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NON-TRIVIAL COMPOSITIONS OF DIFFERENTIAL
OPERATIONS AND DIRECTIONAL DERIVATIVE
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Abstract. In this paper we present some new results for harmonic functions and
we give recurrences for an enumeration of non-trivial compositions of higher order of
differential operations and Gateaux directional derivative in R".
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1. Non-trivial compositions of differential operations and directional
derivative of the space R3

In the three-dimensional Euclidean space R3 we consider following sets
Ao={fR*°>R|feC®R*)} and A, ={f:R*=R3|f1, fo, f€CF(R?)}.

Gradient, curl, divergence and Gateaux directional derivative in direction €, for
a unit vector € = (e1,ea,e3) € R3, are defined in terms of partial derivative
operators as follows

grad f = Vi f = SLi+ 2L+ 2Lk Vi:Ag— Ay,

g g 0 ] - 0 ] 0 0 7
curl [ = V5 [ = (32— 82) 7+ (30— 20) 4 (32— 0LV E, Vi A1 — Ay,

din :ng: oh %—F% V32A1—>A0,

811 8w2 8w3’
dir, f =Vof = Vif-=2Ler+ 5L ea+ L es, VorAg— Ag.

Let A3={V1,V2,V3} and Bs={Vy, V1, V2, V3}. The number of compositions
of the k** order over the set Az is (k) = F13, where F}, is the k** Fibonacci
number (see ﬂa] for more details). A composition of differential operations that
is not 0 or 0 is called non-trivial. The number of non-trivial compositions of the
k'™ order over the set Aj is g(k) = 3, see [3]. In paper |§], it is shown that the
number of compositions of the k*® order over the set Bz is £6(k) = 2F+L
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According to the above results, it is natural to try to calculate the number of
non-trivial compositions of differential operations from the set Bs. Straightfor-
ward verification shows that all compositions of the second order over Bs are

dir, dit, f = Voo Vo f =V (Vif-€)-¢
graddirgf:Vlovofzvl(vlf-é'),
Af =divgrad f = V3oV f,
curlcurlfz Vayo ng,

dity div f = Voo Vs f = (Vio Vs f) - &,
graddivfz V1 oV3f:

curlgrad f = Vo0 Vy f =0,

diveurl f = V30V, f =0,

and that only the last two are trivial. This fact leads us to use the following
procedure for determining the number of non-trivial composition over the set
Bs. Let us define a binary relation o on the set Bs as follows: V; o V; iff the
composition V; o V; is non-trivial. Relation ¢ induces Cayley table

o |V0 V1 v2 v3

For convenience, we extend set Bz with nowhere-defined function V_;, whose
domain and range are empty set, and establish V_; o0 V; for i=0,1,2,3. Thus,
graph I' the relation o is rooted tree with additional root V_;

gé0) = 1
gé(1) = 4
gé@2) =6
géB3) =9

Fig. 1

Here we would like to point out that the child of V; is V; if composition VoV,
is non-trivial. For any non-trivial composition V;, o...o V;, there is a unique
path in the tree (Fig. 1), such that the level of vertex V;, is j, 1 < j < k. Let
gS(k) be the number of non-trivial compositions of the k' order of functions
from Bs and let g&(k) be the number of non-trivial compositions of the k' order
starting with V;. Then we have g%k) = gf(k) + gf(k) + g5(k) + g5(k). Accord-
ing to the graph I" obtain the following equalities gf(k)=gg(k—1)+gf(k—1),
g(k) —g5(k—1), g5(k)—g§(k—1), g§(k) —gS(k—1)+g(k—1). Since the only



child of V3 is Vg, we can deduce gS(k) =gS(k—1)=---=gS(1) = 1. Putting
things together we obtain the recurrence for g&(k):

g°(k) = gG(k) + gi(k) + g5(k) + g5(k)
= (g5(k—1)+e5(k—1))+g§(k—1)+g5(k—1)+ (g5(k—1)+g5(k—1))
= g(k—1)+g5(k—1)+gf(k—1)
= go(k—1)+(g6(k—2)+g5(k—2)) +g5(k—2) +g5(k—2) —g5(k—2)
= g%(k—1)+g(k—2)—1.

Substituting t(k) = g%k) — 1 into previous formula we obtain recurrence t(k) =
t(k—1) 4+ t(k—2). On the base of the initial conditions g%(1) = 4 and g%(2) = 6,
i.e. t(1)=3 and t(2)=5, we conclude that g¢(k)=Fj13+1.

2. Non-trivial compositions of differential operations and directional
derivative of the space R™

We start this section by recalling some definitions of the theory of differential
forms. Let R™ denote the n-dimensional Euclidean space and consider set of
smooth functions Ag = {f:R" = R| f € C°>°(R™)}. The set of all differential
k-forms on R" is a free Ag-module of rank (Z) with the standard basis {dz; =
dz;, ...dx;, |1<iy <...<ip<n}, denoted Q*(R™). Differential k-form w can be
written uniquely as w=>3_;c 7 ,) wrdzr, where wr € Ag and Z(k, n) is the set
of multi-indices I = (i1,...,0), 1 <i; <...<ir <n. The complement of multi-
index [ is multi-index J=(j1,...,jn-k) EZ(n —k,n), 1 <j1 <...<jn—k <n,
where components j, are elements of the set {1,...,n}\{i1,...,ix}. We have
dxrdry=o(I)dxy ...dx,, where o(I) is a signature of the permutation (41, . .., i,
91,y Jn_k). Note that o(J) = (=1)*"=Fg(I). With the notions mentioned
above we define xi(dxr) = o(I)dz;. Map x; : QF(R™) — Q"~*(R") defined by
*k (W) = rez(r,m) Wk (dzr) is Hodge star operator and it provides natural iso-
morphism between QF(R") and Q" *(R"). The Hodge star operator twice ap-
plied to a differential k-form yields %, 1 (xpw) = (—1)*""®w. So for the inverse
of the operator *j holds x;~!(¢)) = (=1)¥"=F) %, ;. (¢), where ¢ € Q"% (R™).

A differential 0-form is a function f(x1,xa,...,x,) € Ag. We define df to be the
differential 1-form df = E?:l g—idxi. Given a differential k-form ZIEI(k,n) wrdzy,
the exterior derivative dyw is differential (k 4 1)-form dpw = EIEZ(k,n) dwrdzy.
The exterior derivative dj, is a linear map from k-forms to (k + 1)-forms which
obeys Leibnitz rule: If w is a k-form and 1 is a l-form, then dp4i(py) =
dpw ) + (—1)*p djrp. The exterior derivative has a property that dyy1(dgw) =0
for any differential k-form w.

For m=[n/2] and k=0,1,...,m let us consider the following sets of functions

A= {F:R" =R |f1,..., fy €C®RM)}.

n
k



Let pi, : QF(R™) — A}, be presentation of differential forms in coordinate notation.
Let gs define functions ¢; (0 <i <m) and pp,_; A, p; " (&)
(0<j<n—m) as follows

pi =pi: '(R") — A \ l*j
and

Pn—j = Pj *j_l ZQn_j(Rn) — Aj. QnI(RM)
Then, according to [7], the combination of Hodge star operator and the exterior
derivative generates one choice of differential operations Vi = ¢ dx—1 cp,;ll,
1<k<n, in n-dimensional space R™.
Apn (n=2m):
Vi=p1dopy '+ Ag— A1

Ap (n=2m + 1):
Vi=pi1dopy 't Ao— A

— Vao=padip; ' A1 — Ag
Vo=padipy ' A1 — Ao !

. - Vi=pidi_1p Y 1 Ai_1— A;
Vi=pidi—ipy Yy Aii1— Ay e ‘

Vm:pmdmflpi1 tAm—1— Am
Vo =Pm dm—-1P " 1 Am—1— A - Fm—1
m=Pm Am—1DP,, 1 m m Vini1=pm *ml dmpmliAm—>Am
Vim42=pm-1 *;},1 dm+1 *m p';zl CAm = Am—1

—1 —1
Vim+3=pPm—2 Kin—2 dm+2 *m—1Py,_1 tAm—1— Am—2

-1 —1
Vim41=pm-1 Kn—1 dm P 2 Am — Am—1
-1 -1
V42 =pm-2 *m—2 dm41 *m—1 Pm—1 tAm—1— Am—2

Vg =i %5 oo (1) K41 Py A= Ay -1 -1
R " Vi =pj %5 o (j41) %j41 Pjp  Ajr1 = A;

-1 —1.

Vn=po*xg dn—1%1p; :A1—Ao.
List of differential operations in R™

Formulae for the number of compositions of differential operations from the

set A, and corresponding recurrences are given by Malesevi¢ in [6, [7], see also

appropriate integer sequences in [14] and |15]. The following theorem provides

a natural characterization of the number of non-trivial compositions of differ-

ential operations from the set A,,. For the proof we refer reader to [6].

Theorem 2.1. All non-trivial compositions of differential operations from the
set A, are given in the following form

(*) (Vio)anrlfi oV;o---oV,11-;0V;
where 2i, 2(i — 1) #n, 1 <i < n. Term in bracket is included in if the number

of differential operations is odd and left out otherwise.

Theorem 2.2. Let g(k) be the number of non-trivial compositions of the k!
order of differential operations from the set A,. Then we have
n : 2{n;
n : 2n, k=1;
n—1 : 2|n, k=2;
n—2 : 2|n, k>2.

g(k) =



Hodge dual to the exterior derivative dj : QF(R") — QF+1(R") is codifferential
Sk—1, a linear map 051 : QF(R™) — QF~1(R™), which is a generalization of the
divergence, defined by

g1 = (—1)nk=DH *n—(k—1) An—k*k = (—=1)% 5, dyeg *s -

Note that V,,_; = (—=1)7p; 4, pj_jl, for 0 < j <n —m — 1. The codifferential
can be coupled with the exterior derivative to construct the Hodge Laplacian,
also known as the Laplace-de Rham operator, Ay : QF(R?) — QF(R"), a har-
monic generalization of Laplace differential operator, given by Ay = dgdg and
Ay = Opdy + dg—10;—1, for 1 < k < m, see [9]. The operator A is actually the
negative of the Laplace-Beltrami (scalar) operator. A k-form w is called har-
monic if Ay(w) = 0. We say that f € Ay is a harmonic function if w = pj~(f)
is harmonic k-form. If £ > 1 harmonic function f is also called harmonic field.

For function fe Ak, 1 <k <m, according to Proposition 4.15. from [3], holds
Ap(py 'f)=0iff 6,_1(p,, 'f) =0 and dk(p; 'f) =0. In fact, we obtain the following

Lemma 2.1. Let fe A, 1<k<m, then
A ) =0 = Vo g1y (f) = 0A Vi (f) = 0.

For harmonic function f € Ag we have Ay f=09dof=0, hence V,,0V;f=0 and
finally (Vi0)V, 0oVi0---0V, 0V;f=0. We can now rephrase Theorem [Z1]
for harmonic functions.

Theorem 2.3. All compositions of the second and higher order in (x) acting
on harmonic function f € Ao are trivial. All compositions of the first and higher
order in (x) acting on harmonic field f€ Ay, 1<k<m, are trivial.

We say that fe Ay, 0<k<m, is coordinate-harmonic function or that f satisfies
harmonic coordinate condition, if all its coordinates are harmonic functions.
Malesevié¢ [5] showed that all compositions of the third and higher order in
(¥) acting on coordinate-harmonic function f are trivial in R®. Based on the
previous statement for coordinate-harmonic functions in R? we formulate.

Conjecture 2.1. All compositions of the third and higher order in (%) acting
on coordinate-harmonic function f€ A, 0<k<m, are trivial.

One approach to a coordinate investigation of Conjecture 2] in R* can be
found in Gilbert N. Lewis and Edwin B. Wilson papers [1], [2] (see also [4]).
Similar problem for coordinate-harmonic functions can be considered in Discrete
Exterior Calculus [10, [11] and Combinatorial Hodge Theory [12], [13].

Let f € Ap be a scalar function and € = (e,...,e,) € R™ be a unit vector.
Gateaux directional derivative in direction € is defined by

dir»f:VOf:Zﬁekle —)Ao.
€ 1 afk



Let us extend set of differential operations A,, ={V1,...,V,} with directional
derivative to the set B, = A, U{Vo} = {Vo,V1,...,V,}. Recurrences for
counting compositions of differential operations from the set B, can be found
in [§]. Corresponding integer sequences are given in |14].

The number of non-trivial compositions of differential operations from the set
B,, is determined by the binary relation v, defined by:

VirV; iff (i=0Aj=0)V (i=0Aj=1)V (i=nAj=0)V (i+j=n+1A2i#n).

Applying Theorem to cases i = 2,...,n — 1 we conclude that the number
of non-trivial compositions of the k™ order starting with Va,..., V,,_1 can be
express by formula

n—2 : 2{n;

n—2 : 2|n, k=1;

n—3 : 2|n, k=2;

n—4 : 2in, k>2.
Let g5(k) be the number of non-trivial the k" order compositions of operations
from the set B,. Let gi(k), gf(k) and g/ (k) be the numbers of non-trivial the
k*h order compositions starting with Vo, Vi and V,, , respectively. Then we
have g®(k)=g(k)+gf(k)+3j(k)+g; (k). Denote g°(k) = gf(k) +gf(k) +gf (k).
Hence, the following three recurrences are true gi(k) = gi(k—1) + gf(k—1),
gi(k) = g5 (k—1), g¢(k) = g5(k—1) + gF(k—1). Thus, the recurrence for g“(k) is
of the form

g'(k) = gii(k)+gf(k) + g5 (k)
= (g(k—1) +gf(k—1)) +g5(k—1) + (g5(k—1) + g5(k—1))
= g(k—1) +gf(k—1) + g5(k—1)
= g'(k—1) + (g5(k—2) + g5(k—2)) + g (k—2)
= g%(k—1) +8%(k-2).
With initial conditions g°(1) = 3, g°(2) = 5 we deduce g“(k) = Fj13. Therefore,
we have proved the following theorem.

Theorem 2.4. The number of non-trivial compositions of the k™ order over
the set B,, is

Fris+n—2 : 24{n;
n+1 : 2|n, k=1;
n+2 :2n, k=25
Fpys+n—4 @ 2|n, k>2.

go(k) = Frys + 3(k) =

Corollary 2.1. In the case n = 3 follows formula g9(k) = Fr13 + 1 from the
first section.



Remark 2.1. The values of function g(k) are given in |14] as the following
sequences A001611 (n=3), A000045 (n=4), A157726 (n=>5), A157725 (n=6),
A157729 (n=T), A157727 (n=8), A18T107 (n=9), A187179 (n=10) for k> 2.
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