Disquisitiones Arithmeticæ and online sequence $A 108345$

Paul Monsky
Brandeis University, Waltham MA 02454-9110, USA
monsky@brandeis.edu

Abstract

Let g be the element $\sum_{n>0} x^{n^{2}}$ of $A=\mathbb{Z} / 2[[x]]$, and B consist of all n for which the coefficient of x^{n} in $\frac{1}{g}$ is 1 . (The elements of B are the entries $0,1,2,3,5,7,8,9,13$, \ldots. in $A 108345$; see [3].) In [1] it is shown that the (upper) density of B is $\leq \frac{1}{4}$, and it is conjectured that B has density 0 . This note uses results of Gauss on sums of 3 squares to show that the subset of B consisting of $n \not \equiv 15$ (16) has density 0 . The final section gives some computer calculations, made by Kevin O'Bryant, indicating that, pace [1], B has density $\frac{1}{32}$. Comments. The note is drawn from my answers, on Mathoverflow, to questions asked by O'Bryant and me.

1 Introduction

I begin with simple derivations of some results from [1]. Let g be the element $1+x+x^{4}+x^{9}+\cdots$ of $A=\mathbb{Z} / 2[[x]]$. Write $\frac{1}{g}$ as $\sum b_{i} x^{i}$ with the b_{i} in $\mathbb{Z} / 2$, and let B consist of all n with $b_{n}=1$.

Theorem 1.1. If n is even, n is in B if and only if $\frac{n}{2}$ is a square.

Proof. Let $R \subset A$ be $\mathbb{Z} / 2[[x]]$. As R-module, A is the direct sum of R and $x R$. Let $p r: A \rightarrow R$ be the R-linear map which is the identity on R and sends $x R$ to 0 . Since g^{2} is in R, so is $\frac{1}{g^{2}}$. Now $\operatorname{pr}(g)=1+x^{4}+x^{16}+x^{36}+\cdots=g^{4}$. So $\operatorname{pr}\left(\frac{1}{g}\right)=\frac{1}{g^{2}} \operatorname{pr}(g)=g^{2}$. This is precisely the statement of the theorem.

Theorem 1.2. If $n \equiv 1$ (4), n is in B if and only if the number of ways of writing n as (square) +4 (square) is odd.

Proof. $\frac{1}{g}=g \cdot \frac{1}{g^{2}}$. So the coefficient of x^{n} in $\frac{1}{g}$ is the number of ways, modulo 2 , of writing n as (square) $+2 k$ with k in B. Since $n \equiv 1$ (4), the square is also $\equiv 1$ (4), and k is even. Now use Theorem 1.1.

Theorem 1.3. The number of n in B that are $\leq x$ and $\not \equiv 3(4)$ is $O(x / \log (x))$.

Proof. In view of Theorem 1.1 we may restrict our attention to n that are $\equiv 1$ (4) (and that are not squares). If such an n is $s_{1}+4 s_{2}$ then $\sqrt{s_{1}}+2 \mathrm{i} \sqrt{s_{2}}$ and $\sqrt{s_{1}}-2 \mathrm{i} \sqrt{s_{2}}$ generate ideals of norm n in $\mathbb{Z}[i]$; since n is not a square, these two ideals are distinct. Since every ideal of norm n comes from exactly one decomposition of n as (square) +4 (square), the number of decompositions of n is $\frac{1}{2}$ (the number of ideals of norm n). Standard facts about $\mathbb{Z}[i]$ tell us that this number is odd only when n is the product of a square by a prime $\equiv 1$ (4). Now use the fact that $\pi(x)=O(x / \log (x))$.

Theorem 1.4. If $n \equiv 3(8), n$ is in B if and only if the number of ways of writing n as (square) +2 (square) +8 (square) is odd.

Proof. $\frac{1}{g}=g \cdot g^{2} \cdot \frac{1}{g^{4}}$. So the coefficient of x^{n} in $\frac{1}{g}$ is the number of ways, modulo 2 , of writing n as (square) +2 (square) $+4 k$ with k in B. Since $n \equiv 3$ (8), congruences mod 8 show that k is even, and we use Theorem 1.1.

2 A density result for $n \equiv 3$ (8)

Lemma 2.1. Suppose $n \equiv 3$ (8). Let R_{1} and R_{2} be the number of ways of writing n as $($ square $)+($ square $)+($ square $)$ and as $(($ square $))+2$ (square). If 4 divides R_{1} and R_{2}, then n is not in B.

Proof. In view of Theorem 1.4 it suffices to show that $R_{1}+R_{2}$ is twice the number of ways of writing n as (square) +2 (square) +8 (square). Suppose $n=s_{1}+s_{2}+s_{3}$ with the s_{i} squares. The s_{i} are odd. Let r_{2} and r_{3} be square roots of s_{2} and s_{3} with $r_{2} \equiv r_{3}$ (4). Then $n=s_{1}+2\left(\frac{r_{2}+r_{3}}{2}\right)^{2}+8\left(\frac{r_{2}-r_{3}}{4}\right)^{2}=$ (square) +2 (square) +8 (square), and replacing r_{2} and r_{3} by $-r_{2}$ and $-r_{3}$ gives the same decomposition. It's easy to see that one gets every decomposition $n=t_{1}+2 t_{2}+8 t_{3}$ with the t_{i} squares from some triple (s_{1}, s_{2}, s_{3}) in this way. Furthermore if $\left(s_{1}, s_{2}, s_{3}\right) \rightarrow\left(t_{1}, t_{2}, t_{3}\right)$, then $\left(s_{1}, s_{3}, s_{2}\right) \rightarrow$ the same $\left(t_{1}, t_{2}, t_{3}\right)$. It follows that the fiber over a fixed $\left(t_{1}, t_{2}, t_{3}\right)$ consists of 2 elements except at those points where $t_{3}=0$. But such a point corresponds to a decomposition of n as (square) +2 (square).

Lemma 2.2. Suppose $n \equiv 3$ (8) and is divisible by 3 or more different primes. Then the number of ways of writing n primitively as (square) $+($ square $)+$
(square) is divisible by 4 .
Proof. Let $\mathcal{O}=\mathbb{Z}\left[\frac{1+\sqrt{-n}}{2}\right]$. A result of Gauss, [2], put into modern language, is that the number of primitive representations of n by the form $x^{2}+y^{2}+z^{2}$ is $24 \cdot$ (the number of invertible ideal classes in O). So the number of ways of writing n primitively as (square) + (square) + (square) is $3 \cdot($ the number of invertible ideal classes), and it suffices to show that 4 divides this number. Now Gauss developed a genus theory for binary quadratic forms which tells us that the group of invertible ideal classes maps onto a product of $m-1$ copies of $\mathbb{Z} / 2$, where m is the number of different primes dividing n. Since $m \geq 3$ we're done.

Theorem 2.3. If $n \equiv 3$ (8) and there are 3 or more primes that occur to odd exponent in the prime factorization of n, then n is not in B.

Proof. By Lemma 2.2, whenever a^{2} divides n, the number of ways of writing n / a^{2} primitively as (square) $+($ square $)+($ square $)$ is divisible by 4 . Summing over a we find that 4 divides R_{1}. Furthermore, by Lemma 3.3, $2 R_{2}$ is the number of ideals of norm n in $\mathbb{Z}[\sqrt{-2}]$. This number is $\sum\left(\frac{-2}{d}\right)$ where () is the Jacobi symbol, and d runs over the divisors of n. Since () is multiplicative, the sum is a product of integer factors, one coming form each prime dividing n. Also, a prime having odd exponent in the factorization contributes an even factor. Since there are at least 3 such primes, 8 divides $2 R_{1}, 4$ divides R_{1}, and we use Lemma 2.1.

Theorem 2.4. The number of n in B that are $\leq x$ and $\equiv 3$ (8) is $O(x \log \log (x) / \log (x))$.

Proof. Let $\pi_{2}(x)$ be the number of $n \leq x$ that are a product of 2 primes. It's well-known that $\pi_{2}(x)$ is $O(x \log \log (x) / \log (x))$. By Theorem 2.3 an element of B that is $\equiv 3$ (8) is either the product of a single prime and a square, or of two primes and a square. The result follows easily.

3 A density result for $n \equiv 7$ (16)

For $n \equiv 7$ (16) we show that n is in B if and only if the number of ways to write $2 n$ as (square) + (square) + (square) is $\equiv 2$ (4), and arguing as in the last section, prove the analogue to Theorem 2.4.

Lemma 3.1. If $n \equiv 1$ (8) then the number of ideals U of norm n in $\mathbb{Z}[\sqrt{-2}]$ is congruent mod 4 to the number of ideals V of norm n in $\mathbb{Z}[i]$ unless $n=A^{2}$ with $A \equiv \pm 3$ (8).

Proof. $U=\sum\left(\frac{-2}{d}\right)$ and $V=\sum\left(\frac{-1}{d}\right)$ where the sums are over the divisors of n. Since () is multiplicative, U (resp. V) is a product of contributions, one for each prime dividing n. A contribution is even if the prime occurs to odd exponent in the factorization of n, and is odd otherwise. In particular if 2 or more p appear to odd exponent, then 4 divides U and V. Next suppose there is exactly one prime p occurring with odd exponent and that the exponent is c. Since $n \equiv 1$ (8), $p \equiv 1$ (8), and $\left(\frac{-2}{p}\right)=\left(\frac{-1}{p}\right)=1$. So p makes a contribution of $c+1$ both to U and to V. Since all the other contribution are odd, $U \equiv V \equiv 0$ (4) when $c \equiv 3$ (4), and $U \equiv V \equiv 2$ (4) when $c \equiv 1$ (4).

It remains to analyze the case $n=A^{2}$. In this case U and V are odd, and we are reduced to showing: if $A \equiv \pm 1$ (8) then $U V \equiv 1$ (4), while if $A \equiv \pm 3$ (8), then $U V \equiv 3$ (4). Consider $U V$ as an element of the multiplicative group $\{1,3\}$ of $\mathbb{Z} / 4 . U V$ is a product of contributions, one for each prime dividing A. A $p \equiv \pm 1$ (8) makes the same contribution to U as to V and so does not contribute to the product. If on the other hand $p \equiv \pm 3$ (8) and has exponent c in the factorization of A then the contribution it makes to $U V$ is $(2 c+1) \cdot 1$ when $p \equiv 3$ (8) and $1 \cdot(2 c+1)$ when $p \equiv-3$ (8). In other words the contribution is -1 precisely when c is odd. This tells us that $U V \equiv 1$ (4) when the number of primes $\equiv \pm 3$ (8) with odd exponent in the factorization of A is even, and that $U V \equiv 3(4)$ when this number is odd. But in the first case $A \equiv \pm 1$ (8), while in the second $A \equiv \pm 3$ (8).

Definition 3.2. Suppose n is odd. U_{1} is the number of ways of writing n as (square) +2 (square) while U_{2} is the number of ways of writing n as (square) + 4 (square).

Lemma 3.3. The number of ideals U of $\mathbb{Z}[\sqrt{-2}]$ of norm n is $2 U_{1}-1$ when n is a square and $2 U_{1}$ otherwise. The number of ideals V of $\mathbb{Z}[i]$ of norm n is $2 V_{1}-1$ when n is a square and $2 V_{1}$ otherwise.

Proof. Suppose $n=s_{1}+2 s_{2}$ with s_{1} and s_{2} squares. Then $\sqrt{s_{1}}+\sqrt{-2} \sqrt{s_{2}}$ and $\sqrt{s_{1}}-\sqrt{-2} \sqrt{s_{2}}$ generate ideals of norm n in $\mathbb{Z}[\sqrt{-2}]$. These 2 ideals are distinct except when n is a square and $s_{2}=0$. Also every ideal of norm n comes from exactly one such decomposition of n. This gives the first result and the proof of the second is similar.

Lemmas 3.1 and 3.3 immediately give:
Lemma 3.4. If $n \equiv 1$ (16), then $U_{1} \equiv V_{1}$ (2).
Lemma 3.5. If $n \equiv 1$ (16), then the coefficient of x^{n} in $\frac{1}{g^{7}}$ is 1 if and only if n is a square.

Proof. Since $n \equiv 1$ (8), the number of ways U_{1} of writing n as (square) + 2 (square) is the number of ways of writing n as (square) +8 (square). So the image of U_{1} in $\mathbb{Z} / 2$ is the coefficient of x^{n} in $g \cdot g^{8}=g^{9}$. Similarly, the image of V_{1} in $\mathbb{Z} / 2$ is the coefficient of x^{n} in $g \cdot g^{16}=g^{17}$. Lemma 3.4 then tells us that for $n \equiv 1$ (16) the coefficients of x^{n} in g^{9} and in g^{17} are equal.

Now let $S \subset A$ be $\mathbb{Z} / 2\left[\left[x^{16}\right]\right]$. As S-module A is the direct sum of the $x^{j} S, 0 \leq$ $j \leq 15$. Let $p r: A \rightarrow x S$ be the S-linear map that is the identity on $x S$ and 0 on the other summands. The last paragraph tells us that $\operatorname{pr}\left(g^{9}\right)=\operatorname{pr}\left(g^{17}\right)$. Since $\frac{1}{g^{16}}$ is in S, $\operatorname{pr}\left(\frac{1}{g^{7}}\right)=\operatorname{pr}(g)$. But as $n \equiv 1(16)$, the coefficient of x^{n} in $\operatorname{pr}(g)$ is the coefficient of x^{n} in g, giving the result.

Theorem 3.6. If $n \equiv 7$ (16) then n is in B if and only if the number of ways of writing n as (square) +2 (square) +4 (square) is odd.

Proof. $\frac{1}{g}=g^{2} \cdot g^{4} \cdot \frac{1}{g^{7}}$. So the coefficient of x^{n} in $\frac{1}{g}$ is the number of ways, modulo 2 , of writing n as 2 (square) +4 (square) $+k$ with the coefficient of x^{k} in $\frac{1}{g^{7}}$ equal to 1 . Suppose we have such a representation of n. Then k is odd. Since $\frac{1}{g^{7}}=\frac{g}{g^{8}}$ it follows that $k \equiv 1$ (8) A congruence mod 16 argument using the fact that $n \equiv 7$ (16) shows that $k \equiv 1$ (16), and Lemma 3.5 tells us that k is a square. Conversely suppose $n=2$ (square) +4 (square) $+k$, where k is a square. Then $k \equiv 1$ (8) and our congruence mod 16 argument tells us that $k \equiv 1$ (16). By Lemma 3.5, the coefficient of x^{k} in $\frac{1}{g^{7}}$ is 1 , and this completes the proof.

Lemma 3.7. Let R_{3} be the number of ways of writing $2 n$ as (square) + (square) + (square). Then if $n \equiv 7$ (8), $R_{3}=6 \cdot($ the number of ways of writing n as $($ square $)+2$ (square $)+4($ square $))$.

Proof. Suppose $2 n=s_{1}+s_{2}+s_{3}$ with the s_{i} squares. A congruence mod 16 argument shows that the s_{i}, in some order, are $\equiv 1,4$ and $9 \bmod 16$. So $R_{3}=$ $6 \cdot\left(\right.$ the number of ways of writing $2 n$ as $s_{1}+s_{2}+s_{3}$ with the s_{i} squares, $s_{1} \equiv 1$ (16), $s_{2} \equiv 4$ (16), $s_{3} \equiv 9(16)$). Suppose we have such a representation. Then we can choose square roots of s_{1} and s_{3} congruent to 1 and 5 respectively $\bmod 8$. Then $n=\left(\frac{\sqrt{s_{1}}+\sqrt{s_{3}}}{2}\right)^{2}+2\left(\frac{s_{2}}{4}\right)+4\left(\frac{\sqrt{s_{1}}-\sqrt{s_{3}}}{4}\right)^{2}=($ square $)+2($ square $)+$ 4 (square). Conversely suppose $n=t_{1}+2 t_{2}+4 t_{3}$ with the t_{i} squares. Then the t_{i} are odd. Choose square roots of t_{1} and t_{3} that are $\equiv 1$ (4). Then $2 n=\left(2 \sqrt{t_{3}}-\sqrt{t_{1}}\right)^{2}+4 t_{2}+\left(2 \sqrt{t_{3}}+\sqrt{t_{1}}\right)^{2}$, and the three squares appearing in this decomposition are, in order, congruent mod 16 to 1,4 and 9 . In this way we get a $1-1$ correspondence that establishes the result.

Combining Theorem 3.6 and Lemma 3.7 we get:

Theorem 3.8. An $n \equiv 7$ (16) is in B if and only if the R_{3} of Lemma 3.7 is $\equiv 2$ (4).

Lemma 3.9. Suppose $n \equiv 7$ (8) and is divisible by 3 or more different primes. Then the number of ways of writing $2 n$ primitively as (square) + (square) + (square) is divisible by 4.

Proof. Let $\mathcal{O}=\mathbb{Z}[\sqrt{-2 n}]$. When we write $2 n$ as (square) $+($ square $)+($ square $)$, the summands, being $\equiv 1,4$ and $9 \bmod 16$ are non-zero and distinct. So the number we're talking about is $\frac{1}{8}$. (the number of primitive representations of $2 n$ by the form $x^{2}+y^{2}+z^{2}$). In [2] Gauss showed that this (in modern language) is $\frac{1}{8} \cdot 12 \cdot($ the number of invertible ideal classes in $\mathcal{O})$. Let m be the number of different primes dividing $2 n$. Gauss' genus theory tells us that the group of invertible ideal classes maps onto a product of $m-1$ copies of $\mathbb{Z} / 2$. Since $m \geq 4$ we're done.

Corollary 3.10. If $n \equiv 7$ (8) and 3 or more different primes occur to odd exponent in the factorization of n, then the R_{3} of Lemma 3.7 is divisible by 4 .

Proof. For a^{2} dividing $2 n$, Lemma 3.9 shows that the number of ways of writing $2 n / a^{2}$ primitively as (square) $+($ square $)+($ square $)$ is a multiple of 4 . Summing over a gives the result.

Theorem 3.11. If $n \equiv 7$ (16) and 3 or more primes occur to odd exponent in the factorization of n then n is not in B. Furthermore the number of n in B that are $\leq x$ and $\equiv 7$ (16) is $O(x \log \log (x) / \log (x))$.

Proof. Theorem 3.8 and Corollary 3.10 give the first result, and we argue as in Theorem 2.4 to get the second.

Combining Theorems 1.3, 2.4 and 3.11 we get:
Theorem 3.12. The number of n in B that are $\leq x$ and $\not \equiv 15$ (16) is $O(x \log \log (x) / \log (x))$. In particular the upper density of B is $\leq \frac{1}{16}$.

Can one go further? A hope would be to find extensions of Theorems 1.1, 1.2 and 1.4 of this note that hold for $n \equiv 7(16), n \equiv 15$ (32), $n \equiv 31$ (64), The authors of [1] claim that such extensions exist, but apart from $n \equiv 7$ (16), treated in this section, this seems unlikely. (The formulas they propose are incorrect.) There seems to be no theoretical evidence supporting the proposition that the $n \equiv 15$ (16) that lie in B form a set of density 0 . As we'll see in the next section the empirical evidence supports a quite different proposition.

4 Computer evidence when $n \equiv 15$ (16)

Suppose x is in N. There evidently are x positive integers that are $\leq 16 x$ and $\equiv 15$ (16). Let $\beta=\beta(x)$ be the number of these integers that are in B. Virtually nothing is known about the asymptotic growth of β. But Kevin O'Bryant has calculated β for $x \leq 2^{19}$, and his calculations show, for example:
(1) If $x=2^{16}$, the numbers of elements of B that are $\equiv 15$ (16) and lie in $[0,16 x],[16 x, 32 x], \ldots,[112 x, 128 x]$, are given respectively by $\frac{x}{2}+13$, $\frac{x}{2}+94, \frac{x}{2}-231, \frac{x}{2}+207, \frac{x}{2}-120, \frac{x}{2}+14, \frac{x}{2}-270$ and $\frac{x}{2}+7$.
(2) Suppose $x \leq 2^{19}$ and is divisible by 2^{10}. Then $\beta=\frac{x}{2}+\alpha \sqrt{x}$ with $-1.1<$ $\alpha<$.58. (The minimum of α is attained at $5 \cdot 2^{10}$, and the maximum at $37 \cdot 2^{10}$.)

This provides evidence for the following " 15 mod 16 conjecture": For every $\rho>\frac{1}{2}, \beta=\frac{x}{2}+O\left(x^{\rho}\right)$.

Note that if the conjecture holds then Theorem 3.12 shows that B has density $\frac{1}{32}$.

Remark 4.1. There is a related much studied problem. Let g^{*} in $\mathbb{Z} / 2[[x]]$ be $1+x+x^{2}+x^{5}+x^{7}+\cdots$ where the exponents are the generalized pentagonal numbers. Just as we used $\frac{1}{g}$ to define B we can use $\frac{1}{g^{*}}$ to define a set B^{*}. (A famous result of Euler says that B^{*} consists of all n for which the number of partitions, $p(n)$, of n is odd.) Let $\beta^{*}=\beta^{*}(x)$ be the number of elements of B^{*} that are $\leq x$. Despite extensive study only very weak results about the asymptotic growth of β^{*} have been proved. But Parkin and Shanks [4], on the basis of computer calculations, conjectured that for every $\rho>\frac{1}{2}, \beta=$ $\frac{x}{2}+O\left(x^{\rho}\right)$. The resistance of this conjecture to attack suggests however that any proof of our $15 \bmod 16$ conjecture is far off.

References

[1] Cooper J.N., Eichhorn D., O'Bryant K., Reciprocals of binary series, Int. J. Number Theory 2 (2006), 499-522.
[2] Gauss C.F., Disquisitiones Arithmeticæ(1801)-translated by Arthur A. Clarke, S.J., Yale University Press, New Haven, U.S. (1966).
[3] The On-Line Encyclopedia of Integer Sequences (OEIS).
[4] Parkin T.R., Shanks D., On the distribution of parity in the partition function, Math. Comp. 21 (1967), 466-480.

