enumerated
matchings with no 2-nestings. Using these new interpretations of the Fishburn numbers
and another version of the involution, we prove the conjectured equality (also proven using
matrices by Jeĺınek and by Yan) of two refinements by Remmel and Kitaev of the Fishburn
generating function. In an appendix, we state and prove another conjecture of Claesson and
Linusson giving the distribution of left-nestings over the set of all matchings.

1. Introduction

It is well-known that the famous Catalan numbers Cn enumerate, among many other
classes of combinatorial objects, non-crossing and non-nesting matchings on [2n], where a
matching is an involution with no fixed points, or a partition of [2n] into disjoint pairs, and
a nesting in a matching X is a pair of pairs (a, b), (c, d) ∈ X such that a < c < d < b.
A superset of the set of non-nesting matchings on [2n] is the set of non-neighbor-nesting
matchings on [2n], where a neighbor nesting is a nesting (a, b), (c, d) ∈ X such that either
c = a + 1 or d = b− 1. Zagier [11], following Stoimenow [9], showed:

∞∑

n=0

fnt
n = 1 +

∞∑

m=1

m∏

i=1

(1− (1− t)i)(1)

where fn is the number of non-neighbor-nesting matchings on [2n]. Recently, Bousquet-
Mélou et al [1]. showed that fn also enumerates other seemingly-disparate sets, each of
which can be seen to be a superset of a set enumerated by the Catalan numbers:

• (2+2)-avoiding posets with n elements, a superset of the set of (2+2)- and (3+1)-
avoiding posets with n elements enumerated by the n-th Catalan numbers Cn,

• Permutations π of [n] such that, if π = π1π2 . . . πn, there are no i < j such that
πj = πi − 1 and πi+1 > πi, a superset of the set of 231-avoiding permutations of [n]
enumerated by the n-th Catalan number Cn.
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• ascent sequences of length n, where an ascent sequence is a sequence x1x2 . . . xn such
that x1 = 0 and 0 ≤ xi ≤ asc(x1x2 . . . xi−1)+1, where asc(x1x2 . . . xi−1) is the number
of ascents of the sequence x1x2 . . . xi−1, a superset of the set of sequences x1 . . . xn
such that x1 = 0 and xi+1 ≤ xi + 1 enumerated by the n-th Catalan number Cn.

Claesson and Linusson [2] recently conjectured another interpretation of the sequence fn,
which they refer to as the Fishburn numbers : Matchings on [2n] with no 2-nestings, where
a k-nesting is a nesting (a, b), (c, d) such that a < c < d < b and c− a ≤ k.

Remmel and Kitaev [6] recently gave the following refinement of (1):

∞∑

n=0

n∑

d=1

fn,dt
nzd = 1 +

∞∑

m=1

zt

(1− zt)m

m−1∏

i=1

(1− (1− t)i),(2)

where fn,d is (among other interpretations) the number of ascent sequences of length n
with d zeroes. Remmel and Kitaev also conjectured that the bivariate generating function∑∞

n=0

∑n

d=1 fn,dt
nzd has the following simpler form:

∞∑

n=0

n∑

d=1

fn,dt
nzd = 1 +

∞∑

m=1

m∏

i=1

(1− (1− t)i−1(1− zt)).(3)

In the following paper, we solve both conjectures and show how they are related: First, we
give a simple bijection between matchings on [2n] with no 2-nestings and inversion tables of
length n with no decreasing subsequence of consecutive numbers, i.e., sequences a1a2 . . . an
such that 0 ≤ ai ≤ i− 1 for all i and such that there exist no p < q with ap = j + 1, aq = j.
We then prove using the involution principle that the generating function of inversion tables
of length n with no decreasing subsequence of consecutive numbers is (1). We then show
using the same proof that, if fn,d is now taken to be the number of such inversion tables
a1a2 . . . an where ai = i − 1 for precisely d distinct values of i, the bivariate generating
function of fn,d is given by (3). Finally, we show using a variation of this proof that the
the bivariate generating function of fn,d, under this interpretation, is also given by (2). In
an appendix, we give a brief solution to a related conjecture of Claesson and Linusson, that
the distribution of left-nestings, or nestings (a, b), (c, d) with c = a+ 1, over all matchings is
given by the second-order Eulerian triangle.

Note: Distinct proofs of the equality of (2) and (3), both using a matrix-based inter-
pretation of the Fishburn numbers due to Dukes and Parviainen [3], were recently given
independently by Jeĺınek [5] and by Yan [10]. This work was done independently from the
work presented here.

2. From factorial matchings to inversion tables

First, a note on visual notation: A matching X on [2n] can be illustrated by a diagram of
n semicircular arcs, where an arc connects a and b if and only if (a, b) ∈ X . For example, the
matching (1, 4)(2, 9)(3, 6)(5, 10)(7, 8) on [10] is illustrated by the diagram of 5 semicircular
arcs in Figure 1. Note that an arc diagram is equivalent to its matching, i.e., the arc diagram
does not have to be labelled to specify a unique matching. Claesson and Linusson [2] proved
the following claim about left-nestings, where a left-nesting is a nesting (a, b), (c, d) with
c = a + 1. (For example, (2, 9)(3, 6) in Figure 1 is a left-nesting.)
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94 61 2 3 5 87 10

Figure 1. A matching on [10].

Claim 2.1. The number of matchings on [2n] with no left-nestings is n!.

Proof. This is perhaps easiest to see visually and inductively: Let X be a matching on [2n]
with no left-nestings. A matching X ′ on [2n + 2] can be formed from X by adding an arc
whose right endpoint is the rightmost part of the diagram, i.e., by adding (a, 2n + 2) to X ,
and re-labeling (moving all endpoints greater than a over by one). If the left endpoint is
placed immediately before the left endpoint of another arc, i.e., if (a, b) ∈ X and a < b,
this will form a left-nesting. Therefore, X ′ will no left-nestings if and only if (a, b) ∈ X and
a > b, i.e., if and only if the left endpoint of the newest arc is be placed immediately before
the right endpoint of an arc (including its own). Since there will be n + 1 right endpoints,
there are n+1 possible matchings on [2n+2] with no left-nestings formed by adding an arc
to X .

Conversely, removing the pair (a, 2n + 2) from some matching Z ′ on [2n + 2] with no
left-nestings and re-labeling will produce a matching Z with no left-nestings: The only left-
nesting this could create in Z is (a−1, b), (a, c) with a < c < b, but then (a+1, c+1), (a, 2n+
2) ∈ Z ′ would be a left-nesting. Therefore, every matching on [2n+ 2] with no left-nestings
is formed from adding an arc in n + 1 possible ways to a matching on [2n], and if there are
n! matchings on [2n] with no left-nestings, there will be (n+ 1)! matchings on [2n+ 2] with
no left-nestings. �

We illustrate the inductive argument in Figure 2.
Note that we can (following Claesson and Linusson) refine the above proof: Let X be

a matching with no left-nestings, and let φ(X) = a1a2 . . . an, where ai is the number of
right endpoints to the left of the left endpoint of the i-th arc, where the arcs are numbered
from left to right by right endpoint. For example, if X is the matching on [8] in Figure 2,
φ(X) = 0021.

Claim 2.2. φ gives a bijection between matchings with no left-nestings and inversion tables,
i.e., sequences a1a2 . . . an such that 0 ≤ ai ≤ i− 1 for all 1 ≤ i ≤ n.

Proof. This should be clear from the above: A new arc added to a matching on [2n] corre-
sponding to a pair (a, 2n + 2) can have its left endpoint be placed only immediately before
the first right endpoint, the second right endpoint, and so on, i.e., to the right of 0, 1, . . . , n
right endpoints. �
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Figure 2. Left-nesting-avoiding matchings on [8] and [10]

For example, when applied to the the matchings on [10] in Figure 2, φ gives, from top to
bottom, 00214, 00213, 00212, 00211, and 00210.

In order to prove that the number of matchings on [2n] with no 2-nestings is the n-th
Fishburn number fn, we restrict φ to matchings with no 2-nestings:

Claim 2.3. φ gives a bijection between matchings with no 2-nestings and inversion tables
a1a2 . . . an with no decreasing subsequences of consecutive integers, i.e., with no p < q such
that ap = j + 1 and aq = j for some j.

Proof. Recall that a 2-nesting is a nesting (a, b), (c, d) with c− a ≤ 2. In particular, if X is
a matching with no left-nestings and φ(X) = a1a2 . . . an, then X will have a 2-nesting if and
only if, for some a, (a, b), (a+2, d) ∈ X , d < b, and, if (a+1, g) ∈ X , g < a: if a+2 < g < b,
then (a, b) and (a + 1, g) will be a left-nesting, and if b < g, (a + 1, g), (a + 2, d) will be a
left-nesting. Therefore X will have a 2-nesting if and only if its arc diagram gives precisely
one right endpoint between the left endpoints of the arc corresponding to (a, b) and the arc
corresponding to (a+ 2, d), or if and only if ap = j + 1 and aq = j, where d is the p-th right
endpoint, b is the q-th right endpoint, and j is the number of right endpoints to the left of
a.

Similarly, if, for some p < q, ap = j + 1 and aq = j, then the arc diagram of X will have
precisely one right endpoint in between the left endpoint of the q-th arc and the left endpoint
of the p-th arc. Let the q-th arc correspond to the pair (e, f) ∈ X and the p-th arc correspond
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to the pair (g, h) ∈ X , with the single arc with right endpoint in between correspond to the
pair (r, s) ∈ X , so e < s < g < h < f . e + 1, e + 2, . . . , s − 1, s + 2, s + 3, . . . , g − 1 must
all be left endpoints of arcs, since there is only one right endpoint in between e and g. In
general, let X(a) be the element paired with a in X . To avoid left-nestings, X(e + 1) >
X(e) = f , X(e + 2) > X(e + 1), and so on, so X(s − 1) > X(s − 2) > . . . > X(e) = f
Similarly, to avoid left-nestings, X(g − 1) < X(g) = h, X(g − 2) < X(g − 1), and so on, so
X(s + 1) < X(s + 2) < . . . < X(g) = h. Therefore (s− 1, X(s− 1)), (s+ 1, X(s+ 1)) ∈ X
and X(s + 1) < h < f < X(s − 1), and so (s − 1, X(s − 1)), (s + 1, X(s + 1)) ∈ X is a
2-nesting, and X has at least one 2-nesting if and only if φ(X) has at least one decreasing
subsequence of consecutive integers. �

Let Tn be the set of inversion tables of length n with no decreasing subsequences of
consecutive integers.

3. The main proof

We will now prove that |Tn| = fn, i.e., that the set of inversion tables of length n with no
decreasing subsequences of consecutive integers is enumerated by the n-th Fishburn number.
In particular, we will prove that:

∞∑

n=0

|Tn|t
n = 1 +

∞∑

m=1

m∏

i=1

(1− (1− t)i).(4)

First, we will define a class of diagrams to give a visual interpretation to the right-hand-
side of (4). Given a staircase partition diagram (1, 2, . . . , k), a filling of the diagram is a
placement of dots into the squares of the diagram, with at most one dot per square. We say
that a diagram with filling is a Fishburn diagram if every column has at least one dot. Let
Y be the set of Fishburn diagrams of any size, with Yn the set of Fishburn diagrams with
n dots. Equivalently, let Y be the set of sequences of sets A1A2 . . . Ak, where k can vary,
such that Ai ⊂ {0, 1, . . . , i− 1} and Ai 6= ∅, with Yn the set of such sequences such that∑k

i=1 |Ai| = n. We will refer to Fishburn diagrams and sequences of sets interchangably;
for the correspondence, given a sequence of sets A1A2 . . . Ak with the above condition, the
corresponding diagram is a filling of (1, 2, . . . , k) with a dot in the j-th row from the bottom
in the i-th column from the left if and only if j − 1 ∈ Ai.

Claim 3.1. The following identity of generating functions holds:

∞∑

n=0

∑

A1A2...Ak∈Yn

tn(−1)n−k = 1 +

∞∑

m=1

m∏

i=1

(1− (1− t)i).(5)

Proof. Let us first consider the weighted sum of Fishburn diagrams of length m, i.e., se-
quences A1A2 . . . Am ∈ Y , beginning by giving each column a weight of −1. For a specific
column Ai with 1 ≤ i ≤ m, we can either place a dot, or not, each square. Let the weight of
a dot be −t and the weight of a square with no dot be 1. Then for each square, our weighted
choice is 1 − t, and there are i squares in this column. Since we must pick at least one dot
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Figure 3. A Fishburn diagram in Y7 with signed weight (−1)3t7.

for the column, the weighted sum over all possible choices is 1− (1− t)i. Therefore,

∑

A1A2...Am∈Y

(−t)|A1|+|A2|+...+|Am|(−1)m =

∞∑

m=1

m∏

i=1

(1− (1− t)i),

and
∞∑

m=0

∑

A1A2...Am∈Y

(−t)|A1|+|A2|+...+|Am|(−1)m = 1 +

∞∑

m=1

m∏

i=1

(1− (1− t)i).(6)

It should be clear that (6) is equivalent to (5). �

We can think of the left-hand-side of (5) as the signed weighted sum over all Fishburn
diagrams of any size, where the weight is given by the number of dots and the sign is given
by the number of “extra” dots, i.e., dots other than the minimal one per column. For
example, Figure 3 shows the Fishburn diagram corresponding to A1A2A3A4 ∈ Y7, where
A1 = {0} , A2 = {1} , A3 = {0, 2} and A4 = {0, 1, 2}, which will have a signed weight of
(−1)3t7.

In order to prove (4), we will define an involution ψn : Yn → Yn such that:

• A1A2 . . . Ak ∈ Fix(ψn) if and only if, for all 1 ≤ i ≤ k, |Ai| = 1 (so k = n) and there
are no p, q, j with p < q, Ap = {j + 1} , Aq = {j},

• If A1A2 . . . Ak /∈ Fix(ψn) and ψn(A1A2 . . . Ak) = B1B2 . . . Br, r = k ± 1,

where Fix(ψn) = {A1A2 . . . Ak ∈ Yn : ψn(A1A2 . . . Ak) = A1A2 . . . Ak}. If we can define such
an involution ψn, then we will have

∞∑

n=0

|Fix(ψn)|t
n = 1 +

∞∑

m=1

m∏

i=1

(1− (1− t)i).

This will prove (4), since Tn will be in trivial bijection with Fix(ψn).
Given A1A2 . . . Ak ∈ Yn, let j be the smallest integer such that either:

• For some i, j ∈ Ai and |Ai| > 1, or
• For some p < q, j + 1 ∈ Ap, j ∈ Aq.

If there is no such j, define ψn(A1A2 . . . Ak) = A1A2 . . . Ak. Otherwise, we divide into cases:
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Case 1: If, for some i, j ∈ Ai and |Ai| > 1, let I be the minimal such i. By the
minimality of j, j is the smallest member of AI . Let j + R be the second-smallest
member of AI . Define sets BL as follows for 1 ≤ L ≤ k + 1.

BL =





AL 1 ≤ L ≤ I − R

{s− R + 1 : s ∈ AI , s 6= j} L = I − R + 1

{s : s ∈ AL−1, s < j + 1}
⋃
{s+ 1 : s ∈ AL−1, s ≥ j + 1} I − R + 2 ≤ L ≤ I

{j} L = I + 1

{s : s ∈ AL−1, s < j}
⋃
{s+ 1 : s ∈ AL−1, s ≥ j} I + 2 ≤ L ≤ k + 1

It should be clear that (B1, B2, . . . , Bk+1) ∈ Yn. Define ψn(A1, A2, . . . , Ak) = (B1, B2, . . . , Bk+1).
Note that, by construction, BI+1 = {j} is the last set of B1, B2, . . . , Bk+1 to contain

j, and BI−R+1 is the last set of B1, B2, . . . , BI+1 to contain j + 1, which must be the
smallest member of BI−R+1. Note also that, since AI was the first set of A1, A2, . . . , Ak

to include j and have multiple members, no member of B1, B2, . . . , Bk+1 will contain
j and have multiple members.

Case 2: If there is no i such that j ∈ Ai and |Ai| > 1, then, for some p < q, j+1 ∈ Ap

and j ∈ Aq. Let Q be maximal such that j ∈ AQ. By definition, AQ = {j}. Let P be
maximal such that j+1 ∈ AP and P < Q. Therefore j+1 /∈ AL for P+1 ≤ L ≤ Q−1
and j /∈ AL for Q + 1 ≤ L ≤ k. By the minimality of j, j + 1 must be the smallest
member of AP . Define sets BL as follows for 1 ≤ L ≤ k − 1:

BL =





AL 1 ≤ L ≤ P − 1

{s : s ∈ AL+1, s < j + 1}
⋃

{s− 1 : s ∈ AL+1, s > j + 1} P ≤ L ≤ Q− 2

{s+M −N − 1 : s ∈ AP}
⋃
{j} L = Q− 1

{s : s ∈ AL+1, s < j}
⋃

{s− 1 : s ∈ AL+1, s > j} Q ≤ L ≤ k − 1

It should be clear that (B1, B2, . . . , Bk−1) ∈ Yn. Define ψn(A1, A2, . . . , Ak) = (B1, B2, . . . , Bk−1).
Note that, by construction, BQ−1 will be the first set of B1, B2, . . . , Bk−1 to contain

j and have multiple members, with j +Q− P the second-smallest member.

Note as well that, in either case, ψn preserves the minimality of j, and that therefore ψn is
an involution. This proves (4).

We illustrate the involution in Figure 3. The Fishburn diagram on the left corresponds
to A1A2A3A4A5A6A7A8 ∈ Y16, where A1 = A2 = A5 = {0}, A3 = {2}, A4 = {2, 3},
A6 = {1, 3, 5}, A7 = {1, 3, 5, 6}, and A8 = {2, 4, 6}. It will have a signed weight of (−1)8t16.
The column corresponding to {1, 3, 5} has been highlighted. The Fishburn diagram on the
right oorresponds to B1B2B3B4B5B6B7B8B9 ∈ Y16, where B1 = B2 = B6 = {0}, B3 = {2},
B4 = {2, 3}, B5 = {2, 4}, B7 = {1}, B8 = {2, 4, 6, 7}, and B9 = {3, 5, 7}. It will have a
signed weight of (−1)7t16. Squares have been highlighted to indicate how 2, 4 ∈ B5, 2 /∈ B6,
1 ∈ B7 and 1 /∈ B8, B9. Informally, the dots corresponding to 3 and 5 in A6 have been
“moved” into dots corresponding to 2 and 4 in what is now the column B5, leaving the dot
corresponding to the 1 in A6 now in a column B7 one square taller, with squares added in
the third row from the bottom in B6 and the second row from the bottom in B8 and B9.
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Figure 4. ψ11 : Y11 → Y11

4. Refinements of the generating function of the Fishburn numbers

Let Tn,d be the subset of Tn consisting of inversion tables a1a2 . . . an ∈ Tn such that
ai = i − 1 for exactly d distinct values of i. We will prove the following two generating
function identities,

∞∑

n=0

n∑

d=1

|Tn,d|t
nzd = 1 +

∞∑

m=1

m∏

i=1

(1− (1− t)i−1(1− zt)),(7)

and
∞∑

n=0

n∑

d=1

|Tn,d|t
nzd = 1 +

∞∑

m=1

zt

(1− zt)m

m−1∏

i=1

(1− (1− t)i),(8)

using variations on the proof of (4). This will prove the equality of (2) and (3).

4.1. The simpler refinement. We begin with a proof of (7). Let Yn,d be the subset of Yn
consisting of Fishburn diagrams A1A2 . . . Ak ∈ Yn such that i− 1 ∈ Ai for exactly d distinct
values of i.

Claim 4.1.
∞∑

n=0

n∑

d=1

∑

A1A2...Ak∈Yn,d

zdtn(−1)n−k = 1 +
∞∑

m=1

m∏

i=1

(1− (1− t)i−1(1− zt)).(9)

Proof. We follow the proof of (5) and first consider the weighted sum of Fishburn diagrams
of length m, i.e., sequences A1A2 . . . Am ∈ Y , beginning by giving each column a weight
of −1. For a specific column Ai with 1 ≤ i ≤ m, we can either place a dot, or not, each
square. Let the weight of a dot below the i-th row from the bottom be −t, the weight of a
dot in the i-th row from the bottom be −zt, and the weight of a square with no dot be 1.
Then for each square, our weighted choice is 1− t, except for the top square in the column,
where the weighted choice is 1− zt, and there are i− 1 other squares in this column. Since
we must pick at least one dot for the column, the weighted sum over all possible choices is
1− (1− t)i−1(1− zt), and it should be clear this proves (9). �

Claim 4.2. ψn restricts to an involution from Yn,d → Yn,d, i.e., if A1A2 . . . Ak ∈ Yn,d, then
ψn(A1A2 . . . Ak) ∈ Yn,d.

Proof. If A1A2 . . . Ak ∈ Fix(ψn), then this is clearly true. Otherwise, let j be minimal such
that either some j ∈ Ai and |Ai| > 1 or j + 1 ∈ Ap, j ∈ Aq for p < q. Assume the former
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holds, i.e., j ∈ Ai and |Ai| > 1. Let I be the minimal such i, j + R ∈ AI be the second-
smallest element of AI , and let ψ(A1A2 . . . Ak) = B1B2 . . . Bk+1. From the definition of ψn,
we see that L− 1 ∈ BL if and only if

L− 1 ∈ AL 1 ≤ L ≤ I −R

I − 1 ∈ AI L = I −R + 1

L− 2 ∈ AL−1 I −R + 2 ≤ L ≤ k + 1, L 6= I + 1

Therefore B1B2 . . . Bk+1 ∈ Yn,d. Since ψn is an involution, this suffices. �

.
For example, both of the Fishburn diagrams in Figure 3 are in Y11,5. Let ψn|Yn,d

= ψn,d.
Then ψn,d : Yn,d → Yn,d is an involution, and therefore

∞∑

n=0

n∑

d=1

|Fix(ψn,d)|z
dtn = 1 +

∞∑

m=1

m∏

i=1

(1− (1− t)i−1(1− zt)).(10)

It should be clear that (10) is equivalent to (7), since Fix(ψn,d) = Fix(ψn)
⋂
Yn,d is in trivial

bijection with Tn,d.

4.2. The more complicated refinement. We will now prove (8). First, we will define a

set Ỹn,d which has the right-hand-side of (8) as a natural generating function. Second, we
will show that the right-hand-side of (8) is equal to the bivariate generating function of the

fixed point set of an involution ψ̃n,d : Ỹn,d → Ỹn,d. Finally, we will define a natural bijection

from Fix(ψ̃n,d) to Fix(ψn,d).

Let Ỹn,d be the set of ordered pairs (λ,A1A2 . . . Ak) where λ = (λ1, λ2, . . . , λk+1) is a
composition of d into k + 1 non-negative parts, with λ1 > 0, and A1A2 . . . Ak ∈ Yn−d.

Claim 4.3.

∞∑

n=0

∞∑

d=1

∑

(λ,A1A2...Ak)∈Ỹn,d

zdtn(−1)n−k = 1 +
∞∑

m=1

zt

(1− zt)m

m−1∏

i=1

(1− (1− t)i).(11)

Proof. Let us consider all (λ,A1A2 . . . Am−1), where m is fixed. We weight (λ,A1A2 . . . Am−1)
by the product of the weight of A1A2 . . . Am−1, as in the proof of (5) (but not the weight
from the proof of (9)) and the weight of λ, which we take to be (zt)|λ|, where |λ| = λ1+λ2+
. . . + λm. The generating function of compositions with m non-negative parts, where the
first part must be positive, is zt

(1−zt)m
. Then the weighted sum over all (λ,A1A2 . . . Am−1) is

zt
(1−zt)m

∏m−1
i=1 (1− (1− t)i), and (11) follows. �

We will now define an involution ψ̃n,d : Ỹn,d → Ỹn,d such that

• (λ,A1A2 . . . Ak) ∈ Fix(ψn) if and only if, for all 1 ≤ i ≤ k, |Ai| = 1 (so k = n − d)
and if for some j, Ap = {j + 1} , Aq = {j}, and p < q, then λj+2 6= 0,

• If (λ,A1A2 . . . Ak) /∈ Fix(ψ̃n,d) and ψ̃n,d(λ,A1A2 . . . Ak) = (µ,B1B2 . . . Br), r = k±1.
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Given (λ,A1A2 . . . Ak) ∈ Ỹn,d, let j be the smallest integer such that either, for some i,
j ∈ Ai and |Ai| > 1 or, for some p, q, j + 1 ∈ Ap, j ∈ Aq, and λj+2 = 0. If there is no such j,

define ψ̃n,d(λ,A1A2 . . . Ak) = (λ,A1A2 . . . Ak). Otherwise,

Case 1: If, for some i, j ∈ Ai and |Ai| > 1, define ψ̃n,d(λ,A1A2 . . . Ak) = (µ, ψn−d(A1A2 . . . Ak)),
where µ = (λ1, λ2, . . . , λj+1, 0, λj+2, λj+3, . . . , λk+1). Note that ψn−d(A1A2 . . . Ak) =

B1B2 . . . Bk+1 ∈ Yn−d by the definition of ψn−d, so (µ, ψn−d(A1A2 . . . Ak)) ∈ Ỹn,d.
Case 2: If there is no i such that j ∈ Ai and |Ai| > 1, then, for some p < q, j+1 ∈ Ap,

j ∈ Aq, and λj+2 = 0. Define ψ̃n,d(λ,A1A2 . . . Ak) = (µ, ψn−d(A1A2 . . . Ak)), where
µ = (λ1, λ2, . . . , λj+1, λj+3, . . . , λk+1). Note that ψn−d(A1A2 . . . Ak) = B1B2 . . . Bk−1 ∈

Yn−d by the definition of ψn−d, so (µ, ψn−d(A1A2, . . . Ak)) ∈ Ỹn,d.

Therefore,

∞∑

n=0

n∑

d=1

|Fix(ψ̃n,d)|t
nzd = 1 +

∞∑

m=1

zt

(1− zt)m

m−1∏

i=1

(1− (1− t)i).(12)

To finish the proof of (8), we need only define a bijection from Fix(ψ̃n,d) to Fix(ψn,d).

In fact, we claim that Ỹn,d is in natural fixed-point-preserving bijection with a subset of

Yn,d. Define an injection f : Ỹn,d → Yn,d as follows: Given (λ,A1A2 . . . Ak) ∈ Ỹn,d, where
λ = (λ1, λ2, . . . , λk+1), begin with a staircase diagram (1, 2, . . . , d + k). Place an X in
the top of the column L if L = λ1 + 1, λ1 + λ2 + 2, λ1 + λ2 + λ3 + 3, and so on up to
λ1+λ2+ . . .+λk +k. Place a dot in the top of all other columns; note that you have placed
d dots at the top of their columns, with k other squares dividing the top diagonal into the
composition (λ1, λ2, . . . , λk+1). Place an X in each square in the same column as a dot at
the top of its column, and in each square to the right of, and in the row immediately below,
a dot at the top of its column. The squares that now have neither a dot nor an X will form
a staircase sub-diagram with shape(1, 2, . . . , k). Place the Fishburn diagram A1A2 . . . Ak,
which has n − d dots, into this staircase sub-diagram. Let D1D2 . . .Dd+k be the resulting
Fishburn diagram, and define f(λ,A1A2 . . . Ak) = D1D2 . . .Dd+k.

By construction, D1D2 . . . Dd+k is a Fishburn diagram with n−d+ d = n dots, d of which
are at the tops of their columns, so D1D2 . . .Dd+k ∈ Yn,d. For example, if λ = (1, 2, 0, 3, 0),
A1 = {0} , A2 = {1} , A3 = {1, 2}, and A4 = {0, 1, 3}, then λ is a composition of 6 into 5

parts and A1A2A3A4 ∈ Y7. Therefore (λ,A1A2A3A4) ∈ Ỹ13,6, and f(λ,A1A2A3A4) ∈ Y13,6 is
the Fishburn diagram in Figure 5.

(In Figure 5 we used white for the seven dots from A1A2A3A4 and black for the six dots
from λ. Note how the 10 squares with neither an X nor a black dot form a subdiagram with
staircase shape (1, 2, 3, 4).).

Claim 4.4. f is a bijection between Ỹn,d and the subset of Yn,d consisting of Fishburn dia-
grams D1D2 . . .Dk such that, if i − 1 ∈ Di, |Di| = 1, and i − 2 /∈ Di+1, Di+2, . . . , Dk. In

particular, (λ,A1A2 . . . Ak) ∈ Fix(ψ̃n,d) if and only if f(λ,A1A2 . . . Ak) ∈ Fix(ψn,d).

Proof. The first part of the claim should be clear from the construction of f . For the second

part of the claim, consider the operation of f on a particular (λ,A1A2 . . . Ak) ∈ Ỹn,d: d
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Figure 5. A Fishburn diagram in Y13,6 corresponding to an element of Ỹ13,6.

dots are placed at the tops of their columns, and X ’s are placed in the columns directed
below them and in the rows immediately below them and to their right, with a staircase
subdiagram of side length k formed by the remaining free squares. There will be λj+2 rows
of X ’s in between the j + 1-st and j + 2-nd rows of this subdiagram, since there will be one
row of X ’s for each dot at the top of its column, and the dots at the top of their columns
are placed in blocks of lengths λ1 (below the first row of the subdiagram), λ2 (between the
first and second rows of the subdiagram) and so on.

Therefore j′+1 precedes j′ in D1D2 . . .Dk+d = f(λ,A1A2 . . . Ak) for some j′ if and only if,
for some j, j+1 precedes j in A1A2 . . . Ak and λj+2 = 0. Also, |Di| = 1 for all 1 ≤ i ≤ k+ d
if and only if |Ai| = 1 for all 1 ≤ i ≤ k. Therefore, D1D2 . . .Dk+d ∈ Fix(ψn,d) if and only if
|Ai| = 1 for all 1 ≤ i ≤ k and, for all p < q with Ap = {j + 1}, Aq = {j}, λj+2 6= 0, or if and

only if f(λ,A1A2 . . . Ak) ∈ Fix(ψ̃n,d). �

We illustrate this in Figure 6 and Figure 7. The Fishburn diagram on the left-hand-side
of Figure 6 corresponds to f(λ,A1A2A3A4), where λ = (1, 1, 2, 0, 1), A1 = A2 = A4 = {0},

and A3 = {0, 1}. Therefore (λ,A1A2A3A4) ∈ Ỹ10,5. However, (λ,A1A2A3A4) /∈ Fix(ψ̃10,5),

since |A3| > 1, and ψ̃10,5(λ,A1A2A3A4) = (µ,B1B2B3B4B5), with µ = (1, 0, 1, 2, 0, 1), B1 =
B2 = B4 = {0} , B3 = B5 = {1}. Note that 1 ∈ B3, 0 ∈ B4, and 0 is the second element of µ.

By contrast, the Fishburn diagram in Figure 7 corresponds to f(µ,E1E2E3E4E5), where µ
is again equal to (1, 0, 1, 2, 0, 1), E1 = E2 = E4 = {0} , E3 = {2}, E5 = {1}. Although 2 ∈ E3

and 1 ∈ E5, the third element of µ is not equal to zero, and so (µ,E1E2E3E4E5) ∈ Fix(ψ̃10,5).
As we can see, f(µ,E1E2E3E4E5) ∈ Fix(ψ10,5).

Note that ψ̃n,d 6= f−1 ◦ ψn,d ◦ f , i.e., ψ̃n,d is not simply an alternative description of ψn,d.
In fact, f−1 ◦ ψn,d ◦ f is not even well-defined, since applying ψ10,5 to the Fishburn diagram
on the left-hand-side of Figure 6 will give a Fishburn diagram outside of the image of f .
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Figure 6. ψ̃10,5 : Ỹ10,5 → Ỹ10,5.

Figure 7. An element of Fix(ψ̃10,5)

5. Further Research Directions

Our initial approach to proving that matchings with no 2-nestings were enumerated by the
Fishburn numbers was to try to find a bijection between such matchings and matchings with
no left- or right-nestings. Our second approach was to find a bijection between matchings
with no 2-nestings and ascent sequences–in particular, a bijection between matchings X on
[2n] on with no 2-nestings such that the inversion table φ(X) used k distinct integers and
ascent sequences of length n with k−1 non-ascents. (Inductively, this would make sense: An
inversion table of length n, with no decreasing subsequence of consecutive integers, that used
k distinct integers could have n+2−k integers added to the end to obtain an inversion table
of length n+ 1 with no decreasing subsequence of consecutive integers. An ascent sequence
of length n with k − 1 non-ascents would have n+ 1− k ascents, so it could have n+ 2− k
integers added to the end to obtain an ascent sequence). Presumably, bijections between the
inversion tables discussed in this paper and other interpretations of the Fishburn numbers
could be found by comparing the involutions used to prove the various interpretations have
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the generating function (1) of the Fishburn numbers, as discussed in Stanley [8]. It would
be interesting to see if any more direct or elegant bijections are possible.

A second interesting question is whether or not it is possible to define bounce, area, or
dinv statistics on the various sets enumerated by the Fishburn numbers in such a way as
to generalize the bounce, area, and dinv statistics defined on the Catalan sets (see Haglund
[4]). In particular, it would be extremely interesting if any such statistics could be defined
so bounce and area or area and dinv gave a symmetric bivariate generating function in
general, as the combinatorics of the symmetry of the q, t-Catalan polynomial is famously
poorly-understood. Inspired by our proof of the equality of (2) and (3), we were able to
define statistics similar to area and dinv on the inversion tables discussed in this paper as
well as slightly different statistics on ascent sequences. In both cases we obtained symmetric
generating functions for all n ≤ 5, but not for n = 6. (We thank Jason Bandlow for his
assistance with checking the n = 6 cases by computer). The polynomial obtained from
ascent sequences was closer to being symmetric than the polynomial obtained from inversion
tables with no decreasing subsequence of consecutive integers; in both cases, f(q, t)− f(t, q)
was only a few terms long. It is possible that working with another interpretation of the
Fishburn numbers would inspire statistics that were, in fact, symmetric.

6. Appendix

In this Appendix, we will prove the following conjecture of Claesson and Linusson’s:

Claim 6.1. The distribution of left-nestings over the set of all matchings on [2n] is given by
the “Second-order Eulerian triangle”, entry A008517 in OEIS [7].

Proof. According to the OEIS, the Second-order Eulerian triangle T (n, k) is defined by the
following recurrence relation: T (n, k) = 0 if n < k, T (1, 1) = 1, T (n,−1) = 0, T (n, k) =
kT (n− 1, k) + (2n− k)T (n− 1, k − 1).

Assume X is a matching on [2n − 2] with precisely j left-nestings. If we add an arc
corresponding to a pair (a, 2n) to achieve a matching X ′ on [2n], there are three possibilities:

Case 1: If the left-endpoint of this new arc is placed immediately before a right-
endpoint of X , or immediately before its own right-endpoint, this will not change the
number of left-nestings, so X ′ will have j left-nestings. There are n right-endpoints
(including 2n itself), so there are n ways to do this.

Case 2: If the left-endpoint of this new arc is placed immediately before a left-endpoint
of an arc that is not the inner arc of a left-nesting of X , this will contribute one new
left-nesting to X ′, without eliminating an existing left-nesting of X . Then X ′ will
have j + 1 left-nestings, and there are n− 1− j ways to do this.

Case 3: If the left-endpoint of this new arc is placed immediately before a left-endpoint
of an arc that is the inner arc of a left-nesting of X , this will add one new left-nesting
to X ′, but also eliminate the original left-nesting from X . The net effect is therefore
to contribute no new left-nestings to X ′, which will therefore have j left-nestings.
There are j ways to do this.

Therefore, of the 2n − 1 matchings on [2n] formed by adding a rightmost arc to X , n + j
will have j left-nestings, and n− 1 − j will have j + 1 left-nestings. To put it another way,
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Figure 8. Matchings on [6] and [8]

if L(n, j) is defined to be the number of matchings on [2n] with j left-nestings, we now have
that:

L(n, j) = (n+ j)L(n− 1, j) + (n− j)L(n− 1, j − 1),(13)

or, replacing j with n− k,

L(n, n− k) = (2n− k)L(n− 1, n− 1− (k − 1)) + kL(n− 1, n− 1− k).(14)

Since L(1, 1 − 1) = 1, L(n, n − (−1)) = 0, and L(n, n− k) = 0 if n < k, we see inductively
that L(n, n− k) = T (n, k). �

We illustrate the three cases in the above inductive proof in Figure 8, beginning with the
matching (1, 4)(2, 6)(3, 5) on [6], which has 1 left-nesting. Adding the arcs corresponding to
the pairs (7, 8), (6, 8), (5, 8), (4, 8) and re-labeling falls into Case 1 and results in matchings
on [8] with 1 left-nesting. Adding the arc corresponding to the pair (3, 8) and re-labelling
falls into case 3 and also results in a matching on [8] with 1 left-nesting. Adding the arcs
corresponding to the pairs (2, 8) and (1, 8) and re-labelling falls into Case 3 and results in a
matching on [8] with 2 left-nestings. Note that the above proof can be seen as a generalization
of the inductive proof of Claim (2.1).
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