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ALGEBRAIC AND COMBINATORIAL STRUCTURES ON BAXTER

PERMUTATIONS

SAMUELE GIRAUDO

Abstract. We construct a Hopf subalgebra of the Hopf algebra of Free quasi-symmetric
functions whose bases are indexed by objects belonging to the Baxter combinatorial family
(i.e., Baxter permutation, pairs of twin binary trees, etc.). This construction relies on the
definition of the Baxter monoid, analog of the plactic monoid and the sylvester monoid,
and on a Robinson-Schensted-like insertion algorithm. The algebraic properties of this Hopf
algebra are studied.
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1. Introduction

In recent years, many combinatorial Hopf algebras, whose bases are indexed by combinatorial
objects, have been intensively studied. For example, the Malvenuto-Reutenauer Hopf algebra
FQSym of Free quasi-symmetric functions [MR95, DHT02] has bases indexed by permuta-
tions. This Hopf algebra admits several Hopf subalgebras: The Hopf algebra of Free symmetric
functions FSym [PR95, DHT02], whose bases are indexed by standard Young tableaux, the
Hopf algebra Bell [Rey07] whose bases are indexed by set partitions, the Loday-Ronco Hopf
algebra PBT [LR98, HNT05] whose bases are indexed by planar binary trees and the Hopf
algebra Sym of non-commutative symmetric functions [GKL+94] whose bases are indexed by
integer compositions. An unifying approach to construct all these structures relies on a defi-
nition of a congruence on words leading to the definition of monoids on combinatorial objects.
Indeed, FSym is directly obtained from the plactic monoid [LS81], Bell from the Bell monoid
[Rey07], PBT from the sylvester monoid [HNT02, HNT05], and Sym from the hypoplactic
monoid [Nov98]. The richness of these constructions relies on the fact that, in addition to con-
struct Hopf algebras, the definition of such monoids often brings partial orders, combinatorial
algorithms and Robinson-Schensted-like algorithms, of independent interest.

In this paper, we propose to enrich this collection of Hopf algebras by providing a construc-
tion of a Hopf algebra whose bases are indexed by objects belonging to the Baxter combinato-
rial family. This combinatorial family admits various representations as Baxter permutations
[Bax64], pairs of twin binary trees [DG94], quadrangulations [ABP04], plane bipolar orienta-
tions [BBMF08], etc. In [Rea05], Reading defines, as an example, a Hopf Algebra of twisted
Baxter permutations in the context of lattice congruences [CS98]. He claims that twisted
Baxter permutations are equinumerous with Baxter permutations up to order 15. Law and
Reading point out in [LR10] that the first proof that Baxter permutations and twisted Baxter
permutations are equinumerous occurs in unpublished notes of West and use generating trees
[BM03]. Hence, the Reading’s Hopf algebra can already be seen as a Hopf algebra on Baxter
permutations.

Very recently, Law and Reading [LR10] have studied and detailed the construction of this
Hopf algebra. Their starting point is very natural: It is well-known that the meet of two lattice
congruences of the permutohedron related to the construction of PBT can be considered as the
starting point of the construction of Sym. A natural question is to know what happens when the
join, instead of the meet, of these two lattice congruences is considered. The minimal elements of
the equivalence classes of the resulting lattice congruence are twisted Baxter permutations. We
started independently the study of Baxter objects in a different way: We looked for a quotient
of the free monoid analog to the plactic and the sylvester monoid. Surprisingly, the equivalence
classes of the permutations under our monoid congruence are the same as the equivalence classes
of Law and Reading’s lattice congruence, and hence have the same by-products, as e.g., the Hopf
algebra structure and the fact that each class contains both one twisted and one not twisted
Baxter permutation. However, even if both points of view lead to the same general theory, their
paths are different and provide different ways of understanding the construction, one centered
on lattice theory, the other centered on combinatorics on words. Moreover, a large part of the
results of each paper do not appear in the other as, in our case, the Robinson-Schensted-like
algorithm, the bidendriform bialgebra structure, the freeness, cofreeness, self-duality, primitive
elements, and multiplicative bases of the Hopf algebra, and a few other properties.

We begin by recalling in Section 2 the preliminary notions used thereafter. In Section 3, we
define the Baxter congruence. This congruence allows to define a quotient of the free monoid, the
Baxter monoid, which has a number of properties required for the Hopf algebraic construction
which follows. We show that the Baxter monoid is intimately linked to the sylvester monoid and
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that the equivalence classes of the permutations under the Baxter congruence form intervals
of the permutohedron. Next, in Section 4, we develop a Robinson-Schensted-like insertion
algorithm that allows to decide if two words are equivalent according to the Baxter congruence.
Given a word, this algorithm computes iteratively a pair of twin binary trees inserting one
by one the letters of u. We give as well some algorithms to read the minimal, the maximal
and the Baxter permutation of a Baxter equivalence class encoded by a pair of twin binary
trees. We also show that each equivalence class of permutations under the Baxter congruence
contains exactly one Baxter permutation. Section 5 is devoted to the study of some properties
of the equivalence classes of permutations under the Baxter congruence. This leads to the
definition of a lattice structure on pairs of twin binary trees, very close to the Tamari lattice
[Tam62, Knu06] since covering relations can be expressed by binary tree rotations. Finally,
in Section 6, we define the Hopf algebra Baxter and study it. Using the order structure on
pairs of twin binary trees, we provide multiplicative bases and show that Baxter is free as an
algebra. Using the results of Foissy on bidendriform bialgebras [Foi05], we show that Baxter

is also self-dual and that the Lie algebra of its primitive elements is free.

Acknowledgments. The author would like to thank Florent Hivert and Jean-Christophe Nov-
elli for their advice and help during all stages of the preparation of this paper. The computations
of this work have been done with the open-source mathematical software Sage [S+10].

2. Preliminaries

2.1. Words. In the sequel, A := {a1 < a2 < . . .} is a totally ordered infinite alphabet and A∗

is the free monoid spanned by A. Let u ∈ A∗. We shall denote by |u| the length of u and by
ǫ the word of length 0. Let us denote by u∼ := u|u| . . . u1 the mirror image of u. Denote by
Alph(u) := {ui : 1 ≤ i ≤ |u|} the smallest alphabet on which u is defined. Besides, for S ⊆ A,
we denote by u|S the restriction of u on the alphabet S, that is the longest subword of u such
that Alph(u) ⊆ S. The evaluation eval(u) of the word u is the non-negative integer vector such
that its i-th entry is the number of occurrences of the letter ai in u. We say that (i, j) is an
inversion of u if i < j and ui > uj. Besides, i is descent of u if (i, i + 1) is an inversion of u.
Let v ∈ A∗. The shuffle product � is defined on Z〈A∗〉 recursively by:

(1) u� v :=





u if v = ǫ,

v if u = ǫ,

a(u′ � bv′) + b(au′� v′) where u = au′ and v = bv′, otherwise.

For example,

a1a2 � a2a1 = a1a2a2a1 + a1a2a2a1 + a1a2a1a2 + a2a1a2a1 + a2a1a1a2 + a2a1a1a2

= a1a2a1a2 + 2a1a2a2a1 + 2a2a1a1a2 + a2a1a2a1.
(2)

Let A# := {a#1 > a#2 > . . .} be the alphabet A on which the order relations between its
letters have been reversed. The Schützenberger transformation # is defined on words by u# :=

u#|u| . . . u
#
1 ; For example, (a5a3a1a1a5a2)

# = a#2 a
#
5 a

#
1 a

#
1 a

#
3 a

#
5 . By setting A##

:= A, # is also

an involution on words.

2.2. Permutations. Denote by Sn the set of permutations of size n and S := ∪n≥0Sn. We
shall call (i, j) a co-inversion of σ ∈ S if (i, j) is an inversion of σ−1. Besides, i is a recoil
of σ if (i, i + 1) is a co-inversion of σ. Let us recall that the (right) permutohedron order
is the partial order ≤P defined on Sn where σ is covered by ν if σ = uabv and ν = ubav
where a < b. Let σ, ν ∈ S. The permutation σ� ν is obtained by concatenating σ and
the letters of ν incremented by |σ|; In the same way, the permutation σ� ν is obtained by
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concatenating the letters of ν incremented by |σ| and σ; For example, 312� 2314 = 3125647
and 312� 2314 = 5647312. The permutation σ is connected if σ = ν� π implies ν = σ or
π = σ. The permutation σ is anti-connected if σ∼ is connected. The shifted shuffle product �
of two permutations is defined by:

(3) σ� ν := σ� (
ν1+|σ| . . . ν|ν|+|σ|

)
.

For example,

(4) 12� 21 = 12� 43 = 1243 + 1423 + 1432+ 4123 + 4132+ 4312.

The standardized word std(u) of u ∈ A∗ is the unique permutation having the same inversions
as u; For example, std(a3a1a4a2a5a7a4a2a3) = 416289735.

2.3. Binary trees. Denote by BTn the set of binary trees with n internal nodes and BT :=
∪n≥0BTn. We use in the sequel the standard terminology (i.e., child, ancestor, arc, etc.) about
binary trees [AU94]. The only element of BT0 is the leaf or empty tree, denoted by ⊥. We also
shall call a leaf a node with empty left and right subtrees. Let us recall that the Tamari order
[Tam62, Knu06] is the partial order ≤T defined on BTn where T0 ∈ BTn is covered by T1 ∈ BTn
if it is possible to transform T0 into T1 by performing a right rotation (see Figure 1).

y

x

A B

C

T0 =
y

x

A

B C

= T1

Figure 1. The right rotation around the arc y → x.

If L and R are binary trees, denote by L ∧ R the binary tree which has L as left subtree
and R as right subtree. Similarly, if L and R are A-labeled binary trees, denote by L ∧a R
the A-labeled binary tree which has L as left subtree, R as right subtree and a root labeled by
a ∈ A. Let T0, T1 ∈ BT . The binary tree T0 � T1 is obtained by grafting T0 from its root on
the leftmost leaf of T1; In the same way, the binary tree T0 � T1 is obtained by grafting T1 from

its root on the rightmost leaf of T0. For example, for T0 := and T1 := , we have

T0 ∧ T1 = ,(5)

T0 � T1 = ,(6)

T0 � T1 = .(7)

Viennot defined in [Vie04] the canopy cnp(T ) of T ∈ BT , that is the word on the alphabet
{0, 1} obtained by browsing the leaves of T from left to right except the first and the last one,
writing 0 if the considered leaf is oriented to the right, 1 otherwise (see Figure 2). Note that
the orientation of the leaves in a binary tree is determined only by its nodes so that we can
omit to draw the leaves in our graphical representations.

An A-labeled binary tree T is a right (resp. left) binary search tree if for any node x labeled
by b, each label a of a node in the left subtree of x and each label c of a node in the right
subtree of x, the inequality a ≤ b < c (resp. a < b ≤ c) holds. A binary tree T ∈ BTn is
an increasing (resp. decreasing) binary tree if it is bijectively labeled on {1, . . . , n} and, for all
node x of T , if y is a child of x, then the label of y is greater (resp. smaller) than the label
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0
1 0

0 1 0 1

Figure 2. The canopy of this binary tree is 0100101.

of x. The shape of a labeled binary tree is the unlabeled binary tree obtained by forgetting
its labels. Recall that the infix traversal of a binary tree T consists in recursively traversing
the left subtree of T , then its root, and finally recursively traversing its right subtree. If T is
labeled, its infix reading is the word u1u2 . . . u|u| such that u1 is the label of the first visited
node by the infix traversal of T , u2 the second, . . . , and u|u| the last one.

2.4. Baxter permutations and pairs of twin binary trees. A permutation σ is a Baxter
permutation if for any subword u := u1u2u3u4 of σ such that the letters u2 and u3 are adjacent
in σ, std(u) /∈ {2413, 3142}. In other words, σ is a Baxter permutation if it avoids the generalized
permutation patterns 2 − 41− 3 and 3 − 14− 2 (see [BS00] for an introduction on generalized
permutation patterns). For example, 42173856 is not a Baxter permutation; On the other
hand 436975128 is a Baxter permutation. Let us denote by S

B
n the set of Baxter permutations

of size n and S
B := ∪n≥0S

B
n .

A pair of twin binary trees (TL, TR) is made of two binary trees TL, TR ∈ BTn such that the
canopies of TL and TR are complementary, that is cnp(TL)i 6= cnp(TR)i for all 1 ≤ i ≤ n − 1
(see Figure 3). Denote by T BTn the set of pairs of twin binary trees where each binary tree
has n nodes and T BT := ∪n≥0T BTn. An A-labeled pair of twin binary trees (TL, TR) is a
pair of twin binary search trees if TL (resp. TR) is an A-labeled left (resp. right) binary search
tree. The shape of an A-labeled pair of twin binary trees (TL, TR) is the unlabeled pair of twin
binary trees (T ′

L, T
′
R) such that T ′

L (resp. T ′
R) is the shape of TL (resp. TR). In [DG94], Dulucq

0
1 0

0 1 0 1
1 0

1
1 0

1 0

Figure 3. A pair of twin binary trees.

and Guibert have highlighted a bijection between Baxter permutations and pairs of unlabeled
twin binary trees. In the sequel, we shall make use of a very similar bijection.

3. The Baxter monoid

3.1. Definition and first properties. Recall that an equivalence relation ≡ defined on A∗ is
a congruence if for all u, u′, v, v′ ∈ A∗, u ≡ u′ and v ≡ v′ imply uv ≡ u′v′.

Definition 3.1. The Baxter monoid is the quotient of the free monoid A∗ by the congruence
≡B that is the transitive closure of the Baxter adjacency relations ⇌B and ⇋B defined for
u, v ∈ A∗ and a, b, c, d ∈ A by:

cuadvb ⇌B cudavb where a ≤ b < c ≤ d,(8)

budavc ⇋B buadvc where a < b ≤ c < d.(9)

For example, the ≡B-equivalence class of 2114424 (see Figure 4) is

(10) {2114424, 2141424, 2144124, 2411424, 2414124, 2441124}.
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2114424

2141424

2144124 2411424

2414124

2441124

⇋B

⇌B ⇋B ⇌B ⇋B

⇌B ⇋B ⇌B ⇋B

⇌B ⇋B

3125647

3152647

3156247 3512647

3516247

3561247

⇋B

⇌B ⇋B ⇌B ⇋B

⇌B ⇋B ⇌B ⇋B

⇌B ⇋B

Figure 4. The Baxter equivalence class of the word u := 2114424 and of the
permutation 3125647 = std(u), with their adjacency relations.

If the Baxter congruence is applied on words without repetition, the two Baxter adjacency
relations ⇌B and ⇋B can be replaced by the only adjacency relation ⇄B defined by:

(11) xuadvy ⇄B xudavy where a < x, y < d.

An equivalence relation ≡ defined on A∗ is compatible with the destandardization process if
for all u, v ∈ A∗, u ≡ v iff std(u) ≡ std(v) and eval(u) = eval(v).

Proposition 3.2. The Baxter monoid is compatible with the destandardization process.

Proof. It is enough to check the property on adjacency relations. Let u, v ∈ A∗. Assume u⇌Bv.
We have u = xcyadzbt and v = xcydazbt for some x, y, z, t ∈ A∗ and a ≤ b < c ≤ d ∈ A.
Since ⇌B acts by permuting letters, we have eval(u) = eval(v). Moreover, the letters a′, b′, c′

and d′ of std(u) respectively at the same positions than the letters a, b, c and d of u satisfy
a′ < b′ < c′ < d′ due to their relative positions into std(u) and the order relations between a,
b, c and d. The same relations hold for the letters of std(v), showing that std(u)⇌B std(v).
The proof is analogous for the case u⇋Bv.

Conversely, assume that v is a permutation of u and std(u)⇌B std(v). We have std(u) =
xcyadzbt and std(v) = xcydazbt for some x, y, z, t ∈ A∗ and a < b < c < d ∈ A. The word
u is a non-standardized version of std(u) so that the letters a′, b′, c′ and d′ of u respectively
at the same positions than the letters a, b, c and d of std(u) satisfy a′ ≤ b′ < c′ ≤ d′ due
to their relative positions into u and the order relations between a, b, c and d. The same
relations hold for the letters of v, showing that u⇌Bv. The proof is analogous for the case
std(u)⇋B std(v). �

An equivalence relation≡ defined on A∗ is compatible with the restriction of alphabet intervals
if for all interval I of A and for all u, v ∈ A∗, u ≡ v implies u|I ≡ v|I .

Proposition 3.3. The Baxter monoid is compatible with the restriction of alphabet intervals.

Proof. It is enough to check the property on adjacency relations. Moreover, by Proposition 3.2,
it is enough to check the property for permutations. Let σ, ν ∈ Sn such that σ⇄Bν. We have
σ = txuadvyw and ν = txudavyw for some letters a < x, y < d. Let I be an interval of {1, . . . , n}
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and R := I ∩ {a, x, y, d}. If R = {a, x, y, d}, σ|I = t|Ixu|Iadv|Iyw|I and ν|I = t|Ixu|Idav|Iyw|I

so that σ|I⇄Bν|I . Else, we have σ|I = ν|I and thus σ|I≡Bν|I . �

An equivalence relation ≡ defined on A∗ is compatible with the Schützenberger involution if
for all u, v ∈ A∗, u ≡ v implies u# ≡ v#.

Proposition 3.4. The Baxter monoid is compatible with the Schützenberger involution.

Proof. It is enough to check the property on adjacency relations. Moreover, by Proposition
3.2, it is enough to check the property for permutations. Let σ, ν ∈ Sn and assume that
σ⇄Bν. We have σ = txuadvyw and ν = txudavyw for some letters a < x, y < d. We have
σ# = w#y#v#d#a#u#x#t# and ν# = w#y#v#a#d#u#x#t#. Since d# < x#, y# < a#, we
have σ#

⇄Bν
#. �

3.2. Connection with the sylvester monoid. The sylvester monoid [HNT02, HNT05] is
the quotient of the free monoid A∗ by the congruence ≡S that is the transitive closure of the
sylvester adjacency relation ⇌S defined for u ∈ A∗ and a, b, c ∈ A by:

(12) acub ⇌S caub where a ≤ b < c.

In the same way, let us define the #-sylvester monoid by the congruence ≡S# that is the
transitive closure of the #-sylvester adjacency relation ⇌S# defined for u ∈ A∗ and a, b, c ∈ A
by:

(13) buca ⇌S# buac where a < b ≤ c.

It is plain, for all u, v ∈ A∗ that we have u≡Sv iff u#≡S#v#.

In [HNT05], Hivert, Novelli and Thibon have shown that two words are sylvester equivalent
iff each of these gives the same right binary search tree by inserting their letters from right to
left using the well-known binary search tree insertion algorithm [AU94]. In our setting, we call
this process the leaf insertion and it declines in two versions, depending on if the considered
binary tree is a right or a left binary search tree:

Algorithm: LeafInsertion.
Input: An A-labeled right (resp. left) binary search tree, a letter a ∈ A.
Output: T after the leaf insertion of a.

(1) If T =⊥, return the one-node binary search tree labeled by a.
(2) Let b be the label of the root of T .
(3) If a ≤ b (resp. a < b):

(a) Then, recursively leaf insert a into the left subtree of T .
(b) Else, recursively leaf insert a into the right subtree of T .

End.

For further reference, let us recall the following theorem due to Hivert, Novelli and Thibon
[HNT05], restated in our setting:

Theorem 3.5. Two words are ≡S-equivalent (resp. ≡S#-equivalent) iff they give the same right
(resp. left) binary search tree by inserting them from right to left (resp. left to right).

In other words, the A-labeled right (resp. left) binary search trees encode the sylvester (resp.
#-sylvester) equivalence classes of words of A∗. Note that the difference of treatment between
right and left binary search trees in the instruction (3) of LeafInsertion comes from the effect
of the Schützenberger involution on words and the fact that two words are ≡S#-equivalent iff
their image under the Schützenberger involution are ≡S-equivalent. Indeed, if u is a word and
T is the right binary search tree obtained by inserting the letters of u from right to left, the left
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binary search tree T# obtained by inserting the word u# from left to right is equals to T after
swapping for each node its left and right subtrees and applying the Schützenberger involution
on its labels.

Lemma 3.6. Let u = xacy and v = xcay be two words such that x, y ∈ A∗, a < c ∈ A and
u ≡S v. Then, u ⇌S v.

Proof. Follows from Theorem 3.5: Since u and v give the same right binary search tree T
inserting them from right to left, the node labeled by a and the node labeled by c in T cannot
be ancestor one of the other. That implies that there exists a node labeled by a letter b, common
ancestor of both the nodes labeled by a and c such that a ≤ b < c. Thus, u⇌Sv. �

Lemma 3.6 proves also that the ⇌S-adjacency relations of any equivalence class C of Sn/≡S

are exactly the covering relations of the permutohedron restricted to the elements of C. Note
that it is also the case for the ⇌S#-adjacency relations.

The Baxter monoid, the sylvester monoid and the #-sylvester monoid are related in the
following way:

Proposition 3.7. Let u, v ∈ A∗. Then,

(14) u ≡B v ⇐⇒ u ≡S v and u ≡S# v.

Proof. (⇒): Once more, it is enough to check the property on adjacency relations. Moreover,
by Proposition 3.2, it is enough to check the property for permutations. Let σ, ν ∈ Sn and
assume that σ⇄Bν. We have σ = xxyadzyt and ν = xxydazyt for some letters a < x, y < d.
The presence of the letters a, d and y with a < y < d ensures that σ⇌Sν. Besides, the presence
of the letters x, a and d with a < x < d ensures that σ⇌S#ν.

(⇐): Since the sylvester and the #-sylvester monoids are compatible with the destandard-
ization process [HNT05], it is enough to check the property for permutations. Let σ, ν ∈ Sn

such that σ≡Sν and σ≡S#ν. Set τ := inf≤P{σ, ν}. Since that the permutohedron is a lattice,
τ is well-defined, and since that the equivalence classes of permutations under the ≡S and ≡S#

congruences are intervals of the permutohedron [HNT05], we have σ≡Sτ≡Sν and σ≡S#τ≡S#ν.
Moreover, by Lemma 3.6, and again since that the equivalence classes of permutations un-
der the ≡S and the ≡S# congruences are intervals of the permutohedron, for each saturated
chains τ ≤P π ≤P . . . ≤P σ and τ ≤P µ ≤P . . . ≤P ν, there are sequences of adjacency relations
τ⇌Sπ⇌S . . .⇌Sσ, τ⇌S#π⇌S# . . .⇌S#σ, τ⇌Sµ⇌S . . .⇌Sν and τ⇌S#µ⇌S# . . .⇌S#ν. Hence,
τ≡Bσ and τ≡Bν, implying σ≡Bν. �

Proposition 3.7 shows that the ≡B-equivalence classes are the intersection of ≡S-equivalence
classes and ≡S# -equivalence classes. This property is taken as a definition in Law and Reading’s
construction [LR10].

By the characterization of the ≡B-equivalence classes provided by Proposition 3.7, restricting
the Baxter congruence on permutations, we have the following property:

Proposition 3.8. For all n ≥ 0, each equivalence class of Sn/≡B is an interval of the permu-
tohedron.

Proof. By Proposition 3.7, the ≡B-equivalence classes are the intersection of the ≡S and the
≡S# -equivalence classes. Moreover, the permutations under the ≡S and the ≡S# equivalence
relations are intervals of the permutohedron [HNT05]. The proposition comes from the fact
that the intersection of two lattice intervals is also an interval and that the permutohedron is
a lattice. �
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Lemma 3.9. Let u = xady and v = xday such that x, y ∈ A∗, a < d ∈ A and u ≡B v. Then,
u ⇌B v or u ⇋B v.

Proof. By Proposition 3.7, since u≡Bv, we have u≡Sv and thus by Lemma 3.6 we have u⇌Sv,
implying the existence of a letter y in the factor y satisfying a ≤ y < d. In the same way, we
have also u≡S#v and thus u⇌S#v, hence the existence of a letter x in the factor x satisfying
a < x ≤ d. That proves that u and v are ⇌B or ⇋B-adjacent. �

Lemma 3.9 is the analog, in the case of the Baxter congruence, of Lemma 3.6 and proves
also that the ⇌B and ⇋B-adjacency relations of any equivalence class C of Sn/≡B are exactly
the covering relations of the permutohedron restricted to the elements of C.

3.3. Connection with the 3-recoil monoid. If a and c are two letters of A, denote by c− a

the cardinality of the set {b ∈ A : a < b ≤ c}. In [NRT09], Novelli, Reutenauer and Thibon
define for all k ≥ 0 the congruence ≡R(k) . This congruence is the transitive closure of the
k-recoil adjacency relation, defined for a, b ∈ A by:

(15) ab ⇌R(k) ba where b− a ≥ k.

The k-recoil monoid is the quotient of the free monoid by the congruence ≡R(k) . Note that the
congruence ≡R(2) restricted to permutations is the hypoplactic congruence [Nov98].

The Baxter monoid and the 3-recoil monoid are related in the following way:

Proposition 3.10. The ≡R(3) -equivalence classes of permutations are union of ≡B-equivalence
classes.

Proof. This amounts to prove that for all permutations σ and ν, if σ≡Bν then σ≡R(3)ν. Assume
that σ≡Bν. It is enough to check this property on adjacency relations. Hence, assume that
σ⇄Bν. We have σ = txuadvyw and ν = txudavyw where a < x, y < d. Since σ and ν are
permutations, x 6= y and thus, we have a < x < y < d or a < y < x < d, implying that
d− a ≥ 3. Hence, σ≡R(3)ν. �

Note that Proposition 3.10 is false for the congruence ≡R(4) . Indeed, we have 2143≡B2413
but the permutations 2143 and 2413 are not ≡R(4) -equivalent. Moreover, it is plain, by defini-
tion of the congruence ≡R(k) , that the ≡R(k) -equivalence classes of permutations are union of
≡R(k+1) -equivalence classes. Hence, by Proposition 3.10, the hypoplactic equivalence classes of
permutations are union of ≡B-equivalence classes.

4. A Robinson-Schensted-like algorithm

4.1. Principle of the algorithm. We describe an algorithm testing if two words are equiva-
lent according to the Baxter congruence. Given a word u ∈ A∗, it computes its P-symbol, that
is an A-labeled pair (TL, TR) consisting in a left and a right binary search tree such that the
non-decreasing rearrangement of u is the infix reading of both TL and TR. It computes also
its Q-symbol, that is a pair of twin binary trees (SL, SR) where SL (resp. SR) is an increasing
(resp. decreasing) binary tree, such that the infix reading of SL and SR are the same. Moreover,
TL and SL have same shape, and so have TR and SR.

The interest of the Baxter monoid in our context is that the equivalence classes of the
permutations of size n under the Baxter congruence are equinumerous with pairs of unlabeled
twin binary trees with n nodes, and thus, by the results of Dulucq and Guibert [DG94], also
equinumerous with Baxter permutations of size n. To prove that, we shall first show that for
any word u, the P-symbol of u meets the conditions described above. Next, we will show that
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we have u≡Bv iff P(u) = P(v), and finally, we will show that for each pair of unlabeled twin
binary trees J , there is at least one permutation σ such that P(σ) = J . Moreover, we shall
prove that the correspondence u 7−→ (P(u),Q(u)) yields a bijection between the words of A∗

and the set of pairs ((TL, TR), (SL, SR)) described above.

4.1.1. The P-symbol. Recall that by Theorem 3.5 the left binary search tree obtained by leaf
insertions of the letters of u from left to right encodes its ≡S#-equivalence class and in the same
way, the right binary search tree obtained by leaf insertions of the letters of u from right to left
encodes its ≡S-equivalence class. These two binary search trees form a pair that constitutes
the P-symbol P(u) of u. According to Proposition 3.7, two words u and v are ≡B-equivalent iff
they are ≡S-equivalent and ≡S#-equivalent, thus, the P-symbol of u takes into account of both
equivalence classes of u under the ≡S and the ≡S# congruences. Figure 5 shows the P-symbol
of u := 5425424.

4.1.2. The Q-symbol. Let us first recall two algorithms. Let u be a word without repetition.
Define incr(u), the increasing binary tree of u, by:

(16) incr(u) :=

{
⊥ if u = ǫ,

incr(v) ∧a incr(w) where u = vaw and a = minAlph(u).

The decreasing binary tree of u, decr(u), is defined in the same way, splitting the word ac-
cording to its greatest letter. The Q-symbol of a word u ∈ A∗ is the pair (SL, ST ) where
SL := incr

(
std(u)−1

)
and SR := decr

(
std(u)−1

)
. Figure 5 shows the Q-symbol of u := 5425424,

whose standardized word is 6317425, so that std(u)−1 = 3625714.

It is plain that given a word u, the Q-symbol of u allows, in addition with its P-symbol, to
retrieve the original word. Indeed, if P(u) = (TL, TR) and Q(u) = (SL, SR), the pair (TR, SR)
is the output of the Robinson-Schensted-like algorithm in the context of the sylvester monoid
[HNT05], which is a bijection between words and pairs of such binary trees. Given (TR, SR), it
amounts to reading the labels of TR in the order of the corresponding labels in SR. The same
holds of the pair (TL, SL).

P(u) =
2

2

4

4

4

5

5

2

2

4

4

4

5

5 Q(u) =
3

6

2

5

7

1

4

3

6

2

5

7

1

4

Figure 5. The P-symbol and the Q-symbol of u := 5425424.

4.2. Correctness of the insertion algorithm. In that follows, we say that a node x of a
binary tree T is the i-th node of T if x is the i-th visited node by the infix traversal of T . In
the same way, we say that a leaf y is the i-th leaf of T if y is the i-th leaf of T read from left
to right.

Lemma 4.1. Let T be a non-empty binary tree and x be the i-th leaf of T . If x is left-oriented,
it is attached to the i-th node of T . If x is right-oriented, it is attached to the i+1-st node of T .

Proof. We proceed by structural induction on the set of non-empty binary trees. If T is the
one-node binary tree, the lemma is clearly satisfied. Else, we have T = A∧B. Let x be the i-th
leaf of T and y be the node where x is attached. If x is also in A and A =⊥, x is left-oriented
and is attached to the root of T (that is the first node of T ) so that the lemma is satisfied. If
x is in A and A 6=⊥, x is also the i-th leaf of A and the lemma follows by induction hypothesis
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on A. Otherwise, x is in B. If B =⊥, x is right-oriented and is attached to the root of T (that
is the last node of T ) so that the lemma is satisfied. Else, x is the i−n−1-st leaf of B where
n is the number of nodes of A. Assume that the node y is the j-st node of T , then, y becomes
the j−n−1-th node of B. Hence, the lemma follows by induction hypothesis on B. �

The following lemma is the key of our construction:

Lemma 4.2. Let σ be a permutation and T be the left binary search tree obtained by left leaf
insertions of the letters of σ, from left to right. Then, the i+1-st leaf of T is right-oriented iff
i is a recoil of σ.

Proof. Set a := i and b := i + 1. Assume that a is a recoil of σ. We have σ = ubvaw. Since
that no letter x of u and v satisfies a < x < b, the node of T labeled by b has a node labeled
by a in its left subtree, itself having no right child and thus contributes, by Lemma 4.1, to a
right-oriented leaf in position i+ 1.

Conversely, assume that a is not a recoil of σ. We have σ = uavbw. For the same reason as
before, the node of T labeled by a has a node labeled by b in its right subtree, itself having no
left child and thus contributes, by Lemma 4.1, to a left-oriented leaf in position i+ 1. �

4.2.1. The P-symbol.

Proposition 4.3. For all word u ∈ A∗, the P-symbol (TL, TR) of u is a pair of twin binary
search trees where TL (resp. TR) is a left (resp. right) binary search tree, and the infix reading
of both TL and TR is the non-decreasing rearrangement of u.

Proof. Note by definition of the LeafInsertion algorithm that TL (resp. TR) is a left (resp.
right) binary search tree and the infix reading of both TL and TR is the non-decreasing re-
arrangement of u. It is plain that the leaf insertion of u and std(u) from left to right (resp.
right to left) into left (resp. right) binary search trees give binary trees of same shape. That
implies that we can consider that σ := u is a permutation. Lemma 4.2 implies that the canopies
of TL and TR are complementary because i is a recoil of σ iff i is not a recoil of σ∼. Thus, the
shapes of TL and TR consist in twin binary trees. �

Theorem 4.4. Let u, v ∈ A∗. Then, u ≡B v iff P(u) = P(v).

Proof. Assume u≡Bv. Then, by Proposition 3.7, u and v are ≡S and ≡S# -equivalent. Hence, by
Theorem 3.5, u and v have the same sylvester and #-sylvester P-symbol, so that P(u) = P(v).

Conversely assume that P(u) = P(v) =: (TL, TR). Since the leaf insertion of both u and v
from left to right gives TL, we have, by Theorem 3.5, u≡S#v. Besides, the leaf insertion of both
u and v from right to left gives TR, so that, by the pre-cited theorem, u≡Sv. By Proposition
3.7, we have u≡Bv. �

In the case of permutations, each ≡B-equivalence class can be encoded by an unlabeled pair
of twin binary trees because there is one unique way to bijectively label a binary tree with n
nodes on {1, . . . , n} such that it is a binary search tree.

4.2.2. The Q-symbol. Let us recall the following lemma of [HNT05] restated in our setting:

Lemma 4.5. Let u be a word and σ := std(u)−1. The right (resp. left) binary search tree
obtained by inserting u from right to left (resp. from left to right) and decr(σ) (resp. incr(σ))
have same shape.

Proposition 4.6. For all word u ∈ A∗, the shape of the Q-symbol (SL, SR) of u is a pair of
twin binary trees. Moreover, SL is an increasing binary tree, SR is a decreasing binary and
their infix reading is both std(u)−1.
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Proof. By definition of the Q-symbol, SL and SR are respectively the increasing and the de-
creasing binary trees of σ := std(u)−1. By Lemma 4.5, a binary tree with same shape as SL

(resp. SR) can also be obtained by leaf insertions of the letters of σ−1 from left to right (resp.
right to left). Thus, by Lemma 4.2, the shape of (SL, SR) is a pair of twin binary trees. More-
over, by the definition of the algorithms incr and decr, we can prove by induction on the size
of σ that the binary trees SL and SR have both σ as infix reading. �

Theorem 4.7. There is a bijection between the elements of A∗ and the set formed by the pairs
((TL, TR), (SL, SR)) where:

(1) (TL, TR) and (SL, SR) are pairs of twin binary trees of same shape;
(2) (TL, TR) is an A-labeled pair of twin binary search trees where TL (resp. TR) is a left

(resp. right) binary search tree;
(3) TL and TR have the same infix reading;
(4) SL (resp. SR) is an increasing (resp. decreasing) binary tree;
(5) SL and SR have the same infix reading.

Moreover, the correspondence u 7−→ (P(u),Q(u)) realizes such a bijection.

Proof. Let us first show that for all u ∈ A∗, the pair (P(u),Q(u)) satisfies the assertions of
the theorem. Points (2) and (3) follow from Proposition 4.3. Points (4) and (5) follow from
Proposition 4.6. Moreover, by Lemma 4.5, the assertion (1) checks out. Besides, as already
mentioned, it is possible to reconstruct from the pair (P(u),Q(u)) the word u and such a word
is unique. That shows that the correspondence is well-defined and injective.

Conversely, assume that ((TL, TR), (SL, SR)) satisfies the five assertions of the theorem. Ac-
cording to [HNT02], there is a bijection between the elements of A∗ and the pairs (TR, SR)
where TR is a right binary search tree and SR a decreasing binary tree of same shape. Let u be
the word in correspondence with (TR, SR). In the same way, there is a bijection between the
elements of A∗ and the pairs (TL, SL) where TL is a left binary search tree and SL an increasing
binary tree of same shape. Let v be the word in correspondence with (TL, SL). The assumption
(3) implies eval(u) = eval(v). Besides, the assumption (5) implies std(u)−1 = std(v)−1. Hence,
we have std(u) = std(v) and thus u = v. Note also that the pair (TL, SL) is entirely determined
by the pair (TR, SR) and conversely. Now, again according to [HNT02], the pair (TR, SR) is
the sylvester P-symbol of u and the pair (TL, SR) is the #-sylvester P-symbol of u. Hence,
the insertion of u gives the pair ((TL, TR), (SL, SR)), showing that the correspondence is also
surjective. �

4.2.3. Baxter equivalence classes as linear extensions of posets. Let T be an A-labeled binary
tree. We shall denote by △(T ) (resp. ▽(T )) the poset (N,≤) where N is the set of nodes of T
and ≤ is defined, for x, y ∈ N , by:

(17) x ≤ y if x is an ancestor (resp. a descendant) of y.

Let n be the number of nodes of T . If the sequence x1, . . . , xn is a linear extension of △(T )
(resp. ▽(T )), we shall also say that the word u = u1 . . . un is a linear extension of △(T ) (resp.
▽(T )) if for all 1 ≤ i ≤ n, the label of the node xi is ui.

Note 4 of [HNT05] says that the words of a sylvester equivalence class encoded by a labeled
right binary search tree T are exactly the linear extensions of ▽(T ). Additionally, this also
says that the words of a #-sylvester equivalence class encoded by a labeled left binary search
tree T are exactly the linear extensions of △(T ). Moreover, by Proposition 3.7, the words of
a Baxter equivalence class are both sylvester and #-sylvester equivalent, thus the words of a
Baxter equivalence class encoded by a labeled pair of twin binary search trees (TL, TR) are the
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words that are both linear extensions of △(TL) and▽(TR). For example, consider the following
labeled pair of twin binary trees,

(18) (TL, TR) :=
1

2

3

4

5

6

7

1

2

3

4

5

6

7 .

The set of words v satisfying these conditions is

{5214376, 5214736, 5217436, 5241376, 5241736,

5247136, 5271436, 5274136, 5721436, 5724136}.
(19)

Note that it is possible to represent the order relations induced by the posets TL and TR in
only one poset, adding on TL the order relations induced by TR. For the previous example, we
obtain the poset

(20) 1

2

3

4

5

6

7

.

4.3. Distinguished permutations from a pair of twin binary trees. We give in this
section algorithms to read some distinguished permutations from a pair of twin binary trees.

4.3.1. Baxter permutations. The following algorithm allows, given a pair of twin binary search
trees (TL, TR) labeled by a permutation, to compute the Baxter permutation belonging to the
≡B-equivalence class encoded by (TL, TR). This algorithm is a version adapted to our setting
of the algorithm used by Dulucq and Guibert to prove their bijection between pairs of twin
binary trees and Baxter permutations [DG94].

Algorithm: ExtractBaxter.
Input: A pair of twin binary search trees (TL, TR) labeled by a permutation.
Output: The Baxter permutation of the class encoded by (TL, TR).

(1) Let σ := ǫ be the empty permutation.
(2) While TL 6=⊥ and TR 6=⊥:

(a) Let a be the label of the root of TL.
(b) Set σ := σ.a.
(c) Let A (resp. B) be the left (resp. right) subtree of TL.
(d) If the node labeled by a is a left child in TR:

(i) Then, set TL := A�B.
(ii) Else, set TL := A�B.

(e) Suppress the leaf labeled by a in TR.
(3) Return σ.

End.

Figure 6 shows an execution of this algorithm.
By the results of Dulucq and Guibert, ExtractBaxter terminates and computes a Baxter

permutation. The only thing to prove is that the computed permutation belongs to the ≡B-
equivalence class encoded by the pair of twin binary trees as input. For that, let us first prove
the following lemma:

Lemma 4.8. Let (TL, TR) be a non-empty pair of twin binary trees. If the root of TL is the
i-th node of TL, then, the i-th node of TR is a leaf.
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(TL, TR) :=
1

2

3

4

5

6

1

2

3

4

5

6 a = 5,
1

2

3

4

6

1

2

3

4

6 a = 6,

1

2

3

4

1

2

3

4

a = 2,
1

3

4 1

3

4

a = 1, 3

4 3

4
a = 3, 4 4 a = 4

Figure 6. An execution of the ExtractBaxter algorithm on (TL, TR). The
computed Baxter permutation is 562134.

Proof. Assume that TL = A ∧ B. Note that if both A and B are empty, TL and TR are the
one-node binary trees and the lemma is clearly satisfied.

If A 6=⊥, assume that the i-th node of TR has a non-empty left subtree. That implies that
the i-th leaf of TR is not attached to its i-th node. Thus, by Lemma 4.1, the i-th leaf of TR is
attached to its i+1-st node and is right-oriented. In TL, the i-th leaf cannot be attached to its
i-th node because A 6=⊥. Hence, by Lemma 4.1, the i-th leaf of TL is also attached to its i+1-st
node and is right-oriented. Since there is a i+1-st node in TL and TR, the i-th leaf is not the
rightmost leaf of TL and TR, and thus (TL, TR) is not a pair of twin binary trees, contradicting
the hypothesis. Assume now that the i-th node of TR has a non-empty right subtree. That
implies that the i+1-st leaf of TR is not attached to its i-th node and thus, by Lemma 4.1,
the i+1-st leaf of TR is left-oriented. Moreover, since the i-th node of TR has a non-empty
right subtree and the i-th node of TL is its root, the i-th node of TL also has a non-empty
right subtree. That implies that the i+1-st leaf of TL is not attached to its i-th node and thus,
by Lemma 4.1, the i+1-st leaf of TR is also left-oriented. That contradicts that (TL, TR) is a
pair of twin binary trees, and implies that the i-th node of TR is a leaf. The case B 6=⊥ is
analogous. �

Proposition 4.9. For all pair of twin binary search trees (TL, TR) labeled by a permuta-
tion as input, The algorithm ExtractBaxter computes a permutation belonging to the ≡B-
equivalence class encoded by (TL, TR).

Proof. Let us prove by induction on n, that is the number of nodes of TL and TR, that if
(TL, TR) is a pair of twin binary search trees both labeled by a same word without repetition,
then ExtractBaxter returns a word that is a linear extension of△(TL) and a linear extension
of▽(TR), i.e., a word belonging to the ≡B-equivalence class encoded by (TL, TR). This property
straightforwardly holds for n ≤ 1. Now, assume that TL = A∧aB. Since TL and TR are binary
search trees and labeled by a same word, their respective i-th nodes have the same label, and
thus, by Lemma 4.8, there is a leaf x labeled by a in TR. Moreover, the canopy of TL is of the
form v01w where v := cnp(A) and w := cnp(B), and the canopy of TR is of the form v′10w′

where v′ (resp. w′) is the complementary of v (resp. w) since that (TL, TR) is a pair of twin
binary trees. We have now two cases. If x is a left child in TR, the algorithm returns the word
au where u is the word obtained by applying the algorithm on (T ′

L, T
′
R) where T ′

L = A�B
and T ′

R is obtained by suppressing the leaf labeled by a into TR. First, the canopy of T ′
L is

of the form v0w and the canopy of T ′
R is of the form v′1w′. Moreover, T ′

L and T ′
R are clearly

still binary search trees. That implies that (T ′
L, T

′
R) is a pair of twin binary search trees. By

induction hypothesis, the word u belongs to the ≡B-equivalence class encoded by (T ′
L, T

′
R),

and thus, au belongs to the ≡B-equivalence class encoded by (TL, TR) because au is a linear
extension of △(TL) (resp. ▽(TR)) since u is a linear extension of both △(T ′

L) and ▽(T ′
R). The

case where x is a right child in TR is analogous. �
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Theorem 4.10. For all n ≥ 0, there is a bijection between the set of equivalence classes of
Sn/≡B and the set of unlabeled pairs of twin binary trees with n nodes.

Proof. By Proposition 4.3 and Theorem 4.4, the P-symbol algorithm induces an injection be-
tween the set of equivalence classes of Sn/≡B and the set of unlabeled pairs of twin binary trees.
Moreover, by Proposition 4.9, the algorithm ExtractBaxter exhibits a surjection between
these two sets. Hence, these two sets are in bijection. �

Theorem 4.11. For all n ≥ 0, each equivalence class of Sn/≡B contains exactly one Baxter
permutation.

Proof. Let C be an equivalence class of Sn/≡B . By Theorem 4.10, C can be encoded by an
unlabeled pair of twin binary trees J . By Proposition 4.9, the algorithm ExtractBaxter

computes a permutation belonging to the ≡B-equivalence class encoded by J . The theorem
follows from the fact that Baxter permutations are equinumerous with unlabeled pairs of twin
binary trees. �

4.3.2. Minimal and maximal permutations. Reading defines in [Rea05] twisted Baxter permuta-
tions, that are the permutations avoiding the generalized permutation patterns 2− 41− 3 and
3 − 41 − 2. These permutations are the minimal permutations of our ≡B-equivalence classes.
Indeed, assume that σ is minimal of its ≡B-equivalence class. Then, it is not possible to perform
any rewriting of the form xudavy→ xuadvy where a < x, y < d, so that σ avoids the patterns
2− 41− 3 and 3− 41− 2. Conversely, if σ is a twisted Baxter permutation, it avoids 2− 41− 3
and 3− 41− 2 and it is not possible to perform any rewriting →, so that, by Lemma 3.9, it is
minimal. That implies that twisted Baxter permutations and Baxter permutations are equinu-
merous since by Theorem 4.11 there is exactly one Baxter permutation by ≡B-equivalence class
and by Proposition 3.8, there is also exactly one twisted Baxter permutation. This suggests
that there exists a bijection sending a Baxter permutation to the twisted Baxter permutation
of its ≡B-equivalence class.

As pointed out by Law and Reading, West has shown first a bijection between Baxter per-
mutations and twisted Baxter permutations using generating trees [BM03]. In our setting, as
in Law and Reading’s setting [LR10], this bijection is the natural one. We give in that follows
an algorithm to compute this bijection.

Let us consider the following algorithm which allows, given a pair of twin binary trees
(TL, TR) labeled by a permutation, to compute the minimal permutation for the lexicographic
order belonging to the ≡B-equivalence class encoded by (TL, TR). By Proposition 3.8, the ≡B-
equivalence classes of permutations are intervals of the permutohedron so that the permutation
computed by the following algorithm is also the minimal element for the permutohedron order
of its ≡B-equivalence class.

Algorithm: ExtractMin.
Input: A pair of twin binary search trees (TL, TR) labeled by a permutation.
Output: The minimal permutation for the lexicographic order of the class encoded by
(TL, TR).

(1) Let σ := ǫ be the empty permutation and F := TL be a rooted forest.
(2) While F is not empty and TR 6=⊥:

(a) Let a be the smallest value which is both a label of a root in F and of a leaf in
TR.

(b) Set σ := σ.a.
(c) Suppress the nodes labeled by a in F and TR.
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(3) Return σ.

End.

Note that, by choosing in the instruction (2a) the greatest label instead of the smallest, the
previous algorithm computes the maximal permutation of the ≡B-equivalence class encoded by
(TL, TR). Figure 7 shows an example of application of this algorithm.

(TL, TR) :=
1

2

3

4

5

6

1

2

3

4

5

6 a = 5, 1

2

3

4

6
1

2

3

4

6 a = 2,

1 3

4
6

1

3

4

6 a = 1, 3

4
6

3

4

6
a = 3, 4 6 4

6
a = 6, 4 4 a = 4

Figure 7. An execution of the ExtractMin algorithm on (TL, TR). The
computed permutation is 521364 and it is minimal in its ≡B-equivalence class.

Proposition 4.12. For all pair of twin binary search trees (TL, TR) labeled by a permutation
as input, the algorithm ExtractMin computes the minimal permutation for the lexicographic
order of the ≡B-equivalence class encoded by (TL, TR).

Proof. The output σ of the algorithm ExtractMin is both a linear extension of △(TL) and
a linear extension of ▽(TR). That implies that σ belongs to the ≡B-equivalence class encoded
by the input pair of twin binary trees. Moreover, this algorithm terminates since by Theorem
4.11, each pair of twin binary trees (TL, TR) admits at least one permutation that is a common
linear extension of △(TL) and ▽(TR). Finally, the proposition comes from the fact that the
smallest label is chosen at each step. �

Using our Robinson-Schensted-like algorithm, we can compute the bijection between Baxter
permutations and twisted Baxter permutations in the following way: If σ is a Baxter permu-
tation, apply ExtractMin on P(σ) to obtain its corresponding twisted Baxter permutation.
Conversely, if σ is a twisted Baxter permutation, apply ExtractBaxter on P(σ) to obtain
its corresponding Baxter permutation.

In the same way, there is a simple bijection between Baxter permutations and permutations
that avoid the generalized permutation patterns 2 − 14 − 3 and 3 − 14 − 2, sending a Baxter
permutation to the maximal element of its ≡B-equivalence class and conversely.

4.4. Definition and correctness of the iterative insertion algorithm. In what follows,
we shall revise our P-symbol algorithm that we have presented to make it iterative. Indeed, for
all word u such that P(u) = (TL, TR), we propose an algorithm to insert a letter a into the pair
of twin binary search trees (TL, TR) satisfying (TL, TR) ← a = P(ua). This, besides being in
agreement with the usual Robinson-Schensted-like algorithms, has the merit to allow to com-
pute in the Baxter monoid. Indeed, this gives a simple way to compute the concatenation of
two words u and v under the Baxter congruence, or equivalently, the product of the pairs of
twin binary search trees P(u) and P(v), simply by inserting the letters of the word uv into the
pair (⊥,⊥).

Let T be an A-labeled right binary search tree and b a letter of A. The lower restricted
binary tree of T compared to b, namely T≤b, is the right binary search tree uniquely made of
the nodes x of T labeled by letters a satisfying a ≤ b and such that for all nodes x and y of
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1

1

2

3

3

4

5

1

1

2 3

3

4

5

Figure 8. A right binary search tree T , T≤2 and T>2.

T≤b, if x is ancestor of y in T≤b, then x is also ancestor of y in T . In the same way, we define
the higher restricted binary tree of T compared to b, namely T>b (see Figure 8).

Let T be an A-labeled right binary search tree and a a letter of A. The root insertion of a
into T consists in modifying T so that the root of T is a new node labeled by a, its left subtree
is T≤a and its right subtree is T>a.

Given an A-labeled pair of twin binary search trees (TL, TR) where TL (resp. TR) is a left
(resp. right) binary search tree, the insertion of the letter a of A into (TL, TR) consists in
making a leaf insertion of a into TL and a root insertion of a into TR.

The iterative P-symbol (TL, TR) of a word u ∈ A∗ is computed by iteratively inserting the
letters of u, from left to right, into (⊥,⊥). The iterative Q-symbol (SL, SR) is constructed by
recording in SL (resp. SR) the dates of creation of each node of TL (resp. TR) (see Figure 9).
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Figure 9. Steps of the computation of the P-symbol and the Q-symbol of u := 5425424.

To show that the iterative version of the P-symbol computes the same labeled pair of twin
binary trees than its non-iterative version, we need the following lemma:

Lemma 4.13. Let u ∈ A∗. Let T be the right binary search tree obtained by root insertions
of the letters of u, from left to right. Let T ′ be the right binary search tree obtained by leaf
insertions of the letters of u, from right to left. Then, T = T ′.

Proof. Let us proceed by induction on |u|. If u = ǫ, the lemma is satisfied. Otherwise, assume
that u = va where a ∈ A. Let S be the right binary search tree obtained by root insertions of the
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letters of v from left to right. By induction hypothesis, S is also the right binary tree obtained
by leaf insertions of the letters of v from right to left. The right binary search tree T obtained
by root insertions of u from left to right satisfies, by definition, T = S≤a ∧a S>a. The right
binary search tree T ′ obtained by leaf insertions of u from right to left satisfies T ′ = L′ ∧a R

′

where the subtree L′ only depends on the subword v≤a := v|]−∞,a] and the subtree R′ only
depends on the subword v>a := v|]a,+∞[, so that, by induction hypothesis, L′ = S≤a, R

′ = S>a

and thus, T = T ′. �

Proposition 4.14. For all u ∈ A∗, the P-symbol of u and the iterative P-symbol of u are equal.

Proof. Let (TL, TR) be the P-symbol of u and (T ′
L, T

′
R) be the iterative P-symbol of u. By

definition of these two insertion algorithms, we have TL = T ′
L. Moreover, TR is obtained by

leaf insertions of the letters of u from right to left and T ′
R is obtained by root insertions of the

letters of u from left to right. By Lemma 4.13, we have TR = T ′
R. �

The correctness of the iterative version of the Q-symbol algorithm comes from the correctness
of the iterative P-algorithm.

5. The Baxter lattice

5.1. The Baxter lattice congruence. Recall that an equivalence relation ≡ on the elements
of a lattice (L,≤) is a lattice congruence [Rea05, CS98] if the following three conditions hold.

(1) Every ≡-equivalence class is an interval of L;
(2) For all x, y ∈ L, if x ≤ y then x ↓≤ y ↓ where x ↓ is the maximal element of the
≡-equivalence class of x;

(3) For all x, y ∈ L, if x ≤ y then x ↑≤ y ↑ where x ↑ is the minimal element of the
≡-equivalence class of x.

In this section, we shall prove that the Baxter monoid congruence is also a lattice congruence
of the permutohedron. Proposition 3.8 says that the ≡B-equivalence classes of permutations
are intervals of the permutohedron, so that ≡B satisfies point (1). Figure 10 shows the ≡B-
equivalence classes in the permutohedron of order 4.

1234

2134 12431324

2314 21433124 14231342

2341 3214 2413 3142 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

Figure 10. The permutohedron of order 4 and the two non-singleton ≡B-
equivalence classes.
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For all permutation σ, let us define σ↑ (resp. σ↓) the maximal (resp. minimal) permutation
of the ≡B-equivalence class of σ for the permutohedron order. Note by Proposition 3.8 that σ↑
and σ↓ are well-defined.

Proposition 5.1. Let σ and ν be two permutations such that σ ≤P ν. Then, σ ↑≤P ν ↑ and
σ↓≤P ν ↓.

Proof. We shall only prove that σ↑≤P ν ↑, the proof of σ↓≤P ν ↓ being analogous. It is enough
to check the property when ν = σsi where si is an elementary transposition and i is not a
descent of σ. If σ = σ ↑, then σ ↑ ≤P ν ≤P ν ↑ and the property holds. Else, by Lemma 3.9,
there exists an elementary transposition sj and a permutation π such that π and σ are ⇄B-
adjacent, π = σsj and σ ≤P π. It then remains to prove that there exists a permutation µ such
that ν≡Bµ and π ≤P µ since this leads to show, by applying iteratively this reasoning, that σ↑
is smaller than a permutation belonging to the ≡B-equivalence class of ν for the permutohedron
order and hence, by transitivity, that σ↑≤P ν ↑. We have three cases:

(1) If j ≤ i−2, σ is of the form σ = uabvcdw where a (resp. c) is the j-th (resp. i-th) letter
of σ and a < b and c < d since i and j are not descents of σ. We have ν = uabvdcw
and νsj = ubavdcw =: µ. Moreover, since π⇄Bσ, there are some letters x ∈ Alph(u)
and y ∈ Alph(vcdw) such that a < x, y < b. Thus, µ⇄Bν. Finally, π ≤P µ, so that µ
is appropriate.

(2) If j ≥ i+ 2, this is analogous to the previous case.
(3) If j = i + 1, σ is of the form σ = uabcv where a is the i-th letter of σ and a < b < c

since i and j are not descents of σ. Since σ⇄Bπ, there are some letters x ∈ Alph(u)
and y ∈ Alph(v) such that b < x, y < c. Thus, since ν = ubacv and a < b < x, y < c,
we have νsj = ubcav⇄Bν. Moreover, νsjsi = ucbav =: µ and νsj⇄Bνsjsi since
b < x, y < c and thus, µ≡Bν. Finally, since π = uacbv, we have π ≤P µ, hence, µ is
appropriate.

(4) If j = i− 1, this is analogous to the previous case.

�

5.2. A lattice structure on the set of pairs of twin binary trees.

Definition 5.2. For all n ≥ 0, define the order relation ≤B on the set T BTn setting J0 ≤B J1,
where J0, J1 ∈ T BTn, if there exists σ, ν ∈ Sn such that P(σ) = J0, P(ν) = J1 and σ ≤P ν.

To describe the covering relations of the poset (T BTn,≤B) in terms of transformations on
pairs of twin binary trees, it suffices to consider a pair of twin binary trees J and the maximal
permutation σ of the ≡B-equivalence class encoded by J . The coverings of J are the pairs of
twin binary trees P(ν) where ν = σsi and i is not a descent of σ. In this way, the pair of twin
binary trees (TL, TR) is covered by (T ′

L, T
′
R) if one of the three following conditions is satisfied:

(1) T ′
L is obtained by performing a left rotation into TL such that cnp(TL) = cnp(T ′

L) and
T ′
R = TR;

(2) T ′
R is obtained by performing a right rotation into TR such that cnp(TR) = cnp(T ′

R)
and T ′

L = TL;
(3) T ′

L (resp. T ′
R) is obtained by performing a left (resp. right) rotation into TL (resp. TR)

such that cnp(TL) 6= cnp(T ′
L) (resp. cnp(TR) 6= cnp(T ′

R)).

Figure 11 shows an interval of the poset of the pair of twin binary trees.

Moreover, it is possible to compare two pairs of twin binary trees J0 := (T 0
L, T

0
R) and J1 :=

(T 1
L, T

1
R) very easily by computing the Tamari vector [Knu06] of each binary tree. Recall that
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(2) (1)

(1) (2)

(3)

(10200, 01010)

(10200, 03010) (10100, 01010)

(10100, 03010)

(10000, 03210)

Figure 11. An interval of the lattice of the pairs of twin binary trees of order
5 and the corresponding Tamari vectors. The edges are labeled according to
the type of the covering relation.

the Tamari vector of a binary tree T is computed by labeling each node x of T by the number
of nodes of the right subtree of x and by considering its infix reading. Two binary trees T0 and
T1 satisfy T0 ≤T T1 in the Tamari lattice iff the Tamari vector of T0 is not greater component
by component than the Tamari vector of T1 [Knu06]. Hence, by the nature of the covering
relations in (T BTn,≤B), we have J0 ≤B J1 iff T 1

L ≤T T
0
L and T 0

R ≤T T
1
R.

Proposition 5.3. For all n ≥ 0, the poset (T BTn,≤B) is a lattice.

Proof. The equivalence relation ≡B is also a lattice congruence of the permutohedron since it
satisfies, by Propositions 3.8 and 5.1 the points (1), (2) and (3). Besides, by Theorem 4.10,
the unlabeled pairs of twin binary trees encode exactly the equivalence classes of permutations
under the Baxter congruence so that (T BTn,≤B) is a lattice. �

6. The Baxter Hopf Algebra

In the sequel, all the algebraic structures have a field of characteristic zero K as ground field.

6.1. The Hopf algebra FQSym. Recall that the family {Fσ}σ∈S
forms the fundamental

basis of FQSym, the Hopf algebra of Free quasi-symmetric functions [DHT02]. Its product
and its coproduct are defined by:

(21) Fσ · Fν :=
∑

π ∈ σ�ν

Fπ ,

(22) ∆ (Fσ) :=
∑

σ=uv

Fstd(u) ⊗ Fstd(v).

For example,

F132 · F12 = F13245 + F13425 + F13452 + F14325 + F14352

+ F14532 + F41325 + F41352 + F41532 + F45132,
(23)

∆ (F35142) = 1⊗ F35142 + F1 ⊗ F4132 + F12 ⊗ F132

+ F231 ⊗ F21 + F2413 ⊗ F1 + F35142 ⊗ 1.
(24)

If ≡ is an equivalence relation on S and σ ∈ S, denote by σ̂ the ≡-equivalence class of σ.
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The following theorem due to Hivert and Nzeutchap [HN07] shows that an equivalence rela-
tion on A∗ satisfying some properties can be used to define Hopf subalgebras of FQSym:

Theorem 6.1. Let ≡ be an equivalence relation defined on A∗. If ≡ is a congruence, compatible
with the restriction of alphabet intervals and compatible with the destandardization process, then,
the family {Pσ̂}σ̂∈S/≡

defined by:

(25) Pσ̂ :=
∑

σ∈σ̂

Fσ

spans a Hopf subalgebra of FQSym.

6.2. The Hopf algebra Baxter.

6.2.1. A construction from the Baxter monoid. By definition, ≡B is a congruence, and, by
Propositions 3.2 and 3.3, ≡B satisfies the conditions of Theorem 6.1. Moreover, by Theorem
4.10, the ≡B-equivalence classes of permutations can be encoded by pairs of unlabeled twin
binary trees. Hence, we have the following theorem:

Theorem 6.2. The family {PJ}J∈T BT defined by:

(26) PJ :=
∑

σ∈S

P(σ)=J

Fσ

spans a Hopf subalgebra of FQSym, namely the Hopf algebra Baxter.

For example,

P = F12,(27)

P = F2143 + F2413,(28)

P = F542163 + F542613 + F546213.(29)

The Hilbert series of Baxter is

(30) B(z) := 1 + z + 2z2 + 6z3 + 22z4 + 92z5 + 422z6 + 2074z7 + 10754z8 + 58202z9 + . . . ,

the generating series of Baxter permutations (sequence A001181 of [Slo]).

By Theorem 6.1, the product of Baxter is well-defined. We deduce it from the product of
FQSym and obtain

(31) PJ0 ·PJ1 =
∑

P(σ)=J0, P(ν)=J1

π ∈ σ�ν ∩ S
B

PP(π).

For example,

P ·P = P +P +P

+P +P +P .
(32)
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In the same way, we deduce the coproduct of Baxter from the coproduct of FQSym and
obtain

(33) ∆(PJ ) =
∑

P(π)=J
π=u.v

σ:=std(u), ν:=std(v)∈S
B

PP(σ) ⊗PP(ν).

For example,

∆P = 1⊗P +P ⊗P +P ⊗P +P ⊗P

+P ⊗P +P ⊗P +P ⊗P +P ⊗ 1.
(34)

6.2.2. Set-bases. We shall call a basis of an algebra (resp. coalgebra) a set-algebra basis (resp.
set-coalgebra basis) if each element of the basis (resp. tensorial square of the basis) occurs only
with coefficient 0 or 1 in any product (resp. coproduct) involving two (resp. one) elements of
the basis. Law and Reading have proved in [LR10] that the basis of their Baxter Hopf algebra,
analog to our basis {PJ}J∈T BT , is both a set-algebra basis and a set-coalgebra basis. We
re-prove this result in our setting:

Proposition 6.3. The basis {PJ}J∈T BT is both a set-algebra basis and a set-coalgebra basis
of Baxter.

Proof. It is immediate from (31) that {PJ}J∈T BT is a set-algebra basis.
To prove that {PJ}J∈T BT is also a set-coalgebra basis, it is enough to prove that the inverse

of two different permutations σ and ν arising in a same shifted shuffle π � µ are not ≡B-
equivalent. We shall prove this property for the sylvester congruence. Indeed, the result will
follow from the fact that, by Proposition 3.7, the Baxter congruence is finer than the sylvester
congruence. Assume that σ−1≡Sν

−1. Then, by Theorem 3.5, the permutations σ−1 and ν−1

give the same binary search tree when inserted from right to left. By Lemma 4.5, that implies
that the shape of decr(σ) and decr(ν) are the same. Writing σ = tau and ν = vaw, where a is
the maximal letter of both σ and ν, it is plain that the position of a in σ and ν are the same.
The permutation µ is of the form µ = µ′bµ′′ where b is the maximal letter of µ, and then, π is
of the form π = π′π′′ where |π′| = |t| − |µ′|. Now, we have t, v ∈ π′ � µ′ and u,w ∈ π′′ � µ′′.
It follows by induction on |σ|+ |ν| that σ = ν, contradicting our hypothesis. �

6.2.3. Polynomial realization of Baxter. Set Gσ := Fσ−1 . Recall that the free quasi-ribbon
r (Gσ) of Gσ is the polynomial of K〈A∗〉 defined by:

(35) r (Gσ) :=
∑

u∈A∗

std(u)=σ

u.

For example,

r (Gǫ) = 1,(36)

r (G1) =
∑

i

ai = a0 + a1 + a2 + . . . ,(37)

r (G231) =
∑

k<i≤j

aiajak = a1a1a0 + a1a2a0 + a1a3a0 + . . . .(38)

These polynomials provide a realization of FQSym as an algebra [DHT02]; Indeed, r is an
injective algebra morphism from FQSym to K〈A∗〉. We deduce from (35) and Lemma 4.5 the
following realization of Baxter:
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Theorem 6.4. The map r defined in (35), restricted to Baxter, satisfies

(39) r
(
P(TL,TR)

)
=

∑

u∈A∗

incr(std(u)) ≃ TL

decr(std(u)) ≃ TR

u

and provides a realization of Baxter as an algebra, where ≃ stands for the equality of binary
tree shapes.

6.2.4. An interval description of the product. If ≡ is an equivalence relation of S and σ a
permutation, denote by σ̂ ↓ (resp. σ̂ ↑) the minimal (resp. maximal) permutation of the
≡-equivalence class of σ for the permutohedron order.

Proposition 6.5. If ≡ is an equivalence relation defined on A∗ satisfying the conditions of
Theorem 6.1 and additionally, the ≡-equivalence classes of permutations are intervals of the
permutohedron, then the product on the family defined in (25) can be expressed as:

(40) Pσ̂ ·Pν̂ =
∑

σ̂↓ � ν̂↓ ≤P π ≤P σ̂↑ � ν̂↑
π=min π̂

Pπ̂.

Proof. It is well-known that the shifted shuffle of two permutohedron intervals is still a permu-
tohedron interval. Restating this fact in FQSym, we have

(41)


 ∑

σ ≤P µ ≤P σ′

Fµ


 ·


 ∑

ν ≤P τ ≤P ν′

Fτ


 =

∑

σ � ν ≤P π ≤P σ′ � ν′

Fπ.

By (41) and since that every ≡-equivalence class is an interval of the permutohedron, we obtain

(42) Pσ̂ ·Pν̂ =
∑

σ̂↓ � ν̂↓ ≤P π ≤P σ̂↑ � ν̂↑

Fπ.

By Theorem 6.1, the expression (42) can be expressed as a sum of Pπ̂ elements. �

Let J0 := (T 0
L, T

0
R) and J1 := (T 1

L, T
1
R) be two pairs of twin binary trees. Let us define the

pair of twin binary trees J0 � J1 by:

(43) J0 � J1 := (T 0
L � T 1

L, T
0
R � T 1

R).

In the same way, the pair of twin binary trees J0 � J1 is defined by:

(44) J0 � J1 := (T 0
L � T 1

L, T
0
R � T 1

R).

Proposition 6.5 leads to the following expression for the product of Baxter:

Corollary 6.6. For all pairs of twin binary trees J0 and J1, the product of Baxter satisfies

(45) PJ0 ·PJ1 =
∑

J0 � J1 ≤B J ≤B J0 � J1

PJ .

6.3. Connections with other Hopf subalgebras of FQSym.



24 SAMUELE GIRAUDO

6.3.1. Connection with the Hopf algebra PBT. It is well-known that the sylvester congruence
leads to the construction of the Hopf subalgebra PBT [LR98] of FQSym, whose fundamental
basis {PT }T∈BT is defined in accordance with (25) (see [HNT02] and [HNT05]). By Proposition
3.7, every ≡S-equivalence class is an union of some ≡B-equivalence classes. Hence, we have the
following injective Hopf map:

(46) ρ : PBT →֒ Baxter

satisfying

(47) ρ (PT ) =
∑

T ′∈BT
J:=(T ′,T ) ∈ T BT

PJ .

For example,

ρ

(
P

)
= P +P +P .(48)

6.3.2. Connection with the Hopf algebra DSym(3). The congruence≡R(3) leads to the construc-

tion of the Hopf subalgebra DSym(3) of FQSym, whose fundamental basis {Pσ̂}σ̂∈S/≡
R(3)

is

defined in accordance with (25) (see [NRT09]). By Proposition 3.10, every ≡R(3) -equivalence
class of permutations is an union of some ≡B-equivalence classes. Hence, we have the following
injective Hopf map:

(49) α : DSym(3) →֒ Baxter

satisfying

(50) α (Pσ̂) =
∑

σ ∈ σ̂∩SB

PP(σ).

6.3.3. Connection with the Hopf algebra Sym. The hypoplactic congruence [Nov98] leads to the
construction of the Hopf subalgebra Sym of FQSym. As already mentioned, the hypoplactic
congruence is the same as the congruence ≡R(2) when both are restricted on permutations.
This shows that the hypoplactic equivalence classes of permutations can be encoded by binary
words. Indeed, if σ̂ is such an equivalence class, σ̂ contains all the permutations having a given
recoil set. Thus, the class σ̂ can be encoded by the binary word b of length n − 1 where n is
the length of the elements of σ̂ and bi = 1 iff i is a recoil of the elements of σ̂. We denote by
{Pb}b∈{0,1}∗ the fundamental basis of Sym indexed by binary words.

Since PBT is a Hopf subalgebra of Baxter and Sym is a Hopf subalgebra of PBT [HNT05],
Sym is itself a Hopf subalgebra of Baxter. The injective Hopf map:

(51) β : Sym →֒ PBT

satisfies, thanks to the fact that the hypoplactic equivalence classes are union of ≡S-equivalence
classes and Lemma 4.2,

(52) β (Pb) =
∑

T∈BT
cnp(T )=b

PT .

Combinatorially, the map β associates to a binary word b the sum of the binary trees having b
as canopy. The composition ρ ◦ β is an injective Hopf map from Sym to Baxter. Combinato-
rially, it associates to a binary word b the sum of the pairs of twin binary trees (TL, TR) where
the canopy of TR is b.
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Figure 12 summarizes the relations between these considered Hopf algebras close to Baxter.

FQSym

Baxter
?�

OO

PBT
+ �

99ssssssssss

DSym(3)
3 S

ffMMMMMMMMMM

Sym
2 R

eeJJJJJJJJJJ + �

88qqqqqqqqqq

Figure 12. Diagram of Hopf maps between some Hopf algebras related to Baxter.

6.4. Multiplicative bases and free generators. Recall that the elementary family {Eσ}σ∈S

and the homogeneous family {Hσ}σ∈S
of FQSym respectively defined by:

Eσ :=
∑

σ≤Pσ′

Fσ,(53)

Hσ :=
∑

σ′≤Pσ

Fσ,(54)

form multiplicative bases of FQSym [DHNT08]. Indeed, for all σ, ν ∈ S, the product satisfies

Eσ ·Eν = Eσ � ν ,(55)

Hσ ·Hν = Hσ � ν .(56)

Mimicking these definitions, let us define the elementary family {EJ}J∈T BT and the homo-
geneous family {HJ}J∈T BT of Baxter respectively by:

EJ :=
∑

J≤BJ′

PJ′ ,(57)

HJ :=
∑

J′≤BJ

PJ′ .(58)

These families are bases of Baxter since they are defined by triangularity.

Proposition 6.7. Let J be a pair of twin binary trees and σ↓ (resp. σ↑) be the minimal (resp.
maximal) permutation such that P(σ↓) = J (resp. P(σ↑) = J). Then,

EJ = Eσ↓,(59)

HJ = Hσ↑.(60)

Proof. By definition, we have

(61) EJ =
∑

ν∈S

J≤BP(ν)

Fν .
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Assume that the element Fν arises in (61). That implies that J ≤B P(ν). By Propositions 3.8
and 5.1, we have σ ↓≤P ν ↓≤P ν, and hence, the element Fν arises also in Eσ↓. Conversely,
assume that the element Fν arises in Eσ↓. That implies that σ ↓≤P ν. By definition of the
order relation ≤B, we have P(σ ↓) ≤B P(ν). Since J = P(σ ↓), the element Fν arises also in
(61). The proof for the homogeneous family is analogous. �

Corollary 6.8. For all J0, J1 ∈ T BT , we have

EJ0 · EJ1 = EJ0 � J1 ,(62)

HJ0 ·HJ1 = HJ0 � J1
.(63)

Proof. Let σ and ν be the minimal permutations of the ≡B-equivalence classes respectively
encoded by J0 and J1. By Proposition 6.7, we have

(64) EJ0 ·EJ1 = Eσ · Eν = Eσ � ν .

The permutation σ� ν is obviously the minimal element of its ≡B-equivalence class, and, by
the definition of the insertion algorithm, the P-symbol of σ� ν is the pair of twin binary trees
(T 0

L � T 1
L, T

0
R � T 1

R) = J0 � J1. The proof of the second part of the proposition is analogous. �

For example,

E · E = E ,(65)

H ·H = H .(66)

Let us say that a pair of twin binary trees J is connected (resp. anti-connected) if the
minimal (resp. maximal) permutation of the ≡B-equivalence class encoded by J is connected
(resp. anti-connected).

Corollary 6.9. The algebra Baxter is free on the elements EJ (resp. HJ) where J is a
connected (resp. anti-connected) pair of twin binary trees.

Proof. First, since every permutation σ can be expressed as σ = σ′ � . . . � σ′′ where the
permutations σ′, . . . , σ′′ are connected, by Corollary 6.8, it is possible to express any element
EJ as a product of EJ′ · . . . ·EJ′′ where the pairs of twin binary trees J ′, . . . , J ′′ are connected.

Moreover, since there is no relation in FQSym between the elements Eσ where σ is a
connected permutation [DHT02], by Corollary 6.8, there is either no relation in Baxter between
the elements EJ where J is a connected pair of twin binary trees. The proof for the respective
part is analogous. �

Actually, as we shall show in the following proposition, J is connected iff the Baxter permuta-
tion belonging to the≡B-equivalence class encoded by J is connected. That implies thatBaxter

is free on the elements EJ where the Baxter permutation belonging to the ≡B-equivalence class
encoded by J is connected.

Proposition 6.10. If σ is a connected Baxter permutation, then the minimal permutation
belonging to the ≡B-equivalence class of σ is also connected.

Proof. Let us prove by induction on n that for σ ∈ Sn a connected Baxter permutation, the
permutation σ ↓ is also connected. The property is easily checked by hand for n ≤ 4. Let
n ≥ 5 and σ ∈ Sn be a connected Baxter permutation. By Proposition 3.8 and by Lemma
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3.9, it is possible to reach σ ↓ from σ by applying adjacency transformations of the form
xudavy → xuadvy where a < x, y < d, as much as possible. Hence, we have a sequence
σ → π → . . .→ σ ↓ rewriting the connected Baxter permutation σ into σ ↓. Set I := [1, n− 1].
By Proposition 3.3, we have the sequence σ|I ⇒ π|I ⇒ . . .⇒ σ↓|I where ⇒ stands for → or =.
Note that σ|I is a Baxter permutation. We have now two cases:

If σ|I is connected, by induction hypothesis, σ ↓|I is also connected. The permutation σ ↓
is obtained from σ ↓|I by inserting n. If σ ↓= σ ↓|I .n, since any permutation of a given ≡B-
equivalence class ends by the same letter, that would imply that σ also ends by the letter n and
thus, that σ is not connected, contradicting our hypothesis. Otherwise, for any other place of
insertion of n, the permutation σ↓ is clearly still connected.

If σ|I is not connected, the permutations σ and σ|I are of the form σ = unvw and σ|I = uvw
where n is the maximal letter of σ and uv the shortest non-empty prefix of σ|I that is a
permutation. Since σ is connected, v 6= ǫ and since σ|I is not connected, w 6= ǫ. Now, if u = ǫ,
the first letter of σ is n, and, since that any element of a ≡B-equivalence class begins by the
same letter, σ ↓ is also connected. Otherwise, since σ|I is not connected and uv is the shortest
non-empty prefix of σ|I that is a permutation, for all c ∈ Alph(w) and b ∈ Alph(uv), b < c.
That implies that it is not possible to disconnect σ by → rewritings. Indeed, any rewriting →
transposing two letters in the factors u or vw does not disconnect σ. The only way to disconnect
σ is by moving its letter n to the right. Assuming that it is possible, and denoting by a the first
letter of v, we would have a < b < c < n implying that σ would contain the pattern 2− 41− 3
and σ would not be a Baxter permutation, which is contradictory with our assumptions. That
implies that any permutation reachable from σ by→ rewritings is connected, and in particular,
σ↓ is. �

Note that the previous proposition becomes false if we assume that the maximal permu-
tation of its ≡B-equivalence is connected instead of the minimal. Indeed, considering the
≡B-equivalence class {2143, 2413}, the permutation 2413 is connected and maximal of its class
but the Baxter permutation 2143 is not connected.

Corollary 6.11. The algebra Baxter is free on the elements EJ where the Baxter permutation
belonging to the ≡B-equivalence class encoded by J is connected.

The generating series BC(z) of connected Baxter permutations, and hence, algebraic gener-
ators of Baxter satisfies

(67) BC(z) = 1−
1

B(z)
.

First dimensions of algebraic generators of Baxter are 1, 1, 1, 3, 11, 47, 221, 1113, 5903, 32607,
186143, 1092015. Here follows algebraic generators of Baxter of order 1 to 4:

(68) E ;

(69) E ;

(70) E , E , E ;
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E , E , E , E , E , E ,

E , E , E , E , E .
(71)

6.5. Bidendriform bialgebra structure. A Hopf algebra (H, ·,∆) can be fitted into a biden-
driform bialgebra structure [Foi05] if (H+,≺,≻) is a dendriform algebra [Lod01] and (H+,∆≺,∆≻)
a codendriform coalgebra, where H+ is the augmentation ideal of H . The operators ≺, ≻, ∆≺

and ∆≻ have to fulfil some compatibility relations. In particular, for all x, y ∈ H+, the prod-
uct · of H is retrieved by x · y = x ≺ y + x ≻ y and the coproduct ∆ of H is retrieved by
∆(x) = 1⊗ x+∆≺(x) + ∆≻(x) + x⊗ 1. Recall that an element x ∈ H+ is totally primitive if
∆≺(x) = 0 = ∆≻(x).

The Hopf algebra FQSym admits a bidendriform bialgebra structure [Foi05]. Indeed, for all
σ, ν ∈ S set

(72) Fσ ≺ Fν :=
∑

π ∈ σ�ν
π|π|=σ|σ|

Fπ,

(73) Fσ ≻ Fν :=
∑

π ∈ σ�ν
π|π|=ν|ν|+|σ|

Fπ ,

(74) ∆≺(Fσ) :=
∑

σ=uv
max(u)=max(σ)

Fstd(u) ⊗ Fstd(v),

(75) ∆≻(Fσ) :=
∑

σ=uv
max(v)=max(σ)

Fstd(u) ⊗ Fstd(v),

where max(u) is the maximal letter of the word u.

Proposition 6.12. If ≡ is an equivalence relation defined on A∗ satisfying the conditions of
Theorem 6.1 and additionally, for all u, v ∈ A∗, the relation u ≡ v implies u|u| = v|v|, then, the
family defined in (25) spans a bidendriform sub-bialgebra of FQSym, and is free as an algebra,
cofree as a coalgebra, self-dual, free as a dendriform algebra on its totally primitive elements,
and the Lie algebra of its primitive elements is free.

Proof. It is enough to show that the operators ≺, ≻, ∆≺ and ∆≻ of FQSym are well-defined
in the Hopf subalgebra of FQSym spanned by the elements {Pσ̂}σ̂∈S/≡

. Indeed, the results
of Foissy [Foi05] imply the rest of the proposition.

First, by Theorem 6.1, for all σ̂ ∈ S/≡, the coproduct ∆(Pσ̂), expanded on elements Fν⊗Fπ

can be expressed on elements Pν̂ ⊗ Pπ̂. Let us show that is still the case for the coproduct
y := ∆≺(Pσ̂). Assume that an element Fν ⊗ Fπ arises in y. Then, by definition of ∆≺, there
is σ ∈ σ̂ such that σ = uv, ν = std(u), π = std(v) and the maximal letter of uv is in the
factor u. Let us shows that the element Fν′ ⊗ Fπ where ν′ ≡ ν also arises in y. Since ≡ is
compatible with the destandardization process, there is a word u′ such that eval(u′) = eval(u)
and std(u′) = ν′. Thus, u ≡ u′ and since ≡ is a congruence, u′v ≡ uv, showing that Fν′ ⊗ Fπ

also arises in y. In the same way, if π′ ≡ π, the element Fν ⊗ Fπ′ arises also in y. Hence, ∆≺

is well-defined and in an analogous way, ∆≻ also is.
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Finally, by Theorem 6.1, for all σ̂, ν̂ ∈ S/≡, the product x := Pσ̂ ·Pν̂ , expanded on elements
Fπ can be expressed on elements Pπ̂. That is still the case for the product y := Pσ̂ ≺ Pν̂

because by definition of ≺, all the elements Fπ arising in x such that π|π| = σ|σ| arise also in
y. Since the equivalence classes of ≡ only contain words ending by the same letter, y can be
expressed on elements Pπ̂ . In the same way, ≻ is well-defined. �

The equivalence relation ≡B satisfies the premises of Proposition 6.12 so that Baxter is
free as an algebra, cofree as a coalgebra, self-dual, free as a dendriform algebra on its totally
primitive elements, and the Lie algebra of its primitive elements is free.

6.6. The dual Hopf algebra Baxter⋆.

6.6.1. Description of Baxter⋆. Let {P⋆
J}J∈T BT be the dual basis of the basis {PJ}J∈T BT .

The Hopf algebra Baxter⋆, dual of Baxter, is a quotient Hopf algebra of FQSym⋆. More
precisely,

(76) Baxter⋆ = FQSym⋆/I

where I is the Hopf ideal of FQSym⋆ spanned by the relations F⋆
σ = F⋆

ν whenever σ≡Bν.

Let φ : FQSym⋆ → Baxter⋆ be the canonical projection, mapping F⋆
σ on P⋆

J where J :=
P(σ). By definition, the product of Baxter⋆ is

(77) P⋆
J0
·P⋆

J1
= φ (F⋆

σ ·F
⋆
ν)

where σ and ν are any permutations such that P(σ) = J0 and P(ν) = J1. By Proposition 6.3
and then by duality, the basis {P⋆

J}J∈T BT is a set-algebra basis of Baxter⋆. Moreover, due to
the fact that Baxter⋆ is a quotient of FQSym⋆, the number of terms occurring in a product
P⋆

J0
·P⋆

J1
depends only of the number m (resp. n) of nodes of each binary tree of J0 (resp. J1)

and is
(
m+n
m

)
. For example,

P⋆ ·P⋆ = P⋆ +P⋆ +P⋆ +P⋆ +P⋆

+P⋆ +P⋆ +P⋆ +P⋆ +P⋆ .
(78)

In the same way, the coproduct of Baxter⋆ is

(79) ∆(PJ ) = (φ⊗ φ) (∆ (F⋆
σ))

where σ is any permutation such that P(σ) = J . By Proposition 6.3 and then by duality, the
basis {P⋆

J}J∈T BT is a set-coalgebra basis of Baxter⋆. Moreover, the number of terms occurring
in a coproduct ∆ (PJ ) depends only of the number n of nodes of each binary trees of J and is
n+ 1. For example,

(80) ∆P⋆ = 1⊗P⋆ +P⋆ ⊗P⋆ +P⋆ ⊗P⋆ +P⋆ ⊗P⋆ +P⋆ ⊗1.

6.6.2. Non-triviality of the isomorphism between Baxter and Baxter⋆. Considering the map
θ′ : PBT →֒ FQSym that is the injection fromPBT to FQSym, ψ : FQSym↔ FQSym⋆ the
isomorphism from FQSym to FQSym⋆ defined by ψ(Fσ) = F⋆

σ−1 , and φ : FQSym⋆
։ PBT⋆

the surjection from FQSym⋆ to PBT⋆, it is well-known from [HNT05] that the map φ′ ◦ψ ◦ θ′

induces an isomorphism between PBT and PBT⋆. Hence, since by Proposition 6.12, the Hopf
algebrasBaxter and Baxter⋆ are isomorphic, it is natural to test if an analogous map is still an
isomorphism between Baxter and Baxter⋆. However, denoting by θ : Baxter →֒ FQSym the
injection from Baxter to FQSym and φ : FQSym⋆

։ Baxter⋆ the surjection from FQSym⋆
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to Baxter⋆ defined above, the map φ ◦ ψ ◦ θ : Baxter → Baxter⋆ is not an isomorphism.
Indeed:

φ ◦ ψ ◦ θ

(
P

)
= φ ◦ ψ (F2143 + F2413) = φ (F⋆

2143 + F⋆
3142) = P⋆ +P⋆ ,

(81)

φ ◦ ψ ◦ θ

(
P

)
= φ ◦ ψ (F3142 + F3412) = φ (F⋆

2413 + F⋆
3412) = P⋆ +P⋆ ,

(82)

showing that φ ◦ ψ ◦ θ is not injective.

6.6.3. A pair of graded graphs in duality. Following Fomin [Fom94], we can build a pair of
graded graphs in duality (GP, GP⋆). The set of vertices of GP and GP⋆ is the set of pairs of
twin binary trees. There is an edge between the vertices J and J ′ in GP (resp. in GP⋆) if PJ′

(resp. P⋆
J′) arises in the product PJ · P (resp. in the product P⋆

J · P
⋆ ). Figure 13 (resp.

Figure 14) shows the graded graph GP (resp. GP⋆) restricted to vertices of order smaller than
5.

6.7. Primitive and totally primitive elements.

6.7.1. Primitive elements. Since the family {EJ}J∈C , where C is the set of connected pairs of
twin binary trees are indecomposable elements of Baxter, its dual family {E⋆

J}J∈C forms a
basis of the Lie algebra of the primitive elements of Baxter⋆. By Proposition 6.12, this Lie
algebra is free.

6.7.2. Totally primitive elements. Following [Foi05], the generating series BT (z) of the totally
primitive elements of Baxter is

(83) BT (z) =
B(z)− 1

B(z)2
.

First dimensions of totally primitive elements of Baxter are 0, 1, 0, 1, 4, 19, 96, 511, 2832,
16215, 95374, 573837. Here follows a basis of the totally primitive elements of Baxter of order
1, 3 and 4:

(84) P ;

(85) P −P ;

P +P +P +P −P −P −P ,

P −P ,

P −P ,

P −P .

(86)
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Figure 13. The graded graph GP restricted to vertices of order smaller than 5.
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Figure 14. The graded graph GP⋆ restricted to vertices of order smaller than 5.
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