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THE NUMBER OF RIBBON SCHUR FUNCTIONS

MARTIN RUBEY

Abstract. We present a formula for the number of distinct ribbon Schur
functions of given size and height.

1. Introduction

An important basis for the space of homogeneous symmetric functions of degree
n is the set of Schur functions sλ, indexed by partitions λ of n. A larger set of
homogeneous symmetric functions of degree n is the set of skew Schur functions
sλ/µ, indexed by skew shapes λ/µ of size n, that is pairs of partitions λ = (λ1 ≥
λ2 ≥ · · · ≥ λk > 0) of n + m and µ = (µ1 ≥ µ2 ≥ · · · ≥ µℓ > 0) of m, such
that k, the number of parts of λ, is strictly larger than ℓ, the number of parts
of µ, and µi ≤ λi for i ≤ ℓ. When µ is the empty partition, sλ/µ = sλ. Since
the set of Schur functions is a basis, there must be relations between skew Schur
functions. Equalities between skew functions have been studied by Stephanie van
Willigenburg, Peter McNamara, Vic Reiner and Kristin Shaw [7, 4, 3]. So far
however, only partial results and a conjecture are available.

The situation is very different for the subset of ribbon Schur functions, that are
indexed by ribbons (also known as rim hooks or border strips), i.e., skew shapes
that satisfy λi+1 = µi + 1 for i ≤ ℓ. Here are the ribbons of size 4:

It can be shown that the space of homogeneous symmetric functions of degree n is
also generated by the set of ribbon Schur functions of size n. For these functions,
Louis J. Billera, Hugh Thomas, and Stephanie van Willigenburg [1] give a criterion
for deciding when they are equal. In this article we use this criterion to count the
number of distinct ribbon Schur functions of given size and given height, that is,
one less than the number of parts of λ.

Note that ribbons λ/µ of size n and height m−1 can be identified with composi-
tions α of size n and length m by setting αi = λi−µi for all i. Two compositions α
and β are called equivalent, denoted α ∼ β, if and only if the corresponding ribbon
Schur functions are equal.

In the following section we recall a binary operation on compositions from [1],
that makes the set of compositions into a monoid with (almost) unique factorisation.
One of the main theorems of [1] shows that equivalence of compositions is easily
determined given their factorisations.

In Section 3 we present a relatively appealing formula for the number of distinct
ribbon Schur functions of given size, while in Section 4 we exhibit a (not nearly as
beautiful) formula for the number of distinct ribbon Schur functions of given size
and height. For more information on symmetric functions we refer to Chapter 7 of
Enumerative Combinatorics 2 [6].

Key words and phrases. ribbon Schur functions, compositions, Dirichlet series.
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2. Composition of Compositions

and equality of ribbon Schur functions

In this section we collect the definitions and results from [1] that are relevant for
our approach. As mentioned before, the basic objects we will be working with are
compositions:

Definition 2.1. A composition α of a positive integer m, denoted α � m, is a list
of positive integers (a1, a2, . . . , ak) such that a1 + a2 + · · · + ak = m. We refer to
each of the ai as components, and say that α has length l(α) = k and size |α| = m.

Definition 2.2. Let α = (a1, a2, . . . , ak) � m and β = (b1, b2, . . . , bℓ) � n. Then
the concatenation of α and β is the composition

α · β = (a1, . . . , ak, b1, . . . , bℓ) � n+m.

Their near concatenation is

α⊙ β = (a1, . . . , ak + b1, . . . , bℓ) � n+m.

Writing

α⊙n = α⊙ α⊙ · · · ⊙ α
︸ ︷︷ ︸

n

we define the composition of α and β as

α ◦ β = β⊙a1 · β⊙a2 · · ·β⊙ak � mn.

The composition α = (a1, a2, . . . , ak) is symmetric if it coincides with its reversal
α∗ = (ak, ak−1, . . . , a1).

The following theorem shows that composition of compositions is a very well
behaved operation indeed:

Theorem 2.3 ([1], Propositions 3.3, 3.7, 3.8 and 3.9). The set of compositions
together with the operation ◦ is a monoid, i.e., ◦ is associative and has neutral
element (1). Furthermore, |α ◦ β| = |α| |β| and l(α ◦ β) = l(α) + |α| (l(β)− 1).
Finally, (α ◦ β)∗ = α∗ ◦ β∗.

Note that composition of compositions is not commutative. For example, (1, 1)◦
(2) = (2)⊙1 · (2)⊙1 = (2, 2), but (2) ◦ (1, 1) = (1, 1)⊙2 = (1, 1)⊙ (1, 1) = (1, 2, 1).

Definition 2.4. If a composition α is written in the form α1 ◦ α2 ◦ · · · ◦ αk then
we call this a factorisation of α. A factorisation α = β ◦ γ is called trivial if any of
the following conditions are satisfied:

(1) one of β and γ is the composition 1,
(2) the compositions β and γ both have length 1,
(3) the compositions β and γ both have all components equal to 1.

A factorisation α1 ◦ α2 ◦ · · · ◦ αk is called irreducible if no αi ◦ αi+1 is a trivial
factorisation, and each αi admits only trivial factorisations. We call a composition
α irreducible, if it has not length 1, not all of its components are equal to 1 and it
admits only trivial factorisations.

Theorem 2.5 ([1], Theorem 3.6). The irreducible factorisation of any composition
is unique.

It is not surprising that such a theorem is very useful to enumerate the underlying
objects. For experimentation it was also of great help to have a relatively efficient
test for irreducibility, which is exhibited in Definition 4.11 and Lemma 4.15 of [1].1

1An implementation can be obtained from the author of the present article.



THE NUMBER OF RIBBON SCHUR FUNCTIONS 3

Finally, equivalence of compositions and therefore equality of ribbon Schur func-
tions is reduced to factorisation by the following theorem. Note that it was well
known before that reversal of compositions yields the same ribbon Schur functions,
see for example Exercise 7.56 in Enumerative Combinatorics 2 [6], which includes
also the natural extension to skew Schur functions.

Theorem 2.6 ([1], Theorem 4.1). Two compositions β and γ satisfy β ∼ γ if and
only if for some k, β = β1 ◦ β2 ◦ · · · ◦ βk and γ = γ1 ◦ γ2 ◦ · · · ◦ γk where, for each
i, either γi = βi or γi = β∗

i .

3. The number of ribbon Schur functions of given size

Definition 3.1. We order the set of compositions of given length lexicographically.
Thus, let α = (a1, a2, . . . , ak) and β = (b1, b2, . . . , bk) be two compositions, then
α < β if and only if as < bs for some s, such that ar = br for all r < s. α is
lexicographic minimal if α ≤ α∗.

In view of Theorem 2.5 and Theorem 2.6, we call a composition normalised, if
all factors in its irreducible factorisation are lexicographic minimal.

Thus, to determine the number of distinct ribbon Schur functions, it is sufficient
to count normalised compositions. This is not hard to achieve using a suitable
combinatorial decomposition. The validity of our decomposition hinges on the
following lemma:

Lemma 3.2. Consider a composition α with irreducible factorisation α1 ◦α2 ◦ · · · ◦
αk. Then α is symmetric if and only if all αi are symmetric for i ∈ {1, . . . , k}.

If α is asymmetric, then there is an ℓ ∈ {1, . . . , k} such that αℓ is asymmetric,
and αi is symmetric for all i > ℓ. In this situation, α < α∗ if and only if αℓ < α∗

ℓ .

Proof. By the last statement of Theorem 2.3, an irreducible factorisation of the
reversal of α is α∗ = α∗

1 ◦ α
∗
2 ◦ · · · ◦ α

∗
k. Thus, by Theorem 2.5, if α = α∗, all the

factors αi are symmetric.
Suppose now that α is asymmetric. Let us first prove that for compositions β,

γ and δ with l(β) = l(γ), we have β ◦ δ < γ ◦ δ if and only if β < γ. Namely, if
β = (b1, . . . , br) < γ = (g1, . . . , gr), then there is an index j such that bj < gj and
bi = gi for all i < j. Since β ◦ δ = δ⊙b1 · · · δ⊙br and γ ◦ δ = δ⊙g1 · · · δ⊙gr , it suffices
to compare δ⊙bj and δ⊙gj . Let δ = (d1, . . . , ds), then the component with index
(|δ| − 1) bj of δ⊙bj , i.e., its last component, equals ds. However, since bj < gj , the
component of δ⊙gj with the same index is ds+d1, which is strictly greater than ds.
Hence β ◦ δ < γ ◦ δ. The converse follows by symmetry.

Next, we prove that for compositions β, γ, δ and ǫ with l(β) = l(γ), l(δ) = l(ǫ)
|δ| = |ǫ| and δ 6= ǫ we have β ◦ δ < γ ◦ ǫ if and only if δ < ǫ. It suffices to
compare the first r− 1 components of β ◦ δ and γ ◦ ǫ, which are d1, d2, . . . , dr−1 and
e1, e2, . . . , er−1 respectively. If δ = (d1, . . . , dr) < ǫ = (e1, . . . , er), let j be minimal
such that dj < ej. Since |δ| = |ǫ|, the two compositions cannot differ only in the
last component, so j ≤ r−1, which implies β ◦δ < γ ◦ǫ. Again, the converse follows
by symmetry.

To conclude the proof, we write α = β ◦ αℓ ◦ γ, where ℓ is maximal such that αℓ

is asymmetric. (If ℓ = 1 then β = (1), if ℓ = k then γ = (1).) Then α∗ = β∗ ◦α∗
ℓ ◦γ.

By the preceding two paragraphs, α < α∗ if and only if β ◦ αℓ < β∗ ◦ α∗
ℓ , which in

turn is the case if and only if αℓ < α∗
ℓ , as desired. �

In the following lemma we collect the facts we need about Dirichlet generating
functions:
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Lemma 3.3. Let A and B be sets of compositions, let A ·∪B be their disjoint union
and define A ◦ B := {α ◦ β : α ∈ A, β ∈ B}. For any set of compositions A, let

A(s) =
∑

α∈A |α|
−s

the associated Dirichlet generating function. Then

(A ·∪B)(s) = A(s) +B(s) and

(A ◦B)(s) = A(s)B(s).

The latter equality is equivalent to the statement, that the coefficient of n−s in
(A ◦B)(s) is an ∗ bn, where an and bn are the coefficients of n−s in A(s) and B(s)
respectively, and an ∗ bn denotes the Dirichlet convolution

∑

d|n adbn/d.

Remark. A full-fledged combinatorial theory of Dirichlet series within the theory
of combinatorial species was developed by Manuel Maia and Miguel Méndez [2].
Although the proofs below are written in the spirit of that theory, they are quite
elementary.

Theorem 3.4. The number of normalised compositions of size n is

2 · 2n−1 ∗ 2⌊
n
2
⌋ ∗

(

2n−1 + 2⌊
n
2
⌋
)−1

,

where an ∗ bn denotes the Dirichlet convolution, and the reciprocal is the inverse
with respect to Dirichlet convolution.

Remark. Thus, the numbers of ribbon Schur functions of size 1 to 33 turn out to
be:

1, 2, 3, 6, 10, 20, 36, 72, 135, 272, 528, 1052, 2080, 4160, 8244, 16508, 32896, 65770,

131328, 262632, 524744, 1049600, 2098176, 4196200, 8390620, 16781312, 33558291,

67116944, 134225920, 268451240, 536887296, 1073774376, 2147515424.

(This is sequence http://oeis.org/A120421 in the on-line encyclopedia of integer
sequences [5].2)

It may be interesting to compare the number of ribbon Schur functions with the
number of lexicographic minimal compositions. Since |α ◦ β| = |α| · |β|, it is clear
that the numbers coincide when n is prime. For n = 9, there are 136 lexicographic
minimal compositions, but two of them are equivalent. Here are the differences and
their positions up to n = 33:

n : 9 12 15 16 18 20 21 24 25 27 28 30 32 33
difference : 1 4 12 4 22 24 56 152 36 237 112 600 216 992

Proof. Let R be the set of normalised compositions. Let S be the set of symmetric
compositions, P× be the set of (normalised) asymmetric irreducible compositions
and

(1) R1 = P× ◦ S,

i.e., the set of (normalised) compositions whose first factor in the irreducible fac-
torisation is asymmetric, and all remaining factors (if any) are symmetric. We can
then decompose the set of normalised compositions recursively as

(2) R = S ·∪(R ◦R1),

since a normalised composition is either symmetric, or can be written in a unique
way as a product of a normalised composition, an asymmetric irreducible factor
and a symmetric composition.

The set R1 can be described in terms of the set of all compositions C and the
set of asymmetric lexicographic minimal compositions L× by Lemma 3.2. Namely,

(3) L× = C ◦R1,

2Be warned that the 18th term in the encyclopedia is in error, it reads 65768 instead of 65770.

http://oeis.org/A120421
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since an asymmetric composition is lexicographic minimal, if and only if the last
asymmetric factor in its irreducible factorisation is lexicographic minimal.

Finally, we have (again by Lemma 3.2)

2L× = C \ S,

where 2L× is interpreted as the set of asymmetric compositions whose last asym-
metric factor is either lexicographic minimal or lexicographic maximal.

We can now apply Lemma 3.3 to obtain the Dirichlet generating function for the
set of normalised compositions. We have

L×(s) = 1/2 (C(s)− S(s))

R1(s) = L×(s)/C(s)

and therefore

R(s) =
S(s)

1−R1(s)

=
2C(s)S(s)

2C(s)− (C(s)− S(s))

=
2C(s)S(s)

C(s) + S(s)
.

Since C(s) =
∑

n≥1 2
n−1n−s and S(s) =

∑

n≥1 2
⌊n

2
⌋n−s, the claim follows. �

Remark. It is not difficult to obtain more information using the preceding theo-
rem and the decompositions in its proof. In particular, we can easily refine the
count of normalised compositions by taking into account the number of asymmet-
ric irreducible factors. Denoting the number of asymmetric irreducible factors of a
composition ρ by α(ρ) and defining R(s, z) =

∑

ρ∈R |ρ|−szα(s), we find

R(s, z) =
S(s)

1− zR1(s)
=

2C(s)S(s)

2C(s)− z (C(s)− S(s))
.

Perhaps more interesting, we can determine the generating function for irre-
ducible compositions by size using the following proposition:

Proposition 3.5. Let P (s) be the Dirichlet generating function for (normalised)
irreducible compositions, P ∗(s) the Dirichlet generating function for symmetric ir-
reducible compositions and R(s) the Dirichlet generating function for normalised
compositions by size.

Furthermore, let S(s) =
∑

n≥1 2
⌊n

2
⌋n−s be the Dirichlet generating function of

symmetric compositions, and ζ(s) =
∑

n≥1 n
−s the Riemann zeta function. We

then have

P (s) = 2ζ−1(s)− 1−R−1(s)(4)

P ∗(s) = 2ζ−1(s)− 1− S−1(s)(5)

and

P×(s) = S−1(s)−R−1(s).(6)

Remark. Thus, the numbers of (normalised) irreducible compositions of size 1 to
33 are:

0, 0, 1, 2, 8, 10, 34, 56, 126, 234, 526, 972, 2078, 4018, 8186, 16240, 32894, 65164,

131326, 261544, 524530, 1047490, 2098174, 4191680, 8390520, 16772994, 33557508,

67100304, 134225918, 268416590, 536887294, 1073708400, 2147512258.
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Note that, whenever n is prime, there are precisely two normalised compositions (or,
equivalently, lexicographic minimal compositions) that are not irreducible, namely
the composition with all components equal to 1 and the composition (n).

For n = 4, the irreducible normalised compositions are (1, 3) and (1, 1, 2). For
n = 6, they are (1, 5), (1, 1, 4), (1, 4, 1), (1, 2, 3), (2, 1, 3), (1, 1, 1, 3), (1, 1, 2, 2),
(1, 1, 3, 1), (2, 1, 1, 2), (1, 1, 1, 1, 2).

Proof. Let E be the set of compositions with all components equal to 1, and K
be the set of compositions with only one component. Let R be the set of all
normalised compositions, and RE be the set of normalised compositions with no
factors in the irreducible factorisation having only one component, i.e., all factors
being irreducible or having all components equal to 1. Finally, let P be the set of
(normalised) irreducible compositions.

By Theorem 2.5, RE is the disjoint union of the sets E, E ◦ P , P ◦ RE and
E ◦ P ◦RE . Passing to (Dirichlet) generating functions, we obtain

RE(s) = E(s) +
(
1 + E(s)

)
P (s)

(
1 +RE(s)

)
.

Similarly, R is the disjoint union of the composition (1), and the sets K, RE ,
K ◦RE and K ◦RE ◦R. Hence

R(s) =
(
1 +K(s)

)(
1 +RE(s)

)
+K(s)RE(s)R(s).

Extracting P (s) and observing E(s) = K(s) = ζ(s) − 1 we obtain Equation (4).
Equation (6) can be derived by combining Equations (1) and (2). Equation (5)
then follows from Equations (4) and (6). �

4. The number of ribbon Schur functions of given size and length

Apart from the size of a composition, the most natural statistic that comes
to mind is its length. In this section we derive an expression for the number of
normalised compositions with given size and given length.

By 2.3, it is possible to determine the length of a composition of compositions,
knowing the size and the length of the factors. However, since the length of a
composition of compositions is neither multiplicative or additive, we cannot expect
a result as appealing as in Theorem 3.4.

Let us first collect some elementary results:

Proposition 4.1. Let Cn(x) =
∑

α∈C,|α|=n x
l(α) be the ordinary generating func-

tion of all compositions of size n, where x marks length. Similarly, let Sn(x) =
∑

α∈S,|α|=n x
l(α) the generating function of symmetric compositions, and L×

n (x) =
∑

α∈L×,|α|=n x
l(α) the generating function of asymmetric lexicographic minimal com-

positions. Then

Cn(x) = x(1 + x)n−1,(http://oeis.org/A007318)

Sn(x) =

{

x(1 + x)(1 + x2)(n−2)/2 n even

x(1 + x2)(n−1)/2 n odd,
(http://oeis.org/A051159)

L×
n (x) = 1/2 (Cn(x) − Sn(x)) .(http://oeis.org/A034852)

Theorem 4.2. Let Rn(x) =
∑

ρ∈R,|ρ|=n x
l(ρ) be the ordinary generating function

of normalised compositions of size n, where x marks length. Similarly, let R1
n(x) =∑

ρ∈R1,|ρ|=n x
l(ρ) be the ordinary generating function of (normalised) compositions

whose first factor in the irreducible factorisation is asymmetric, and all remaining

http://oeis.org/A007318
http://oeis.org/A051159
http://oeis.org/A034852
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factors (if any) are symmetric. Then we have

R1
n(x) =

∑

k≥0
1=d0|d1|...|dk|n

di 6= di+1 for i ∈ {0, . . . , k − 1}

(−1)kL×
n/dk

(xdk)
k−1∏

i=0

Cdi+1/di
(xdi)/xdi(7)

and

Rn(x) =
∑

k≥0
d1|d2|...|dk+1=n

di 6= di+1 for i ∈ {1, . . . , k}

Sd1
(x)

k∏

i=1

R1
di+1/di

(xdi)/xdi .(8)

Proof. We reuse the decompositions from the proof of Theorem 3.4. From Equa-
tion (3), we obtain the equality of sets (subscripts denoting the size of the compo-
sitions we are restricting our attention to)

L×
n =

˙⋃

d|n
Cd ◦R

1
n/d.

Since l(α ◦ β) = l(α)− |α|+ |α| l(β), it follows that

(9) L×
n (x) =

∑

d|n

Cd(x)x
−dR1

n/d(x
d).

Equation (7) then follows from Equation (11) in Lemma 4.3 below, with An(x) =
L×
n (x), Bn(x) = Cn(x)/x

n and Cn(x) = R1
n(x).

Similarly, from Equation (2), we obtain the equality of sets

Rn = Sn ·∪
˙⋃

d|n,d 6=n
Rd ◦R

1
n/d,

and therefore

(10) Rn(x) = Sn(x) +
∑

d|n,d 6=n

Rd(x)x
−dR1

n/d(x
d).

Equation (8) then follows from Equation (12) in Lemma 4.3 below, with An(x) =
Rn(x), Bn(x) = Sn(x) and Cn(x) = R1

n(x)/x. �

Remark. Note that for actually computing the generating function for normalised
compositions using a computer, Equations (9) and (10) may be easier to implement
than the ‘explicit’ expressions given in the statement of the theorem.

Again, we can refine the count be marking the number of asymmetric irreducible
factors with an additional variable z: every summand in Equation (8) has to be
multiplied by zk, since every composition in R1

n contains exactly one asymmetric
irreducible factor.

Lemma 4.3. Suppose that B1(x) = 1 and

An(x) =
∑

d|n

Bd(x)Cn/d(x
d).

Then we have

(11) Cn(x) =
∑

k≥0
1=d0|d1|...|dk|n

di 6= di+1 for i ∈ {0, . . . , k − 1}

(−1)kAn/dk
(xdk)

k−1∏

i=0

Bdi+1/di
(xdi).

Given
An(x) = Bn(x) +

∑

d|n,d 6=n

Ad(x)Cn/d(x
d),
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we have

(12) An(x) =
∑

k≥0
d1|d2|...|dk+1=n

di 6= di+1 for i ∈ {1, . . . , k}

Bd1
(x)

k∏

i=1

Cdi+1/di
(xdi).

Proof. We prove the statements by induction on n. For n = 1, the hypothesis is
A1(x) = B1(x)C1(x) = C1(x), and the right hand side of Equation (11) indeed
evaluates to A1(x).

Now suppose that Equation (11) holds for n < N . Then

CN (x) = AN (x) −
∑

1<d|N

Bd(x)CN/d(x
d)

= AN (x) −
∑

1<d|N

Bd(x)
∑

k≥0
1=d0|d1|...|dk|N/d

di 6= di+1 for i ∈ {0, . . . , k − 1}

(−1)kAN/(dkd)(x
dkd)

k−1∏

i=0

Bdi+1/di
(xdid).

Substituting d′i+1 = did we obtain

CN (x) = AN (x) −
∑

1<d|N

Bd(x)
∑

k≥0
d=d′

1|d
′

2|...|d
′

k+1|N

d′

i 6= d′

i+1 for i ∈ {1, . . . , k}

(−1)kAN/(d′

k+1
)(x

d′

k+1)

k∏

i=1

Bd′

i+1
/d′

i
(xd′

i)

= AN (x) −
∑

k≥0
1=d′

0|d
′

1|...|d
′

k+1|N

d′

i 6= d′

i+1 for i ∈ {0, . . . , k}

(−1)kAN/(d′

k+1
)(x

d′

k+1)

k∏

i=0

Bd′

i+1
/d′

i
(xd′

i).

The final expression is equivalent to the claimed Equation (11), since AN (x) is
precisely the summand corresponding to the chain 1 = d′0|N .

Equation (12) can be shown using the same strategy, the calculations are actually
a bit easier. �
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