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Abstract

We consider the question of the existence of variables with few occur-
rences in boolean conjunctive normal forms (clause-sets). Let µvd(F ) for a
clause-set F denote the minimal variable-degree, the minimum of the number
of occurrences of variables. Our main result is an upper bound µvd(F ) ≤

nM(σ(F )) ≤ σ(F ) + 1 + log
2
(σ(F )) for lean clause-sets F in dependency

on the surplus σ(F ). Lean clause-sets, defined as having no non-trivial au-
tarkies, generalise minimally unsatisfiable clause-sets. For the surplus we have
σ(F ) ≤ δ(F ) = c(F )− n(F ), using the deficiency δ(F ) of clause-sets, the dif-
ference between the number of clauses and the number of variables. nM(k) is
the k-th “non-Mersenne” number, skipping in the sequence of natural num-
bers all numbers of the form 2n − 1. As an application of the upper bound
we obtain that clause-sets F violating µvd(F ) ≤ nM(σ(F )) must have a non-
trivial autarky (so clauses can be removed satisfiability-equivalently by an
assignment satisfying some clauses and not touching the other clauses). It is
open whether such an autarky can be found in polynomial time.

1 Introduction

We study the existence of “simple” variables in boolean conjunctive normal forms,
considered as clause-sets. “Simple” here means a variable occurring not very often.
A major use of the existence of such variables is in inductive proofs of properties
of minimally unsatisfiable clause-sets, using splitting on a variable to reduce n, the
number of variables, to n− 1: here it is vital that we have control over the changes
imposed by the substitution, and so we want to split on a variable occurring as
few times as possible. The background for these considerations is the enterprise
of classifying minimal unsatisfiable clause-sets F in dependency on the deficiency
δ(F ) := c(F ) − n(F ), the difference between the number c(F ) := |F | of clauses
of F and the number n(F ) := |var(F )| of variables of F . The most basic fact is
δ(F ) ≥ 1, as first shown in [1]. For δ(F ) = 1 the structure is completely known
([1, 2, 6], for δ(F ) = 2 the structure after reduction of singular variables (occurring
in one sign only once) is known ([4]), while for δ(F ) ∈ {3, 4} only basic cases have
been classified ([15]).

∗Supported by NSFC Grant 60970040.
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The starting point of our investigation is Lemma C.2 in [6], where it is shown
that a minimally unsatisfiable clause-set F must have a variable v with at most δ(F )
positive and at most δ(F ) negative occurrences; we write this as ldF (v) ≤ δ(F ) and
ldF (v) ≤ δ(F ), using the notion of literal degrees (the number of occurrences of
the literal). Thus we have vdF (v) ≤ 2δ(F ), using the variable degree vdF (v) :=
ldF (v) + ldF (v). Using the minimum variable degree (min-var-degree) µvd(F ) :=
minv∈var(F ) vdF (v) of F , this becomes µvd(F ) ≤ 2δ(F ). In this article we show
a sharper bound on µvd(F ) for a larger class of clause-sets F . More precisely, we
show that the worst-cases ldF (v), ldF (v) ≤ δ(F ) can not occur at the same time (for
a suitable variable), but actually ldF (v) + ldF (v)− δ(F ) only grows logarithmically
in δ(F ), and this for a larger class of formulas.

The larger class of clause-sets considered is the class LEAN of lean clause-
sets, which are clause-sets having no non-trivial autarky. For an overview on the
theory of minimally unsatisfiable clause-sets and on the theory of autarkies see
[5]. The deficiency δ(F ) ∈ Z of clause-sets is replaced by the surplus σ(F ) ∈ Z,
which is the minimal deficiency over all clause-sets F [V ] for non-empty variable
sets V ⊆ var(F ), where F [V ] is obtained from F by removing clauses which have
no variables in V , and restricting the remaining clauses to V ; see [11] for more
information on the surplus of (generalised) clause-sets. We need to count multiple
occurrences of clauses here (which might arise during the process of removing literals
with variables not in V ), and thus actually multi-clause-sets F are used here. Note
that by considering V = var(F ) we have σ(F ) ≤ δ(F ), and by considering V = {v}
for v ∈ var(F ) we get σ(F ) ≤ µvd(F ) − 1. Now the main result of this article
(Theorem 4.1) is

µvd(F ) ≤ nM(σ(F ))

for lean F , where nM : N → N (see Definition 3.1) is a super-linear function with
nM(k) ≤ k+1+log2(k). As an application we obtain (Corollary 4.2), that if a (multi-
)clause-set F has no variable occurring with degree at most δ(F ) + 1 + log2(δ(F )),
then F has a non-trivial autarky. It is an open problem whether such an autarky can
be found in polynomial time (for arbitrary clause-sets F ); we conjecture (Conjecture
4.3) that this is possible.

Related work This article appears to be the first systematic study of the problem
of minimum variable occurrences in minimally unsatisfiable clause-sets and gener-
alisations, in dependency on the deficiency, asking for the existence of a variable
occurring “infrequently” in general, or for extremal examples where all variables
occur not infrequently. The problem of maximum variable occurrences (asking for
the existence of a variable occurring frequently in general, or for extremal exam-
ples where all variables occur not frequently) in uniform (minimally) unsatisfiable
clause-sets, in dependency on the (constant) clause-length, has been studied in the
literature, starting with [14]; for a recent article see [3].

Overview In Section 2 basic notions and concepts regarding clause-sets, autarkies
and minimal unsatisfiability are reviewed. Section 3 introduces the numbers nM(k)
and proves exact formulas and sharp lower and upper bounds. Section 4 contains the
main results. First in Subsection 4.1 the bound is shown for minimally unsatisfiable
clause-sets (Theorem 4.5). In Subsection 4.2 the bound then is lifted to lean clause-
sets, proving Theorem 4.1. The immediate corollary of Theorem 4.1 is, that if
the asserted upper bound on the minimal variable degree is not fulfilled, then a
non-trivial autarky must exist (Corollary 4.2). In Subsection 4.3 the problem of
finding such autarky is discussed, with Conjecture 4.3 making precise our believe
that one can find such autarkies efficiently. In Section 5 we discuss the sharpness
of the bound, and the possibilities to generalise it further. Finally, in Section 6
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open problems are stated, culminating in the central Conjecture 6.1 about the
classification of unsatisfiable hitting clause-sets (or “disjoint tautologies” in the
terminology of DNFs).

2 Preliminaries

We follow the general notations and definitions as outlined in [5], where also further
background on autarkies and minimal unsatisfiability can be found. We use N =
{1, 2, . . .} and N0 = N ∪ {0}.

2.1 Clause-sets

Complementation of literals x is denoted by x, while for a set L of literals we
define L := {x : x ∈ L}. A clause C is a finite and clash-free set of literals
(i.e., C ∩ C = ∅), while a clause-set is a finite set of clauses. We use var(F ) :=
⋃

C∈F var(C) for the set of variables of F , where var(C) := {var(x) : x ∈ C} is the
set of variables of clause C, while var(x) is the underlying variable for a literal x.
For a clause-set F we denote by n(F ) := |var(F )| ∈ N0 the number of variables
and by c(F ) := |F | ∈ N0 the number of clauses. The deficiency of a clause-set is
denoted by δ(F ) := c(F ) − n(F ) ∈ Z. We call a clause C full for a clause-set F
if var(C) = var(F ), while a clause-set F is called full if every clause is full. For a
finite set V of variables let A(V ) be the set of all 2|V | full clauses over V . Thus full
clause-sets are exactly the sub-clause-sets of some A(V ). A partial assignment is
a map ϕ : V → {0, 1} for some (possibly empty) set V of variables. The application
of a partial assignment ϕ to a clause-set F is denoted by ϕ ∗ F , which yields the
clause-set obtained from F by removing all satisfied clauses (which have at least
one literal set to 1), and removing all falsified literals from the remaining clauses.
A clause-set F is satisfiable iff there is a partial assignment ϕ with ϕ ∗F = ⊤ := ∅,
otherwise F is unsatisfiable. All A(V ) are unsatisfiable.

These notions are generalised to multi-clause-sets, which are pairs (F,m),
where F is a clause-set and m : F → N determines the multiplicity of the clauses.
Now c((F,m)) :=

∑

C∈F m(C), while the application of partial assignments ϕ to a
multi-clause-set F yields a multi-clause-set ϕ ∗F , where the multiplicity of a clause
C in ϕ ∗ F is the sum of all multiplicities of clauses in F which are shortened to C
by ϕ. For example if ϕ is a total assignment for F (assigns all variables of F ) which
does not satisfying F (i.e., ϕ ∗F 6= ⊤), then ϕ ∗F is ({⊥}, (f)C∈{⊥}), where ⊥ := ∅
is the empty clause, while f ∈ N is the number of clauses (with their multiplicities)
of F falsified by ϕ.

For the number of occurrences of a literal x in a (multi-)clause-set (F,m) we write
ldF (x) :=

∑

C∈F,x∈C m(C), called the literal-degree, while the variable-degree
of a variable v is defined as vdF (v) := ldF (v) + ldF (v). A singular variable
in a (multi-)clause-set F is a variable occurring in one sign only once (i.e., 1 ∈
{ldF (v), ldF (v)}). A (multi-)clause-set is called non-singular if it does not have
singular variables.

For a set V of variables and a multi-clause-set F by F [V ] the restriction of
F to V is denoted, which is obtained by removing clauses from F which have no
variables in common with V , and removing from the remaining clauses all literals
where the underlying variable is not in V (note that this can increase multiplicities
of clauses).
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2.2 Autarkies

An autarky for a clause-set F is a partial assignment ϕ which satisfies every clause
C ∈ F it touches, i.e., with var(ϕ) ∩ var(C) 6= ∅. The empty partial assignment
is always an autarky for every F , the trivial autarky. If ϕ is an autarky for F ,
then ϕ ∗ F ⊆ F holds, and thus ϕ ∗ F is satisfiability-equivalent to F . A clause-
set F is lean if there is no non-trivial autarky for F . A weakening is the notion
of a matching-lean clause-set F , which has no non-trivial matching autarky,
which are special autarkies given by a matching condition (for every clause touched,
a unique variable underlying a satisfied literal must be selectable). The process
of applying autarkies as long as possible to a clause-set is confluent, yielding the
lean kernel of a clause-set. Computation of the lean kernel is NP-hard, but the
matching-lean kernel, obtained by applying matching autarkies as long as possi-
ble, which is also a confluent process, is computable in polynomial time. Note that
a clause-set F is lean resp. matching lean iff the lean resp. matching-lean kernel is F
itself. For every matching-lean multi-clause-set F 6= ⊤ we have δ(F ) ≥ 1, while in
general a multi-clause-set F 6= ⊤ is matching lean iff σ(F ) ≥ 1, where the surplus
σ(F ) ∈ Z is defined as the minimum of δ(F [V ]) for all ∅ 6= V ⊆ var(F ). Note that
while w.r.t. general autarkies there is no difference between a multi-clause-set and
the underlying clause-set, for matching autarkies there is a difference, due to the
matching condition. For more information on autarkies see [5, 11].

2.3 Minimally unsatisfiable clause-sets

The set of minimally unsatisfiable clause-sets is MU , the set of all clause-sets which
are unsatisfiable, while removal of any clause makes them satisfiable. Furthermore
the set of saturated minimally unsatisfiable clause-sets is SMU ⊂ MU , which is
the set of minimally unsatisfiable clause-sets such that addition of any literal to any
clause renders them satisfiable. We recall the fact that every minimally unsatisfiable
clause-set F ∈ MU can be saturated, i.e., by adding literal occurrences to F we
obtain F ′ ∈ SMU with var(F ′) = var(F ) such that there is a bijection α : F → F ′

with C ⊆ α(C) for all C ∈ F . Some basic properties of MU and SMU w.r.t. the
application of partial assignments are given in the following lemma.

Lemma 2.1 For all clause-sets F we have:

1. F ∈ SMU iff for all v ∈ var(F ) and ε ∈ {0, 1} we have 〈v → ε〉 ∗ F ∈ MU.

2. If for some variable v holds 〈v → 0〉 ∗ F ∈ SMU and 〈v → 1〉 ∗ F ∈ SMU ,
then F ∈ SMU .

3. If for some variable v holds 〈v → 0〉 ∗ F ∈ MU and 〈v → 1〉 ∗ F ∈ MU , then
F ∈ MU.

For more information on minimal unsatisfiability see [5, 12].

3 Non-Mersenne numbers

Splitting on variables with minimum occurrence in minimally unsatisfiable clause-
sets leads by Theorem 4.5 to the following recursion. The understanding of this
recursion is the topic of this section. On a first reading, only Definition 3.1 and the
main results, Lemma 3.8 and Corollary 3.9, need to be considered.
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Definition 3.1 For k ∈ N let nM(k) := 2 if k = 1, while else

nM(k) := max
i∈{2,...,k}

min(2 · i, nM(k − i+ 1) + i).

Remarks:

1. This is sequence http://oeis.org/A062289 in the “On-Line Encyclopedia
of Integer Sequences”. It can be defined as the enumeration of those natural
numbers containing the string “10” (at consecutive positions). The sequence
leaves out exactly the number of the form 2n − 1 for n ∈ N, and thus the
name. The sequence consists of arithmetic progressions of slope 1 and length
2m − 1, m = 1, 2, . . . , each such progression separated by an additional step
of +1. The recursion in Definition 3.1 is new, and so we can not use these
characterisations, but must directly prove the basic properties.

2. The value of nM(k) for k = (1), (2, 3, 4), (5, . . . , 11), (12, . . . , 26) is (2), (4, 5, 6),
(8, . . . , 14), (16, . . . , 30).

3. For k ≥ 2 we have nM(k) ≥ 4. This holds since nM(2) = 4, while the
induction step for k ≥ 3 is nM(k) = maxi∈{2,...,k} min(2i, nM(k− i+1)+ i) ≥
min(4,min(4 + 2, 1 + 3)) = 4.

4. By induction and by definition we have k + 1 ≤ nM(k) ≤ 2 · k for k ∈ N.

For a sequence a : N → R and k ∈ N let ∆a(k) := a(k + 1)− a(k) be the step
in the value of the sequence from k to k + 1. The next number in the sequence of
non-Mersenne numbers is obtained by adding 1 or 2 to the previous number:

Lemma 3.2 For k ∈ N holds ∆nM(k) ∈ {1, 2}.

Proof For k = 1 we get ∆nM(1) = 2. Now consider k ≥ 2. We have
nM(k + 1) = max(min(4, nM(k) + 2),maxi∈{3,...,k+1} min(2i, nM(k − i+ 2) + i)) =
maxi∈{3,...,k+1} min(2i, nM(k − i + 2) + i) = maxi∈{2,...,k} min(2(i + 1), nM(k −
(i + 1) + 2) + (i + 1)) = maxi∈{2,...,k} min(2i + 2, nM(k − i + 1) + i + 1) =
1 +maxi∈{2,...,k} min(2i+ 1, nM(k − i+ 1) + i).

Thus on the one hand we have nM(k+1) ≥ 1+maxi∈{2,...,k} min(2i, nM(k− i+
1)+ i) = 1+nM(k), and on the other hand nM(k+1) ≤ 1+maxi∈{2,...,k} min(2i+
1, nM(k − i+ 1) + i+ 1) = 2 + nM(k).

Corollary 3.3 nM : N → N is strictly increasing.

Corollary 3.4 We have nM(a + b) ≥ nM(a) + b for a ∈ N and b ∈ N0, and thus
nM(a− b) ≤ nM(a)− b for b ≤ a.

Instead of considering the maximum over k − 1 cases i ∈ {2, . . . , k} to compute
nM(k), we can now simplify the recursion to only one case i(k) ∈ {2, . . . , k}, and
for that case also consideration of the minimum is dispensable:

Lemma 3.5 For k ∈ N, k ≥ 2, let i(k) ∈ N be the smallest i ∈ {2, . . . , k} with
i ≥ nM(k− i+ 1) (note that k ≥ nM(k − k+ 1) = 2, and thus i(k) is well-defined).
For example we have i(2) = 2, i(3) = 3, i(4) = 4 and i(5) = 4. Then we have:

1. i(k)− nM(k − i(k) + 1) ≤ 2.

2. nM(k) = nM(k − i(k) + 1) + i(k).

3. ∆i(k) ∈ {0, 1}.

5
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Proof We have i(k) = 2 iff k = 2, while for k = 2 the assertions hold trivially;
so assume k ≥ 3 and i(k) ≥ 3. Part 1 follows by Lemma 3.2 from the facts
that the sequence i ∈ {2, . . . , k} 7→ i moves up in steps of +1, while the sequence
i ∈ {2, . . . , k} 7→ nM(k − i + 1) moves down in steps of −1 or −2. It remains to
show Part 2. By Lemma 3.2 the sequence i ∈ {2, . . . , k} 7→ nM(k − i + 1) + i is
monotonically decreasing, and thus by definition we obtain nM(k) = max(2 · (i(k)−
1), nM(k− i(k)+ 1)+ i(k)). That the maximum here is actually always attained in
the second component follows by Part 1. Finally Part 3 follows again from Lemma
3.2.

After these preparations we are able to characterise the “jump positions”, the
set J ⊂ N of k ∈ N with ∆nM(k) = 2. Thus ∆nM(k) = 1 iff k /∈ J , and
J = {1, 4, 11, 26, . . .}. Note nM(k) = 1 + k + |{k′ ∈ J : k′ < k}|.

Lemma 3.6 Let i′(k) := k−i(k)+1 and h(k) := nM(i′(k)) for k ∈ N, k ≥ 2. Thus
∆i′(k) ∈ {0, 1} and ∆i(k) = 1−∆i′(k). Furthermore we have nM(k) = h(k)+ i(k),
thus ∆nM(k) = ∆h(k) + ∆i(k), and i(k)− h(k) ∈ {0, 1, 2}. Consider k ≥ 2.

1. If ∆i(k) = 0, then:

(a) ∆i(k + 1) = 1

(b) i(k) 6= h(k).

(c) i(k + 1) = h(k + 1).

2. If ∆i(k) = 1, then:

(a) ∆h(k) = 0, and so k /∈ J

(b) i(k) 6= h(k) + 2.

3. The following conditions are equivalent:

(a) k ∈ J

(b) ∆h(k) = 2

(c) i(k) = h(k) + 2

(d) ∆i(k − 1) = 1 and i(k − 1) = h(k − 1) + 1

(e) ∆i(k − 2) = ∆i(k − 1) = 1

(f) i′(k) = i′(k − 1) = i′(k − 2) and i′(k) ∈ J .

4. If k ∈ J , then i′(k) = max(k′ ∈ J : k′ < k).

Proof Part 1a follows by definition. For Part 1b note i(k + 1) = i(k) while
h(k + 1) ≥ h(k) + 1. For Part 1c assume i(k + 1) > h(k + 1). Then we have
i(k) = h(k) + 2 and h(k + 1) = h(k) + 1. However then i(k) − 1 = h(k) + 1 =
h(k + 1) = nM(k − (i(k)− 1) + 1) contradicting the definition of i(k). For Part 2a
assume i(k) = i(k+1) = i(k+2). We have i(k) ≥ h(k+2) = nM(k−i(k)+3), while
i(k)− 1 < nM(k− (i(k)− 1) + 1) = nM(k − i(k) + 2), i.e., i(k) ≤ nM(k − i(k) + 2),
contradicting the strict monotonicity of nM. Part 2b follows by i(k+1) ≤ h(k+1)+2
and i(k + 1) = i(k) + 1, h(k + 1) = h(k). Now consider Part 3.

Condition 3a implies condition 3b due to ∆i(k) = 0 in case of k ∈ J by Part 2a.
Condition 3b implies condition 3c, since ∆h(k) = 2 implies ∆i(k) = 0 (otherwise
we had ∆nM(k) = 3), and so by Part 1c we have i(k) = i(k + 1) = h(k + 1), while
the assumption says h(k + 1) = h(k) + 2. In turn condition 3c implies condition
3a, since by Part 2b we get ∆i(k) = 0, and thus ∆nM(k) = ∆h(k), while in case
of ∆h(k) ≤ 1 we would have i(k) − 1 ≥ nM(k − (i(k) − 1) + 1) contradicting the
definition of i(k), due to nM(k − (i(k) − 1) + 1) = nM((k + 1) − i(k + 1) + 1) =
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h(k + 1) ≤ h(k) + 1 = i(k)− 1. So now we can freely use the equivalence of these
three conditions.

Condition 3c implies condition 3d, since we have ∆i(k) = 0, and thus ∆i(k−1) =
1 with Part 1a, from which we furthermore get i(k) = i(k−1)+1 and h(k−1) = h(k),
and so i(k− 1) = i(k)− 1 = h(k)+1 = h(k− 1)+1. Condition 3d implies condition
3e, since in case of ∆i(k − 2) = 0 we had i(k − 1) = h(k − 1) with Part 1c. In turn
condition 3e implies condition 3c, since i(k) = i(k − 1) + 1 = i(k − 2) + 2, while
h(k) = h(k − 1) = h(k − 2), where by definition i(k − 2) ≥ h(k − 2) holds, whence
i(k) ≥ h(k)+ 2, which implies i(k) = h(k)+ 2. So now the first five conditions have
been shown to be equivalent.

Now condition 3e implies condition 3f, since it only remains to show i′(k) ∈ J ,
which follows with condition 3b (using ∆i(k) = 0). In turn condition 3f implies
immediately condition 3e.

Finally, we prove Part 4 by induction on k (regarding the enumeration of J).
We have i′(4) = 1, and so the induction holds for k = 4, the smallest jump position
k ≥ 2. Now assume that the assertion holds for all elements of J ∩ {1, . . . , k − 1},
where k > 4, and we have to show the assertion for k. By Part 3f we know i′(k) ∈ J ,
where 2 ≤ i′(k) < k. Assume there is k′ ∈ J with i′(k) < k′ < k. Now by induction
hypothesis we get i′(k) ≤ i′(k′) < k′. However by Part 1 we get ∆i′(k′) = 1, and
thus i′(k) > i′(k′) (since k > k′).

Corollary 3.7 We have J = {2m+1 −m− 2 : m ∈ N}.

Proof Let km for m ∈ N be the mth element of J ; so the assertion is km =
2m+1 − m − 2. We have k1 = 4 − 1 − 2 = 1 = min J ; in the remainder assume
m ≥ 2. We prove the assertion by induction, in parallel with i(km) = 2m+1 − 2m.
For m = 2 we have k2 = 8 − 2 − 2 = 4 = min J \ {1}, while i(4) is the smallest
i ∈ {2, 3, 4} with i ≥ nM(5 − i), which yields i(4) = 4 = 23 − 22. Now we consider
the induction step, from m − 1 to m. The induction hypothesis yields km−1 =
2m −m − 1 and i(km−1) = 2m − 2m−1. Lemma 3.6, Part 4 yields i′(km) = km−1,
from which by i′(km) = km − i(km) + 1 follows km = 2m − m − 2 + i(km). By
definition we get i(km) = ∆i(km − 1) + · · ·+∆i(km−1) + i(km−1). By Lemma 3.6,
Parts 1 - 3 the sequence of ∆-values has the form (starting with the lowest index)
0, 1, 0, 1, . . . , 0, 1, 1, and thus their sum has the value 1

2 (km − km−1 − 1)+ 1. So we
get i(km) = 1

2 (km−km−1−1)+1+ i(km−1) =
1
2 (2

m−m−2+ i(km)−2m+m+1−
1)+ 1+ 2m − 2m−1 = 1

2 i(km)− 1+ 1+ 2m − 2m−1, from which i(km) = 2m+1 − 2m

follows. Finally km = 2m −m− 2 + 2m+1 − 2m = 2m+1 −m− 2.

Now the closed formula for nM(k) can be proven (using ld(x) := log2(x)):

Lemma 3.8 For k ∈ N let fld(k) := ⌊ld(k)⌋ (“floor of logarithm dualis”). Then we
have for k ∈ N the equality nM(k) = k + fld(k + 1 + fld(k + 1)).

Proof Let g(k) := fld(k+1+fld(k+1)) and f(k) := k+ g(k) (so nM(k) = f(k) is
to be shown, for k ≥ 1). We have f(1) = 1+fld(2+fld(2)) = 1+fld(3) = 2 = nM(1).
We will now prove that the function g(k) changes values exactly at the transitions
k 7→ k + 1 for k ∈ J , that is, for indices k = km := 2m+1 −m− 2 (using Corollary
3.7) with m ∈ N we have ∆g(km) = 1, while otherwise we have ∆g(km) = 0, from
which the assertion follows (by the definition of J).

We have g(1) = 1 and g(2) = 2. Now consider m ∈ N and km + 1 ≤ k ≤ km+1.
We show g(k) = m + 1, which proves the claim. Note that g(k) is monotonically
increasing. Now g(k) ≥ g(km+1) = ⌊ld(2m+1−m+⌊ld(2m+1−m)⌋)⌋ = ⌊ld(2m+1−
m+m)⌋ = m+1 and g(k) ≤ g(km+1) = ⌊ld(2m+2−m−2+⌊ld(2m+2−m−2)⌋)⌋ ≤
⌊ld(2m+2 −m− 2 +m+ 1)⌋ = ⌊ld(2m+2 − 1)⌋ = m+ 1.

As a result, we obtain very precise bounds:
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Corollary 3.9 k + fld(k + 1) ≤ nM(k) ≤ k + 1+ fld(k) holds for k ∈ N.

Proof The lower bound follows trivially. The upper bound holds (with equality)
for k ≤ 2, so assume k ≥ 3. We have to show g(k) = fld(k+1+fld(k+1)) ≤ 1+fld(k),
which follows from ld(k + 1+ fld(k + 1)) ≤ 1 + ld(k). Now ld(k + 1+ fld(k + 1)) ≤
ld(k + 1 + ld(k + 1)) ≤ ld(k + k) = 1 + ld(k).

4 Lean clause-sets and the surplus

In this section we prove the main result of this paper, Theorem 4.1. The proof
consists in first handling a special case, minimally unsatisfiable clause-sets instead
of lean clause-sets, in Subsection 4.1, and then lifting the result to the general case
in Subsection 4.2. In Subsection 4.3 we consider the algorithmic implications of this
result.

Theorem 4.1 We have µvd(F ) ≤ nM(σ(F )) for a lean multi-clause-set F with
n(F ) > 0. More precisely, there exists a variable v ∈ var(F ) with vdF (v) ≤
nM(σ(F )) and ldF (v), ldF (v) ≤ σ(F ).

We obtain a sufficient criterion for the existence of a non-trivial autarky.

Corollary 4.2 Consider a multi-clause-set F with n(F ) > 0. If σ(F ) ≤ 0, then
F has a non-trivial matching autarky. So assume σ(F ) ≥ 1. If we have µvd(F ) >
nM(σ(F )), then for every ∅ 6= V ⊆ var(F ) with δ(F [V ]) = σ(F ) we have an autarky
ϕ for F with var(ϕ) = V (and thus F has a non-trivial autarky).

The quantities µvd(F ) and nM(σ(F )) (resp. nM(δ(F ))) are computable in poly-
nomial time, and so the applicability of Corollary 4.2 can be checked in polynomial
time. We conjecture that also “constructivisation” of Corollary 4.2 can be done in
polynomial time:

Conjecture 4.3 There is a poly-time algorithm for computing a non-trivial autarky
in case of µvd(F ) > nM(σ(F )) (or µvd(F ) > nM(δ(F ))) for matching-lean clause-
sets F .

See Subsection 4.3 for more discussion on Conjecture 4.3 (there also the remaining
details of Corollary 4.2 are proven).

4.1 The special case of minimally unsatisfiable clause-sets

The main auxiliary lemma is the following statement, which receives its importance
from the fact that every minimally unsatisfiable clause-set can be saturated (this
method was first applied in [6]).

Lemma 4.4 Consider F ∈ SMUδ=k for k ∈ N and a variable v ∈ var(F ) realising
the minimal var-degree (i.e., vdF (v) = µvd(F )). Using m0 := ldF (v) and m1 :=
ldF (v) we have 〈v → ε〉 ∗ F ∈ MUk−mε+1 for ε ∈ {0, 1}, where n(〈v → ε〉 ∗ F ) =
n(F )− 1. Since minimally unsatisfiable clause-sets have deficiency at least one, we
get mε ≤ k.

Proof We have n(〈v → ε〉 ∗ F ) = n(F ) − 1 since F contains no pure variable,
while v realises the minimum of var-degrees. Thus δ(〈v → ε〉 ∗F ) = δ(F )−mε +1,
while 〈v → ε〉 ∗ F ∈ MU by Lemma 2.1, Part 1.
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Theorem 4.5 For all k ∈ N and F ∈ MUδ≤k we have µvd(F ) ≤ nM(k). More
precisely, for n(F ) > 0 there exists a variable v ∈ var(F ) with vdF (v) ≤ nM(k) and
ldF (v), ldF (v) ≤ k.

Proof The assertion is known for k = 1, so assume k > 1, and we apply induction
on k. Assume δ(F ) = k (due to k > 1 we have n(F ) > 1). Saturate F and obtain F ′.
Consider a variable v ∈ var(F ′) realising the min-var-degree of F ′. If vdF ′(v) = 2
then we are done, so assume vdF ′(v) ≥ 3. Let i := max(ldF ′(v), ldF ′(v)); so
vdF ′(v) ≤ 2i. W.l.o.g. assume that i = ldF ′(v). By Lemma 4.4 we get 2 ≤ i ≤ k.
Applying the induction hypothesis and Lemma 4.4 we obtain a variable w ∈ var(G)
for G := 〈v → 1〉∗F with vdG(w) ≤ nM(k−i+1). By definition we have vdF ′(w) ≤
vdG(w)+ ldF ′(v). Altogether we get µvd(F ) ≤ min(2i, nM(k− i+1)+ i) ≤ nM(k).

It is interesting to generalise Theorem 4.5 for generalised clause-sets (see [11, 12]
for a systematic study, and [10] for the underlying report). Generalised clause-sets
have literals “v 6= ε” for variables v with domains Dv and values ε ∈ Dv, and the
deficiency is generalised by giving every variable a weight |Dv|−1 (which is 1 in the
boolean case). The base case of deficiency k = 1 is handled in Lemma 5.4 in [12],
showing that for generalised clause-sets we have here µvd(F ) ≤ maxv∈var(F )|Dv|.
But k ≥ 2 requires more work:

1. The basic method of saturation is not available for generalised clause-sets, as
discussed in Subsection 5.1 in [12]. Thus the proofs for the boolean case seem
not to be generalisable.

2. Stipulating the effects of saturation via the “substitution stability parameter
regarding irredundancy”, in Corollary 5.10 in [12] one finds a first approach
towards generalising the basic bound µvd(F ) ≤ 2δ(F ) (for the boolean case)
by µvd(F ) ≤ maxv∈var(F )|Dv| · δ(F ).

3. Another approach uses translations to boolean clause-sets. The “generic trans-
lation scheme” (see [9, 12]) allows (for certain instances) to preserve the defi-
ciency and the other structures relevant here. So we get general upper bounds
for the minimum number of occurrences of variables in generalised clause-sets
from the boolean case. But further investigations are needed in these bounds.

4.2 Proof of the general case

Now consider an arbitrary (multi-)clause-set F . Consider a set of variables ∅ 6= V ⊆
var(F ) realising the surplus of F , i.e., such that δ(F [V ]) is minimal. If F [V ] would
be satisfiable, then a satisfying assignment would give a non-trivial autarky for F .
Assuming that F is lean thus yields that F [V ] must be unsatisfiable. So there exists
a minimally unsatisfiable F ′ ⊆ F [V ]. If now var(F ′) 6= var(F [V ]) = V would be
the case, then we would loose control over the deficiency of F ′. Fortunately this
can not happen, as the following lemma shows.

Lemma 4.6 Consider a multi-clause-set F with σ(F ) = δ(F ). Then for every
unsatisfiable sub-multi-clause-set F ′ ≤ F we have var(F ′) = var(F ).

Proof Assume var(F ′) ⊂ var(F ), and consider a minimally unsatisfiable sub-
clause-set F ′′ ⊆ F ′. By definition we have δ(F ′′) + δ(F [var(F ) \ var(F ′′)]) ≤ δ(F ),
where δ(F [var(F ) \ var(F ′′)]) ≥ σ(F ) = δ(F ), from which we conclude δ(F ′′) ≤ 0,
but δ(F ′′) ≥ 1 must hold since F ′′ is minimally unsatisfiable.

Finally we are able to prove Theorem 4.1. Recall that F is a lean multi-clause-
set with n(F ) > 0, and we have to show the existence of a variable v with vdF (v) ≤
nM(σ(F )) and ldF (v), ldF (v) ≤ σ(F ).
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Consider ∅ 6= V ⊆ var(F ) with δ(F [V ]) = σ(F ), and let F ′ := F [V ]. F ′ is
unsatisfiable, since F is lean. Because of δ(F ′) = σ(F ) we have δ(F ′) = σ(F ′).
Consider some minimally unsatisfiable F ′′ ⊆ F ′. By Lemma 4.6 we have var(F ′′) =
var(F ′). So we get δ(F ′′) = δ(F ′) − (c(F ′) − c(F ′′)). By Theorem 4.5 there is v ∈
var(F ′′) with vdF ′′(v) ≤ nM(δ(F ′′)) = nM(δ(F ′)− (c(F ′)− c(F ′′))) ≤ nM(δ(F ′))−
(c(F ′) − c(F ′′)) and ldF ′′(v), ldF ′′(v) ≤ δ(F ′′) = δ(F ′) − (c(F ′) − c(F ′′)). Finally
we have vdF (v) ≤ vdF ′′(v) + (c(F ′) − c(F ′′)) (note that all occurrences of v in F
are also in F ′), and similarly for the literal degrees. QED

Corollary 4.7 For a lean multi-clause-set F with n(F ) > 0 we have µvd(F ) ≤
nM(δ(F )).

Corollary 4.8 Consider a lean multi-clause-set F .

1. σ(F ) = 1 holds if and only if µvd(F ) = 2 holds.

2. µvd(F ) = 3 implies σ(F ) = 2.

Proof First consider Part 1. If σ(F ) = 1 (so n(F ) > 0), then by Theorem 4.1
we have µvd(F ) ≤ nM(1) = 2, while in case of µvd(F ) = 1 there would be a
matching autarky for F . If on the other hand µvd(F ) = 2 holds, then by definition
σ(F ) ≤ 2− 1 = 1, while σ(F ) ≥ 1 holds since F is matching lean. For Part 2 note
that due to σ(F ) + 1 ≤ µvd(F ) we have σ(F ) ≤ 2, and then the assertion follows
by Part 1.

Remarks:

1. If F is lean, then σ(F ) = 2 implies µvd(F ) ∈ {3, 4}. An example for µvd(F ) =
4 is given by the full unsatisfiable clause-set with 2 variables.

2. Is there a minimally unsatisfiable F with µvd(F ) = 4 and σ(F ) = 3?

3. More generally, is there for every k ∈ N a minimally unsatisfiable F with
σ(F ) = k and µvd(F ) = k + 1?

4.3 On finding the autarky

The following lemma (with Theorem 4.1) yields the proof of Corollary 4.2:

Lemma 4.9 Consider a matching-lean multi-clause-set F with n(F ) > 0. If we
have µvd(F ) > nM(σ(F )), then all F [V ] for ∅ ⊂ V ⊆ var(F ) with δ(F [V ]) = σ(F )
are satisfiable.

Proof If some F [V ] would be unsatisfiable, then by the proof of Theorem 4.1 in
Subsection 4.2 there would be a variable v with vdF (v) ≤ nM(σ(F )).

Now consider a matching-lean multi-clause-set F with n(F ) > 0, where Corol-
lary 4.2 is applicable (recall that we have σ(F ) ≥ 1), that is, we have µvd(F ) >
nM(σ(F )). So we know that F has a non-trivial autarky. Conjecture 4.3 states that
finding such a non-trivial autarky in this case can be done in polynomial time (recall
that finding a non-trivial autarky in general is NP-complete, which was shown in
[7]).

The task of actually finding the autarky can be considered as finding a satisfy-
ing assignment for the following class MLCR ⊂ SAT ∩MLEAN of satisfiable(!)
clause-sets F , obtained by considering all F [V ] for minimal sets of variables V with
δ(F [V ]) = σ(F ) (where “CR” stands for “critical”):
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Definition 4.10 Let MLCR be the class of clause-sets F fulfilling the following
three conditions:

1. F is matching-lean, has at least one variable, and does not contain the empty
clause.

2. The only ∅ 6= V ⊆ var(F ) with δ(F [V ]) = σ(F ) is V = var(F ) (and thus we
have δ(F ) = σ(F )).

3. µvd(F ) > nM(σ(F )).

It is sufficient to find a non-trivial autarky for this class of satisfiable clause-sets.

Lemma 4.11 Conjecture 4.3 is equivalent to the statement, that finding a non-
trivial autarky for clause-sets in MLCR can be achieved in polynomial time.

At the time of writing this article, we are not aware of elements of MLCR with a
deficiency at least 2.

5 On strengthening the bound

For a class C of clause-sets let µvd(C) be the supremum of µvd(F ) for F ∈ C
with n(F ) > 0. So by Theorem 4.5 we have µvd(MUδ=k) ≤ nM(k) for all k ∈
N. The task of precisely determining µvd(MUδ=k) for all k will be pursued in
the forthcoming [13]; we need more theory for minimally unsatisfiable clause-sets
(especially for unsatisfiable hitting clause-sets), and so here we can only mention
some results connected with this article.

• We can show for infinitely many k that µvd(MUδ=k) = nM(k).

• We can also show that the smallest k where we don’t have equality is k = 6,
namely µvd(MUδ=6) = 8 = nM(6)− 1.

• Let nM1 : N → N be defined by the recursion as in Definition 3.1, however
with different start values, namely nM1(k) := nM(k) for 1 ≤ k ≤ 5, while
nM1(6) := nM(6)− 1 = 8. We have nM1(k) = nM(k) for k /∈ {2m −m + 1 :
m ∈ N,m ≥ 3}, while for k = 2m−m+1 we have nM1(k) = nM(k)− 1 = 2m.

• With the same proof as for Theorem 4.5 we can show µvd(MUδ=k) ≤ nM1(k)
for all k ∈ N.

• It seems that this bound can not be generalised to lean clause-sets (as in
Theorem 4.1).

Conjecture 5.1 For all k ∈ N we have µvd(MUδ=k) ≥ nM(k)− 1.

Now we consider the question whether the bound holds for a larger class of
clause-sets, that is, whether Theorem 4.1 can be generalised further, incorporating
non-lean clause-sets. We consider the large class MLEAN of matching lean clause-
sets, as introduced in [7], which is natural, since a basic property of F ∈ MU used
in the proof of Theorem 4.1 is δ(F ) ≥ 1 for F 6= ⊤, and this actually holds for
all F ∈ MLEAN . We will construct for arbitrary deficiency k ∈ N and K ∈ N

clause-sets F ∈ MLEAN of deficiency k where every variable occurs positively at
least K times. Thus neither the upper bound max(ldF (v), ldF (v)) ≤ f(δ(F )) nor
ldF (v)+ldF (v) = vdF (v) ≤ f(δ(F )) for some chosen variable v and for any function
f does hold for MLEAN .
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An example for F ∈ MLEANδ=1 with µld(F ) ≥ 2 (and thus µvd(F ) ≥ 4) is
given in Section 5 in [8], displaying a “star-free” (thus satisfiable) clause-set F with
deficiency 1. In Subsection 9.3 in [11] it is shown that this clause-set is matching
lean. “Star-freeness” in our context means, that there are no singular variables
(occurring in one sign only once). Our simpler construction pushes the number of
positive occurrences arbitrary high, but there are variables with only one negative
occurrence (i.e., there are singular variables).

For a finite set V of variables let M(V ) ⊆ A(V ) be the full clause-set over V
containing all full clauses with at most one complementation. Obviously δ(F ) = 1
holds, and it is easy to see that M(V ) ∈ MLEAN (for every ∅ 6= F ′ ⊂ F ⊆ A(V )
we have δ(F ′) < δ(F ), and thus a full clause-set F is matching lean iff δ(F ) ≥ 1).
Furthermore by definition we have ldM(V )(v) = |V | and ldM(V )(v) = 1 for v ∈ V .

Lemma 5.2 For k ∈ N and K ∈ N there are clause-sets F ∈ MLEANδ=k such
that for all variables v ∈ var(F ) we have ldF (v) ≥ K.

Proof For k = 1 we can set F := M({v1, . . . , vK}); so assume k ≥ 2. Consider
any clause-set G ∈ MLEANδ=k−1 with n := n(G) ≥ K (for example we could use
F ∈ MUδ=k−1), and let V := var(G). Consider a disjoint copy of V , that is a set
V ′ of variables with V ′ ∩ V = ∅ and |V ′| = |V |, and consider two enumerations of
the clauses M(V ) = {C1, . . . , Cn+1}, M(V ′) = {C′

1, . . . , C
′
n+1}. Now

F := G ∪
{

Ci ∪ C′
i : i ∈ {1, . . . , n+ 1}

}

has no matching autarky: If ϕ is a matching autarky for F , then var(ϕ) ∩ V = ∅
since G is matching lean, whence var(ϕ)∩V ′ = ∅ since M(V ′) is matching lean, and
thus ϕ must be trivial. Furthermore we have n(F ) = 2n and c(F ) = c(G) + n+ 1,
and thus δ(F ) = c(G) + n+ 1 − 2n = δ(G) + 1 = k. By definition for all variables
v ∈ var(F ) we have ldF (v) ≥ n.

Remarks:

1. It remains open whether for deficiency k ∈ N we find examples F ∈ MLEANδ=k

with µld(F ) ≥ k+1 (the above mentioned star-free clause-sets shows that this
is the case for k = 1), or stronger, µld(F ) ≥ K for arbitrary K ∈ N.

2. The clause-sets F constructed in Lemma 5.2 are not elements of MLCRδ=k

for k ≥ 2, since δ(F [V ′]) = n + 1 − n = 1, thus σ(F ) = 1, and so Condition
2 of Definition 4.10 is not fulfilled. The corresponding autarky is a satisfying
assignment of M(V ′), which is easy to find.

6 Conclusion and open problems

We have shown the upper bound µvd(F ) ≤ nM(σ(F )) for lean clause-sets (Theorem
4.1). The function nM(k) has been characterised in Lemma 3.8 and Corollary 3.9.
We presented first initial results regarding the sharpness of the bound and regarding
the constructive aspects of the bound (i.e., what happens if the bound is violated).
There remain several open problems:

1. Prove Conjecture 4.3, which says that such an autarky, which must exist if a
clause-set does not fulfil the upper bound on the minimum variable degree of
Theorem 4.1, can be found in polynomial time. See Subsection 4.3 for more
information on this topic.

2. Generalise Theorem 4.5 to clause-sets with non-boolean variables; see the
discussion after Theorem 4.5.

12



3. See the remarks to Corollary 4.8 (an underlying question is to understand
better the quantity “surplus”).

4. Strengthen the bound on the minimum variable degree for minimally unsat-
isfiable clause-sets (see the forthcoming [13]).

5. Strengthen the construction of Lemma 5.2 (perhaps completely different con-
structions are needed).

As mentioned in the introduction, a major motivation for us is the project of
the classification of minimally unsatisfiable clause-sets for deficiencies δ = 1, 2, . . . .
Especially the classification of unsatisfiable hitting clause-sets in dependency on the
deficiency seems very interesting (recall that a hitting clause-set F is defined by the
condition that every two clauses C,C′ ∈ F , C 6= C′, clash in at least one variable,
that is |C ∩ C′| ≥ 1). The main conjecture is:

Conjecture 6.1 For every deficiency k ∈ N there are only finitely many isomor-
phism types of non-singular unsatisfiable hitting clause-sets.

For k ≤ 2 this conjecture follows from known results, while recently we were able
to prove it for k = 3.
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