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Abstract

A geometric graph G is a simple graph G together with a straight
line drawing of G in the plane with the vertices in general position. Two
geometric realizations of a simple graph are geo-isomorphic if there is
a vertex bijection between them that preserves vertex adjacencies and
non-adjacencies, as well as edge crossings and non-crossings. A natural
extension of graph homomorphisms, geo-homomorphisms, can be used to
define a partial order on the set of geo-isomorphism classes. In this pa-
per, the homomorphism poset of K2,n is determined by establishing a
correspondence between realizations of K2,n and permutations of Sn, in
which edge crossings correspond to inversions. Through this correspon-
dence, geo-isomorphism defines an equivalence relation on Sn, which we
call geo-equivalence. The number of geo-equivalence classes is provided for
all n ≤ 9. The modular decomposition tree of permutation graphs is used
to prove some results on the size of geo-equivalence classes. A complete
list of geo-equivalence classes and a Hasse diagram of the poset structure
are given for n ≤ 5.

1 Introduction

A geometric graph G is a simple graph G =
(
V (G), E(G)

)
together with a

straight line drawing of G in the plane with vertices in general position, so that
no three vertices are collinear and no three edges cross at a single point. (Such
a drawing is also called a rectilinear drawing of G.) Any simple graph will have
uncountably many geometric realizations, but we identify those that have the
same pattern of edge crossings. This is formalized by extending the definition
of graph isomorphism in a natural way to geometric graphs.

Definition 1. Let G,H be geometric realizations of simple graphs G,H respec-
tively. A geo-isomorphism f : G → H is a vertex bijection f : V (G) → V (H)
such that for all u, v, x, y ∈ V (G),
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1. uv ∈ E(G) if and only if f(u)f(v) ∈ E(H), and

2. xy crosses uv in G if and only if f(x)f(y) crosses f(u)f(v) in H.

If there exists a geo-isomorphism f : G → H, we write G ∼= H. Geo-
isomorphism clearly defines an equivalence relation on the set of all geometric
realizations of a simple graph G. A natural impulse is to classify all geometric
realizations of a given graph into geo-isomorphism classes. In [3], Boutin, Cock-
burn, Dean and Margea have done this for paths Pn, cycles Cn and cliques Kn,
for n ≤ 6.

Graph homomorphisms are a relaxation of graph isomorphisms; they pre-
serve adjacency, but not non-adjacency. First introduced almost half a century
ago, they are the subject of growing interest in graph theory circles. For an
excellent survey of this subject, see [8]. In [2], Boutin and Cockburn extended
the definition of graph homomorphisms to geometric graphs.

Definition 2. Let G,H be geometric realizations of simple graphs G,H respec-
tively. A geo-homomorphism f : G→ H is a vertex function f : V (G)→ V (H)
such that for all u, v, x, y ∈ V (G),

1. if uv ∈ E(G), then f(u)f(v) ∈ E(H), and

2. if xy crosses uv in G, then f(x)f(y) crosses f(u)f(v) in H.

Concentrating on vertex functions that satisfy (1) of Definition 1 and (2) of
Definition 2 allows us to define a relation on the set of geometric realizations of
a given graph.

Definition 3. Let G and Ĝ be geometric realizations of a simple graph G.
Then set G � Ĝ if and only if there exists a geo-homomorphism f : G → Ĝ
whose underlying map f : G→ G is a graph isomorphism.

It is not difficult to see that this relation is both reflexive and transitive. To
show that it is anti-symmetric, observe that if f : G→ Ĝ is a geo-homomorphism
that is also a graph isomorphism, then the total number of edge crossings in
Ĝ must be at least as big as the total number of edge crossings in G. Hence,
if we also have Ĝ � G, then G and Ĝ must have the same total number of
edge crossings. This implies thatf is in fact a geo-isomorphism, so the relation
defined above is in fact a partial order.

Definition 4. The homomorphism poset G of a simple graph G is the set of geo-
isomorphism classes of its realizations partially ordered by the relation above.

Our goal in this paper is to determine the homomorphism poset K2,n of one
family of complete bipartite graphs. For small values of n, this is easy. Up to
geo-isomorphim, there is only one realization of K2,1 and so K2,1 is trivial. There
are only two realizations of K2,2, one with no crossings and one with exactly
one crossing. The vertex labels in Figure 1 indicate a geo-homomorphism that
shows that K2,2 is a 2-element chain.
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Figure 1: The homomorphism poset K2,2.

For n > 2, certainly a plane representation of K2,n will still be the first
element of K2,n, but the rest of the homomorphism poset is less obvious. To
systematize our study, we develop a correspondence between geometric real-
izations of K2,n and permutations in Sn, defined in Section 2, in which edge
crossings correspond to inversions. In Section 3, we give necessary and sufficient
conditions for two permutations to correspond to geo-isomorphic realizations;
we call such permutations geo-equivalent. These conditions can be efficiently
expressed using a directed version of permutation graphs. The section includes
a complete list of the geo-equivalence classes of Sn for n = 4 and 5, as well
as the number of geo-equivalence classes for all n ≤ 9. Some results on the
size of geo-equivalence classes are given in Section 4, based on the structure of
the modular decomposition tree of the permutation digraph. The poset struc-
ture of K2,n is determined in Section 5, which includes Hasse diagrams for K2,4

and K2,5. We compare the corresponding poset structure of the geo-equivalence
classes of Sn with that induced by the weak Bruhat order. We close with some
open questions in Section 6.

Throughout this paper, the vertex set of K2,n is denoted by U = {a, b} and
Vn = {1, 2, . . . , n}.

2 Permutations and Realizations of K2,n

For any π ∈ Sn, we define a corresponding geometric realization ofK2,n, denoted
K2,n(π), as follows. We start with a template; from each of the points a and b
in R2, draw n intersecting rays, on the same side of the line ab. Label the rays
emanating from b consecutively 1 through n; label the rays emanating from a
with π(1) through π(n), as in Figure 2.

For each i ∈ Vn, position vertex i at the intersection of the rays ai and bi
on the template. With all the vertices in place, add the appropriate edges. For
example, Figure 3 illustrates the realization of K2,4 corresponding to π = 2431.
(We express permutations in word form, π = π(1)π(2) . . . π(n), unless otherwise
noted.)

We would like to relate geometric properties of the realization K2,n(π) to
combinatorial properties of the permutation π. To this end, recall that an
inversion in a permutation is an instance of a smaller number appearing after
a larger number. For example, 2431 contains exactly four inversions: 1 appears
after 2, 3 and 4, and 3 appears after 4. We state this definition more formally.
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Figure 2: Template for the construction.
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Figure 3: The realization K2,4(2431).

Definition 5. Let i, j ∈ {1, 2, . . . , n} and let π ∈ Sn. Then (i, j) is an inversion
in π if and only if i < j and π−1(i) > π−1(j). The set of inversions of π is denoted
by E(π) (also called the inversion set of π).

A useful result that follows immediately from the definition is

(i, j) ∈ E(π) ⇐⇒
(
π−1(j), π−1(i)

)
∈ E(π−1),

or equivalently,

(k, l) ∈ E(π−1) ⇐⇒
(
π(l), π(k)

)
∈ E(π).

Returning to our example, we have E(2431) =
{

(1, 2), (1, 3), (1, 4), (3, 4)
}
.

From Figure 3, we can see that in K2,4(2431), b1 crosses a2, a3 and a4 and b3
crosses a4 . Moreover, these are the only crossings. This observation generalizes.

Theorem 1. Let π ∈ Sn and i, j ∈ {1, 2, . . . , n}. Then bi crosses aj in K2,n(π)
if and only if (i, j) ∈ E(π).
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Proof. This result is obvious if we focus on the portion of the construction
involving only vertices i = π(k) and j = π(l); see Figure 4. Up to geometric
isomorphism, we get the subgraph on the left when k > l, or equivalently,
π−1(i) > π−1(j), which by definition is when (i, j) ∈ E(π). If k < l, then
π−1(i) < π−1(j), and so (i, j) 6∈ E(π). In this case, we get the subgraph on the
right.

a b

i

i=π(k)

j=π(l)

j

i j

a b

i

j

i

j

j=π(l)

i=π(k)

Figure 4: Inversions correspond to crossings.

Figure 4 also shows that if i < j, then ai can never cross bj in K2,n(π) for
any π ∈ Sn.

Corollary 1. Let π, σ ∈ Sn.

1. The total number of crossings in K2,n(π) is |E(π)|.

2. If K2,n(σ) ∼= K2,n(π), then |E(σ)| = |E(π)|.

Proof. The first statement follows immediately from Theorem 1; the second
follows from the fact that geo-isomorphisms preserve total number of crossings.

Next, we show that any geometric realization of K2,n is geo-isomorphic to
K2,n(π) for some π ∈ Sn. Start with a (labeled) realization K2,n in the plane.
The line ` through points a, b divides the plane into two half-planes. Randomly
select one half-plane and suppose it contains {i1, . . . it} ⊆ Vn (where 0 < t ≤ n).
For each 1 ≤ j ≤ t, let θb(j) denote the angle ∠abij . Since the vertices are in
general position, we can arrange these angles in strictly increasing order:

0 < θb(j1) < θb(j2) < · · · < θb(jt) < 180o.

Re-label vertex ijk with k, so that now 0 < θb(1) < θb(2) < · · · < θb(t) < 180o.
Next, let θa(j) = ∠baj. Arranging these angles in strictly increasing order
induces a permutation of {1, . . . , t},

0 < θa
(
π(1)

)
< θa

(
π(2)

)
< · · · < θa

(
π(t)

)
< 180o.
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If t = n, we stop. If t < n, re-label the remaining vertices t + 1, . . . , n so that
0 < θb(t + 1) < θb(t + 2) < · · · < θb(n) < 180o. Again, arranging the angles
θa(j) in increasing order induces a permutation on {t+ 1, . . . , n},

0 < θa
(
π(t+ 1)

)
< θa

(
π(t+ 2)

)
< · · · < θa

(
π(n)

)
< 180o.

Figure 5 illustrates the re-labeling protocol on a particular realization of K2,8.
The corresponding induced permutation is π = 54231867.

a

b

1

2

4
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a

b

6

2
8

1

3
5

7

l

~=

Figure 5: Re-labeling vertices of a realization of K2,8.

Proposition 1. If the vertices of a geometric realization K2,n are re-labeled as
above, with corresponding induced permutation π, then K2,n

∼= K2,n(π).

Proof. By Theorem 1, it suffices to show that for all 1 ≤ i < j ≤ n, bi crosses
aj in K2,n if and only if (i, j) ∈ E(π).

First note that if i ≤ t < j, then by the re-labeling protocol, i and j are
on opposite sides of line `, and so bi cannot cross aj. The construction forces
i = π(k) for some k ∈ {1, . . . , t} and j = π(l) for some l ∈ {t+ 1, . . . , n}. Hence
k < l, meaning π−1(i) < π−1(j), and so (i, j) 6∈ E(π).

Next, assume 1 ≤ i < j ≤ t or t+ 1 ≤ i < j. This means that θb(i) < θb(j).
It is not difficult to see that bi crosses aj if and only if θa(i) > θa(j). Letting
k = π−1(i) and l = π−1(j), this is equivalent to θa

(
π(k)

)
> θa

(
π(l)

)
. By

construction, this occurs if and only if k > l. By definition, this is true if and
only if (i, j) ∈ E(π).

Applying this to the case n = 3, we conclude that the number of different
geometric realizations of K2,3 is at most |S3| = 6. Visual inspection of Fig-
ure 6 makes clear that in fact there are only 4 geo-isomorphism classes. The
question we address in the next section is: when do two permutations induce
geo-isomorphic realizations?
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Figure 6: Realizations of K2,3.

Note that we can use geo-isomorphism to define an equivalence relation
directly on Sn by setting

σ ∼ π ⇐⇒ K2,n(σ) ∼= K2,n(π).

We will denote the geo-equivalence class of π by [π]. Similarly, we can define a
partial order on the set of all geo-equivalence classes of Sn by

[σ] � [π] ⇐⇒ K2,n(σ) � K2,n(π) in K2,n.

We denote the resulting poset by [Sn]. From the above, [S3] is the chain

[123] ≺ [213] ≺ [231] ≺ [321].

3 Geo-equivalence Classes

In this section, we determine necessary and sufficient conditions for two permu-
tations to be geo-equivalent. We begin by defining an action of permutations
on inversion sets.

Definition 6. Let σ, ρ ∈ Sn. For all (i, j) ∈ E(σ), let

ρ ∗ (i, j) =

{(
ρ(i), ρ(j)

)
if ρ(i) < ρ(j);(

ρ(j), ρ(i)
)

if ρ(i) > ρ(j).

We say ρ is order-preserving on (i, j) in the first case, and order-reversing on
(i, j) in the second. We let ρ ∗ E(σ) denote the set {ρ ∗ (i, j) | (i, j) ∈ E(σ)}.

The image of an inversion set under the action of a permutation may or may
not itself be an inversion set. We consider three illustrative examples.
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Example 1. If σ1 = 3214 and ρ1 = 2341, then

E(σ1) = {(1, 2), (1, 3), (2, 3)}
ρ1 ∗ E(σ1) = {(2, 3), (2, 4), (3, 4)} = E(1432).

Note that ρ1 is order-preserving on all inversions of σ1.

Example 2. Let σ2 = 4312 and ρ2 = 2341; then

E(σ2) = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}
ρ2 ∗ E(σ2) = {(2, 4), (3, 4), (1, 4)} ∪ {(1, 2), (1, 3)}

= E(4231).

In this case, ρ2 is order-preserving on some inversions of σ2 and order-reversing
on others.

Example 3. Let σ3 = 2413 and ρ3 = 1324; then

E(σ3) = {(1, 2), (1, 4), (3, 4)}
ρ3 ∗ E(σ3) = {(1, 3), (1, 4), (2, 4)}.

In this case, ρ3 is order-preserving on all inversions of σ3. However, the image is
not the inversion set of any permutation. To prove this, we need some additional
background (an excellent overview of which can be found in Chapter 7 of [6]).

The inversions of a permutation π ∈ Sn can be recorded in a graph G(π),
on vertices Vn = {1, 2, . . . , n}, with i < j adjacent if and only if (i, j) ∈ E(π).
More generally, we have the following definition.

Definition 7. A graph G = (V,E) on n vertices is a permutation graph if
and only if there exists a bijection L : V → {1, 2, . . . , n} and a permutation
π ∈ Sn such that L : G→ G(π) is a graph isomorphism. In this case, we say G
represents π.

Permutation graphs are related to another family of graphs, defined below.

Definition 8. A graph G = (V,E) is transitively orientable if and only if its
edges can be assigned an orientation F so that in the directed graph D = (V, F ),
(u, v), (v, w) ∈ F implies (u,w) ∈ F .

In 1971, Pneuli, Lempel and Even proved the following characterization of
permutation graphs.

Theorem 2. [13] A graph G is a permutation graph if and only if both G and
its complement Gc are transitively orientable.

We can rephrase this result in a way that allows us to quickly recognize when
a set of ordered pairs is the inversion set of a permutation.

Corollary 2. Let Un =
{

(i, j) | 1 ≤ i < j ≤ n
}

, where n ≥ 2, and let A ⊆ Un.
Then A = E(π) for some π ∈ Sn if and only if for all i < j < k,
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1. (i, j) ∈ A and (j, k) ∈ A =⇒ (i, k) ∈ A;

2. (i, j) ∈ Ac and (j, k) ∈ Ac =⇒ (i, k) ∈ Ac.

An immediate consequence of this result is that the complement of an inver-
sion set in Un is also an inversion set; in fact [E(π)]c = E(πc), where πc is the
‘reverse’ of π, given by πc = π(n)π(n− 1) . . . π(1).

Returning to Example 3, we conclude that ρ3 ∗E(σ3) = {(1, 3), (1, 4), (2, 4)}
is not an inversion set, as (1, 2), (2, 3) ∈

(
ρ3 ∗ E(σ3)

)c
, yet (1, 3) 6∈ ρ3 ∗ E(σ3),

violating condition (2) of Corollary 2. Although the image of an inversion set
is not always itself an inversion set, we do have the following result.

Lemma 1. For all σ, ρ ∈ Sn, the image of E(σ) under the action of ρ is the
symmetric difference,

ρ ∗ E(σ) =
[
E(ρ · σ)\E(ρ)

]
∪
[
E(ρ)\E(ρ · σ)

]
.

More precisely,

E(ρ · σ)\E(ρ) =
{(
ρ(i), ρ(j)

)
| (i, j) ∈ E(σ) and ρ(i) < ρ(j)

}
, and

E(ρ)\E(ρ · σ) =
{(
ρ(j), ρ(i)

)
| (i, j) ∈ E(σ) and ρ(i) > ρ(j)

}
.

Proof. If (k, l) ∈ E(σ), then k < l and σ−1(k) > σ−1(l). If ρ(k) < ρ(l), then it is
simply a matter of applying the definition to show that ρ∗(k, l) ∈ E(ρ ·σ)\E(ρ).
Similarly, if ρ(k) > ρ(l), then ρ ∗ (k, l) ∈ E(ρ)\E(ρ · σ).

Conversely, if (i, j) ∈ E(ρ · σ)\E(ρ), then

ρ−1(i) < ρ−1(j) and σ−1 · ρ−1(i) > σ−1 · ρ−1(j),

meaning that (ρ−1(i), ρ−1(j)) ∈ E(σ); clearly ρ ∗
(
ρ−1(i), ρ−1(j)

)
= (i, j). Sim-

ilarly if (i, j) ∈ E(ρ)\E(ρ · σ), then

ρ−1(i) > ρ−1(j) and σ−1 · ρ−1(i) < σ−1 · ρ−1(j),

meaning that (ρ−1(j), ρ−1(i)) ∈ E(σ) and ρ ∗
(
ρ−1(j), ρ−1(i)

)
= (i, j).

Note that if ρ is order-preserving on all inversions of σ, then ρ ∗ E(σ) will
never violate condition (1) of Corollary 2. For suppose (k, l), (l,m) ∈ ρ ∗ E(σ),
where k < l < m. Since ρ preserves order, there exist i < j < h such that

(k, l) =
(
ρ(i), ρ(j)

)
, (l,m) =

(
ρ(j), ρ(h)

)
and (i, j), (j, h) ∈ E(σ).

Since E(σ) satisfies (1), (i, h) ∈ E(σ) and so
(
ρ(i), ρ(h)

)
= (k,m) ∈ ρ ∗ E(σ).

It can be shown similarly that if ρ is order-reversing on all inversions of σ, then
ρ ∗ E(σ) satisfies condition (1).

We are now ready for the main theorem of this section.
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Theorem 3. Let σ, π ∈ Sn. Then σ ∼ π if and only if there exists ρ ∈ Sn such
that

1. ρ ∗ E(σ) = E(π);

2. ρ is either order-preserving on E(σ) or order-reversing on E(σ).

Proof. Assume σ ∼ π. Then by definition, there exists a geo-isomorphism
f : K2,n(σ) → K2,n(π). Let ρ = f |Vn∈ Sn. First suppose f(a) = a and
f(b) = b. By Theorem 1 and the definition of geo-isomorphism,

(i, j) ∈ E(σ) ⇐⇒ bi crosses aj in K2,n(σ)

⇐⇒ bρ(i) crosses aρ(j) in K2,n(π)

⇐⇒
(
ρ(i), ρ(j)

)
∈ E(π).

This implies both that ρ is order-preserving on E(σ) and that ρ ∗E(σ) = E(π).
If f(a) = b and f(b) = a, then bi crosses aj in K2,n(σ) if and only if aρ(i)
crosses bρ(j) in K2,n(π); in this case,

(i, j) ∈ E(σ) ⇐⇒
(
ρ(j), ρ(i)

)
∈ E(π).

In this case, ρ ∗ E(σ) = E(π) and ρ is order-reversing on E(σ).

Conversely, assume ρ ∗ E(σ) = E(π) and ρ is order-preserving on E(σ).
Define g : K2,n(σ) → K2,n(π) by g(a) = a, g(b) = b and g(i) = ρ(i) for all
i ∈ Vn. For i < j, we have

bi crosses aj in K2,n(σ) ⇐⇒ (i, j) ∈ E(σ)

⇐⇒
(
ρ(i), ρ(j)

)
∈ E(π)

⇐⇒ bρ(i) crosses aρ(j) in K2,n(π)

⇐⇒ g(b)g(i) crosses g(a)g(j) in K2,n(π).

Therefore g is a geo-isomorphism. If ρ is order-reversing on E(σ), then we adapt
this argument by setting g(a) = b, g(b) = a and g(i) = ρ(i) for all i ∈ Vn.

Applying this theorem to Example 1, we conclude 1432 ∼ 3214, or equiv-
alently, K2,4(1432) ∼= K2,4(3214). Example 2 illustrates the importance of
condition (2) in Theorem 3; even though there exists a ρ ∈ Sn satisfying
ρ ∗ E(4312) = E(4312), the realizations of K2,4 corresponding to these two
permutations (shown in Figure 7) are not geo-isomorphic. One way to see this
is to note that both edges incident to vertex 3 in K2,4(4231) are crossed exactly
once, but no vertex in K2,4(4231) has this property.

Corollary 3. For all π ∈ Sn, π−1 ∼ π via π, which is order-reversing.

Proof. This follows directly from our earlier observation that

(k, l) ∈ E(π−1) ⇐⇒
(
π(l), π(k)

)
∈ E(π).
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a b
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a b
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Figure 7: Importance of condition (2) in Theorem 3.

Example 4. Let π = 3142; then π−1 = 2413. In this case, π−1 = πc, and so

E(π−1) = [E(π)]c = {(1, 2), (1, 4), (3, 4)}.

We get π∗E(π−1) = {(1, 3), (2, 3), (2, 4)} = E(π), with the action of π reversing
order on E(π−1). However, it is also true in this case that π−1∗E(π−1) = E(π),
with the action of π−1 preserving order on E(π−1).

Corollary 4. For all π ∈ Sn, π ∼ ((πc)−1)c via (πc)−1, which is order-
preserving.

Proof. For 1 ≤ i < j ≤ n,

(i, j) ∈ E(π) ⇐⇒ (i, j) 6∈ [E(π)]c ⇐⇒ (i, j) 6∈ E(πc)

⇐⇒ (πc)−1(i) < (πc)−1(j).

This shows that (πc)−1 is order-preserving on E(π). Next, for 1 ≤ k < l ≤ n,

(k, l) ∈ E
(
((πc)−1)c

)
⇐⇒ (k, l) 6∈ E((πc)−1)

⇐⇒ πc(k) < πc(l).

Replacing k with (πc)−1(i) and l with (πc)−1(j), we get

((πc)−1(i), (πc)−1(j)) ∈ E
(
((πc)−1)c

)
⇐⇒ (πc)−1(i) < (πc)−1(j) and i < j

⇐⇒ (i, j) ∈ E(π).

We can combine the last two corollaries to obtain the following.

Corollary 5. For all π ∈ Sn, the permutations π, π−1, ((πc)−1)c and (((πc)−1)c)−1

are all geo-equivalent.
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Example 5. By Corollary 5,

π = 2431, π−1 = 3142, ((πc)−1)c = 3241 and ((πc)−1)c)−1 = 4213

are all geo-equivalent.

The four permutations in Corollary 5 may not all be distinct. In Example 4,
we saw that for π = 3142, π−1 = 2413 = πc, so

((πc)−1)c = π−1 and (((πc)−1)c)−1 = π.

For π = 3412, we have π = π−1 = ((πc)−1)c = (((πc)−1)c)−1.

Recall that for all π ∈ Sn, G(π) has vertices Vn = {1, 2, . . . , n} and edges
{ij | (i, j) ∈ E(π)}. Thus G(σ) is isomorphic to G(π) if and only if there exists
ρ ∈ Sn such that ρ∗E(σ) = E(π); that is, G(σ) ∼= G(π) as abstract graphs if and
only if condition (1), but not necessarily condition (2), of Theorem 3 is satisfied.
In particular, Example 3 shows that G(4312) ∼= G(4231), yet 4312 6∼ 4231.
Thus the number of geo-equivalence classes of Sn may exceed the number of
non-isomorphic permutation graphs on n vertices.

We can rephrase Theorem 3 in the language of permutation graphs by intro-
ducing a directed version of G(π). More precisely, for all π ∈ Sn, we let D(π)
denote the digraph with vertex set Vn = {1, 2, . . . , n} and arc set E(π). We will
call a digraph D = (V, F ) a permutation digraph if and only if D ∼= D(π) for
some permutation π; in this case, we say D represents π.

Lemma 2. Let D = (V, F ) be a digraph and let −D = (V,−F ) denote the
digraph obtained by reversing direction on all arcs of D. If D ∼= D(π) for some
π ∈ Sn, then −D ∼= D(π−1).

Proof. Suppose L : V → {1, 2, . . . , n} is a bijection establishing D ∼= D(π); that
is,

(u, v) ∈ F ⇐⇒
(
L(u), L(v)

)
∈ E(π).

By Corollary 4, (i, j) ∈ E(π) ⇐⇒ (π−1(j), π−1(i)
)
∈ E(π−1). Hence the

bijection π−1 ◦ L : V → {1, 2, . . . , n} establishes −D ∼= D(π−1).

Theorem 4. Let π, σ ∈ Sn. Then σ ∼ π if and only if either D(σ) ∼= D(π) or
D(σ) ∼= D(π−1).

Proof. If there exists ρ ∈ Sn such that ρ∗E(σ) = E(π), with ρ preserving order
on E(σ), then ρ is also a digraph isomorphism D(σ) → D(π). If ρ is order-
reversing on E(σ), then π−1 ◦ ρ : D(σ) → D(π−1) is a digraph isomorphism.
Conversely, a digraph isomorphism γ : D(σ)→ D(π) must be an element of Sn
satisfying γ ∗ E(σ) = E(π), with γ preserving order on E(σ). If the digraph
isomorphism is γ : D(σ) → D(π−1), then (π ◦ γ) ∗ E(σ) = E(π), with π ◦ γ
reversing order on E(σ).



13

1

3

4 2

D(3421)

1

3

4 2

D(4231)

1

3

4 2

D(4312)

Figure 8: Some permutation digraphs.

Figure 8 illustrates the previous two results. First note that the underly-
ing undirected graphs are the same, so G(3421) ∼= G(4312) ∼= G(4231); up to
isomorphism, there is only one permutation graph on 4 vertices with 5 edges.
The first two digraphs, D(3421) and D(4312), are ‘reverses’ of each other, as
expected from the fact that (3421)−1 = (4312). The third digraph, D(4231), is
not isomorphic to either of the previous two. Note that reversing the direction
on all arcs of D(4231) yields a digraph isomorphic to the original, as expected
from the fact that (4231)−1 = 4231. We conclude that the permutations of S4

with 5 inversions divide into two geo-equivalence classes: [3421] = {3421, 4312}
and [4231] = {4231}.

Theorem 4 suggests that to determine the geo-equivalence classes of Sn, we
must determine the isomorphism classes of permutation digraphs on n vertices,
and additionally identify a digraph D with its reverse, −D. Following Colbourn
(see [5]), we call a permutation graph uniquely orientable if and only if it ad-
mits only one transitive orientation and its reverse. Furthermore, we make the
following definition.

Definition 9. Two permutations digraphs D1 and D2 are related if and only if
either D1

∼= D2 or D1
∼= −D2; otherwise they are unrelated.

Using this terminology, the number of geo-equivalence classes of Sn is the
number of unrelated permutation digraphs on n vertices. Table 1 gives the
partitioning of S4 into geo-equivalence classes. There are 11 non-isomorphic
(undirected) graphs on 4 vertices and all of them are permutation graphs. The
only one that is not uniquely orientable is the one in Figure 8, giving 12 geo-
equivalence classes in total.

Progressing to n = 5, there are 34 non-isomorphic graphs in total, but one
of them, C5, is not transitively orientable and is therefore not a permutation
graph. Of the remaining 33 graphs, 27 are uniquely orientable and the remaining
6 have exactly two unrelated orientations, as shown in Figure 9. Thus, S5 has
39 geo-equivalence classes in total; these are given in Table 2. (To save space,
this table does not include diagrams of each possible oriented digraph.) As in
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Table 1: Geo-equivalence classes of S4.

inversions digraphs permutations

0

1

1234

1243, 1324, 2134

21432

3

1432, 3214

2413, 3142

4 3412

5

4231

43216

2341 4123

4132, 4213 2431, 3241

3421 4312

2314, 1342 1423, 3124

class label

0.1

3.3

4.1

4.2

5.1

5.2

6.1

3.1

2.2

2.1

1.1

3.2

the previous table, permutations corresponding to opposite orientations of the
underlying graph are separated by a diagonal slash.

Table 2: Geo-equivalence classes of S5.

inversions class label permutations

0 0.1 12345

1 1.1 12354, 12435, 13245, 21345

2 2.1 12453, 13425, 23145 / 12534, 14235, 31245

2.2 13254, 21354, 21435

3 3.1 13452, 23415 / 15234, 41235

continued on next page
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5.5 5.6 6.76.6 7.4 7.5

8.1 8.2 8.3 8.4 9.1 9.2

Figure 9: Six permutations graphs, n = 5, each with 2 unrelated transitive
orientations.

continued from previous page

inversions class label permutations

3.2 13524, 24135 / 14253, 31425

3.3 12543, 14325, 32145

3.4 21453, 23154 / 21534, 31254

4 4.1 23451 / 51234

4.2 13542, 14352, 24315, 32415 / 15234, 15324, 41325, 42135

4.3 23514, 31452 / 41253, 25134

4.4 24153 / 31524

4.5 14523, 34125

4.6 32154, 21543

5 5.1 23541, 24351, 32451 / 51243, 51324, 52134

5.2 34152, 24513 / 35124, 41523

5.3 25314 / 41352

5.4 32514, 31542 / 42153, 25143

5.5 14532, 34215 / 15423, 43125

5.6 15342, 42315

continued on next page
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continued from previous page

inversions class label permutations

6 6.1 32541 / 52143

6.2 34512 / 45123

6.3 25413, 43152 / 41532, 35214

6.4 15432, 43215

6.5 35142, 42513

6.6 24531, 34251 / 51423, 53124

6.7 25341, 42351 / 51342, 52314

7 7.1 25431, 43251 / 51432, 53214

7.2 35412, 43512 / 45132, 45213

7.3 42531, 35241 / 52413, 53142

7.4 34521 / 54123

7.5 52341

8 8.1 35421, 43521 / 54132, 54213

8.2 52431, 53241

8.3 45231 / 53412

8.4 45312

9 9.1 45321/ 54312

9.2 53421 / 54231

10 10.1 54321

From the geo-equivalence classes for n = 3, 4 and 5, one might conjecture
that involutions (i.e. permutations of order two) can only be geo-equivalent to
other involutions. However, a counterexample exists at n = 6; π = 465132 is
an involution (in cycle notation, π = (14)(26)(35)), σ = 465213 is the 6-cycle
(142635), yet σ ∼ π via ρ = 231456.

We can write a program based on Theorem 3 to determine geo-equivalence
classes for larger values of n. If we let an denote the number of geo-equivalence
classes in Sn (where n ≥ 1), then the first nine terms of the integer sequence
(an) are:

1, 2, 4, 12, 39, 182, 1033, 7605, 66302, ...

Interestingly, this does not match any other sequence in the Online Encyclopedia
of Integer Sequences. However, implementing this theorem involves testing n!
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permutations as candidates for ρ, and it is therefore very inefficient. (However,
the interested reader may find both C++ and Python code for this algorithm
at entry A180487 in OEIS [12].)

For an approach based on Theorem 4, we can start with pn ≤ an, where pn
is the number of permutation graphs on n vertices. However, neither a closed
nor a recursive formula for pn is known. Evens, Lempel and Pnueli [13] gave
a polynomial-time algorithm for recognizing permutation graphs in 1971, and
ten years later, Colbourne [5] gave a polynomial-time algorithm for determining
if two permutation graphs are isomorphic. More recently, progress has been
made on the enumeration of certain subclasses of permutation graphs. In 1999,
Guruswami [7] gave a generating function for the number of non-isomorphic
cographs and threshold graphs. (We will discuss cographs further in the next
section.) Koh and Ree [9] found a recurrence relation for the number of vertex-
labeld connected permutation graphs in 2007, and in 2009, Saitoh, Otachi, Ya-
manaka and Uehara [14] developed a linear time algorithm for generating and
enumerating non-isomorphic bipartite permutation graphs. In the absence of a
starting point for the number of geo-equivalence classes, we turn to determining
the size of geo-equivalence classes.

4 Size of Geo-equivalence Classes

In this section, we develop a method for determining the size of the geo-
equivalence class represented by a given permutation digraph. A useful tool
for this investigation is modular decomposition, which we briefly review below.
Although this theory can be traced back to a seminal 1967 paper by Gallai
[10], we use the more modern terminology and notation that can be found in
Brandstadt, Le and Spinrad [4] or McConnell [11].

Definition 10.

1. A module of a graph G = (V,E) is a set of vertices M such that any vertex
outside M is either adjacent to every vertex in M , or not adjacent to any
vertex in M . More formally, for all v ∈ V \M , either uv ∈ E for all u ∈M ,
or uv ∈ Ec for all u ∈M .

2. Two modules M and N overlap if and only if M ∩ N , M\N and N\M
are all non-empty.

3. A module M is strong if and only if it does not overlap with any other
module of G; otherwise it is weak.

For any graph G, V and {v} for all v ∈ V are modules (in fact, strong
modules); they are called trivial modules. Note that the modules (and strong
modules) of G and Gc are the same.

We can recursively partition the vertex set of a graph G = (V,E) into
its strong modules using the following algorithm. We use G|M to denote the
subgraph of G induced by M . We begin the algorithm with M = V .
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1. If |M | = 1, then stop.

2. If G|M is disconnected, then partition M into its connected components.

3. If G|M is connected, but Gc|M is disconnected, partition M into the
connected components of Gc|M .

4. If both G|M and Gc|M are connected, then M can be partitioned into its
maximal submodules (which will be strong modules of G).

The modular decomposition tree of G has the strong modules of G as its
nodes, with V being the root node, and the children of a node M being the
strong modules in the partition of M from the algorithm above. Every leaf in
this tree is a singleton set, {v}. An internal node M in the tree is called:

• a degenerate 0-node if G|M is disconnnected;

• a degenerate 1-node if G|M is connected, but Gc|M is disconnected;

• a prime node if both G|M and Gc|M are connected.

Every weak module of G is a union of children of degenerate node, and con-
versely, every union of children of a degenerate node is a weak module. Note
that a degenerate 0-node of G is a degenerate 1-node of Gc, and vice versa.

To every internal node M of the modular decomposition tree of G = (V,E),
we associate a quotient graph Q(M), whose vertices are the children of M , with
two children X and Y being adjacent if and only if xy ∈ E for some x ∈ X and
y ∈ Y . Note that by definition of a module, xy ∈ E for some x ∈ X, y ∈ Y if and
only if xy ∈ E for all x ∈ X, y ∈ Y . It follows directly from the definitions that
if M is a degenerate 0-node, then Q(M) is a null graph, and if M is a degenerate
1-node with k children, then Q(M) is a complete graph on k vertices.

Lemma 3. [10] [11] If X and Y are adjacent children of either a degenerate
1-node or a prime node, then in any transitive orientation F of G, all edges
between X and Y must be oriented the same way (i.e. either X × Y ⊆ F or
Y ×X ⊆ F ).

Thus any transitive orientation on the edges of G unambiguously restricts
to a transitive orientation on each quotient graph Q(M). Conversely, Gallai
showed that any set of transitive orientations on the quotient graphs extends
in the obvious way to a transitive orientation on G. Since complete graphs are
always transitively orientable, we conclude that G is transitively orientable if
and only if for every prime node M of G, Q(M) is transitively orientable.

Proposition 2. [10] Let M be a prime node of the modular decomposition tree
of G. If Q(M) is transitively orientable, then it is uniquely orientable.

Putting all of these facts together, we can determine the number of different
transitive orientations on a vertex-labeled transitively orientable graph.
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Corollary 6. Let G = (V,E) be a transitively orientable graph. Suppose the
internal nodes of the modular decomposition tree of G consist of:

• prime nodes P1, P2, . . . , Ps;

• degenerate 1-nodes N1, . . . , Nt, where Ni has ki children;

• degenerate 0-nodes M1, . . . ,Mr.

Then G has 2s · k1! · k2! · · · kt! different transitive orientations.

Note that this number counts any transitive orientation F and its reverse −F
as different orientations: isomorphic orientations are also counted as different.
Hence, this is not the number of unrelated transitive orientations on G, only an
upper bound.

Recall that a graph G is a permutation graph if and only if both G and Gc

are transitively orientable. In [13], Evens, Lempel and Pnueli give an algorithm
that takes as input transitive orientations F, F1 on G,Gc respectively, and out-
puts a permutation π such that (V, F ) ∼= D(π) (i.e. a permutation represented
by (V, F )). First they show that superimposing the two orientations yields a
transitively oriented complete graph, (V, F ∪ F1). Associated with this orienta-
tion on Kn is a unique vertex labeling function L : V → {1, . . . , n} satisfying

L(v) < L(w) ⇐⇒ (v, w) ∈ F ∪ F1. (1)

Since F and F1 are both transitive, by Corollary 2 there exists a unique permu-
tation π such that {(

L(v), L(w)
)
| (v, w) ∈ F

}
= E(π). (2)

We say π is the permutation induced by F ∪F1, or equivalently, F ∪F1 induces
π. Note that we also have{(

L(v), L(w)
)
| (v, w) ∈ F1

}
= E(π)c = E(πc). (3)

Hence we have both L : (V, F ) ∼= D(π) and L : (V, F1) ∼= D(πc).

Given a permutation digraph D = (V, F ), with underlying undirected graph
G, this algorithm defines a function

Φ : {transitive orientations on Gc} → {permutations represented by D}.

Now Φ is surjective, for assume π is represented by D = (V, F ). By definition,
there exists a bijection L : V → {1, . . . , n} that is an isomorphism D → D(π).
Applying L−1 to the vertices of D(πc) induces a transitive orientation F1 on
Gc, and it is clear that F ∪F1 will induce π. However, Φ is not injective, as can
be seen by letting D be the null digraph on n (labeled) vertices. In this case,
Gc is complete, and has n! different transitive orientations. However, the only
permutation D represents is the identity in Sn. The following proposition gives
a necessary and sufficient condition for Φ to take two transitive orientations of
Gc to the same permutation.
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Proposition 3. Let D = (V, F ) be a permutation digraph with underlying undi-
rected graph G, and let F1, F2 be two transitive orientations on Gc. Then F ∪F1

and F ∪ F2 induce the same permutation if and only if there exists a bijection
f : V → V such that f : (V, F ) → (V, F ) and f : (V, F1) → (V, F2) are both
digraph isomorphisms.

Proof. Let L1, L2 : V → {1, 2, . . . , n} be the labeling functions associated with
F ∪ F1, F ∪ F2 respectively. First assume F ∪ F1 and F ∪ F2 both induce π.
Let f = L2

−1 ◦ L1; this is a bijection V → V . By equation (2),

(v, w) ∈ F ⇐⇒ (L1(v), L1(w)) ∈ E(π)

⇐⇒ (L2
−1 ◦ L1(x), L2

−1 ◦ L1(x)) = (f(v), f(w)) ∈ F.

Similarly, by equation (3),

(x, y) ∈ F1 ⇐⇒ (L1(x), L1(y)) ∈ E(π)c

⇐⇒ (L2
−1 ◦ L1(x), L2

−1 ◦ L1(y)) = (f(x), f(y)) ∈ F2.

Conversely, assume g : V → V is a digraph isomorphism (V, F ) → (V, F ) and
(V, F1) → (V, F2). Then L2 ◦ g ◦ L−11 : {1, . . . , n} → {1, . . . , n} is a bijection.
Moreover, for all distinct i, j ∈ {1, . . . , n}, equation (1) gives

i < j ⇐⇒ (L1
−1(i), L1

−1(j)) ∈ F ∪ F1

⇐⇒ (g ◦ L1
−1(i), g ◦ L1

−1(j)) ∈ F ∪ F2

⇐⇒ [L2 ◦ g ◦ L1
−1](i) < [L2 ◦ g ◦ L1

−1](j).

The only order-preserving bijection on a finite totally ordered set is the identity,
implying L1 = L2 ◦ g. Combining this with the fact that g is an isomorphism
on (V, F ), we get{(

L1(v), L1(w)
)
| (v, w) ∈ F

}
=
{(
L2 ◦ g(v), L2 ◦ g(w)

)
| (v, w) ∈ F

}
=
{(
L2 ◦ g(v), L2 ◦ g(w)

)
| (g(v), g(w)) ∈ F

}
=
{(
L2(x), L2(y)

)
| (x, y) ∈ F

}
.

Hence the permutation induced by F ∪ F1 has the same inversion set as (and
thus is equal to) the permutation induced by F ∪ F2.

Applying this to the case where D is the null graph, recall that up to isomor-
phism, there is only one transitive orientation on Kn. Moreover, any bijection
on the vertices is also an isomorphism on D. In this extreme case, the vertices
are indistinguishable in both D and Gc. The following theorem generalizes from
indistinguishable vertices to indistinguishable submodules.

Theorem 5. Let D = (V, F ) be a permutation digraph, with underlying undi-
rected graph G. Let M be a degenerate 0-node of G, with C = {X1, X2, . . . , Xm}
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being a set of children of M that induce isomorphic directed subgraphs of D; let
gij denote an isomorphism D|Xi → D|Xj. For any ρ ∈ Sm, define fρ : V → V
by:

fρ(v) =

{
giρ(i)(v), if v ∈ Xi for some 1 ≤ i ≤ m,
v, if v /∈ C.

For any transitive orientation F1 on Gc, define another orientation F2 by(
fρ(v), fρ(w)

)
∈ F2 ⇐⇒ (v, w) ∈ F1.

Then F2 is also a transitive orientation on Gc. Moreover, F ∪ F1 and F ∪ F2

induce the same permutation.

Proof. First we show that fρ is a digraph isomorphism D → D. Since fρ is the
identity outside

⋃
C, we need only consider arcs with at least one endvertex in⋃

C. Since M is a degenerate 0-node of G, no vertices in different children of
M are adjacent, so we have only the following two cases.

1. If v, w ∈ Xi, then use the fact that fρ|Xi = giρ(i) is an isomorphism.

2. If v ∈ Xi and w /∈
⋃
C, then w must belong to another module M ′. If

v, w are adjacent in G, then M and M ′ must either be adjacent chil-
dren of some other node, or submodules of adjacent children of some
other node. In either case, by Lemma 3, all edges between vertices in M ′

and M are oriented the same way in F . Thus (v, w) ∈ F if and only if(
fρ(v), fρ(w)

)
=
(
fρ(v), w) ∈ F .

Ignoring orientation, fρ is a graph isomorphism G→ G, and so also Gc → Gc.
By construction, fρ will be a digraph isomorphism (V, F1)→ (V, F2). Since F1

is transitive, F2 must also be transitive. Now apply Proposition 3.

Example 6. Figure 10 shows a permutation digraph D1, the complement of
the underlying undirected graph, Gc1, and its modular decomposition tree. The
root node V is a degenerate 0-node of G1 with 3 children; {v, w} and {x, y} are
degenerate 1-nodes of G1. Hence, V is a degenerate 1-node of Gc1 with 3 children;
{v, w} and {x, y} are degenerate 0-nodes of Gc1. By Corollary 6, the total
number of different transitive orientations on Gc1 is 3! = 6. However, {v, w} and
{x, y} induce isomorphic directed subgraphs of D, so by Theorem 5, orientations
on Gc1 that differ only by a permutation of these 2 modules induce the same
permutation. Hence D1 represents no more than 6/2! = 3 permutations.

Example 7. In Figure 11, V is still a degenerate 1-node of Gc2 with 3 children;
{w, x, y} is a degenerate 0-node and {w, y} is a degenerate 1-node with 2 chil-
dren. By Corollary 6, the total number of different transitive orientations on
Gc2 is 3! · 2! = 12. Since {u}, {v} are isomorphic children of V , and {w}, {y} are
isomorphic children of {w, y}, by Theorem 5 (applied to both D and D|{w, y}),
D2 represents 12/(2! · 2!) = 3 permutations.
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Figure 10: Example 6
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Figure 11: Example 7

Note that D1 is isomorphic to its own reverse −D1. By Theorem 4, the
permutations represented by D1 constitute one geo-equivalence class of S5; in
fact, it is class 2.4 in Table 2. On the other hand, D2 is not isomorphic to −D2;
the same argument as above shows that −D2 also represents 3 permutations.
Hence the geo-equivalence class of permutations represented by either D2 or
−D2 contains 6 permutations; it is class 2.3 in Table 2.

A cograph is any graph whose modular decomposition tree contains no prime
nodes. As pointed out by Gallai, such graphs and their complements are always
transitively orientable, and hence all cographs are permutation graphs. (The
underlying undirected graphs in Examples 6 and 7 are both cographs.) As
noted earlier, in [7] Guruswami gives a generating function for the number of
non-isomorphic cographs on n vertices; in the same paper, he also shows that
the number of π ∈ Sn such that G(π) is a cograph is rn−1, where (rn) is the
sequence of (large) Schröder numbers (A006318 in the Online Encyclopedia of
Integer Sequences [12]). Theorem 5 allows us to determine the size of the geo-
equivalence class of any such permutation.

Corollary 7. Let π ∈ Sn such that G(π) = G is a cograph, and let D(π) = D
be the corresponding permutation digraph. Suppose the internal nodes of the
modular decomposition tree of G consist of:

• degenerate 1-nodes N1, . . . , Nt;

• degenerate 0-nodes M1, . . . ,Mr.
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Suppose further that Mi has ki children, which we divide up into isomorphism
classes according to the directed subgraphs they induce in D: ni1 children of
isomorphism type 1, ni2 children of isomorphism type 2, . . . and nit children of
isomorphism type t. Then the number of permutations represented by D is

n(D) =

r∏
i=1

ki!

ni1!ni2! · · ·nit!
.

The size of the geo-equivalence class [π] is 2n(D), unless D ∼= −D, in which
case it is n(D).

However, the probability that a permutation has a cograph as its permuta-
tion graph approaches zero (the entry for A00103 in OEIS [12] gives the asymp-
totic behavior of the Schröder numbers). Thus we now turn our attention to
prime nodes. We begin with a lemma that gives a new perspective on the result
of Corollary 5.

Lemma 4. Let G be a permutation graph and let F, F1 be transitive orientations
on G,Gc respectively. If F ∪ F1 induces π, then:

1. −F ∪ F1 induces π−1;

2. F ∪ −F1 induces ((πc)−1)c;

3. −F ∪ −F1 induces (((πc)−1)c)−1.

Proof. Let L be the unique vertex labeling function corresponding to F ∪ F1.
For part 1, we first show that π−1 ◦ L is the unique vertex labeling function
corresponding to (−F ) ∪ F1; that is,

π−1 ◦ L(v) < π−1 ◦ L(w) ⇐⇒ (v, w) ∈ −F ∪ F1.

Assume π−1 ◦ L(v) < π−1 ◦ L(w).

• If L(v) > L(w), then by definition (L(w), L(v)) ∈ E(π), and so by (2),
(w, v) ∈ F and hence (v, w) ∈ −F .

• If L(v) < L(w), then (L(v), L(w)) /∈ E(π), so (L(v), L(w)) ∈ E(πc) and
thus by (3), (v, w) ∈ F1.

Conversely, assume (v, w) ∈ −F ∪ F1.

• If (v, w) ∈ −F , then (w, v) ∈ F and so by (2), (L(w), L(v)) ∈ E(π). By
Corollary 3,

(
π−1◦L(v), π−1◦L(w)

)
∈ E(π−1). For this to be an inversion,

it must be that π−1 ◦ L(v) < π−1 ◦ L(w).

• If (v, w) ∈ F1, then by (3), (L(v), L(w)) ∈ E(πc) = E(π)c. Since (L(v), L(w))
is not an inversion of π, π−1 ◦ L(v) < π−1 ◦ L(w).
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The permutation defined by π−1 ◦ L has inversion set{(
π−1 ◦ L(v), π−1 ◦ L(w)

)
| (v, w) ∈ −F

}
=
{(
π−1 ◦ L(v), π−1 ◦ L(w)

)
| (w, v) ∈ F

}
=
{(
π−1(L(v)), π−1(L(w))

)
| (L(w), L(v)) ∈ E(π)

}
= π−1 ∗ E(π) = E(π−1),

since the action of π−1 on E(π) is order-reversing.

We can prove part 2 similarly by showing that (πc)−1◦L is the unique vertex
labeling function corresponding to F ∪ (−F1). To show that the corresponding
inversion set is that of ((πc)−1)c, recall (from Corollary 4) that the action of
(πc)−1 on E(π) is order-preserving. Part 3 follows from parts 1 and 2.

Proposition 4. Let π ∈ Sn such that G(π) = G = (V,E) has only trivial
modules, with V being a prime node in the modular decomposition of G. Then
[π] is a multiset of the form{

π, π−1, ((πc)−1)c, (((πc)−1)c)−1
}
,

which may contain four, two or one distinct permutation(s). Moreover, this is
the only geo-equivalence class of Sn represented by a transitive orientation of G.

Proof. Let D(π) = (V, F ) and D(πc) = (V, F1). By Proposition 2, both G and
Gc are uniquely orientable, so F,−F and F1,−F1 are the only two transitive
orientations on G and Gc respectively. By Lemma 4, D represents only π and
((πc)−1)c and −D represents only π−1 and (((πc)−1)c)−1.

It is possible that D ∼= −D; in that case, there exists a bijection f : V →
V such that (u, v) ∈ F ⇐⇒

(
f(u), f(v)

)
∈ −F ⇐⇒

(
f(v), f(u)

)
∈ F.

Now f is also a graph isomorphism on Gc and so {(f(x), f(y))|(x, y) ∈ F1}
constitutes a transitive orientation on Gc. Since Gc is uniquely orientable, it
can only be either F1 or −F1. In the first case, f : (V, F ∪ F1) ∼= (V,−F ∪ F1);
reversing orientations everywhere, we also get f : (V,−F ∪−F1) ∼= (V, F ∪−F1).
Lemma 4 implies that π = π−1 and ((πc)−1)c)−1 = (πc)−1)c. In the second case,
f : (V, F ∪ F1) ∼= (V,−F ∪−F1) and so by Lemma 4, π = (((πc)−1)c)−1, which
(purely algebraically) implies π−1 = ((πc)−1)c. Figure 12 shows one example
of each case; for both examples, f(u) = u, f(v) = y, f(w) = x, f(x) = w and
f(y) = v.

If D 6∼= −D but (V, F1) ∼= (V,−F1), then an analogous argument shows
that either π = ((πc)−1)c and π−1 = (((πc)−1)c)−1, or π = (((πc)−1)c)−1 and
π−1 = ((πc)−1)c.

A third possibility is that

(V, F ∪ F1) ∼= (V,−F ∪ F1) ∼= (V, F ∪ −F1) ∼= (V,−F ∪ −F1),
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Figure 12: Permutation graphs representing exactly two permutations.

in which case all four permutations are equal. We leave it to the reader to verify
that this situation occurs with the permutation graph in Figure 13.

G G c

Figure 13: A permutation graph representing [351624] = {351624}.

We now consider the situation where a prime node is one of several internal
nodes in the modular decomposition tree. By Corollary 6, each prime node
contributes a factor of 2 to the number of different transitive orientations on
Gc. However, it may contribute only a factor of 1 to the number of unrelated
transitive orientations, as in the rather detailed special case described below.

Theorem 6. Let D = (V, F ) be a permutation digraph, with underlying undi-
rected graph G. Let P be a prime node of G, with children V P = {X1, X2, . . . , Xp}.
Let Q(P ), Qc(P ) denote the corresponding quotient graphs of G,Gc respectively.
Let FP ,−FP denote the (only) two transitive orientations on Q(P ) and let
F1

P ,−F1
P denote the two transitive orientations on Qc(P ). Assume that there

exists a bijection fP : V P → V P such that :
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• fP : (V P , FP ) → (V P , FP ) and fP : (V P , F1
P ) → (V P ,−F1

P ) are both
digraph isomorphisms, and

• for all 1 ≤ i ≤ p, Xi and fP (Xi) induce isomorphic subgraphs of D.

Let gi : D | Xi → D | fP (Xi) be a digraph isomorphism. Define f : V → V by:

f(v) =

{
gi(v), if v ∈ Xi for some 1 ≤ i ≤ p,
v, otherwise.

For any transitive orientation F1 on Gc, define another orientation F2 by(
f(v), f(w)

)
∈ F2 ⇐⇒ (v, w) ∈ F1.

Then F2 is also a transitive orientation on Gc. Moreover, F ∪ F1 and F ∪ F2

induce the same permutation.

Proof. First we show that f is a digraph isomorphism D → D. Again, we only
consider arcs with at least one endvertex in P , but there are now three cases.

1. If v, w ∈ Xi, then use the fact that f |Xi
= gi is an isomorphism.

2. If v ∈ Xi, w ∈ Xj , then use the assumption that fP is an isomorphism on
(V P , FP ) and Lemma 3.

3. If v ∈ Xi and w /∈ P , then use the same argument as in the proof of
Theorem 5.

The rest of the proof is exactly the same as that of Theorem 5.

Example 8. In Figure 14, the modular decomposition tree of Gc has the root
node V = P as a prime node, X1 = {s, t} as a degenerate 0-node and X2 =
{w, x}, X3 = {y, z} as degenerate 1-nodes. Thus by Corollary 6, there are
2 · 2! · 2! = 8 different transitive orientations on Gc, but we can show that they
all induce the same permutation represented by D. First, orientations on Gc

that differ only by the orientations on X2 and X3 induce the same permutation
by Theorem 5. Next, define a bijection on the set of children of the prime node
V P by

fP (X1) = X1, f
P ({u}) = {v}, fP ({v}) = {u}, fP (X2) = X3, f

P (X3) = X2.

It is easy to verify that fP is a digraph isomorphism both (V P , FP )→ (V P , FP )
and (V P , F1

P ) → (V P ,−F1
P ). Let g1 be the identity on X1, and let g2 :

X2 → X3 and g3 : X3 → X2 be any bijections. Constructing f : V → V as in
Theorem 6 (with f(u) = v and f(v) = u), we conclude that any two orientations
on Gc that differ only in that the orientation on Qc(P ) is reversed induce the
same permutation. (Note that in this example, D 6∼= −D, so the geo-equivalence
class [π] contains exactly two permutations, namely π and π−1.)
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Figure 14: A permutation digraph D representing only π = 51284367.

5 Poset Structure

Recall that for σ, π ∈ Sn,

[σ] � [π] in [Sn] ⇐⇒ K2,n(σ) � K2,n(π) in K2,n,

which holds if and only if there exists a geo-homomorphism f : K2,n(σ) →
K2,n(π) whose underlying map is a graph isomorphism. For strict precedence,
K2,n(σ) must have strictly fewer edge crossings than K2,n(π); equivalently, by
Theorem 1, |E(σ)| < |E(π)|. The proof of Theorem 3 can easily be modified to
yield the following.

Proposition 5. Let σ, π ∈ Sn. Then [σ] ≺ [π] if and only if there exists ρ ∈ Sn
such that

1. ρ ∗ E(σ) ⊂ E(π);

2. ρ is either order-preserving on E(σ) or order-reversing on E(σ).

Of course, this result can be rephrased in terms of permutation digraphs.

Proposition 6. Let σ, π ∈ Sn. Then [σ] ≺ [π] if and only if D(σ) is isomorphic
to a proper directed subgraph of either D(π) or D(π−1).

Corollary 8. For all n, [Sn] is a bounded poset, with first element [12 · · ·n]
and last element [n(n− 1)(n− 2) · · · 1].

Proposition 6 and visual inspection of the digraphs in Table 1 determine the
poset structure of [S4]; the Hasse diagram of this poset is given in Figure 15.
Similarly, the industrious reader can fill in diagrams for the 39 geo-equivalence
classes for n = 5 in Table 2 to obtain the poset structure of [S5]; the corre-
sponding Hasse diagram is in Figure 16.

We compare this order on the geo-equivalence classes of Sn to that induced
by the weak left and right Bruhat orders, whose definitions we recall below.
(For more on this order, see[1]).
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6.1

4.14.2

3.13.2 3.3

2.12.2

1.1

0.1

5.15.2

Figure 15: The poset S4 (K2,4).

Definition 11. Let σ, π ∈ Sn. Then σ strictly precedes π

• in the weak left Bruhat order if and only if E(σ) ⊂ E(π);

• in the weak right Bruhat order if and only if E(σ−1) ⊂ E(π−1).

By Proposition 6, if σ strictly precedes π in either the weak left Bruhat
order or the weak right Bruhat order, then [σ] ≺ [π] in [Sn]. In other words, the
partial order on [Sn] is an extension of the order induced by the left and right
weak Bruhat orders.

Proposition 7. [1] Let σ, π ∈ Sn and let τi denote the adjacent transposition
i↔ i+ 1 . Then π covers σ in

1. the weak left Bruhat order ⇐⇒ (σ(i), σ(i+ 1)) 6∈ E(σ) and π = σ · τi for
some 1 ≤ i < n;

2. the weak right Bruhat order ⇐⇒ (i, i+1) 6∈ E(σ) and π = τi ·σ for some
1 ≤ i < n.

Example 9. By Proposition 7, σ = 25314 is covered in the weak left Bruhat
order by

25314 · τ1 = 52314 and 25314 · τ4 = 25341,

and in the weak right Bruhat order by

τ2 · 25314 = 35214 and τ3 · 25314 = 25413.

From Table 2, [σ] = {σ, σ−1} = {25314, 41352}; by Proposition 7, 41352 is
covered in the weak left Bruhat order by

41352 · τ2 = 43152 and 41352 · τ3 = 41532.
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7.17.2 7.57.37.4

6.66.2 6.76.1 6.46.36.5

4.64.4 4.14.3 4.24.5

3.4 3.13.2 3.3

2.12.2

1.1

0.1

10.1

9.29.1

8.18.4 8.28.3

5.55.3 5.15.4 5.65.2

Figure 16: The poset S5 (K2,5).

and in the weak right Bruhat order by

τ1 · 41352 = 42351 and τ4 · 41352 = 51342.

In terms of the class labels given in Table 2, the only covering relationships in
[Sn] induced from the weak Bruhat orders are

5.3 ≺ 6.3 and 5.3 ≺ 6.7.

However, ρ = 23415 is order-preserving on E(σ) and

ρ ∗ E(σ) = {(2, 3), (2, 4), (2, 5), (4, 5), (1, 5)}.

This is not itself an inversion set (because its complement is not transitive), but
it is a proper subset of E(35142). Thus by Propostion 5, we also have 5.3 ≺ 6.5.
This demonstrates that the partial order in [Sn] is a proper extension of that
induced by the weak Bruhat orders.
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6 Open Questions

1. Is there a (closed or recursive) formula for an, the number of geo-equivalence
classes of Sn (equivalently, the number of elements of K2,n)?

2. As shown in [1], Sn is a graded lattice under the weak left Bruhat order,
with the number of inversions serving as a rank function (i.e. if π covers
σ, then |E(π)| = |E(σ)| + 1). Certainly [Sn] is not a lattice; Figure 16
shows that classes 8.3 and 8.1 both have classes 9.1 and 9.2 as suprema
(and classes 9.1 and 9.2 have both 8.1 and 8.3 as infima). However, [Sn]
is a graded poset for n ≤ 5, with the number of inversions as a rank
function. Rephrasing this using Theorem 1, the number of edge crossings
serves as a rank function in the homomorphism poset K2,n, for n ≤ 5. In
[3], Boutin, Cockburn, Dean and Margea show that the homomorphism
posets for paths Pn, cycles Cn and cliques Kn are graded posets with the
number of edge crossings as rank function for n ≤ 5, but not for n = 6.
In fact, for all n ≥ 6, Pn and Cn are not graded posets. Is [Sn] a graded
poset for all n?

Acknowledgements. I am indebted to several people for their help with
this paper. Debra Boutin and Alice Dean contributed to the proof that every
realization of K2,n is geo-isomorphic to K2,n(π) for some π ∈ Sn. At the
University of Victoria, Peter Dukes and Dennis Eppel both provided feedback
and support. Thanks also to Rick Decker at Hamilton College for writing C++
code to compute the number of geo-equivalence classes for n = 7, 8 and 9.

References

[1] Anders Björner. Orderings of Coexeter Groups. In Curtis Greene, edi-
tor, Combinatorics and Algebra, volume 34 of Contemporary Mathematics,
pages 175–195. American Mathematical Society, 1984.

[2] Debra Boutin and Sally Cockburn. Geometric graph homomorphisms.
Journal of Graph Theory, 2011.

[3] Debra Boutin, Sally Cockburn, Alice Dean, and Andrei Margea. Posets of
geometric graphs, with appendices. arXiv.org, 2011.

[4] Andreas Brandstadt, Van Bang Le, and Jeremy Spinrad. Graph Classes:
A Survey. SIAM Monographs on Discrete Mathematics and Applications.
Society for Industrial and Applied Mathematics, 1999.

[5] Charles J. Colbourn. On testing isomorphism of permutation graphs. Net-
works, 11:13 – 21, 1981.

[6] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs.
Academic Press, New York, 1980.



31

[7] Venkatesan Guruswami. Enumerative aspects of certain subclasses of per-
fect graphs. Discrete Mathematics, pages 97–117, 1999.
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