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PTOLEMY DIAGRAMS AND TORSION PAIRS IN THE

CLUSTER CATEGORY OF DYNKIN TYPE An

THORSTEN HOLM, PETER JØRGENSEN, AND MARTIN RUBEY

Abstract. We give a complete classification of torsion pairs in the cluster cate-
gory of Dynkin type An. Along the way we give a new combinatorial description
of Ptolemy diagrams, an infinite version of which was introduced by Ng in [15].
This allows us to count the number of torsion pairs in the cluster category of type
An. We also count torsion pairs up to Auslander-Reiten translation.

1. Introduction

Let A be the cluster algebra of Dynkin type An, let C be the cluster category of
Dynkin type An, and let P be a (regular) (n+3)-gon. There are bijections between
the following sets:

(i) Clusters in A ,

(ii) Cluster tilting objects in C,

(iii) Triangulations by non-crossing diagonals of P .

See Caldero, Chapoton, and Schiffler [7] and Iyama [10].

To place this in a larger context, note that if u is a cluster tilting object in C and
U = add(u) is the full subcategory consisting of direct sums of direct summands of
u, then (U,ΣU) is a so-called torsion pair by Keller and Reiten [13, sec. 2.1, prop.].
Here Σ is the suspension functor of the triangulated category C. The triangulation
on C is due to Keller [12] and is based on the definition of C as an orbit category
by Buan, Marsh, Reineke, Reiten, and Todorov [6].

In this paper we widen the perspective by investigating general torsion pairs in C.
A torsion pair in a triangulated category T is a pair (X,Y) of full subcategories
closed under direct sums and direct summands such that

(i) the morphism space T(x, y) is zero for x ∈ X, y ∈ Y,

(ii) each t ∈ T sits in a distinguished triangle x → t → y → Σx with x ∈ X,
y ∈ Y.
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a
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b

β1

β2

Figure 1. The Ptolemy condition

This concept was introduced by Iyama and Yoshino in [11, def. 2.2]. It is a triangu-
lated version of the classical notion of a torsion pair in an abelian category due to
Dickson, see [8]. In the triangulated situation it has precursors in the form of the
t-structures of Beilinson, Bernstein, and Deligne, where, additionally, one assumes
ΣX ⊆ X (see [2]), and the co-t-structures of Bondarko and Pauksztello where, addi-
tionally, one assumes Σ−1X ⊆ X (see [5], [16]). Note that the terminology of torsion
pairs in triangulated categories was also employed by Beligiannis and Reiten in [3],
but they used it as a synonym for t-structures.

There has so far been little systematic investigation of torsion pairs in triangulated
categories, but Ng [15] gave a complete classification of torsion pairs in the cluster
category of type A∞ in terms of certain infinite combinatorial objects. See [9]
for details on this category. In particular, Ng introduced the Ptolemy condition
which, when supplanted to the finite situation, takes the following form: a Ptolemy
diagram is a set of diagonals of a finite polygon (with a distinguished oriented base
edge) such that, if the set contains crossing diagonals a and b, then it contains all
diagonals which connect end points of a and b. See Figure 1 and Definition 2.1
below.

For instance, a polygon with no diagonals (an “empty cell”) is a Ptolemy diagram,
as is a polygon with all diagonals (a “clique”). The triangle is the only Ptolemy
diagram which is both an empty cell and a clique. If A and B are boundary edges
of two Ptolemy diagrams, then there is an obvious way of gluing A to B to obtain a
new Ptolemy diagram. We will show the following classification result on Ptolemy
diagrams and torsion pairs.

Theorem A.

(i) There is a bijection between Ptolemy diagrams of the (n+3)-gon and torsion
pairs in the cluster category C of Dynkin type An.

(ii) Each Ptolemy diagram can be obtained by gluing empty cells and cliques.
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Note that a triangulation by non-crossing diagonals is a Ptolemy diagram. Under
the bijection of part (i), it corresponds to a torsion pair coming from a cluster tilting
object.

Part (i) is a type An analogue of Ng’s classification, but our proof is easier than hers
because it uses the gluing in part (ii). The gluing follows from the observation that
if a diagonal in a Ptolemy diagram crosses no other diagonal in the diagram, then
it divides the diagram into two smaller Ptolemy diagrams. In fact, the gluing can
be organised so as to be unique, and this permits us to prove the following counting
result which, by virtue of part (i), also counts torsion pairs in C.

Theorem B. The number of Ptolemy diagrams of the (n+ 3)-gon is

1

n + 2

∑

ℓ≥0

2ℓ
(
n+ 1 + ℓ

ℓ

)(
2n+ 2

n+ 1− 2ℓ

)

with the convention that the second binomial coefficient is 0 for n + 1− 2ℓ < 0.

The first few values, starting at n = 0, are

1, 4, 17, 82, 422, 2274, 12665, 72326, 421214, 2492112,

14937210, 90508256, 553492552, 3411758334, 21175624713,

132226234854, 830077057878, . . .

This sequence may not have appeared previously in the literature. Based on this
paper, it is now item A181517 in the Online Encyclopedia of Integer Sequences [18].
Its asymptotic behaviour can be determined explicitly, see Remark 3.2.

We are also able to determine the generating function for Ptolemy diagrams up
to rotation, see Proposition 3.5. This corresponds to counting torsion pairs up to
Auslander-Reiten translation. The first few values are

1, 3, 5, 19, 62, 301, 1413, 7304, 38294, 208052,

1149018, 6466761, 36899604, 213245389, 1245624985,

7345962126, 43688266206, . . .

Again it seems that this sequence was not encountered before. It is now item
A181519 in the Online Encyclopedia of Integer Sequences.

Köhler [14] recently classified and counted thick subcategories of triangulated ca-
tegories with finitely many indecomposables. This is the same as counting torsion
pairs (X,Y) in which X and Y are triangulated subcategories; these are known as
stable t-structures. One can show that the only stable t-structures in the cluster
category C are (C, 0) and (0,C), so our results do not overlap with Köhler’s.
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Figure 2. Two different Ptolemy diagrams

2. Characterizing torsion pairs combinatorially

Let P be an (n + 3)-gon with a distinguished oriented edge which we refer to as
the distinguished base edge. We denote vertices of the polygon by lower case Greek
letters. An edge is a set of two neighbouring vertices of the polygon. A diagonal
is a set of non-neighbouring vertices. Two diagonals {α1, α2} and {β1, β2} cross if
their end points are all distinct and come in the order α1, β1, α2, β2 when moving
around the polygon in one direction or the other. This corresponds to an obvious
notion of geometrical crossing. Note that a diagonal does not cross itself and that
two diagonals sharing an end point do not cross.

We recall the following from the introduction.

Definition 2.1. Let A be a set of diagonals in P . Then A is a Ptolemy diagram if
it has the following property: when a = {α1, α2} and b = {β1, β2} are crossing di-
agonals in A, then those of {α1, β1}, {α1, β2}, {α2, β1}, {α2, β2} which are diagonals
are in A. See Figure 1.

Note that, because of the distinguished base edge which we draw in bold, the two
Ptolemy diagrams in Figure 2 are distinct.

Let C be the cluster category of type An. There is a bijection between indecom-
posable objects of C and diagonals of P . We use lower case roman letters for
(indecomposable) objects of C and lower case fraktur letters for the corresponding
diagonals. The suspension functor Σ acts on (indecomposable) objects and hence
on diagonals; the action on diagonals is rotation by one vertex. Note that Σ is equal
to the Auslander-Reiten translation of C since C is 2-Calabi-Yau. We have

dimExt1
C
(a, b) =

{
1 if a and b cross,
0 otherwise,

(1)

see [7].

The bijection between indecomposable objects of C and diagonals of P extends to a
bijection between subcategories of C closed under direct sums and direct summands,
and sets of diagonals of P . We use upper case sans serif letters for subcategories and
upper case fraktur letters for the corresponding sets of diagonals. The suspension
functor acts on diagonals and hence on sets of diagonals.
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Figure 3. The dotted diagonals are nc of the solid diagonals

Definition 2.2. If A is a set of diagonals, then

ncA = { b is a diagonal of P | b crosses no diagonal in A }.

Figure 3 is an example where A consists of the solid diagonals and ncA of the
dotted ones. Note that this is not a Ptolemy diagram. In the example, A and ncA
are disjoint but this is not always the case since a diagonal does not cross itself.

Let A be a subcategory of C closed under direct sums and direct summands. We
define the perpendicular subcategories by

⊥
A = { c ∈ C |C(c, a) = 0 for each a ∈ A },

A
⊥ = { c ∈ C |C(a, c) = 0 for each a ∈ A }.

If A corresponds to the set of diagonals A, then Equation (1) implies that ⊥A

corresponds to Σ−1 ncA and A⊥ corresponds to ΣncA; this follows using C(c,Σd) =
Ext1

C
(c, d). Note that the operator nc commutes with Σ and Σ−1.

Proposition 2.3. The following are equivalent for a subcategory A of C which is
closed under direct sums and direct summands.

(i) A is closed under extensions, that is, if a1, a2 ∈ A and a1 → b → a2 → Σa1
is a distinguished triangle of C, then b ∈ A.

(ii) (A,A⊥) is a torsion pair.

(iii) A = ⊥(A⊥).

(iv) A = nc ncA.

Proof. (i)⇒(ii) holds by [11, prop. 2.3(1)] since A is contravariantly finite because
it has only finitely many indecomposable objects. (Indeed, C itself has only finitely
many indecomposable objects.)

(ii)⇒(iii) holds by the remarks following [11, def. 2.2].
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(iii)⇒(i): If X is any full subcategory of C then ⊥X is closed under extensions.
Namely, if a1, a2 ∈ ⊥

X and a1 → b → a2 → Σa1 is a distinguished triangle, then
each x ∈ X gives an exact sequence C(a2, x) → C(b, x) → C(a1, x). The outer terms
are 0, so C(b, x) = 0 whence b ∈ ⊥X.

(iii)⇔(iv) follows from the remarks before the proposition by which A⊥ corresponds
to ΣncA and ⊥(A⊥) corresponds to Σ−1 nc(ΣncA) = nc ncA. �

Remark 2.4. Note that by an easy argument, in a torsion pair (X,Y) we always
have Y = X⊥; see [11, def. 2.2]. It follows that every torsion pair in C has the
form (A,A⊥) for one of the subcategories A in Proposition 2.3. By the proposition,
there is hence a bijection between torsion pairs in C and sets of diagonals A with
A = nc ncA.

Let P be the set of Ptolemy diagrams in polygons of any size with a distinguished
base edge. For convenience, we will consider the edges of the polygon to be part
of a Ptolemy diagram. Moreover, P includes the degenerate Ptolemy diagram
consisting of two vertices and the distinguished base edge. We give a different
(global) description of Ptolemy diagrams by establishing a recursive combinatorial
equation for P.

Recall that a polygon with no diagonals is called an empty cell and that a polygon
with all diagonals is called a clique; these are both Ptolemy diagrams.

Proposition 2.5. The set P is recursively given as the disjoint union of

(i) the degenerate Ptolemy diagram,

(ii) an empty cell with at least three edges, one of which is the distinguished
base edge, where we have glued onto each other edge an element of P along
its distinguished base edge,

(iii) a clique with at least four edges, one of which is the distinguished base
edge, where we have glued onto each other edge an element of P along its
distinguished base edge.

These types correspond to the three parts of the right hand side of the equation
in Figure 4. In particular, a Ptolemy diagram can be decomposed completely into
Ptolemy diagrams which are either empty cells or cliques.

Proof. It is clear that the sets (i), (ii), and (iii) are disjoint.

Let a non-degenerate Ptolemy diagram A be given with distinguished base edge
{α, β}. We will show that A is either of type (ii) or type (iii). For convenience, we
will consider the vertices of the polygon to be ordered in an obvious way, starting
with α and ending with β.

Type (ii): Suppose that there do not exist crossing diagonals a and b in A ending
in α, respectively β. We will show that A is of type (ii).
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P = ·∪
P

PP

P
·∪

P

PP

P

Figure 4. The decomposition of the set of Ptolemy diagrams with
a distinguished base edge.

Consider increasing sequences of vertices α, γ1, . . ., γm, β with m ≥ 1 for which the
edges and diagonals

{α, γ1}, {γ1, γ2}, . . . , {γm−1, γm}, {γm, β}
are in A, and choose a sequence with m minimal. For ease of notation write γ0 = α
and γm+1 = β. The displayed edges and diagonals along with the distinguished
base edge {α, β} bound a region C.

We show that A is of type (ii) by showing that no diagonal in A intersects the
interior of C: then C is an empty cell and each {γj, γj+1} with 0 ≤ j ≤ m divides
C from a (smaller) Ptolemy diagram; see Figure 4. Note that each smaller Ptolemy
diagram is clearly uniquely determined.

Suppose that A does contain a diagonal {ǫ1, ǫ2} intersecting the interior of C. We
can assume ǫ1 < ǫ2. There are three cases, each leading to a contradiction.

(a) ǫ1 and ǫ2 are among the γi. Then ǫ1 = γj−1 and ǫ2 = γk+1 where 1 ≤ j ≤
k ≤ m. This contradicts that m is minimal.

(b) One of ǫ1 and ǫ2 is among the γi and the other is not, see Figure 5. By
symmetry we can assume ǫ1 = γj−1 and γk < ǫ2 < γk+1 with 1 ≤ j ≤
k ≤ m. The diagonals {ǫ1, ǫ2} = {γj−1, ǫ2} and {γk, γk+1} cross. By the
Ptolemy condition c = {γj−1, γk+1} is in A.

If c intersects the interior of C then we are in case (a). If it does not, then
we must have γj−1 = α and γk+1 = β. But then there are crossing diagonals
a = {α, ǫ2} = {γj−1, ǫ2} = {ǫ1, ǫ2} and b = {β, γk} = {γk, γk+1} ending in
α, respectively β, contradicting our assumption on A.

(c) ǫ1 and ǫ2 are not among the γi, see Figure 5. Then γj−1 < ǫ1 < γj and
γk < ǫ2 < γk+1 for some 1 ≤ j ≤ k ≤ m. The diagonal {ǫ1, ǫ2} crosses each
of the diagonals {γj−1, γj} and {γk, γk+1}, so by the Ptolemy condition each
of the diagonals {ǫ1, γk+1} and {γj−1, ǫ2} is in A. These diagonals cross,
so by the Ptolemy condition c = {γj−1, γk+1} is in A. Now conclude the
argument by using the second paragraph of (b).
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α β

γj−1=ǫ1

γk
ǫ2

γk+1

α β

γj−1

ǫ1

γj

γk
ǫ2

γk+1

Type (ii), case (b) Type (ii), case (c)

Figure 5. In type (ii), the diagonal {ǫ1, ǫ2} forces the presence of
the diagonal {γj−1, γk+1}.

Type (iii): Suppose that crossing diagonals a = {α, δ} and b = {β, δ′} ending in α,
respectively β do exist in A. We will show that A is of type (iii).

By the Ptolemy condition {α, δ′} and {β, δ} are in A. Consider those vertices which
are connected to each of α and β by an edge or a diagonal in A. Denote them by
δ1, . . . , δm in increasing order and note that m ≥ 2 because δ and δ′ are among the
δi. For ease of notation write δ0 = α and δm+1 = β.

Let 0 ≤ j < k ≤ m + 1. Then {δj , δk} is in A. Namely, this holds by definition if
j = 0 since then δj = α. So we can assume 1 ≤ j and by symmetry k ≤ m. But
then {α, δk} and {δj , β} are crossing diagonals in A and by the Ptolemy condition
{δj, δk} is in A. So the δi form the vertices of a clique of edges and diagonals in A

which contains the distinguished base edge.

We show that A is of type (iii) by showing that if {δj, δj+1} is a diagonal with
0 ≤ j ≤ m, then no diagonal in A crosses {δj, δj+1}: then {δj , δj+1} divides the
clique with vertices δi from a (smaller) Ptolemy diagram; see Figure 4. Note that,
again, each smaller Ptolemy diagram is uniquely determined.

So suppose that A contains a diagonal {ǫ1, ǫ2} crossing {δj , δj+1}. We can assume
that ǫ1 < ǫ2 and by symmetry considerations that δj < ǫ1 < δj+1. Note that this
entails j ≤ m− 1.

There are two cases, each leading to a contradiction.

(a) ǫ2 6= β, see Figure 6. Then the diagonal {ǫ1, ǫ2} crosses the diagonals
{α, δj+1} and {β, δj+1} so by the Ptolemy condition {α, ǫ1} and {β, ǫ1} are
in A. Hence ǫ1 is among the δi, contradicting δj < ǫ1 < δj+1.

(b) ǫ2 = β, see Figure 6. Then {β, ǫ1} = {ǫ1, ǫ2} is in A. Moreover, {ǫ1, ǫ2}
crosses {α, δj+1} so by the Ptolemy condition {α, ǫ1} is in A. Hence ǫ1 is
again among the δi which is a contradiction.
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α β

δj

ǫ1
δj+1

ǫ2

α β = ǫ2

δj

ǫ1
δj+1

Type (iii), case (a) Type (iii), case (b)

Figure 6. In type (iii), the diagonal {ǫ1, ǫ2} forces the presence of
the diagonals {α, ǫ1} and {β, ǫ1}.

�

Remark 2.6. The proposition proves Theorem A(ii) from the introduction: each
Ptolemy diagram can be uniquely decomposed into regions, each of which is either
an empty cell or a clique.

Moreover, let A be a Ptolemy diagram. To obtain ncA from A, one replaces empty
cells by cliques and vice versa in the decomposition.

Namely, let d be an arbitrary diagonal. If d separates two regions of A, then d is
one of the diagonals along which two smaller Ptolemy diagrams have been glued in
the decomposition to form A, so clearly d crosses no diagonal of A, so d ∈ ncA. If
d is an internal diagonal in a clique, then it crosses some other internal diagonal
which must be in A, so d 6∈ ncA. If d is an internal diagonal in an empty cell, then
it crosses no diagonal of A, so d ∈ ncA.

Note that we have A = ncA if and only if A is a triangulation of the polygon, since
a triangle is the only polygon which is an empty cell and a clique simultaneously.

With the above decomposition, we can show the following alternative characteriza-
tion of Ptolemy diagrams.

Proposition 2.7. We have A = nc ncA if and only if A is a Ptolemy diagram.

Proof. Suppose that A = nc ncA. In Figure 1, consider the diagonal {α1, β1}. The
diagonals crossing it are precisely the diagonals which connect a vertex on one side
of {α1, β1} with a vertex on the other side of {α1, β1}. But each such diagonal
intersects a or b so is outside ncA. Hence {α1, β1} is in nc ncA = A. The other
diagonals in the Ptolemy condition follow similarly.

Conversely, suppose that A satisfies the Ptolemy condition. By Remark 2.6, the
operator nc interchanges empty cells and cliques in the decomposition ofA according
to Proposition 2.5, so it is clear that A = nc ncA. �
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Remark 2.8. Combining Remark 2.4 and Proposition 2.7 proves Theorem A(i) of
the introduction. In particular, to count torsion pairs in the cluster category of type
An we only need to determine the number of Ptolemy diagrams of the (n+ 3)-gon
with a distinguished base edge.

3. Counting the number of Ptolemy diagrams

In this section we deduce expressions for the number of Ptolemy diagrams. First
we compute the number of Ptolemy diagrams with a distinguished base edge. In a
second step, we also determine the number of Ptolemy diagrams up to rotation.

3.a. Ptolemy diagrams with a distinguished base edge. Using combinatorial
reasoning we shall obtain below an equation for the (ordinary) generating function

P(y) =
∑

N≥1

#{Ptolemy diagrams of the (N + 1)-gon}yN . (1)

Let us briefly recall some facts from the general theory of generating functions, see
for example the book by Bergeron, Labelle and Leroux [4, sec. 1.3] or Aigner [1,
secs. 3.2 and 3.3]. Of course, our objective is to convey the general idea, precise
formulations are given in the cited textbooks.

Let F and G be sets of objects. Each object is assigned to a non-negative integer,
referred to as its size. Let F(y) and G(y) be their generating functions. Then the
generating function

• for the disjoint union of F and G is F(y) + G(y), and
• for the set of objects obtained by pairing objects from F and G is F(y)G(y),
where the size of a pair is the sum of the sizes of its two components.

Because of the natural correspondence with the operation on generating functions,
we denote the pairing of sets considered in the second item by F · G.
We can now derive an equation for the generating function of lists of Ptolemy dia-
grams LP . Namely, either such a list is empty, or it is a pair whose first component
is a Ptolemy diagram and whose second component is a list of Ptolemy diagrams.
We thus have

LP = ∅ ·∪ P · LP ,

or, on the level of generating functions

LP(y) = 1 + P(y)LP(y),

which entails

LP(y) =
1

1− P(y)
.

Clearly, we can interpret the set of Ptolemy diagrams of type (ii) in Proposition 2.5
as the set of lists of Ptolemy diagrams with at least two elements. With a slight
shift of perspective, this is the same as a triple, whose first two components are
Ptolemy diagrams, and whose last component is a list of diagrams. Hence, this set
has generating function P(y)2/

(
1 − P(y)

)
. Similarly, a Ptolemy diagram of type
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(iii) in Proposition 2.5 can be interpreted as a list of diagrams with at least three
elements. Namely, recall that in the decomposition of Proposition 2.5, the cliques
which occur have at least four edges, one of which is the distinguished base edge;
to the other three we can attach Ptolemy diagrams.

In summary, using the combinatorial decomposition of Proposition 2.5 sketched in
Figure 4,

P(y) = y +
P(y)2

1− P(y)
+

P(y)3

1−P(y)
.

Let us rewrite this equation (essentially multiplying by 1 − P(y)), to make it
amenable to Lagrange inversion (eg. [4, sec. 3.1] or [1, thm. 3.8]):

P(y) = y
1− P(y)

1− 2P(y)−P(y)2
,

i.e., P(y) = yA(P(y)) with A(y) = (1 − y)/(1 − 2y − y2). Thus, denoting the
coefficient of yN in P(y) with [yN ]P(y), we have

[yN ]P(y) =
1

N
[yN−1]

(
1− y

1− 2y − y2

)N

.

We can now apply the binomial theorem (1 + z)a =
∑

k≥0

(
a

k

)
zk, for a ∈ Z and(

a

k

)
= a(a − 1) · · · (a − k + 1)/k!, to transform the right hand side into a sum. As

pointed out by Christian Krattenthaler the result becomes much nicer if we first
rewrite the expression slightly, taking advantage of the fact that 1 − 2y − y2 is
‘almost’ (1− y)2:

(1− y)N(1− 2y − y2)−N = (1− y)−N

(
1− 2y2

(1− y)2

)−N

= (1− y)−N
∑

ℓ≥0

(−N

ℓ

)
(−1)ℓ

(2y2)ℓ

(1− y)2ℓ

=
∑

ℓ≥0

(−N

ℓ

)
(−1)ℓ(2y2)ℓ

∑

k≥0

(−N − 2ℓ

k

)
(−1)kyk

=
∑

k,ℓ≥0

(−N

ℓ

)(−N − 2ℓ

k

)
(−1)k+ℓ2ℓyk+2ℓ. (2)

Extracting the coefficient of yN−1 in Equation (2) by setting k = N − 1 − 2ℓ we
obtain

[yN ]P(y) =
1

N

∑

ℓ≥0

(−N

ℓ

)( −N − 2ℓ

N − 1− 2ℓ

)
(−1)N−1−ℓ2ℓ.

Finally, using
(
−N

ℓ

)
= (−1)ℓ

(
N+ℓ−1

ℓ

)
, we get that the number of Ptolemy diagrams

of the (N + 1)-gon with a distinguished base edge is

1

N

∑

ℓ≥0

2ℓ
(
N − 1 + ℓ

ℓ

)(
2N − 2

N − 1− 2ℓ

)
.

Setting N = n + 2 proves Theorem B of the introduction, and the first few values
are given there.
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Remark 3.1. Note that Petkovšek’s algorithm hyper [17, sec. 8] proves that the
sum above cannot be written as a linear combination of (a fixed number of) hyper-
geometric terms.

Remark 3.2. Since the generating function P(y) satisfies an algebraic equation,
the asymptotic behaviour of the coefficients of P(y) can be extracted automatically,
for example using the equivalent function in Bruno Salvy’s package gdev available
at http://algo.inria.fr/libraries/. Thus, we learn that the leading term of
the asymptotic expansion of [yN ]P(y) is

α√
πN3

ρN ,

where ρ = 6.847333996370022 . . . is the largest positive root of 8x3−48x2−47x+4
and α = 0.10070579427884086 . . . is the smallest positive root of 1136x6 − 71x4 −
98x2 + 1.

3.b. Ptolemy diagrams up to rotation. Let us now turn to the enumeration
of Ptolemy diagrams up to rotation. It seems easiest to apply a relatively general
technique known as the ‘dissymmetry theorem for trees’. Namely, we will consider
Ptolemy diagrams as certain planar trees, where each inner vertex of the tree cor-
responds to either an empty cell or a clique of the diagram. Thus, we will have to
count trees according to their number of leaves, where the edges incident to an inner
vertex are cyclically ordered and additionally these inner vertices ‘know’ whether
they correspond to an empty cell or such a clique. This situation is covered by
Proposition 3.3 below.

This proposition is phrased in the language of combinatorial species (as described
in [4]), which is at first a tool to compute with labelled objects. Formally, a species is
a functor from the category of finite sets with bijections into itself. Thus, applying
a species F to a finite set U – namely, a set of labels, we obtain a new set F [U ]
– namely the set of objects that can be produced using the given labels. Applying
F to a bijection σ : U → V produces a bijection F [σ] : F [U ] → F [V ], which,
by functoriality, corresponds to relabelling the objects. (However, when defining a
particular species here, we refrain from giving a precise definition of this relabelling
operation.)

A simple but nevertheless important species is the singleton species Y : it returns
the input set U if U has cardinality one and otherwise the empty set. Another
basic species we will need is the species of unordered pairs E2, which returns the
input set U if U has cardinality two and the empty set otherwise. Finally, for k ≥ 1
we introduce the species of cycles Ck, which consists of all (oriented) cycles with k
labelled vertices.

We associate to every species F a so called exponential generating function F(y),
which is given by

F(y) =
∑

N≥1

#F [{1, 2, . . . , N}]y
N

N !
,

i.e., the coefficient of yN is the number of objects with labels {1, 2, . . . , N} produced
by F , divided by N !. In particular, the exponential generating function associated

http://algo.inria.fr/libraries/
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to Y is Y (y) = y, and the exponential generating function associated to E2 is

E2(y) = y2/2. Finally, Ck(y) = (k − 1)!y
k

k!
= yk

k
.

There are natural definitions for the sum F + G, the product F · G and the compo-
sition F ◦ G of two species F and G. We only give informal descriptions of the sets
of objects which they produce, and refer for precise definitions to [4, sec. 1]. Let U
be a set of labels, then

• the set of objects in (F + G)[U ] is the disjoint union of F [U ] and G[U ],
• the set of objects in (F · G)[U ] is obtained by partitioning the set U in all
possible ways into two disjoint (possibly empty) sets V and W such that
U = V ∪W , and producing all pairs of objects in

(F [V ],G[W ]),

i.e., {(f, g) | f ∈ F [V ], g ∈ G[W ]},
• the set of objects in (F ◦ G)[U ] is the set of all tuples of the form

(
F [{1, 2, . . . , k}],G[B1],G[B2], . . . ,G[Bk]

)
,

where {B1, B2, . . . , Bk} is a set partition of U .

The composition of species can be visualised by taking an object produced by F ,
and replacing all its labels by objects produced by G, such that the set of labels is
exactly U . In particular, F ◦ Y = Y ◦ F = F .

Finally, we need to describe the derivative F ′ of a species F . Given a set of labels
U , we set F ′[U ] = F [U ·∪ {∗}], where ∗ is a ‘transcendental’ element, i.e., an element
that does not appear in U .

It should not come as a surprise (although it certainly needs a proof) that the expo-
nential generating functions associated to the sum, the product, the composition,
and the derivative of species are respectively F(y)+G(y), F(y) · G(y), F

(
G(y)

)
and

F ′(y).

It remains to introduce the species of R-enriched trees bR and R′-enriched rooted
trees BR′ with labels on the leaves, see [4, def. 13, sec. 3.1 and pg. 287, sec. 4.1]:
let R be a species with #R[∅] = 0, #R[{1}] = 1 and #R[{1, 2}] = 0. Then an R-
enriched tree on a set of labels U is a tree with at least two vertices, whose vertices
of degree one (i.e., the leaves) correspond to the labels in U . Additionally, every
vertex is assigned an object from R[N ], where N is the set of neighbours of the
vertex. Since #R[{1, 2}] = 0 there are no vertices of degree two. Therefore, any
such tree must have more leaves than inner vertices and thus the set of R-enriched
trees with a finite number of leaves is finite. The condition #R[{1}] = 1 implies
that only the inner vertices carry additional structure.

An R′-enriched rooted tree on a set of labels U is a rooted tree, possibly an isolated
vertex, where the vertices of degree at most one (i.e., the leaves) correspond to the
labels in U . Additionally, every vertex is assigned an object from R′[N ], where N is
the set of those neighbours of the vertex which are further away from the root than
the vertex itself. Again, since #R′[{1}] = 0, no vertex can have a single successor
and thus the set of R′-enriched rooted trees with a finite number of leaves is finite.
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Figure 7. The correspondence between R′-enriched rooted trees and
labelled Ptolemy diagrams with base edge.

In our situation, we set R = Y +C≥3+C≥4 where C≥k denotes the species of cycles
with at least k vertices. The derivative of R is

R′ = 1 + L≥2 + L≥3,

where L≥k denotes the species of lists with at least k elements. We now see that BR′

is isomorphic (in the sense of [4, def. 12, sec. 1.2]) to the combinatorial species of
Ptolemy diagrams with a distinguished base edge and labels on all vertices except
the counterclockwise first on the base edge. Namely, a Ptolemy diagram can be
regarded as an R′-enriched rooted tree as follows: the region attached to the dis-
tinguished base edge corresponds to the root and the other regions to the internal
vertices of the tree, i.e., vertices which are not leaves, see Figure 7. Note that the
degenerate Ptolemy diagram, consisting of the base edge only, carries one label.
This corresponds to the tree consisting of one isolated vertex, which is also labelled
– despite being the root of the tree.

Let us informally explain the meaning of the three summands in R′: the first
summand, 1, applies if a vertex is a leaf and thus has no successor. The second
summand, L≥2, applies if a vertex corresponds to a region that is of type (ii) in the
decomposition of Proposition 2.5, i.e., an empty cell, in which case the vertex must
have at least two successors. Finally, the third summand, L≥3, applies if a vertex
corresponds to a region that is of type (iii) in Proposition 2.5, in which case the
vertex must have at least three successors. In the latter two cases the species of
lists imposes an ordering onto the successors of the vertex.

In a similar manner we can see that bR is the species of Ptolemy diagrams up
to rotation and labels on all vertices. Here, enriching the inner vertices with the
species of cycles imposes a cyclic ordering on the neighbours of each vertex.

We can now state the announced tool. We reproduce it here in a slightly simplified
form; it is the special case of Theorem 4.1.7 in [4] obtained by setting X = 1. In
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this special case we additionally have to require #R0[{1, 2}] = 0 to ensure well-
definedness of the species involved.

Proposition 3.3. Let R0 be a combinatorial species such that #R0[∅] = #R0[{1}] =
#R0[{1, 2}] = 0 and let R = R0 + Y . Then the combinatorial species bR of R-
enriched trees and the combinatorial species of R′-enriched rooted trees BR′ are
related as follows:

bR +B2
R′ = (E2 +R0) ◦BR′ + Y ·BR′ .

As far as the enumeration of labelled structures is concerned this proposition is not
very interesting. Namely, it follows directly from the definition of the derivative of
a species that BR′ is the derivative of bR: the correspondence is accomplished by
making the root into another labelled vertex. In particular, the number of labelled
Ptolemy diagrams up to rotation with N + 1 vertices (and N + 1 labels) equals
the number of labelled Ptolemy diagrams with distinguished base edge with N + 1
vertices (and N labels) and is given by N ! times the N -th coefficient of P(y).

However, the proposition enables us to determine also the (ordinary) generating
function of unlabelled Ptolemy diagrams up to rotation. In the jargon of com-

binatorial species this is the isomorphism type generating function b̃R(y) of the
species bR with the specific value of R used above. In general, the isomorphism

type generating function of a species F is denoted F̃(y) and we have the usual

rules ˜(F + G)(y) = F̃(y) + G̃(y) and (̃FG)(y) = F̃(y)G̃(y). To compute b̃R(y) we
additionally need to use cycle indicator series. We collect the facts significant for
us in the following lemma.

Lemma 3.4. Let F be a combinatorial species and ZF its cycle indicator series.
Then the generating function for the isomorphism types of F is given by

F̃ = ZF(y, y
2, y3, . . . ) (see [4, thm. 8, sec. 1.2]).

Moreover, let G be another species, satisfying #G[∅] = 0. Then the generating
function for the isomorphism types of F ◦ G is given by

F̃ ◦ G = ZF

(
G̃(y), G̃(y2), G̃(y3), . . .

)
(see [4, thm. 2, sec. 1.4]).

The cycle indicator series of the species of cycles C is given by

ZC(p1, p2, . . . ) =
∑

d≥1

φ(d)

d
log

(
1

1− pd

)
,

where φ is Euler’s totient (see [4, eq. (18), sec. 1.4]).

The cycle indicator series of the two element set E2 (which coincides with the 2-cycle
C2) is given by

ZE2
(p1, p2, . . . ) =

1

2
(p21 + p2) (see [4, table 5, app. 2]).

The cycle indicator series of the 3-cycle C3 is given by

ZC3
(p1, p2, . . . ) =

1

3
(p31 + 2p3) (see [4, table 5, app. 2]).
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Note that, since P(y) is algebraic, P̃(y) = P(y). Putting all the bits together, we
find:

Proposition 3.5. The generating function for Ptolemy diagrams up to rotation is

2
∑

d≥1

φ(d)

d
log

(
1

1− P(yd)

)

− 1

2

(
3P(y)2 + P(y2)

)
− 1

3

(
P(y)3 + 2P(y3)

)
− 2P(y) + yP(y),

where P(y) is the generating function for Ptolemy diagrams with a distinguished
base edge, and φ(d) is Euler’s totient.

The first few coefficients are given in the introduction.

Proof. We use Proposition 3.3 with R0 = C≥3 + C≥4. Since (formally) E2 + R0 =
Ck≥2 + Ck≥4 = 2C − 2Y − E2 − C3,

ZE2+R0
= 2

∑

d≥1

φ(d)

d
log

(
1

1− pd

)
− 2p1 −

1

2
(p21 + p2)−

1

3
(p31 + 2p3).

Since P(y) is algebraic, we have B̃R′ = P(y) and therefore

b̃R(y) =ZE2+R0

(
P(y),P(y2), . . .

)
+ yP(y)−P(y)2

=2
∑

d≥1

φ(d)

d
log

(
1

1− P(yd)

)

− 2P(y)− 1

2

(
P(y)2 + P(y2)

)
− 1

3

(
P(y)3 + 2P(y3)

)
+ yP(y)−P(y)2,

which is equivalent to the claim. �
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