Enumerating the rationals from left to right

S. P. GLASBY

2010 Mathematics subject classification: 11B57, 11B83, 11B75
There are three well-know sequences used to enumerate the rationals: the Stern-Brocot sequences $\mathcal{S B}_{n}$, the Calkin-Wilf sequences $\mathcal{C} \mathcal{W}_{n}$, and the Farey sequences \mathcal{F}_{n}. The purpose of this note is to show that all three sequences can be constructed (left-to-right) using almost identical recurrence relations. The Stern-Brocot (S-B) and Calkin-Wilf (C-W) sequences give rise to complete binary trees related to the following rules:

These trees have many beautiful algebraic, combinatorial, computational, and geometric properties [2, 5, 4]. Well-written introductions to the S-B tree and Farey sequences can be found in [3], and to the C-W tree in [2]. We shall focus on sequences rather than trees.

Two fractions $\frac{a}{b}<\frac{c}{d}$ are called adjacent if $b c-a d=1$. Adjacent fractions are necessarily reduced, i.e. $\operatorname{gcd}(a, b)=\operatorname{gcd}(c, d)=1$. The mediant of $\frac{a}{b}<\frac{c}{d}$ is $\frac{a+c}{b+d}$. Simple algebra shows if $\frac{a}{b}<\frac{c}{d}$ are adjacent, then $\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}$ are pairwise adjacent (and hence reduced). The sequences $\mathcal{S B}_{n}$ are defined recursively: $\mathcal{S B}_{0}=\left[\frac{0}{1}, \frac{1}{0}\right]$ represents 0 and ∞ as fractions, and $\mathcal{S B}_{n}$ is computed from $\mathcal{S B}_{n-1}$ by inserting mediants between consecutive fractions. Thus

$$
\mathcal{S B}_{1}=\left[\frac{0}{1}, \frac{1}{1}, \frac{1}{0}\right], \quad \mathcal{S B}_{2}=\left[\frac{0}{1}, \frac{1}{2}, \frac{1}{1}, \frac{2}{1}, \frac{1}{0}\right], \quad \mathcal{S B}_{3}=\left[\frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{\mathbf{2}}{3}, \frac{1}{1}, \frac{3}{2}, \frac{2}{1}, \frac{\mathbf{3}}{1}, \frac{1}{0}\right], \ldots
$$

A simple induction shows that $\left|\mathcal{S B}_{n}\right|=2^{n}+1$. Thus 2^{n-1} mediants are inserted into $\mathcal{S B}_{n-1}$ to form $\mathcal{S B}_{n}$. The C-W sequences are defined using the right rule above:
$\mathcal{C} \mathcal{W}_{1}:=\left[\frac{1}{1}\right], \mathcal{C W}_{2}=\left[\frac{1}{2}, \frac{2}{1}\right], \mathcal{C W}_{3}=\left[\frac{1}{3}, \frac{3}{2}, \frac{2}{3}, \frac{3}{1}\right], \mathcal{C W}_{4}=\left[\frac{1}{4}, \frac{4}{3}, \frac{3}{5}, \frac{5}{2}, \frac{2}{5}, \frac{5}{3}, \frac{3}{4}, \frac{4}{1}\right], \ldots$
A simple induction shows that $\left|\mathcal{C} \mathcal{W}_{n}\right|=2^{n-1}$. Another simple induction (see [2, p360]) shows that the fractions in $\mathcal{C} \mathcal{W}_{n}$ have the form

$$
\mathcal{C} \mathcal{W}_{n}=\left[\frac{b_{-1}}{b_{0}}, \frac{b_{0}}{b_{1}}, \ldots, \frac{b_{N-2}}{b_{N-1}}\right] \quad \text { where } N=2^{n-1}
$$

and the denominator of a given fraction is the numerator of the succeeding fraction. Indeed, this property obtains even when the sequences $\mathcal{C} \mathcal{W}_{1}, C W_{2}, C W_{3}, \ldots$ are concatenated to form $\mathcal{C} \mathcal{W}_{\infty}:=[\frac{1}{1}, \overbrace{\frac{1}{2}, \frac{2}{1}}, \overbrace{\frac{1}{3}, \frac{3}{2}, \frac{2}{3}, \frac{3}{1}}, \overbrace{\frac{1}{4}, \ldots, \frac{4}{1}}, \ldots]=\left[\frac{c_{0}}{c_{1}}, \frac{c_{1}}{c_{2}}, \frac{c_{2}}{c_{3}}, \ldots\right]$.

The Farey sequence of order n contains all the reduced fractions $\frac{p}{q}$ with $0 \leqslant p \leqslant q \leqslant n$, in their natural order. Thus

$$
\mathcal{F}_{1}=\left[\frac{0}{1}, \frac{1}{1}\right], \mathcal{F}_{2}=\left[\frac{0}{1}, \frac{1}{2}, \frac{1}{1}\right], \mathcal{F}_{3}=\left[\frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{\mathbf{2}}{3}, \frac{1}{1}\right], \mathcal{F}_{4}=\left[\frac{0}{1}, \frac{\mathbf{1}}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{\mathbf{3}}{4}, \frac{1}{1}\right], \ldots
$$

A standard way to compute \mathcal{F}_{n} from \mathcal{F}_{n-1} is to insert mediants between consecutive fractions of \mathcal{F}_{n-1} only when it gives a denominator of size n (see [3, p118]). Thus \mathcal{F}_{n} is a subsequence of $\mathcal{S B}_{n}$. It is easy to prove that $\left|\mathcal{F}_{n}\right|=1+\sum_{j=1}^{n} \varphi(j)$ where $\varphi(n)$ denotes the number of reduced fractions $\frac{a}{n}$ with $1 \leqslant a<n$. The mediant rule above implies that consecutive fractions in $\mathcal{S B}_{n}$ and \mathcal{F}_{n} are adjacent (see also [3, p119]).

It is shown in [3] and [2] that $\mathcal{S B}_{\infty}$ and $\mathcal{C} \mathcal{W}_{\infty}$ contain every (reduced) positive rational precisely once. Although $\mathcal{S B}_{n}, \mathcal{C} \mathcal{W}_{n}, \mathcal{F}_{n}$ are defined "top-down" they can be computed from "left to right" via almost identical recurrence relations.
Theorem 1. Write $\mathcal{S B}_{n}=\left[\frac{a_{-1}}{b_{-1}}, \frac{a_{0}}{b_{0}}, \frac{a_{1}}{b_{1}}, \ldots, \frac{a_{N-1}}{b_{N-1}}\right]$ where $N=2^{n}$. Then

$$
\begin{array}{lll}
a_{-1}=0, a_{0}=1, & a_{i}=k_{i} a_{i-1}-a_{i-2} & \text { for } 1 \leqslant i<N, \\
b_{-1}=1, b_{0}=n, & b_{i}=k_{i} b_{i-1}-b_{i-2} & \text { for } 1 \leqslant i<N,
\end{array}
$$

where $k_{i}=2 \log _{2}|i|_{2}+1$, and $|i|_{2}$ denotes the largest power of 2 dividing i.
Theorem 2. Write $\mathcal{C} \mathcal{W}_{\infty}=\left[\frac{a_{0}}{a_{1}}, \frac{a_{1}}{a_{2}}, \ldots, \frac{a_{i-1}}{a_{i}}, \ldots\right]$ and $\mathcal{C} \mathcal{W}_{n}=\left[\frac{b_{-1}}{b_{0}}, \frac{b_{0}}{b_{1}}, \frac{b_{1}}{b_{2}}, \ldots, \frac{b_{N-2}}{b_{N-1}}\right]$ where $N=2^{n-1}$. Then the a_{i} and b_{i} can be computed via the recurrence relations

$$
\begin{array}{lll}
a_{-1}=0, a_{0}=1, & a_{i}=k_{i} a_{i-1}-a_{i-2} & \text { for } 1 \leqslant i<\infty \tag{2a}\\
b_{-1}=1, b_{0}=n, & b_{i}=k_{i} b_{i-1}-b_{i-2} & \text { for } 1 \leqslant i<N,
\end{array}
$$

where $k_{i}=2 \log _{2}|i|_{2}+1$. [Note that $\nu_{2}(i):=\log _{2}|i|_{2}$ is the largest $\nu \in \mathbb{Z}$ satisfying $2^{\nu} \mid i$.]
Theorem 3. Write the Farey sequence \mathcal{F}_{n} of order n as $\mathcal{F}_{n}=\left[\frac{A_{-1}}{B_{-1}}, \frac{A_{0}}{B_{0}}, \frac{A_{1}}{B_{1}}, \ldots\right]$. Then the numerators A_{i}, and the denominators B_{i} can be computed via the recurrence relations

$$
\begin{array}{lll}
A_{-1}=0, A_{0}=1, & A_{i}=K_{i} A_{i-1}-A_{i-2} & \text { for } 1 \leqslant i<N, \\
B_{-1}=1, B_{0}=n, & B_{i}=K_{i} B_{i-1}-B_{i-2} & \text { for } 1 \leqslant i<N, \tag{3b}
\end{array}
$$

where $K_{i}=\left\lfloor\frac{B_{i-2}+n}{B_{i-1}}\right\rfloor$, and $N=\sum_{j=1}^{n} \varphi(j)$.
To illustrate Theorem $1, \mathcal{S B}_{4}$ can be computed from left to right using the table

i	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
a_{i}	0	1	1	2	1	3	2	3	1	4	3	5	2	5	3	4	1
b_{i}	1	4	3	5	2	5	3	4	1	3	2	3	1	2	1	1	0
k_{i}			1	3	1	5	1	3	1	7	1	3	1	5	1	3	1

The numbers k_{i} are the same as the numbers k_{i}^{\prime} generated by the recurrence $k_{1}^{\prime}=1$, $k_{2 j+1}^{\prime}=1, k_{2 j}^{\prime}=2 k_{j}^{\prime}+1$ for $j \geqslant 0$. (Proof by induction: $k_{1}=k_{1}^{\prime}$ and $k_{2 j+1}=1$, $k_{2 j}=2 k_{j}+1$ hold for $j \geqslant 1$ as $|2 j+1|_{2}=1$ and $|2 j|_{2}=2|j|_{2}$. Thus $k_{i}=k_{i}^{\prime}$ for all $i \geqslant 1$.)

Proof (of Theorem (1). Our proof uses induction on n. It suffices to prove (1a) as the proof of (1b) is similar (just change the a 's to b 's). Clearly (1a) is true for $n=0$ as $\mathcal{S B}_{0}=\left[\frac{0}{1}, \frac{1}{0}\right]$. Assume $n>0$ and (1a) is true for $\mathcal{S B}_{n-1}$. Let $\frac{a_{-1}^{\prime}}{b_{-1}^{\prime}}, \frac{a_{0}^{\prime}}{b_{0}^{\prime}}, \ldots, \frac{a_{N / 2-1}^{\prime}}{b_{N / 2-1}^{\prime}}$ be the fractions in $\mathcal{S B}_{n-1}$. The way mediants are inserted to create $\mathcal{S B}_{n}$ is shown below:

where dotted lines denote the repetition of a fraction, and dashed lines denote the formation of a mediant. The repetition of fractions means

$$
\begin{equation*}
a_{2 j-1}=a_{j-1}^{\prime} \quad \text { and } \quad b_{2 j-1}=b_{j-1}^{\prime} \quad \text { for } 0 \leqslant j<N / 2 \tag{4}
\end{equation*}
$$

and the formation of mediants means

$$
\begin{equation*}
a_{2 j}=a_{j-1}^{\prime}+a_{j}^{\prime} \quad \text { and } \quad b_{2 j}=b_{j-1}^{\prime}+b_{j}^{\prime} \quad \text { for } 0 \leqslant j<N / 2 \tag{5}
\end{equation*}
$$

We prove (1a) using induction on i. Certainly (1a) is true for $i=-1,0$ as $\mathcal{S B}_{n}$ starts with $\frac{0}{1}, \frac{1}{n}$. Suppose now that $i \geqslant 1$, and consider the case when i is even and odd separately. Case 1. $i=2 j$ is even and $j \geqslant 1$. The following shows that (1a) holds for even i :

$$
\begin{aligned}
k_{2 j} a_{2 j-1}-a_{2 j-2} & =\left(k_{j}+2\right) a_{2 j-1}-a_{2 j-2} & & \text { as } k_{2 j}=k_{j}+2, \\
& =\left(k_{j}+2\right) a_{j-1}^{\prime}-\left(a_{j-2}^{\prime}+a_{j-1}^{\prime}\right) & & \text { by (4) and (5) }, \\
& =k_{j} a_{j-1}^{\prime}-a_{j-2}^{\prime}+a_{j-1}^{\prime} & & \text { canceling } a_{j-1}^{\prime}, \\
& =a_{j}^{\prime}+a_{j-1}^{\prime} & & \text { as } a_{j}^{\prime}=k_{j} a_{j-1}^{\prime}-a_{j-2}^{\prime} \text { by induction, } \\
& =a_{2 j} & & \text { by (54). }
\end{aligned}
$$

Case 2. $i=2 j+1$ is odd and $j \geqslant 1$. Note that $k_{2 j+1}=1, a_{2 j-1}=a_{j-1}^{\prime}$, and $a_{2 j+1}=a_{j}^{\prime}$ by (4). These equations and (5) now imply

$$
k_{2 j+1} a_{2 j}-a_{2 j-1}=a_{2 j}-a_{2 j-1}=\left(a_{j-1}^{\prime}+a_{j}^{\prime}\right)-a_{j-1}^{\prime}=a_{j}^{\prime}=a_{2 j+1}
$$

as desired. This completes the inductions on i and n.
A different (and very interesting) method for computing terms of $\mathcal{S B}_{n}$ is given in [1]. It uses continued fraction expansions and "normal additive factorizations". As the recurrence (1a) is independent of n, the numerators for $\mathcal{S B}_{n-1}$ reappear as the first $2^{n-1}+1$ numerators for $\mathcal{S B}_{n}$. We now show that (half of) the denominators b_{i} in $\mathcal{S B}_{n}$ reappear
(remarkably!) for $\mathcal{C} \mathcal{W}_{n}$, and the numerators a_{i} also reappear in $\mathcal{C} \mathcal{W}_{\infty}$. Accordingly, we shall use the same notation a_{i}, b_{i} in Theorem 2 as in Theorem 1 .

Proof (of Theorem (2). The following diagram of the C-W tree (with rules)

shows that the numbers a_{i} must satisfy the recurrence relation:

$$
\begin{equation*}
a_{0}=1, \quad a_{2 j-1}=a_{j-1} \quad \text { and } \quad a_{2 j}=a_{j-1}+a_{j} \quad \text { for } j>0 . \tag{6}
\end{equation*}
$$

The different recurrence relations (6) and (2a) determine the values $a_{0}, a_{1}, a_{2}, \ldots$ We must prove, therefore, that both recurrence relations generate the same numbers. For clarity, we write the numbers produced by (6) as a_{i}^{\prime}. Thus

$$
\begin{equation*}
a_{-1}^{\prime}=0, \quad a_{0}^{\prime}=1, \quad a_{2 j-1}^{\prime} \stackrel{\sqrt[77_{1)}]{=}}{=} a_{j-1}^{\prime} \quad \text { and } \quad a_{2 j}^{\prime} \stackrel{7_{2}}{=} a_{j-1}^{\prime}+a_{j}^{\prime} \quad \text { for } j \geqslant 0 \tag{7}
\end{equation*}
$$

(Note that the definition $a_{-1}^{\prime}:=0$ is consistent with $a_{2 j-1}^{\prime}=a_{j-1}^{\prime}$ and $a_{2 j}^{\prime}=a_{j-1}^{\prime}+a_{j}^{\prime}$ when $j=0$.) Our goal is to prove a_{i} defined by (2a) equals a_{i}^{\prime} defined by (7) for $i \geqslant-1$.

We use induction on i. Certainly $a_{i}=a_{i}^{\prime}$ holds for $i=-1,0$. Assume $i \geqslant 1$ and $a_{0}=a_{0}^{\prime}$, $a_{1}=a_{1}^{\prime}, \ldots, a_{i-1}=a_{i-1}^{\prime}$. Consider the cases when i is odd and even separately. Case 1. $i=2 j-1$ where $j \geqslant 1$. Then

$$
\begin{aligned}
a_{2 j-1} & =k_{2 j-1} a_{2 j-2}-a_{2 j-3} & & \text { by (2a) }, \\
& =a_{2 j-2}-a_{2 j-3} & & \text { as } k_{2 j-1}=1, \\
& =a_{2 j-2}^{\prime}-a_{2 j-3}^{\prime} & & \text { by induction on } i, \\
& =a_{j-2}^{\prime}+a_{j-1}^{\prime}-a_{j-2}^{\prime} & & \text { by (7,2) and (77, }), \\
& =a_{2 j-1}^{\prime} & & \text { by (7, }, 1) .
\end{aligned}
$$

Case 2. $i=2 j$ where $j \geqslant 1$. Then

$$
\begin{aligned}
a_{2 j} & =k_{2 j} a_{2 j-1}^{\prime}-a_{2 j-2} & & \text { by (2a) a) } \\
& =\left(k_{j}+2\right) a_{2 j-1}^{\prime}-a_{2 j-2}^{\prime} & & \text { by } k_{2 j}= \\
& =\left(k_{j}+2\right) a_{j-1}^{\prime}-\left(a_{j-2}^{\prime}+a_{j-1}^{\prime}\right) & & \text { by (7.1) a } \\
& =k_{j} a_{j-1}^{\prime}-a_{j-2}^{\prime}+a_{j-1}^{\prime} & & \text { canceling } \\
& =a_{j}^{\prime}+a_{j-1}^{\prime} & & \text { by induct } \\
& =a_{2 j}^{\prime} & & \text { by (7.1). }
\end{aligned}
$$

This completes the inductive proof of (2a).

The proof of (2b) is now straightforward. As $\mathcal{C} \mathcal{W}_{n}$ is a subsequence of $\mathcal{C} \mathcal{W}_{\infty}$, there exists an m for which $\frac{a_{m-1}}{a_{m}}$ equals the first fraction $\frac{b_{-1}}{b_{0}}=\frac{1}{n}$ of $\mathcal{C} \mathcal{W}_{n}$. Thus $a_{m-1}=b_{-1}=1$ and $a_{m}=b_{0}=n$. Since the recurrences (1a) and (1b) have the same form, it follows that $a_{m+i}=b_{i}$ for $1 \leqslant i<N$. Thus (1b) holds and (2b), which is the same, also holds.

Theorem 3 is previously known (see Exercise 4.61 in [3, p150]). We include Theorem 3 and its proof both for comparison with Theorems 1]and2, and for the reader's convenience.

Proof (of Theorem 3). Our proof uses induction on i. As the first two fractions of \mathcal{F}_{n} are $\frac{0}{1}$ and $\frac{1}{n}$, the recurrences (3a,b) are correct for $i=-1,0$. Suppose now that $i>0$ and that (3a, b) are correct for subscripts less than i. Thus $\frac{A_{i-2}}{B_{i-2}}$ and $\frac{A_{i-1}}{B_{i-1}}$ are consecutive fractions of \mathcal{F}_{n}, and we wish to show that the next fraction is $\frac{A_{i}}{B_{i}}$ where $A_{i}=K_{i} A_{i-1}-A_{i-2}$ and $B_{i}=K_{i} B_{i-1}-B_{i-2}$. As consecutive Farey fraction are adjacent (i.e they satisfy $b c-a d=1$), we know by induction that $A_{i-1} B_{i-2}-B_{i-1} A_{i-2}=1$. However, the recurrences (3a,b) extend this property as

$$
\begin{align*}
A_{i} B_{i-1}-B_{i} A_{i-1} & =\left(K_{i} A_{i-1}-A_{i-2}\right) B_{i-1}-\left(K_{i} B_{i-1}-B_{i-2}\right) A_{i-1} \tag{8}\\
& =A_{i-1} B_{i-2}-B_{i-1} A_{i-2}=1
\end{align*}
$$

Consider the inequalities $\frac{B_{i-2}+n}{B_{i-1}}-1<K_{i} \leqslant \frac{B_{i-2}+n}{B_{i-1}}$. Multiplying by B_{i-1} and subtracting B_{i-2} gives $n-B_{i-1}<B_{i} \leqslant n$. It follows from (8) and $0<B_{i} \leqslant n$ that $\frac{A_{i-2}}{B_{i-2}}<\frac{A_{i-1}}{B_{i-1}}<\frac{A_{i}}{B_{i}}$. Suppose that $\frac{a}{b}$ is the next fraction in \mathcal{F}_{n} after $\frac{A_{i-1}}{B_{i-1}}$. Then we know $\frac{A_{i-1}}{B_{i-1}}<\frac{a}{b} \leqslant \frac{A_{i}}{B_{i}}$, and we must show $\frac{a}{b}=\frac{A_{i}}{B_{i}}$. If not, then

$$
\begin{equation*}
A_{i} b-a B_{i} \stackrel{(9)_{1)}}{\geqslant} 1 \quad \text { and } \quad a B_{i-1}-b A_{i-1} \stackrel{(9)_{2)}}{\geqslant} 1 . \tag{9}
\end{equation*}
$$

Multiplying (9, 1) by B_{i-1}, and (9,2) by B_{i}, and then adding gives

$$
n<B_{i-1}+B_{i} \leqslant\left(A_{i} b-a B_{i}\right) B_{i-1}+B_{i}\left(a B_{i-1}-b A_{i-1}\right)=\left(A_{i} B_{i-1}-B_{i} A_{i-1}\right) b=b .
$$

This is a contradiction since $\frac{a}{b} \in \mathcal{F}_{n}$ has $b \leqslant n$. Hence $\frac{a}{b}=\frac{A_{i}}{B_{i}}$. As both fractions are reduced (and $a, b, B_{i}>0$), we conclude that $a=A_{i}$ and $b=B_{i}$, as desired.

The On-Line Encyclopedia of Integer Sequences [6] has a wealth of useful information about the sequences $a_{0}, a_{1}, a_{2}, \ldots(A 002487)$, and $k_{1}, k_{2}, k_{3}, \ldots$ (A037227), however, the connection in Theorem 2 between these sequences is new. Note that a_{n} counts the number of ways that n can be written as a sum of powers of 2 , each power being used at most twice. For example, $a_{4}=3$ as $2^{2}=2+2=2+1+1$. Finally, we remark that each positive fraction $\frac{p}{q}$ can be associated with a string of L 's and R 's denoting its position in a binary tree [3, p119]. A simple induction (which we omit) shows that the S-B string of $\frac{p}{q}$ equals the reverse of the C-W string of $\frac{p}{q}$.

References

[1] B. Bates, M. Bunder and K. Tognetti, Locating terms in the Stern-Brocot tree, European J. Combin. 31 (2010), 1020-1033.
[2] N. Calkin and H.S. Wilf, Recounting the rationals, Amer. Math. Monthly 107 (2000), 360-363.
[3] R.L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd Ed., Addison-Wesley, 1994.
[4] M. Hockman, Continued fractions and the geometric decomposition of modular transformations, Quaest. Math. 29 (2006), 427-446.
[5] M. Niqui, Exact arithmetic on the Stern-Brocot tree, J. Discrete Algorithms 5 (2007), 356-379.
[6] On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.

Department of Mathematics, Central Washington University, WA 98926-7424, USA.
http://www.cwu.edu/~glasbys/

