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Abstract

Let g be the element
∑

n≥0
xn

2

of A = Z/2[[x]], and B consist of all n for which the

coefficient of xn in 1

g
is 1. (The elements of B are the entries 0, 1, 2, 3, 5, 7, 8, 9, 13,

. . . in A108345; see [3].) In [1] it is shown that the (upper) density of B is ≤ 1

4
, and

it is conjectured that B has density 0. This note uses results of Gauss on sums of 3
squares to show that the subset of B consisting of n 6≡ 15 (16) has density 0. The
final section gives some computer calculations, made by Kevin O’Bryant, indicating
that, pace [1], B has density 1

32
.

Comments. The note is drawn from my answers, on Mathoverflow, to questions
asked by O’Bryant and me.

1 Introduction

I begin with simple derivations of some results from [1]. Let g be the element
1 + x + x4 + x9 + · · · of A = Z/2[[x]]. Write 1

g
as

∑

bix
i with the bi in Z/2,

and let B consist of all n with bn = 1.

Theorem 1.1. If n is even, n is in B if and only if n
2
is a square.

Proof. Let R ⊂ A be Z/2[[x]]. As R-module, A is the direct sum of R and xR.
Let pr : A → R be the R-linear map which is the identity on R and sends xR
to 0. Since g2 is in R, so is 1

g2
. Now pr(g) = 1 + x4 + x16 + x36 + · · · = g4. So

pr
(

1

g

)

= 1

g2
pr(g) = g2. This is precisely the statement of the theorem.

Theorem 1.2. If n ≡ 1 (4), n is in B if and only if the number of ways of
writing n as (square) + 4(square) is odd.
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Proof. 1

g
= g · 1

g2
. So the coefficient of xn in 1

g
is the number of ways, modulo

2, of writing n as (square) + 2k with k in B. Since n ≡ 1 (4), the square is
also ≡ 1 (4), and k is even. Now use Theorem 1.1.

Theorem 1.3. The number of n in B that are≤ x and 6≡ 3 (4) is O(x/log(x)).

Proof. In view of Theorem 1.1 we may restrict our attention to n that are
≡ 1 (4) (and that are not squares). If such an n is s1 + 4s2 then

√
s1 + 2i

√
s2

and
√
s1 − 2i

√
s2 generate ideals of norm n in Z[i]; since n is not a square,

these two ideals are distinct. Since every ideal of norm n comes from exactly
one decomposition of n as (square)+4(square), the number of decompositions
of n is 1

2
(the number of ideals of norm n). Standard facts about Z[i] tell us

that this number is odd only when n is the product of a square by a prime
≡ 1 (4). Now use the fact that π(x) = O(x/log(x)).

Theorem 1.4. If n ≡ 3 (8), n is in B if and only if the number of ways of
writing n as (square) + 2(square) + 8(square) is odd.

Proof. 1

g
= g · g2 · 1

g4
. So the coefficient of xn in 1

g
is the number of ways,

modulo 2, of writing n as (square) + 2(square) + 4k with k in B. Since n ≡ 3
(8), congruences mod 8 show that k is even, and we use Theorem 1.1.

2 A density result for n ≡ 3 (8)

Lemma 2.1. Suppose n ≡ 3 (8). Let R1 and R2 be the number of ways of
writing n as (square) + (square) + (square) and as ((square)) + 2(square). If
4 divides R1 and R2, then n is not in B.

Proof. In view of Theorem 1.4 it suffices to show that R1 + R2 is twice the
number of ways of writing n as (square) + 2(square) + 8(square). Suppose
n = s1 + s2 + s3 with the si squares. The si are odd. Let r2 and r3 be square

roots of s2 and s3 with r2 ≡ r3 (4). Then n = s1 + 2
(

r2+r3
2

)2

+ 8
(

r2−r3
4

)2

=

(square)+2(square)+8(square), and replacing r2 and r3 by −r2 and −r3 gives
the same decomposition. It’s easy to see that one gets every decomposition
n = t1 + 2t2 + 8t3 with the ti squares from some triple (s1, s2, s3) in this way.
Furthermore if (s1, s2, s3) → (t1, t2, t3), then (s1, s3, s2) → the same (t1, t2, t3).
It follows that the fiber over a fixed (t1, t2, t3) consists of 2 elements except at
those points where t3 = 0. But such a point corresponds to a decomposition
of n as (square) + 2(square).

Lemma 2.2. Suppose n ≡ 3 (8) and is divisible by 3 or more different primes.
Then the number of ways of writing n primitively as (square) + (square) +
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(square) is divisible by 4.

Proof. Let O = Z

[

1+
√
−n

2

]

. A result of Gauss, [2], put into modern lan-
guage, is that the number of primitive representations of n by the form
x2 + y2+ z2 is 24 · (the number of invertible ideal classes in O). So the num-
ber of ways of writing n primitively as (square) + (square) + (square) is
3 · (the number of invertible ideal classes), and it suffices to show that 4 di-
vides this number. Now Gauss developed a genus theory for binary quadratic
forms which tells us that the group of invertible ideal classes maps onto a
product of m − 1 copies of Z/2, where m is the number of different primes
dividing n. Since m ≥ 3 we’re done.

Theorem 2.3. If n ≡ 3 (8) and there are 3 or more primes that occur to odd
exponent in the prime factorization of n, then n is not in B.

Proof. By Lemma 2.2, whenever a2 divides n, the number of ways of writing
n/a2 primitively as (square) + (square) + (square) is divisible by 4. Summing
over a we find that 4 divides R1. Furthermore, by Lemma 3.3, 2R2 is the
number of ideals of norm n in Z

[√
−2

]

. This number is
∑

(

−2

d

)

where
( )

is

the Jacobi symbol, and d runs over the divisors of n. Since
( )

is multiplicative,
the sum is a product of integer factors, one coming form each prime dividing
n. Also, a prime having odd exponent in the factorization contributes an even
factor. Since there are at least 3 such primes, 8 divides 2R1, 4 divides R1, and
we use Lemma 2.1.

Theorem 2.4. The number of n in B that are ≤ x and ≡ 3 (8) is
O (x log log(x)/ log(x)).

Proof. Let π2(x) be the number of n ≤ x that are a product of 2 primes. It’s
well-known that π2(x) is O (x log log(x)/ log(x)). By Theorem 2.3 an element
of B that is ≡ 3 (8) is either the product of a single prime and a square, or
of two primes and a square. The result follows easily.

3 A density result for n ≡ 7 (16)

For n ≡ 7 (16) we show that n is in B if and only if the number of ways to
write 2n as (square) + (square) + (square) is ≡ 2 (4), and arguing as in the
last section, prove the analogue to Theorem 2.4.

Lemma 3.1. If n ≡ 1 (8) then the number of ideals U of norm n in Z

[√
−2

]

is congruent mod 4 to the number of ideals V of norm n in Z[i] unless n = A2

with A ≡ ±3 (8).
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Proof. U =
∑

(

−2

d

)

and V =
∑

(

−1

d

)

where the sums are over the divisors of

n. Since
( )

is multiplicative, U (resp. V ) is a product of contributions, one
for each prime dividing n. A contribution is even if the prime occurs to odd
exponent in the factorization of n, and is odd otherwise. In particular if 2 or
more p appear to odd exponent, then 4 divides U and V . Next suppose there is
exactly one prime p occurring with odd exponent and that the exponent is c.
Since n ≡ 1 (8), p ≡ 1 (8), and

(

−2

p

)

=
(

−1

p

)

= 1. So pmakes a contribution of
c+1 both to U and to V . Since all the other contribution are odd, U ≡ V ≡ 0
(4) when c ≡ 3 (4), and U ≡ V ≡ 2 (4) when c ≡ 1 (4).

It remains to analyze the case n = A2. In this case U and V are odd, and we
are reduced to showing: if A ≡ ±1 (8) then UV ≡ 1 (4), while if A ≡ ±3
(8), then UV ≡ 3 (4). Consider UV as an element of the multiplicative group
{1, 3} of Z/4. UV is a product of contributions, one for each prime dividing
A. A p ≡ ±1 (8) makes the same contribution to U as to V and so does
not contribute to the product. If on the other hand p ≡ ±3 (8) and has
exponent c in the factorization of A then the contribution it makes to UV is
(2c+ 1) · 1 when p ≡ 3 (8) and 1 · (2c+ 1) when p ≡ −3 (8). In other words
the contribution is −1 precisely when c is odd. This tells us that UV ≡ 1 (4)
when the number of primes ≡ ±3 (8) with odd exponent in the factorization
of A is even, and that UV ≡ 3 (4) when this number is odd. But in the first
case A ≡ ±1 (8), while in the second A ≡ ±3 (8).

Definition 3.2. Suppose n is odd. U1 is the number of ways of writing n as
(square)+2(square) while U2 is the number of ways of writing n as (square)+
4(square).

Lemma 3.3. The number of ideals U of Z
[√

−2
]

of norm n is 2U1 − 1 when

n is a square and 2U1 otherwise. The number of ideals V of Z[i] of norm n is
2V1 − 1 when n is a square and 2V1 otherwise.

Proof. Suppose n = s1 + 2s2 with s1 and s2 squares. Then
√
s1 +

√
−2

√
s2

and
√
s1 −

√
−2

√
s2 generate ideals of norm n in Z

[√
−2

]

. These 2 ideals are
distinct except when n is a square and s2 = 0. Also every ideal of norm n
comes from exactly one such decomposition of n. This gives the first result
and the proof of the second is similar.

Lemmas 3.1 and 3.3 immediately give:

Lemma 3.4. If n ≡ 1 (16), then U1 ≡ V1 (2).

Lemma 3.5. If n ≡ 1 (16), then the coefficient of xn in 1

g7
is 1 if and only if

n is a square.
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Proof. Since n ≡ 1 (8), the number of ways U1 of writing n as (square) +
2(square) is the number of ways of writing n as (square) + 8(square). So the
image of U1 in Z/2 is the coefficient of xn in g · g8 = g9. Similarly, the image
of V1 in Z/2 is the coefficient of xn in g · g16 = g17. Lemma 3.4 then tells us
that for n ≡ 1 (16) the coefficients of xn in g9 and in g17 are equal.

Now let S ⊂ A be Z/2[[x16]]. As S-module A is the direct sum of the xjS, 0 ≤
j ≤ 15. Let pr : A → xS be the S-linear map that is the identity on xS and
0 on the other summands. The last paragraph tells us that pr(g9) = pr(g17).

Since 1

g16
is in S, pr

(

1

g7

)

= pr(g). But as n ≡ 1 (16), the coefficient of xn in

pr(g) is the coefficient of xn in g, giving the result.

Theorem 3.6. If n ≡ 7 (16) then n is in B if and only if the number of ways
of writing n as (square) + 2(square) + 4(square) is odd.

Proof. 1

g
= g2 · g4 · 1

g7
. So the coefficient of xn in 1

g
is the number of ways,

modulo 2, of writing n as 2(square) + 4(square) + k with the coefficient of xk

in 1

g7
equal to 1. Suppose we have such a representation of n. Then k is odd.

Since 1

g7
= g

g8
it follows that k ≡ 1 (8) A congruence mod 16 argument using

the fact that n ≡ 7 (16) shows that k ≡ 1 (16), and Lemma 3.5 tells us that
k is a square. Conversely suppose n = 2(square) + 4(square) + k, where k is
a square. Then k ≡ 1 (8) and our congruence mod 16 argument tells us that
k ≡ 1 (16). By Lemma 3.5, the coefficient of xk in 1

g7
is 1, and this completes

the proof.

Lemma 3.7. Let R3 be the number of ways of writing 2n as (square) +
(square)+(square). Then if n ≡ 7 (8),R3 = 6·(the number of ways of writing

n as (square) + 2(square) + 4(square)).

Proof. Suppose 2n = s1 + s2 + s3 with the si squares. A congruence mod 16
argument shows that the si, in some order, are ≡ 1, 4 and 9 mod 16. So R3 =
6·(the number of ways of writing 2n as s1+s2+s3 with the si squares , s1 ≡ 1
(16), s2 ≡ 4 (16), s3 ≡ 9 (16)). Suppose we have such a representation. Then
we can choose square roots of s1 and s3 congruent to 1 and 5 respectively

mod 8. Then n =
(√

s1+
√
s3

2

)2

+2
(

s2
4

)

+4
(√

s1−
√
s3

4

)2

= (square)+2(square)+

4(square). Conversely suppose n = t1 + 2t2 + 4t3 with the ti squares. Then
the ti are odd. Choose square roots of t1 and t3 that are ≡ 1 (4). Then

2n =
(

2
√
t3 −

√
t1
)2

+ 4t2 +
(

2
√
t3 +

√
t1
)2

, and the three squares appearing
in this decomposition are, in order, congruent mod 16 to 1,4 and 9. In this
way we get a 1–1 correspondence that establishes the result.

Combining Theorem 3.6 and Lemma 3.7 we get:

5



Theorem 3.8. An n ≡ 7 (16) is in B if and only if the R3 of Lemma 3.7 is
≡ 2 (4).

Lemma 3.9. Suppose n ≡ 7 (8) and is divisible by 3 or more different primes.
Then the number of ways of writing 2n primitively as (square) + (square) +
(square) is divisible by 4.

Proof. LetO = Z

[√
−2n

]

. When we write 2n as (square)+(square)+(square),
the summands, being ≡ 1, 4 and 9 mod 16 are non-zero and distinct. So the
number we’re talking about is 1

8
·(the number of primitive representations of

2n by the form x2 + y2 + z2). In [2] Gauss showed that this (in modern lan-
guage) is 1

8
· 12 · (the number of invertible ideal classes in O). Let m be the

number of different primes dividing 2n. Gauss’ genus theory tells us that the
group of invertible ideal classes maps onto a product of m− 1 copies of Z/2.
Since m ≥ 4 we’re done.

Corollary 3.10. If n ≡ 7 (8) and 3 or more different primes occur to odd
exponent in the factorization of n, then the R3 of Lemma 3.7 is divisible by 4.

Proof. For a2 dividing 2n, Lemma 3.9 shows that the number of ways of writing
2n/a2 primitively as (square)+(square)+(square) is a multiple of 4. Summing
over a gives the result.

Theorem 3.11. If n ≡ 7 (16) and 3 or more primes occur to odd exponent
in the factorization of n then n is not in B. Furthermore the number of n in
B that are ≤ x and ≡ 7 (16) is O(x log log(x)/ log(x)).

Proof. Theorem 3.8 and Corollary 3.10 give the first result, and we argue as
in Theorem 2.4 to get the second.

Combining Theorems 1.3, 2.4 and 3.11 we get:

Theorem 3.12. The number of n in B that are ≤ x and 6≡ 15 (16) is
O(x log log(x)/ log(x)). In particular the upper density of B is ≤ 1

16
.

Can one go further? A hope would be to find extensions of Theorems 1.1,
1.2 and 1.4 of this note that hold for n ≡ 7 (16), n ≡ 15 (32), n ≡ 31
(64), . . . . The authors of [1] claim that such extensions exist, but apart from
n ≡ 7 (16), treated in this section, this seems unlikely. (The formulas they
propose are incorrect.) There seems to be no theoretical evidence supporting
the proposition that the n ≡ 15 (16) that lie in B form a set of density 0. As
we’ll see in the next section the empirical evidence supports a quite different
proposition.
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4 Computer evidence when n ≡ 15 (16)

Suppose x is in N . There evidently are x positive integers that are ≤ 16x
and ≡ 15 (16). Let β = β(x) be the number of these integers that are in
B. Virtually nothing is known about the asymptotic growth of β. But Kevin
O’Bryant has calculated β for x ≤ 219, and his calculations show, for example:

(1) If x = 216, the numbers of elements of B that are ≡ 15 (16) and lie
in [0, 16x], [16x, 32x], . . . , [112x, 128x], are given respectively by x

2
+ 13,

x
2
+ 94, x

2
− 231, x

2
+ 207, x

2
− 120, x

2
+ 14, x

2
− 270 and x

2
+ 7.

(2) Suppose x ≤ 219 and is divisible by 210. Then β = x
2
+ α

√
x with −1.1 <

α < .58. (The minimum of α is attained at 5 · 210, and the maximum at
37 · 210.)

This provides evidence for the following “15 mod 16 conjecture”: For every
ρ > 1

2
, β = x

2
+O (xρ).

Note that if the conjecture holds then Theorem 3.12 shows that B has density
1

32
.

Remark 4.1. There is a related much studied problem. Let g∗ in Z/2[[x]] be
1+x+x2 +x5 +x7 + · · · where the exponents are the generalized pentagonal
numbers. Just as we used 1

g
to define B we can use 1

g∗
to define a set B∗. (A

famous result of Euler says that B∗ consists of all n for which the number
of partitions, p(n), of n is odd.) Let β∗ = β∗(x) be the number of elements
of B∗ that are ≤ x. Despite extensive study only very weak results about
the asymptotic growth of β∗ have been proved. But Parkin and Shanks [4],
on the basis of computer calculations, conjectured that for every ρ > 1

2
, β =

x
2
+ O (xρ). The resistance of this conjecture to attack suggests however that

any proof of our 15 mod 16 conjecture is far off.
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