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Abstract. In this paper we present some new results for harmonic functions and

we give recurrences for an enumeration of non-trivial compositions of higher order of

differential operations and Gateaux directional derivative in Rn.

Key words: compositions of differential operations, Gateaux directional derivative, differen-

tial forms, exterior derivative, Hodge star operator, enumeration of graphs and maps

1. Non-trivial compositions of differential operations and directional

derivative of the space R3

In the three-dimensional Euclidean space R3 we consider following sets

A0=
{
f :R3→R |f ∈C∞(R3)

}
and A1=

{
~f :R3→R3 |f1, f2, f3∈C

∞(R3)
}
.

Gradient, curl, divergence and Gateaux directional derivative in direction ~e, for
a unit vector ~e = (e1, e2, e3) ∈ R3, are defined in terms of partial derivative
operators as follows

grad f = ∇1 f = ∂f
∂x1

~i+ ∂f
∂x2

~j+ ∂f
∂x3

~k, ∇1 :A0−→A1 ,

curl ~f = ∇2
~f =

(
∂f3
∂x2

− ∂f2
∂x3

)
~i+

(
∂f1
∂x3

− ∂f3
∂x1

)
~j+

(
∂f2
∂x1

− ∂f1
∂x2

)
~k, ∇2 :A1−→A1 ,

div ~f = ∇3
~f = ∂f1

∂x1
+ ∂f2

∂x2
+ ∂f3

∂x3
, ∇3 :A1−→A0 ,

dir~e f = ∇0 f = ∇1 f · ~e = ∂f
∂x1

e1+
∂f
∂x2

e2+
∂f
∂x3

e3, ∇0 :A0−→A0 .

Let A3={∇1,∇2,∇3} and B3={∇0,∇1,∇2,∇3}. The number of compositions
of the kth order over the set A3 is f(k) = Fk+3, where Fk is the kth Fibonacci
number (see [6] for more details). A composition of differential operations that
is not 0 or ~0 is called non-trivial. The number of non-trivial compositions of the
kth order over the set A3 is g(k) = 3, see [5]. In paper [8], it is shown that the
number of compositions of the kth order over the set B3 is fG(k) = 2k+1.
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According to the above results, it is natural to try to calculate the number of
non-trivial compositions of differential operations from the set B3. Straightfor-
ward verification shows that all compositions of the second order over B3 are

dir~e dir~e f = ∇0 ◦ ∇0 f = ∇1

(
∇1f · ~e

)
· ~e,

graddir~e f = ∇1 ◦ ∇0 f = ∇1

(
∇1f · ~e

)
,

∆f = div grad f = ∇3 ◦ ∇1 f,

curl curl ~f = ∇2 ◦ ∇2
~f,

dir~e div
~f = ∇0 ◦ ∇3

~f =
(
∇1 ◦ ∇3

~f
)
· ~e,

graddiv ~f = ∇1 ◦ ∇3
~f,

curl grad f = ∇2 ◦ ∇1 f = ~0,

div curl ~f = ∇3 ◦ ∇2
~f = 0,

and that only the last two are trivial. This fact leads us to use the following
procedure for determining the number of non-trivial composition over the set
B3. Let us define a binary relation σ on the set B3 as follows: ∇i σ∇j iff the
composition ∇j ◦ ∇i is non-trivial. Relation σ induces Cayley table

σ ∇0 ∇1 ∇2 ∇3

∇0 1 1 0 0
∇1 0 0 0 1
∇2 0 0 1 0
∇3 1 1 0 0

For convenience, we extend set B3 with nowhere-defined function ∇−1, whose
domain and range are empty set, and establish ∇−1 σ∇i for i=0, 1, 2, 3. Thus,
graph Γ the relation σ is rooted tree with additional root ∇−1

q
∇
−1 gG(0) = 1

✥✥✥
✥✥✥

✥✥✥
✥✥

q

∇0 ✟✟
✟✟
✟

q

∇1 ❍❍
❍❍

❍

q

∇2 ❵❵❵
❵❵❵

❵❵❵
❵❵

q

∇3 gG(1) = 4

�
��

q

∇0 ❅
❅❅

q

∇1
q

∇3
q

∇2 �
��

q

∇0 ❅
❅❅

q

∇1 gG(2) = 6

✁✁❆❆ ✁✁❆❆ ✁✁❆❆
gG(3) = 9

Fig. 1

Here we would like to point out that the child of ∇i is ∇j if composition ∇j ◦∇i

is non-trivial. For any non-trivial composition ∇ik ◦ . . . ◦ ∇i1 there is a unique
path in the tree (Fig. 1), such that the level of vertex ∇ij is j, 1 ≤ j ≤ k. Let
gG(k) be the number of non-trivial compositions of the kth order of functions
from B3 and let gG

i (k) be the number of non-trivial compositions of the kth order
starting with ∇i. Then we have gG(k) = gG

0(k) + gG

1(k) + gG

2(k) + gG

3(k). Accord-
ing to the graph Γ obtain the following equalities gG

0(k)=gG

0(k−1)+gG

1(k−1),
gG

1(k)=gG

3(k−1), gG

2(k)=gG

2(k−1), gG

3(k)=gG

0(k−1)+gG

1(k−1). Since the only
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child of ∇2 is ∇2, we can deduce gG

2(k) = gG

2(k−1) = · · · = gG

2(1) = 1. Putting
things together we obtain the recurrence for gG(k):

gG(k) = gG

0(k) + gG

1(k) + gG

2(k) + gG

3(k)

=
(
gG

0(k−1)+gG

1(k−1)
)
+gG

3(k−1)+gG

2(k−1)+
(
gG

0(k−1)+gG

1(k−1)
)

= gG(k−1)+gG

0(k−1)+gG

1(k−1)

= gG(k−1)+
(
gG

0(k−2)+gG

1(k−2)
)
+gG

3(k−2)+gG

2(k−2)−gG

2(k−2)

= gG(k−1)+gG(k−2)−1.

Substituting t(k) = gG(k)−1 into previous formula we obtain recurrence t(k) =
t(k−1)+ t(k−2). On the base of the initial conditions gG(1) = 4 and gG(2) = 6,
i.e. t(1)=3 and t(2)=5, we conclude that gG(k)=Fk+3+1.

2. Non-trivial compositions of differential operations and directional

derivative of the space Rn

We start this section by recalling some definitions of the theory of differential
forms. Let Rn denote the n-dimensional Euclidean space and consider set of
smooth functions A0 = {f : Rn → R | f ∈ C∞(Rn)}. The set of all differential
k-forms on Rn is a free A0-module of rank

(
n
k

)
with the standard basis {dxI =

dxi1 . . . dxik | 1≤ i1<. . .<ik≤n}, denoted Ωk(Rn). Differential k-form ω can be
written uniquely as ω=

∑
I∈I(k,n) ωIdxI , where ωI ∈ A0 and I(k, n) is the set

of multi-indices I =(i1, . . . , ik), 1≤ i1< . . .< ik ≤n. The complement of multi-
index I is multi-index J=(j1, . . . , jn−k) ∈ I(n− k, n), 1≤ j1 < . . . < jn−k ≤ n,
where components jp are elements of the set {1, . . . , n}\{i1, . . . , ik}. We have
dxIdxJ =σ(I)dx1 . . . dxn, where σ(I) is a signature of the permutation (i1, . . . , ik,
j1, . . . , jn−k). Note that σ(J) = (−1)k(n−k)σ(I). With the notions mentioned
above we define ⋆k(dxI) = σ(I)dxJ . Map ⋆k : Ω

k(Rn)→ Ωn−k(Rn) defined by
⋆k(ω)=

∑
I∈I(k,n) ωI ⋆k (dxI) is Hodge star operator and it provides natural iso-

morphism between Ωk(Rn) and Ωn−k(Rn). The Hodge star operator twice ap-
plied to a differential k-form yields ⋆n−k(⋆kω)=(−1)k(n−k)ω. So for the inverse
of the operator ⋆k holds ⋆k

−1(ψ)=(−1)k(n−k) ⋆n−k (ψ), where ψ∈Ωn−k(Rn).

A differential 0-form is a function f(x1, x2, . . . , xn) ∈ A0. We define df to be the
differential 1-form df=

∑n
i=1

∂f
∂xi

dxi. Given a differential k-form
∑

I∈I(k,n) ωIdxI ,

the exterior derivative dkω is differential (k+1)-form dkω =
∑

I∈I(k,n) dωIdxI .

The exterior derivative dk is a linear map from k-forms to (k + 1)-forms which
obeys Leibnitz rule: If ω is a k-form and ψ is a l-form, then dk+l(ϕψ) =
dkω ψ+ (−1)kϕdlψ. The exterior derivative has a property that dk+1(dkω) = 0
for any differential k-form ω.

For m=[n/2] and k=0, 1, . . . ,m let us consider the following sets of functions

Ak=
{
~f :Rn→R(

n

k) |f1, . . . , f(nk)
∈C∞(Rn)

}
.
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Let pk :Ω
k(Rn)→Ak be presentation of differential forms in coordinate notation.

Let us define functions ϕi (0 ≤ i ≤ m) and ϕn−j

(0≤j<n−m) as follows

ϕi = pi :Ω
i(Rn) −→ Ai

and
ϕn−j = pj ⋆

−1
j :Ωn−j(Rn) −→ Aj .

Aj Ωj(Rn)

Ωn –j(Rn)

✲

❄
❅
❅
❅❘

pj
–1

⋆j

Then, according to [7], the combination of Hodge star operator and the exterior
derivative generates one choice of differential operations ∇k = ϕk dk−1 ϕ

−1
k−1,

1≤k≤n, in n-dimensional space Rn.

An (n=2m):

∇1=p1 d0 p
−1
0 :A0→A1

∇2=p2 d1 p
−1
1 :A1→A2

...
∇i=pi di−1 p

−1
i−1 :Ai−1→Ai

...
∇m=pm dm−1 p

−1
m−1 :Am−1→Am

∇m+1=pm−1 ⋆−1
m−1 dm p−1

m :Am→Am−1

∇m+2=pm−2 ⋆−1
m−2 dm+1 ⋆m−1 p−1

m−1 :Am−1→Am−2

...
∇n−j =pj ⋆−1

j
dn−(j+1) ⋆j+1 p−1

j+1 :Aj+1→Aj

...
∇n−1=p1 ⋆−1

1 dn−2 ⋆2 p−1
2 :A2→A1

∇n=p0 ⋆−1
0 dn−1 ⋆1 p−1

1 :A1→A0,

An (n=2m+ 1):

∇1=p1 d0 p
−1
0 :A0→A1

∇2=p2 d1 p
−1
1 :A1→A2

...
∇i=pi di−1 p

−1
i−1 :Ai−1→Ai

...
∇m=pm dm−1 p

−1
m−1 :Am−1→Am

∇m+1=pm ⋆−1
m dm p−1

m :Am→Am

∇m+2=pm−1 ⋆−1
m−1 dm+1 ⋆m p−1

m :Am→Am−1

∇m+3=pm−2 ⋆−1
m−2 dm+2 ⋆m−1 p−1

m−1 :Am−1→Am−2

...
∇n−j =pj ⋆−1

j
dn−(j+1) ⋆j+1 p−1

j+1 :Aj+1→Aj

...
∇n−1=p1 ⋆−1

1 dn−2 ⋆2 p−1
2 :A2→A1

∇n=p0 ⋆−1
0 dn−1 ⋆1 p−1

1 :A1→A0.

List of differential operations in Rn

Formulae for the number of compositions of differential operations from the
set An and corresponding recurrences are given by Malešević in [6, 7], see also
appropriate integer sequences in [14] and [15]. The following theorem provides
a natural characterization of the number of non-trivial compositions of differ-
ential operations from the set An. For the proof we refer reader to [6].

Theorem 2.1. All non-trivial compositions of differential operations from the

set An are given in the following form

(∗) (∇i◦)∇n+1−i ◦ ∇i ◦ · · · ◦ ∇n+1−i ◦ ∇i

where 2i, 2(i− 1) 6= n, 1 ≤ i ≤ n. Term in bracket is included in if the number

of differential operations is odd and left out otherwise.

Theorem 2.2. Let g(k) be the number of non-trivial compositions of the kth

order of differential operations from the set An. Then we have

g(k) =





n : 2 ∤ n ;

n : 2 |n , k = 1 ;

n− 1 : 2 |n , k = 2 ;

n− 2 : 2 |n , k > 2 .
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Hodge dual to the exterior derivative dk : Ω
k(Rn) → Ωk+1(Rn) is codifferential

δk−1, a linear map δk−1 :Ω
k(Rn) → Ωk−1(Rn), which is a generalization of the

divergence, defined by

δk−1 = (−1)n(k−1)+1 ⋆n−(k−1) dn−k⋆k = (−1)k ⋆−1
k−1 dn−k ⋆k .

Note that ∇n−j = (−1)j+1pj δj p
−1
j+1, for 0 ≤ j < n−m− 1. The codifferential

can be coupled with the exterior derivative to construct the Hodge Laplacian,
also known as the Laplace-de Rham operator, ∆k : Ω

k(Rn) → Ωk(Rn), a har-
monic generalization of Laplace differential operator, given by ∆0 = δ0d0 and
∆k = δkdk + dk−1δk−1, for 1 ≤ k ≤ m, see [9]. The operator ∆0 is actually the
negative of the Laplace-Beltrami (scalar) operator. A k-form ω is called har-

monic if ∆k(ω) = 0. We say that ~f ∈ Ak is a harmonic function if ω = pk
−1(~f)

is harmonic k-form. If k ≥ 1 harmonic function ~f is also called harmonic field.

For function ~f ∈Ak, 1≤ k≤m, according to Proposition 4.15. from [3], holds

∆k(p
−1
k
~f)=0 iff δk−1(p

−1
k
~f)=0 and dk(p

−1
k
~f)=0. In fact, we obtain the following

Lemma 2.1. Let ~f ∈ Ak, 1≤k≤m, then

∆k(p
−1
k
~f) = 0 ⇐⇒ ∇n−(k−1)(~f) = 0 ∧ ∇k+1(~f) = 0.

For harmonic function f ∈A0 we have ∆0f=δ0d0f=0, hence ∇n◦∇1f=0 and
finally (∇1◦)∇n ◦ ∇1 ◦ · · · ◦ ∇n ◦ ∇1f =0. We can now rephrase Theorem 2.1
for harmonic functions.

Theorem 2.3. All compositions of the second and higher order in (∗) acting

on harmonic function f ∈A0 are trivial. All compositions of the first and higher

order in (∗) acting on harmonic field ~f ∈Ak, 1≤k≤m, are trivial.

We say that f∈Ak, 0≤k≤m, is coordinate-harmonic function or that f satisfies
harmonic coordinate condition, if all its coordinates are harmonic functions.
Malešević [5] showed that all compositions of the third and higher order in
(∗) acting on coordinate-harmonic function f are trivial in R3. Based on the
previous statement for coordinate-harmonic functions in R3 we formulate.

Conjecture 2.1. All compositions of the third and higher order in (∗) acting

on coordinate-harmonic function f∈Ak, 0≤k≤m, are trivial.

One approach to a coordinate investigation of Conjecture 2.1 in R4 can be
found in Gilbert N. Lewis and Edwin B. Wilson papers [1], [2] (see also [4]).
Similar problem for coordinate-harmonic functions can be considered in Discrete
Exterior Calculus [10, 11] and Combinatorial Hodge Theory [12], [13].

Let f ∈ A0 be a scalar function and ~e = (e1, . . . , en) ∈ Rn be a unit vector.
Gateaux directional derivative in direction ~e is defined by

dir~e f = ∇0f =

n∑

k=1

∂f

∂xk
ek :A0 −→ A0 .

5



Let us extend set of differential operations An = {∇1,. . . ,∇n} with directional
derivative to the set Bn = An ∪ {∇0} = {∇0,∇1, . . . ,∇n}. Recurrences for
counting compositions of differential operations from the set Bn can be found
in [8]. Corresponding integer sequences are given in [14].

The number of non-trivial compositions of differential operations from the set
Bn is determined by the binary relation ν, defined by:

∇iν∇j iff (i=0 ∧ j=0) ∨ (i=0 ∧ j=1) ∨ (i=n ∧ j=0) ∨ (i+j=n+1 ∧ 2i 6= n).

Applying Theorem 2.2 to cases i = 2, . . . , n − 1 we conclude that the number
of non-trivial compositions of the kth order starting with ∇2,. . . , ∇n−1 can be
express by formula

j(k) = g(k)− 2 =





n− 2 : 2 ∤ n ;

n− 2 : 2 |n , k = 1 ;

n− 3 : 2 |n , k = 2 ;

n− 4 : 2 |n , k > 2 .

Let gG(k) be the number of non-trivial the kth order compositions of operations
from the set Bn. Let gG

0(k), g
G

1(k) and gG

n(k) be the numbers of non-trivial the
kth order compositions starting with ∇0 , ∇1 and ∇n , respectively. Then we
have gG(k)=gG

0(k)+gG

1(k)+j(k)+gG

n(k). Denote g̃
G(k) = gG

0(k)+gG

1(k)+gG

n(k).
Hence, the following three recurrences are true gG

0(k) = gG

0(k−1) + gG

1(k−1),
gG

1(k) = gG

n(k−1), g
G

n(k) = gG

0(k−1) + gG

1(k−1). Thus, the recurrence for g̃G(k) is
of the form

g̃
G(k) = gG

0(k) + gG

1(k) + gG

n(k)

=
(
gG

0(k−1) + gG

1(k−1)
)
+ gG

n(k−1) +
(
gG

0(k−1) + gG

1(k−1)
)

= g̃
G(k−1) + gG

0(k−1) + gG

1(k−1)

= g̃
G(k−1) +

(
gG

0(k−2) + gG

1(k−2)
)
+ gG

n(k−2)

= g̃
G(k−1) + g̃

G(k−2).

With initial conditions g̃G(1) = 3, g̃G(2) = 5 we deduce g̃G(k) = Fk+3. Therefore,
we have proved the following theorem.

Theorem 2.4. The number of non-trivial compositions of the kth order over

the set Bn is

gG(k) = Fk+3 + j(k) =





Fk+3 + n− 2 : 2 ∤ n ;

n+ 1 : 2 |n , k = 1 ;

n+ 2 : 2 |n , k = 2 ;

Fk+3 + n− 4 : 2 |n , k > 2 .

Corollary 2.1. In the case n = 3 follows formula gG(k) = Fk+3 + 1 from the

first section.
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Remark 2.1. The values of function gG(k) are given in [14] as the following

sequences A001611 (n=3), A000045 (n=4), A157726 (n=5), A157725 (n=6),
A157729 (n=7), A157727 (n=8), A187107 (n=9), A187179 (n=10) for k>2.
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