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Abstract

A set of linearly constrained permutation matrices are proposed for constructing a class of permutation codes. Making use of

linear constraints imposed on the permutation matrices, we can formulate a minimum Euclidian distance decoding problem for

the proposed class of permutation codes as a linear programming (LP) problem. The main feature of this class of permutation

codes, called LP decodable permutation codes, is this LP decodability. It is demonstrated that the LP decoding performance of

the proposed class of permutation codes is characterized by the vertices of the code polytope of the code. Two types of linear

constraints are discussed; one is structured constraints and another is random constraints. The structured constraints such as pure

involution lead to an efficient encoding algorithm. On the other hand, the random constraints enable us to use probabilistic methods

for analyzing several code properties such as the average cardinality and the average weight distribution.

Index Terms: permutation codes, linear programming, polytope, decoding, error correction

I. INTRODUCTION

The class of linear codes defined over a finite field is ubiquitously employed in digital equipments for achieving reliable

communication and storage systems. For example, the class of codes includes practically important codes such as Reed-Solomon

codes, BCH codes, and LDPC codes. The linearity of codes enables us to use efficient encoding and decoding algorithms based

on their linear algebraic properties.

On the other hand, there are some classes of nonlinear codes which are interesting from both theoretical and practical points

of view. The class of permutation codes is such a class of nonlinear codes.

The origin of permutation codes dates back to the 1960s. Slepian [17] proposed a class of simple permutation codes, which

is referred to as permutation modulation, and efficient soft decoding algorithms for these codes. The variant I code [17] is

obtained by applying all the permutations to the initial vector

(

n1︷ ︸︸ ︷
µ1, µ1 . . . , µ1

n2︷ ︸︸ ︷
µ2, . . . , µ2 · · ·

nk︷ ︸︸ ︷
µk, µk . . . , µk),

where µi is a real value and n = n1 + · · ·+nk. This research has been extended and investigated by a number of researchers.

Biglieri and Elia [19], Karlof [18], Ingemarsson [20] studied optimization of the initial vector of the permutation modulation.

Berger et al. [21] discussed applications of permutation codes to source coding problems.

There is another thread of researches on a class of permutation codes of length n whose codeword contains exactly n-distinct

symbols; i.e., any codeword can be obtained by applying a permutation to an initial vector, e.g., (0, 1, . . . , n− 1).

Some fundamental properties of such permutation codes were discussed in Blake et al. [1], and Frankl and Deza [8]. Vinck

[13] [14] proposed applications of permutation codes for power-line communication and this triggered subsequent works on
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permutation codes. Wadayama and Vinck [16] presented a multi-level construction of permutation codes with large minimum

Hamming distance. A number of constructions for permutation codes have been developed, including the construction given

in [4] [6]. Especially, the idea of a distance-preserving map due to Vinck and Ferreira [15] had influence on the study of

permutation codes such as subsequent works by Chang et al. [2] [3].

Recently, rank modulation codes for flash memory proposed by Jiang et al. [9] [10] generated renewed interest in permutation

codes. For example, for flash memory coding, Kløve et al. gave a new construction for permutation codes based on Chebyshev

Distance [11], which is an appropriate distance measure for flash memory coding. Barg and Mazumdar [24] also studied some

fundamental bounds on permutation codes in terms of the Kendall tau distance.

In order to employ a permutation code in a practical application, efficient encoding and soft-decoding algorithms are crucial to

achieve reliable communication over noisy channels, such as an AWGN channel. Nonlinearity of permutation codes prevents

the use of conventional encoding and decoding techniques based on linear algebraic properties. Although much works on

permutation codes have been conducted, an aspect of efficient soft-decoding has not been intensively discussed so far. Therefore,

there is still room for further researches on permutation codes with efficient encoding and soft-decoding algorithms.

In this paper, a new class of permutation codes called LP decodable permutation codes is introduced. An LP decodable

permutation code is obtained by applying permutation matrices satisfying certain linear constraints to an n-dimensional real

initial vector.

It is well known that permutation matrices are vertices of the Birkhoff polytope [35], which is the set of doubly stochastic

matrices. Thus, a set of linearly constrained permutation matrices can be expressed by a set of linear equalities and linear

inequalities. This property leads to the main feature of this class of permutation codes: LP-decodable property. For this class of

codes, a decoding problem can be formulated as a linear programming (LP) problem. This means that we can exploit efficient

LP solvers based on simplex methods or interior point methods to decode LP decodable permutation codes.

Furthermore, for a combination of this class of codes and its LP decoding, the maximum likelihood (ML) certificate property

can be proved as in the case of the LP decoding for LDPC codes [7]. This is due to the fact that the LP problem given in this

paper is a relaxed problem of an ML decoding problem.

In general, a fundamental polytope [27] [7] used for LP decoding of LDPC codes contains a number of fractional vertices,

which are a major source of sub-optimality of LP decoding. The constraints corresponding to an LDPC matrix are defined

based on F2-arithmetics. On the other hand, an LP decoder works on the real number field. This domain mismatch produces

many undesirable fractional vertices on the fundamental polytope. One motivation of the present study is to establish a coding

scheme without this mismatch. In other words, the LP decodable permutation codes are defined on the real number field and

are decoded using an LP solver working on the real number field.

The organization of the paper is as follows. Section II introduces some definitions and notation required for discussion. Section

III gives the definition of the LP decodable permutation codes and its decoding algorithm. Section IV provides analysis for

decoding performance of LP decoding and ML decoding. Section V presents some classes of permutation codes which are

easy to encode. Section VI offers probabilistic analysis on the cardinality and weight distribution of random LP decodable

permutation codes. Section VII gives a concluding summary.
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II. PRELIMINARIES

A. Notation and definition

In this paper, matrices are represented by capital letters and a vector is assumed to be a column vector. Let X be an n× n

real matrix. The notation X ≥ 0 means that every element in X is non-negative. The notation vec(X) represents a vectorization

of X given by

vec(X)
4
= (X1,1 · · ·X1,n X2,1 · · ·X2,n, X3,1 · · ·Xn,n)

T
.

The vector 1 is the all-one vector whose length is determined by the context. The norm || · || denotes the Euclidean norm

given by ||x|| 4= (xTx)1/2. The trace function trace(X) returns the sum of the diagonal elements of X . The sets R,Z are the

sets of real numbers and integers, respectively. The set [α, β] denotes the set of consecutive integers from α ∈ Z to β ∈ Z.

The symbol E means 
a1

...

am

E


b1
...

bm

⇔ ∀i ∈ [1,m], ai Ei bi,

where Ei is either = or ≤. For simplicity, the notation E = (E1,E2, . . . ,Em)T is used to define E (e.g., E = (≤,=,≤)T ).

The next definition gives a class of matrices of crucial importance in this paper.

Definition 1 (Permutation matrix): An n × n binary real matrix X
4
= (Xi,j)i,j∈[1,n] ∈ {0, 1}n×n is called a permutation

matrix if and only if

∀i, j ∈ [1, n],
∑

j′∈[1,n]

Xi,j′ = 1,
∑

i′∈[1,n]

Xi′,j = 1. (1)

The set of n× n permutation matrices is denoted by Πn. The cardinality of Πn is n!.

Removing the binary constraint from the definition of the permutation matrices, we have the definition of doubly stochastic

matrices.

Definition 2 (Doubly stochastic matrix): An n×n non-negative real matrix X
4
= (Xi,j)i,j∈[1,n] is called a doubly stochastic

matrix if and only if (1) holds.

The following theorem for a double stochastic matrix implies that the set of doubly stochastic matrices is a convex polytope.

Theorem 1 (Birkhoff-von Neumann theorem [35] [36] ): Every doubly stochastic matrix is a convex combination of permu-

tation matrices.

The set of n × n doubly stochastic matrices is a polytope called the Birkhoff polytope Bn [35], which is also known as

perfect matching polytope. The Birkhoff polytope is a (n − 1)2-dimensional convex polytope with n!-vertices and n2-facets

[34]. The Birkhoff-von Neumann theorem implies that any vertex (i.e., extreme point) of the Birkhoff polytope is a permutation

matrix and vice versa.

B. LP decoding for permutation vectors

Assume that s ∈ Rn, called the initial vector, is given1. The set of images of s by left action of X ∈ Πn is called the

permutation vectors of s, which is given by

Λ(s)
4
= {Xs | X ∈ Πn}. (2)

1The elements in s are not necessarily distinct each other.
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For example, if s = (0, 1, 2)T , then Λ(s) is given by

Λ(s) = {(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1)(2, 1, 0)}.

We here consider a situation such that a vector of Λ(s) is transmitted to a receiver over an AWGN channel. In such a case,

it is desirable to use an ML decoding algorithm to estimate the transmitted vector. The ML decoding rule can be describe as

x̂ = arg min
x∈Λ(s)

||y − x||2, (3)

where y is a received word.

The next theorem states that the ML decoding for Λ(s) can be formulated as the following LP problem.

Theorem 2 (LP decoding and ML certificate property): Assume that a vector in Λ(s) is transmitted over an AWGN channel

and that y ∈ Rn is received on the receiver side. We also suppose that x̂ = arg minx∈Λ(s) ||y − x||2 is uniquely determined

from y. Let X∗ be the solution of the following LP problem:

maximize trace(CTX)

subject to

X ∈ Rn×n

X1 = 1

1TX = 1T

X ≥ 0, (4)

where C
4
= ysT . If X∗ is integral, x̂ = X∗s holds.

Proof: The linear constraints in the above LP problem implies that X is constrained to be a doubly stochastic matrix.

On the other hand, the ML decoding rule can be recast as follows:

x̂ = arg min
x∈Λ(s)

||y − x||2

= (arg min
X∈Πn

||y −Xs||2)s

= (arg min
X∈Πn

(||y||2 − 2yT (Xs) + ||Xs||2))s

= (arg max
X∈Πn

yTXs)s = (arg max
X∈Πn

trace(CTX))s,

where C = ysT . Note that

trace(CTX) =

n∑
i=1

n∑
j=1

Ci,jXi,j . (5)

Since the vertices of the Birkhoff polytope is a permutation matrix, the ML decoding can be formulated as an integer LP (ILP)

problem:

maximize trace(CTX)

subject to X ∈ Bn, X is an integral matrix.

By removing the integral constraint (X is an integral matrix), we obtain the LP problem (4). If the solution of this LP problem

is integral, it must coincide with the solution of the above ILP problem.

As we have seen, the feasible set of the above LP problem is the Birkhoff polytope. Thus, an output of the above LP is

highly likely integral.
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The following example illustrates an LP decoding procedure.

Example 1: Let s
4
= (0, 1)T . In this case, the set of permutation vectors becomes Λ(s) = {(0, 1)T , (1, 0)T }. Assume that

y = (0.9, 0.2)T is received. In this case,

C = ysT =

 0.9

0.2

 (0 1) =

 0 0.9

0 0.2


is obtained. By letting

X =

 X1,1 X1,2

X2,1 X2,2

 ,

we have the objective function

trace

 0 0

0.9 0.2

 X1,1 X1,2

X2,1 X2,2

 = 0.9X1,2 + 0.2X2,2.

As a result, the LP decoding problem is given by

maximize 0.9X1,2 + 0.2X2,2 subject to

X1,1 +X1,2 = 1, X2,1 +X2,2 = 1,

X1,1 +X2,1 = 1, X1,2 +X2,2 = 1

X1,1, X1,2, X2,1, X2,2 ≥ 0.

The solution of the problem is

X∗ =

 0 1

1 0

 ,

and then we have the estimated word X∗s = (1, 0)T .

III. LINEARLY CONSTRAINED PERMUTATION MATRICES AND LP DECODABLE PERMUTATION CODES

It is natural to consider an extension of the LP decoding presented in the previous section. Additional linear constraints

imposed on Πn produce a restricted set of Λ(s). A decoding problem of such a set can be formulated as an LP problem, as

in the case of the ML decoding of Λ(s).

A. Definitions

The next definition for linearly constrained permutations gives an LP-decodable subset of Λ(s).

Definition 3 (linearly constrained permutation matrix): Let m,n be positive integers. Assume that A ∈ Zm×n2

, b ∈ Zm

and E ∈ {=,≤}m are given. A set of linearly constrained permutation matrices is defined by

Π(A, b,E)
4
= {X ∈ Πn | A vec(X) E b}. (6)

Note that A vec(X) E b formally represents additional m equalities and inequalities. These additional constraints provide a

restriction on permutation matrices.

From the linearly constrained permutation matrices, LP decodable permutation codes are naturally defined as follows.
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Definition 4 (LP decodable permutation code): Assume the same set up as in Definition 3. Suppose also that s ∈ Rn is

given. The set of vectors Λ(A, b,E, s) given by

Λ(A, b,E, s)
4
= {Xs ∈ Rn | X ∈ Π(A, b,E)} (7)

is called an LP decodable permutation code.

If ⇒ X(1)s 6= X(2)s holds for any X(1), X(2)(X(1) 6= X(2)) ∈ Π(A, b,E), then an LP decodable permutation code is said

to be non-singlar. Namely, there is one-to-one correspondence between permutation matrices in Π(A, b,E) and codewords of

Λ(A, b,E, s) if a code is non-singular. Note that a code may become singular if identical symbols exist in s.

The next example shows a case where an additional linear constraint imposes a restriction on permutation matrices.

Example 2: Consider the set of linearly constrained permutation matrices which consists of 4 × 4 permutation matrices

satisfying the linear constraint trace(X) = 0. The constraint implies that the diagonal elements of the permutation matrices

are constrained to be zero. This means that such permutation matrices correspond to permutations without fixed points, which

are called derangements. For n = 4, there are 9-derangement permutation matrices as follows:
0100

1000

0001

0010




0100

0010

0001

1000




0100

0001

1000

0010




0010

1000

0001

0100




0010

0001

1000

0100




0010

0001

0100

1000




0001

1000

0100

0010




0001

0010

1000

0100




0001

0010

0100

1000

 .

In this case, the triple (A, b,E) is defined by

A = vec(I), b = 0, E = (=), (8)

where I is the 4×4 identity matrix. Multiplying these matrices to the initial vector s = (0, 1, 2, 3)T from left, we immediately

obtain the members of Λ(A, b,E, (0, 1, 2, 3)T ):

(1, 0, 3, 2)T , (1, 2, 3, 0)T , (1, 3, 0, 2)T ,

(2, 0, 3, 1)T , (2, 3, 0, 1)T , (2, 3, 1, 0)T ,

(3, 0, 1, 2)T , (3, 2, 0, 1)T , (3, 2, 1, 0)T .

(9)

This code is thus non-singular. If the initial vector is

s = (0, 0, 0, 0)T ,

then the resulting code has the only codeword (0, 0, 0, 0). In this case, the code becomes singular.
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B. LP decoding for LP decodable permutation codes

The LP decoding of Λ(A, b,E, s) is a natural extension of the LP decoding for Λ(s). Assume that a vector in Λ(A, b,E, s)

is transmitted over an AWGN channel and y ∈ Rn is given. The procedure for the LP decoding of Λ(A, b,E, s) is given as

follows.

LP decoding for an LP decodable permutation code
1) Solve the following LP problem and let X∗ be the solution.

maximize trace(CTX)

subject to

X ∈ Rn×n,

X ≥ 0,

X1 = 1,

1TX = 1T ,

A vec(X) E b, (10)

where C = ysT .

2) Output X∗s if X∗ is integral. Otherwise, declare decoding failure.

C. Remarks

Several remarks should be made regarding the LP decoding for Λ(A, b,E, s).

The feasible set of (10) is a subset of the feasible set of (4). All the matrices in Π(A, b,E) are feasible and permutation

matrices which do not belong to Π(A, b,E) are infeasible. This implies that all the integral points of the feasible set (10)

coincide with Π(A, b,E).

The LP problem (10) is a relaxed problem of the ML decoding problem over AWGN channels:

minimize ||y − x||2 subject to x ∈ Λ(A, b,E, s). (11)

This can be easily shown, as in the case (4). As a consequence of the above properties on integral points and on the relaxation,

it can be concluded that the LP decoding for Λ(A, b,E, s) has the ML-certificate property as well. Namely, if the output of LP

decoding is not decoding failure (i.e., X∗ is integral), the output is exactly the same as the solution of the minimum distance

decoding problem (11). Note that the LP decoding presented above becomes the ML decoding if the code polytope is integral.

The feasible set of the LP problem (10) is the intersection of the Birkhoff polytope and a (possibly unbounded) convex

set defined by the additional constraints. The intersection becomes a polytope which is called a code polytope. The decoding

performance of LP decoding is closely related to the code polytope given by the following definition.

Definition 5 (Code polytope): The polytope P(A, b,E) defined by

P(A, b,E)
4
= Bn ∩ {X ∈ Rn×n | A vec(X) E b} (12)

is called the code polytope for Π(A, b,E), where Bn is the Birkhoff polytope corresponding to Πn.



7

Birkhoff polytope

Integral vertex

Fractional 
vertex

Code polytope

Fig. 1. Code polytope P(A, b,E)

Figure 1 illustrates a code polytope. It should be remarked that the set of integral vertices of the code polytope coincides

with Π(A, b,E). Due to additional linear constraints A vec(X)E b, a code polytope may have some fractional vertices, which

contain components of fractional number.

In an LP decoding process, these fractional vertices become possible candidates of an LP solution. Thus, these fractional

vertices can be considered as pseudo permutation matrices which degrade the decoding performance of the LP decoding.

IV. ANALYSIS FOR DECODING PERFORMANCE OF LP DECODING AND ML DECODING

In this section, upper bounds on decoding error probability for LP decoding and ML decoding are presented.

A. Upper bound on LP decoding error probability

An advantage of the LP formulation of a decoding algorithm is its simplicity for detailed decoding performance analysis.

The geometrical properties of a code polytope is closely related to its decoding performance of the LP decoding. We can

evaluate the block error probability of the proposed scheme with reasonable accuracy if we have enough information on the

set of vertices of a code polytope. The bound presented in this section has close relationship to the pseudo codeword analysis

on LDPC codes [5].

In this section, a set of parameters A, b,E, s are assumed to be given. Let V be the set of vertices of the code polytope

P(A, b,E, s). In general, V contains fractional vertices.

The next lemma gives bridge between a code polytope and corresponding decoding error probability.

Lemma 1 (Upper bound on block error rate for LPD): Assume that a codeword Xs is transmitted to a receiver via an

AWGN channel, where X ∈ Π(A, b,E). The additive white Gaussian noise with mean 0 and variance σ2 is assumed. The

receiver uses the LP decoding algorithm presented in the previous section. In this case, the block error probability PLP (X) is

upper bounded by

PLP (X) ≤
∑

X̃∈V \{X}

Q

(
||Xs||2 − (X̃s)TXs

σ||X̃s−Xs||

)
, (13)
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where the Q-function is the tail probability of the normal Gaussian distribution, which is given by

Q(x)
4
=

∫ ∞
x

1√
2π

exp

(
− t

2

2

)
dt. (14)

Proof: Let y = Xs + z, where z is an additive white Gaussian noise term. We first consider the pairwise block error

probability Pe(X, X̃) between X and X̃ ∈ Π(A, b,E), which is given by

Pe(X, X̃)
4
= Prob[yT X̃s ≥ yTXs]. (15)

Namely, Pe(X, X̃) is the probability such that X̃s is more likely than Xs for a given y under the assumption that only X̃

and X are allowable permutation matrices.

The difference yT X̃s− yTXs can be transformed into

yT X̃s− yTXs = (Xs+ z)T (X̃s−Xs)

= (X̃s−Xs)T z + (X̃s−Xs)TXs

= (X̃s−Xs)T z

− (||Xs||2 − (X̃s)TXs). (16)

We thus have

Prob[yT X̃s ≥ yTXs] = Prob[aT z ≥ b], (17)

where a ∈ Rn and b ∈ R are given by

a
4
= X̃s−Xs, (18)

b
4
= ||Xs||2 − (X̃s)TXs. (19)

The left-hand side of aT z ≥ b is a linear combination of Gaussian noises. The mean of aT z is zero and the variance is

given by

V ar[aT z] = σ2||a||2. (20)

The probability such that the Gaussian random variable aT z takes a value larger than or equal to b can be expressed as

Pe(X, X̃) = Prob[aT z ≥ b]

= Q

(
b

σ||a||

)
. (21)

Combining the union bound and this pairwise error probability, we immediately obtain the claim of this lemma.

The upper bound on decoding error probability in Lemma 1 naturally leads to a pseudo distance measure on Rn×n.

Definition 6 (Pseudo distance): The function

Ds(X, X̃)
4
=
||Xs||2 − (X̃s)TXs

||X̃s−Xs||
(22)

is called the pseudo distance where X, X̃ ∈ Rn×n are doubly stochastic matrices.

Note that Ds(·, ·) is not a distance function since it does not satisfy the axioms of distance. In terms of decoding error

probability, geometry of the vertices of a code polytope should be established based on this pseudo distance.
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For example, in high SNR regime, the minimum pseudo distance

∆s
4
= min
X∈Π(A,b,E),X̃∈V,X̃ 6=X

Ds(X, X̃) (23)

is expected to be highly influential to the decoding error probability.

Example 3: Suppose the linear constraint trace(X) = 1 where n = 3. In this case, the code polytope has the following

5-vertices:

M (1) 4
=


1 0 0

0 0 1

0 1 0

 , M (2) 4=


0 1 0

1 0 0

0 0 1

 ,

M (3) 4
=


0 0 1

0 1 0

1 0 0

 , M (4) 4=


1/3 0 2/3

2/3 1/3 0

0 2/3 1/3

 ,

M (5) 4
=


1/3 2/3 0

0 1/3 2/3

2/3 0 1/3

 . (24)

In this case, the set of vertices consists of 3-integral vertices and 2-fractional vertices. Let s = (0, 1, 2)T . The pseudo distance

distribution form M (1) is given by

Ds(M
(1),M (2)) = 1.388730

Ds(M
(1),M (3)) = 1.224745

Ds(M
(1),M (4)) = 1.224745

Ds(M
(1),M (5)) = 1.224745.

B. Upper bound on ML decoding error probability

Assume the same setting as in the previous subsection. In the case of ML decoding, we can neglect the effect of fractional

vertices. Therefore, we obtain an upper bound on the ML block error probability

PML(X) ≤
∑

X̃∈Π(A,b,E)\{X}

Q

(
||Xs||2 − (X̃s)TXs

σ||X̃s−Xs||

)

=
∑

X̃∈Π(A,b,E)\{X}

Q

(
||X̃s−Xs||

2σ

)
(25)

based on a similar argument. The above equality holds since ||Xs|| = ||X̃s|| holds for any X̃ ∈ Π(A, b,E). Note that this

simplification cannot apply to X̃ if X̃ is a fractional vertex. This is because the preservation of Euclidean norm does not hold

in general for a doubly stochastic matrix. For example, we have∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


1/3 2/3 0

0 1/3 2/3

2/3 0 1/3

 s

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ = 1.9147 6= ||s|| =
√

5, (26)

where s = (0, 1, 2)T .
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If Π(A, b,E) have a group structure under the matrix multiplication, the above upper bound can be further simplified as

PML ≤
∑

X̃∈Π(A,b,E)\{I}

Q

(
||X̃s− s||

2σ

)
. (27)

It should be remarked that the second upper bound (27) is independent of the transmitted codeword. In order to prove the

bound (27), it is sufficient to prove Π(A, b,E) is distance invariant with respect to the Euclidean distance.

In the following, the distance invariant property of Π(A, b,E) will be shown. Let us define the Euclidean distance enumerator

by

WX(Z)
4
=

∑
X̃∈Π(A,b,E)

Z ||Xs−X̃s||. (28)

This enumerator has the information on distance distributions measured from the permutation matrix X .

The next lemma states that the Euclidean distance enumerator does not depend on the center point X if the linearly

constrained permutation matrices have a group structure. This property can be regarded as a distance invariance property of

permutation codes.

Lemma 2 (Distance invariance): If Π(A, b,E) forms a group under the matrix multiplication over R, the equality

WX(Z) = W (Z) (29)

holds for any X ∈ Π(A, b,E). The weight enumerator W (Z) is defined by W (Z) = WI(Z) where I is the n × n identity

matrix.

Proof: Since Π(A, b,E) forms a group, the inverse X−1 belongs to Π(A, b,E) as well. Since the inverse X−1 induces

a symbol-wise permutation, it is evident that

||Xs− X̃s|| = ||X−1Xs−X−1X̃s|| = ||s−X−1X̃s|| (30)

holds for any X, X̃ ∈ Π(A, b,E)(X 6= X̃). The Euclidean distance enumerator can be rewritten as

WX(Z) =
∑

X̃∈Π(A,b,E)

Z ||Xs−X̃s||

=
∑

X̃∈Π(A,b,E)

Z ||s−X
−1X̃s||

=
∑

X′∈Π(A,b,E)

Z ||s−X
′s|| = W (Z). (31)

The second equality is a consequence of Eq. (30). The last equality is due to the assumption that Π(A, b,E) forms a group.

Example 4: We have performed the following computer experiment for the following two codes:

1) LP decodable permutation code corresponding to the derangements of length 5. The additional linear constraint is

trace(X) = 0. A transmitted word (1, 0, 4, 2, 3)T is assumed. The code polytope has 44-vertices which are all integral

vertices.

2) LP decodable permutation code of length 5 corresponding to an additional linear constraint X1,1+X5,5 = 1. A transmitted

word (0, 4, 3, 2, 1)T is assumed. The code polytope has 330-vertices. The set of vertices contains 36-integral vertices and

294-fractional vertices.

The AWGN channel with noise variance σ2 is assumed. The signal-to-noise ratio is defined by SNR = 10 log10

(
1/σ2

)
. The

LP decoding described in the previous section was employed for decoding.
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Figure 2 presents the upper bounds and simulation results on block error probability of these permutation code. It is readily

observed that the upper bounds presented in this section shows reasonable agreement with the simulation results.

The both codes have the same minimum pseudo distance 0.707107 and similar cardinalities (44 and 36) but the derangement

code provides much better block error probabilities than those of the code with the constraint X1,1 +X5,5 = 1. This is because

the existence of fractional vertices (i.e., 294-fractional vertices) severely degrades the decoding performance of the code with

the constraint X1,1 +X5,5 = 1 compared with the derangement code.

10-2
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100
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Upper bound: derangement
LP decoding: derangement
Upper bound: X1,1+X5,5=1
LP decoding: X1,1+X5,5=1

Fig. 2. Comparison of upper bounds and simulation results for LP decoding on block error probabilities (n = 5)

V. SOME CLASSES OF LINEARLY CONSTRAINED PERMUTATION CODES

In this section, we will discuss some classes linearly constrained permutation codes which are easy to encode.

A. Repetition permutation codes

Let η be a positive integer. Assume that a positive integer n is a multiple of η. The repetition permutation codes with

repetition order η is defined by

{((Y s1)T , (Y s2)T , . . . , (Y sη)T )T ∈ Rn | Y ∈ Πn/η}, (32)

where s1, s2, . . . , sη ∈ Rn/η . We here assume that all the elements in s1, . . . , sη are distinct each other. It is evident that the

cardinality of the code is given by (n/η)!. The minimum Hamming distance of the code is 2η because the minimum Hamming

distance of Y si is 2 for any i ∈ [1, η].

It should be remarked that the repetition permutation code is a linearly constrained permutation code. The next example

demonstrate linear constraints for the repetition permutation codes.

Example 5: Let

X =


X1,1 X1,2 X1,3 X1,4

X2,1 X2,2 X2,3 X2,4

X3,1 X3,2 X3,3 X3,4

X4,1 X4,2 X4,3 X4,4

 .



12

The permutation matrices in Π4 satisfying the following set of linear constraints

X1,3 = X1,4 = X2,3 = X2,4 = 0 (33)

X3,1 = X3,2 = X4,1 = X4,2 = 0 (34)

X1,1 = X3,3, X1,2 = X3,4 (35)

X2,1 = X4,3, X2,2 = X4,4 (36)

defines the repetition permutation code of length 4 with repetition order 2.

B. Cartesian product codes

Suppose that η is a positive number and that n is positive multiple of η. A set of permutation matrices U ⊂ Πn/η is assumed

to be given. The cartesian product codes is defined by

{((Y1s1)T , (Y2s2)T , . . . , (Yηsη)T )T ∈ Rn | Y1, . . . , Yη ∈ U}, (37)

where s1, s2, . . . , sη ∈ Rn/η . The cardinality of cartesian product codes is thus given by |U |η if all the elements in s1, . . . , sη

are distinct each other. Note that the class of cartesian product codes can be defined based on a set of linear constraints as

well if U is defined by linear constraints.

C. Pure involution codes

In this subsection, we focus on the set of pure involutions, which produces a non-trivial class of permutation codes. It will

be shown that the class of the permutation codes defined based on the pure involutions possess several good properties. This

class of code can be encoded with an efficient greedy encoding algorithm. The cardinality of the code is much larger than the

repetition code with the same length and the same minimum Hamming distance.

An involution is a permutation which coincides with its inverse permutation. Namely, the necessary and sufficient condition

for a permutation matrix X ∈ Πn to be an involution is X = XT because the inverse matrix of a permutation matrix is the

transposition of it. A pure involution is an involution without fixed point; i.e., a permutation matrix X ∈ Πn is said to be a

pure involution if and only if X = XT and trace(X) = 0. In other words, the set of pure involutions is the intersection of

the set of involutions and the set of derangements.

A pure involution exists when n is a positive even number. The reason is as follows. The lower triangle below the diagonal

of X and the upper triangle above the diagonal must have the same number of ones since X = XT . This implies that the

number of ones in X should be even since the diagonal is constrained to be zero. A permutation matrix X ∈ Πn contains

n-ones. Thus, if n is odd, it is clear that no permutation matrix meets the constraints. Throughout this subsection, we assume

that n is an even positive number.

Let

Ωn
4
= {X ∈ Πn | X = XT , trace(X) = 0}.

It is known that the cardinality of the pure involutions is given by

|Ωn| = (n− 1)(n− 3)× · · · × 3× 1 =
n!

2n/2(n/2)!
. (38)
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The linearly constrained permutation codes defined based on the constraints X = XT , trace(X) = 0 is called the pure

involution codes. The triple for the pure involution codes are given by

A =



vec(In)

vec
(
F (2,1)

)
vec
(
F (3,1)

)
...

vec
(
F (n,n/2−1)

)


, b = 0, E = (=, . . . ,=)T , (39)

where F (i,j) ∈ {0, 1}n×n is the binary matrix defined by

F
(i,j)
a,b =


1, (a, b) = (i, j)

−1, (a, b) = (j, i)

0, otherwise.

1) Greedy encoding algorithm for pure involutions: A significant advantage of the pure involutions is that there exists an

efficient encoding algorithm. The procedure EncMap shown below can be considered as a greedy algorithm for a constraint

satisfaction problem without a back-tracking process.

EncMap

* Input: m ∈ [1, (n− 1)× (n− 3) · · · 3× 1] (message)

* Output: X ∈ Ωn (pure involution)

1) m := m− 1;

2) for (p := 0; p < n/2; p := p+ 1) {

3) ap := [m mod (2p+ 1)] + 1;

4) m := m div (2p+ 1);

5) }

6) ∀i, j ∈ [1, n], Xi,j := 0;

7) ∀i, j ∈ [1, n](i 6= j), Zi,j := 1; ∀i ∈ [1, n], Zi,i := 0;

8) for (p := n/2− 1; p ≥ 0; p := p− 1) {

9) j := arg min {j′ ∈ [1, n] :
∑n
i′=1 Zi′,j′ > 0};

10) i := arg min
{
k ∈ [1, n] :

∑k
i′=1 Zi′,j = ap

}
;

11) Xi,j := 1; Xj,i := 1;

12) ∀q ∈ [1, n], Zq,j := 0, Zj,q := 0, Zi,q := 0, Zq,i := 0;

13) }

14) Output X;

The arithmetic operation in the line 4 represents the division for integers; i.e., 5 div 2 = 2. There are some remarks on

EncMap. The part from the line 1 to 5 converts a message integer into an n/2-tuples:

(a0, a1, . . . , an/2−1) ∈ [1, 1]× [1, 3]× · · · × [1, n− 1].

The remaining part generates a pure involution according to the n-tuple (a0, a1, . . . , an/2−1).

The variables Zi,j represents whether Xi,j is determined (Zi,j = 0) or not (Zi,j = 1). On the diagonal elements of Zi,j are

initialized to be zero which means that the diagonal elements of Xi,j is determined to be zero.
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The generation of a pure involution is performed in a greedy manner from the left columns to the right columns. The

undetermined column with the smallest index is found in the line 9. In the line 10, the row index of ap-th undetermined

element is assigned to i. In the line 11, two ones are written at (i, j) and (j, i)-positions of X and the line 12 fixes the cross

regions around (i, j) and (j, i).

In an encoding process, for any p = N − t(t ∈ [1, N ]),
n∑

i′∈[1,n]

Zi′,j = (n− 1)− 2(t− 1) = 2p+ 1 (40)

holds at the line 10. This is because exactly two-columns and two-rows of Z are set to zero for each iteration due to the

constraints of the pure involution. In other words, the numbers of zero columns and zero rows are increased by two after an

iteration. This property guarantees that
n∑

i′∈[1,n]

Zi′,j ≥ ap (41)

holds for all p ∈ [0, N − 1]. Therefore, for any input m, the line 10 can find an index i satisfying

i = arg min

{
k ∈ [1, n] :

k∑
i′=1

Zi′,j = ap

}
.

The loop from the line 2 to 5 takes O(n)-time under the assumption that the basic big-number arithmetics can be done

within a unit time. The initialization process (lines 6 and 7) requires O(n2)-time. The most time consuming part of EncMap

is the loop from the line 8 to 13. In order to find i, j in lines 9 and 10, O(n)-times requires. The process in line 12 also needs

O(n)-time to carry it out. Therefore, the time complexity of the loop (from the line 8 to 13.) is O(n2), which dominates the

time complexity of EncMap.

From the definition shown above, it is evident that EncMap gives a injection map from [1, (n− 1)× (n− 3) · · · 3× 1] to

Ωn. Since the cardinality of Ωn is (n− 1)× (n− 3) · · · 3× 1, we can see that EncMap is a bijection.

There is an inverse map of EncMap from Ωn to [1, (n−1)×(n−3) · · · 3×1] because EncMap is a bijection. The procedure

DecMap gives the inverse map of EncMap.

DecMap

* Input: X ∈ Ωn (pure involution)

* Output: m ∈ [1, (n− 1)× (n− 3) · · · 3× 1] (message)

1) ∀i, j ∈ [1, n](i 6= j), Zi,j := 1; ∀i ∈ [1, n], Zi,i := 0;

2) for (p := n/2− 1; p > 0; p := p− 1) {

3) j := arg min {j′ ∈ [1, n] :
∑n
i′=1 Zi′,j′ > 0};

4) i :=
∑
i′∈[1,n] i

′I[Xi′,j = 1];

5) ap :=
∑i
i′=1 Zi′,j ;

6) ∀q ∈ [1, n], Zq,j := 0, Zj,q := 0, Zi,q := 0, Zq,i := 0;

7) }

8) m := 0;

9) for (p := n/2− 1; p ≥ 1; p := p− 1) {

10) m := (2p+ 1)m+ (ap − 1);

11) }

12) m := m+ 1;
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13) Output m;

Example 6: An encoding process of a pure involution matrix is illustrated in Fig.3. In this example, n = 6 is assumed.

The status of Xi,j and Zi,j are depicted by 6 × 6 cells in Fig.3. Namely, Zi,j = 1 (undetermined state) represents an empty

cell. A cell with label 0 (resp. 1) represents (Xi,j , Zi,j) = (0, 0) (resp. (Xi,j , Zi,j) = (1, 0)). At first, the diagonal cells

are set to be zero because of the constraint trace(X) = 0. The message is assumed to be m = 5. In this case, we have

a0 = 1, a1 = 3, a2 = 2. The shaded cells in Fig.3 (a) represents possible places to write the symbol 1. According to the part

of the message a2 = 2, the second shaded cell is determined to be 1. In Fig.3 (b), the symbol 1 is written on the symmetric

position and zeros are placed in the columns and rows corresponding to two 1’s. In a similar way (Fig.3 (b)–(e)), the empty

cells are filled with 0 or 1. As a result, we have a pure involution matrix (Fig.3 (f)).

0
0

1 0
0

0
0

0 0 1 0
0 0 0
1 0 0 0
0 0 0

0

0

0

0

0 0
0 0

0
0

0 0 1 0
0 0 0
1 0 0 0
0 0 0

0

0

0

0

0 0
0 1 0

0
0

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

0
0
0

0
1
0
0

0 0 0
0 1 0 0

0
0

0
0

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

0
0
0

0
1
0
0

0 0 0 1
0 1 0 0

0
0

0
0

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

0
0
0
1

0
1
0
0

0 0 0 1
0 1 0 0

0
0

0
0

(a) (b)

(c) (d)

(e) (f)

The shaded cells represent are possible places to write the symbol 1. In (a) and (b), there are 5 and 3-shaded cells, respectively. This means that 5× 3 = 15 pure involution

matrices exist when n = 6.

Fig. 3. An Encoding process of a pure involution matrix

2) Minimum Hamming distance of pure involution codes: Let s ∈ Rn be an initial vector whose components are distinct

each other. It is well known that the minimum Hamming distance of Λ(s) is given by

min
X,X′∈Πn(X 6=X′)

dH(Xs,X ′s) = 2. (42)

The minimum Hamming distance of the pure involution codes is larger than that of Λ(s).

Lemma 3 (Minimum distance): The minimum Hamming distance of the pure involution codes are given by

min
X,X′∈Ωn(X 6=X′)

dH(Xs,X ′s) = 4. (43)
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Proof: Assume that X,X ′ ∈ Ωn(X 6= X ′). Since X 6= X ′, there is an index pair (i, j) ∈ [1, n]2 satisfying Xi,j 6= X ′i,j .

Without loss of generality, we assume that Xi,j = 1 and X ′i,j = 0. An index l ∈ [1, n] satisfying Xi,l 6= X ′i,l must exist

because X and X ′ are permutation matrices. Due to the assumption Xi,j = 1 and X ′i,j = 0, we have Xi,l = 0 and X ′i,l = 1.

In a similar manner, there must be an index k satisfying Xk,j = 0, X ′k,j = 1. It is possible to continue this argument until a

sequence of index pairs constitutes a loop.

The set of the index pairs {(i, j) ∈ [1, n]2 | Xi,j 6= X ′i,j} is called a difference position set. The argument above implies that

the difference position set needs to be partitioned into several loops of even length. A loop means a sequence of adjacent index

pairs with the form (i1, i2)→ (i1, i3)→ (i4, i3)→ · · · → (i1, i2). If Xi1,i2 = 1 holds, then we have Xi1,i3 = 0, Xi4,i3 = 1 and

so on. Therefore, the length of a loop should be even because a loop with odd length gives inconsistent assignment Xi1,i2 = 0

at the end of the loop.

The shortest loop of even length have the form (i, j)→ (i, l)→ (k, l)→ (k, j)→ (i, j). If the difference potion set includes

this type of a loop of length 4, it must also contain another loop of length 4 with the form (j, i)→ (l, i)→ (l, k)→ (j, k)→

(j, i) because X = XT holds for any X,X ′ ∈ Ωn (See Fig.4). Let a = Xs and a′ = X ′s. If the difference position sets

consist of only such two symmetric loops of length 4, we have

au 6= a′u iff u ∈ {i, j, k, l}.

This implies that the smallest number of differences between Xs and X ′s is 4.

The proof of the above lemma indicates a way to enumerate the number of codewords at the minimum Hamming distance.

For a fixed Xs, the number of codewords X ′s satisfying dH(Xs,X ′s) = 4 can be obtained by enumerating the number of

allocations of two symmetric loops.

*

* *
*

*

*
* *

i

j

k

l

The left loop of length 4 represents (i, j)→ (i, l)→ (k, l)→ (k, j)→ (i, j) and the right loop corresponds to (j, i)→ (l, i)→ (l, k)→ (j, k)→ (j, i). Note that

there are 4-columns which include elements of the difference position set. These columns correspond to the positions on which the symbols of Xs and X′s differ.

Fig. 4. Two symmetric loops of length 4 in a difference position set.

We have seen that the repetition code of repetition order 2 yields the minimum Hamming distance 4. When the length of

the code is n (even), the number of codewords is given by (n/2)!. On the other hand, the pure involution code provides the

same minimum Hamming distance and the cardinality of the code is given by n!/(2n/2(n/2)!), which is much larger than

(n/2)! because

n!/(2n/2(n/2)!)

(n/2)!
=

(
n

n/2

)
2−n/2 ' 1√

πn/2
2n/2. (44)
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For example, consider the case where n = 64. In this case, the number of codewords of the repetition code is (n/2)! ' 2118.

On the other hand, the pure involution code have

n!

2n/2(n/2)!
' 2146

codewords which is approximately 228-times larger than that of the repetition code.

3) Code polytope of pure involutions: The linear constraint X = XT and trace(X) = 0 for pure involutions defines a code

polytope which is not an integral polytope.

Example 7: Assume that n = 6. The code polytope defined based on the constraints X = XT and trace(X) = 0 have 15

integral vertices and 10 fractional vertices. A fractional vertex is

0 1/2 0 0 0 1/2

1/2 0 0 0 0 1/2

0 0 0 1/2 1/2 0

0 0 1/2 0 1/2 0

0 0 1/2 1/2 0 0

1/2 1/2 0 0 0 0


.

Deriving inequality description of the convex hull of pure involution matrices is an interesting open problem.

4) Simulation results: The minimum Hamming distance of a permutation code is a universal measure for goodness of a

code because it does not depend on the choice of the initial vector s. However, as we have seen in the previous section,

decoding performance is mostly determined by the pseudo distance distribution of a code polytope.

In order to evaluate the decoding performance of pure involution codes, we have performed a computer experiment. Figure

5 presents the block error probability of the pure involution codes with length 64. In this experiment, the initial vector is

assumed to be s = (1, 2, . . . , 64) and the LP decoding was used. The definition of the SNR is the same as in Example 4. For

comparison purpose, the block error probabilities of the repetition permutation code of length 64 with the repetition order 2

and uncoded permutations vectors (i.e., Λ(s)) of length 64 are also plotted in Fig. 5. It can be observed that the pure involution

code gives much small block probabilities compared with the repetition code. As we have seen in the previous section, the

cardinality of a pure involution code is much larger than that of the repetition code. We may be able to conclude that the pure

involution code is superior to the repetition code.

D. Block permutation codes

A block permutation codes are defined based on the block permutation matrices. The block structure is useful for encoding

and evaluation of the minimum squared Euclidean distance.

1) Definitions: Suppose the situation where the set [1, n] × [1, n] is divided into mutually disjoint γ × γ square blocks of

size ν × ν (i.e., n = γν holds). The square blocks are called blocks which is explicitly defined as follows.

Definition 7 (Block): For k, b ∈ [1, γ], a block Bk,b is defined by

Bk,b
4
= {(i, j) ∈ [1, n]2 | ν(k − 1) < i ≤ νk, ν(b− 1) < j ≤ νb}. (45)

The indices k and b are called block indices.

The rectangle region T (l)
k,b is defined as

T
(l)
k,b

4
= {(x, y) ∈ Bk,b | y = ν(b− 1) + l} (46)



18

10-3

10-2

10-1

100

 4  6  8  10  12  14

Bl
oc

k 
Er

ro
r R

at
e

SNR [dB]

pure involution
uncoded

Repetition code

Fig. 5. Comparison of block error probabilities: pure involution codes, repetition permutation codes, and uncoded permutation vectors of length 64

for k, b ∈ [1, γ] and l ∈ [1, ν]. The subscript k, b specifies the block where the rectangle region T (l)
k,b belongs to. The superscript

l ∈ [1, ν], which is called a subindex, indicates the relative position in the block Bk,b.

We are now ready to define a block permutation matrix which is the basis for realizing a block-wise permutation group.

Definition 8 (Block permutation matrix): Assume that a permutation matrix X ∈ Πn is given. If, for any b ∈ [1, γ], there

exists the unique block index k satisfying

X(Bk,b) 6= 0 (47)

then X is called a block permutation matrix. The notation X(Bk,b) represents the sub-matrix of X corresponding to the block

Bk,b.

From this definition, it is apparent that a nonzero X(Bk,b) ∈ {0, 1}ν×ν is a permutation matrix if X is a block permutation

matrix. Furthermore, there exists the unique block index b satisfying X(Bk,b) 6= 0 for any block index k ∈ [1, γ]. This

equivalent statement can be obtained by exchanging the role of column and row in the above definition.

For block indices k, b ∈ [1, γ] and subindex l ∈ [1, ν], the skewed column set is defined by

U
(l)
k,b

4
= T

(l)
k,b ∪

 ⋃
k′∈[1,γ]\{k}

T
(l mod ν)+1
k′,b

 . (48)

Figure 6 illustrates the subsets of [1, n] × [1, n] appeared so far such as the blocks, the rectangle regions, and the skewed

column set.

2) Block permutation codes: The next theorem presents a set of linear constraints characterizing block permutation matrices.

Theorem 3 (Characterization of block permutation matrix): Let X ∈ Πn be a permutation matrix. The permutation matirx

X is a block permutation matrix if and only if ∑
(u,v)∈U(l)

k,b

Xu,v = 1 (49)

holds for any b, k ∈ [1, γ], l ∈ [1, ν].
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b

k

Bk,b

ν

1 2 ... l
T

(l)
k,b

U
(2)
k,b

subindex

block index

block index

rectangle
region

skewed
column

set
block

Fig. 6. Blocks, rectangle regions and skewed column set

The next example clarifies the linear constraints characterizing a 4× 4 block permutation matrix.

Example 8: Let n = 4, ν = 2, γ = 2. The necessary and sufficient condition for a permutation matrix X ∈ Π4 being a

block permutation matrix are as follows:

X1,1 +X2,1 +X3,2 +X4,2 = 1

X1,2 +X2,2 +X3,1 +X4,1 = 1

X1,3 +X2,3 +X3,4 +X4,4 = 1

X1,4 +X2,4 +X3,3 +X4,3 = 1.

(50)

Let us denote the set of block permutation matrices by

Π(n, ν)
4
= {X ∈ Πn | X satisfies (49)}. (51)

Note that we here employ a lighter notation Π(n, ν) instead of Π(A, b,E) since it explicitly express dependency on n and ν.

It should be remarked that Π(n, ν) forms a group under matrix multiplication over R.

The class of block permutation codes defined below is a class of LP decodable permutation codes.

Definition 9 (Block permutation code): Let n be a positive integer. A positive integer ν is a divisor of n. The initial vector

s belongs to Rn. The block permutation code C(n, ν, s) is defined by

C(n, ν, s)
4
= {Xs ∈ Rn : X ∈ Π(n, ν)}. (52)

In Section IV, we saw the minimum pseudo distance is one of most influential parameters for LP decoding performance.

Unfortunately, the evaluation of the minimum pseudo distance is not a trivial problem. As a possible alternative, we here

evaluate the minimum squared Euclidean distance of C(n, ν, s) defined by

d2
min

4
= min
x,y∈C(n,ν,s)(x 6=y)

||x− y||2. (53)
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At least, we can say that decoding performance degrades even with an ML decoder if C(n, ν, s) has small d2
min.

The block-wise permutation structure of a block permutation code can be exploited for deriving a simple formula on the

minimum squared Euclidean distance.

Let us define ∆2
1 and ∆2

2 by

∆2
1 = min

k∈[1,γ]
min

Q∈Πν(Q6=I)
||sk −Qsk||2

∆2
2 = min

k,j∈[1,γ](k 6=j)
min
Q∈Πν

||sk −Qsj ||2. (54)

Assume that both ∆2
1 and ∆2

2 are positive for given n, ν, s. In such a case, C(n, ν, s) is non-singular and it is easily proved

that the minimum squared Euclidean distance of C(n, ν, s) is given by

d2
min = min{∆2

1, 2∆2
2}. (55)

The following example illustrates that a block permutation code can have more codewords than those of a trivial cartesian

product code under the condition that both of codes have the same minimum squared Euclidean distance.

Example 9: Let n = 8, γ = 2, ν = 4. The initial vector s = (sT1 , s
T
2 )T is assumed to be

s1 =


1

3

5

7

 , s2 =


2

4

6

8


From the definition of ∆2

1,∆
2
2, we easily obtain ∆2

1 = 8, ∆2
2 = 4. From (55), we have d2

min = min{8, 2 × 4} = 8. The

number of codewords is γ!× (ν!)γ = 1152. The cartesian product code defined by

{((Y1 s1)T , (Y2 s2)T )T ∈ R64 | Y1, Y2 ∈ Π4},

has also squared Euclidean distance 8 but it contains 576-codewords, which is half of the number of codewords of the block

permutation code.

VI. RANDOMLY CONSTRAINED PERMUTATION MATRICES

In the previous section, we discussed a set of structured permutation matrices. Another possible choice for linear constraints

is to generate them randomly. Such random linear constraints are amenable for probabilistic analysis and appears interesting

from information theoretic view. In this section, we study a class of LP decodable permutation codes defined based on random

constraints.

A. Sparse constraint matrix ensemble

Since the LP decodable permutation codes are non-linear codes, the cardinality of a given code cannot be determined directly

from the constraints in general. In the following part of this section, we will analyze the cardinality of codes and their Hamming

weight distributions.

A sparse constraint matrix ensemble is assumed in the following analysis, which has a close relationship to the analysis on

average weight distribution of LDPC ensembles [12].

The linear constraint assumed here is the equality constraint for two variables such as Xi,j = Xk,l. As discussed in Section

X, linearly constrained permutation matrices defined based on this equality constraint is important because such matrices can

be used as building blocks of a generalized block permutation code.
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Let S be the set of binary constraint matrices:

S
4
= {A ∈ {0, 1}m×n

2

: every row of A contains 2-ones}. (56)

We assign the uniform probability

P (A)
4
=

1(
n2

2

)m (57)

to each matrix in S. The pair (S, P ) can be considered as an ensemble of matrices, which becomes the basis of the following

probabilistic method.

Assume that θ : S → {−1, 0, 1}m×n2

is defined by B = θ(A), where

Bi,j =

 −Ai,j , if ∀j′ ∈ [1, j − 1], Ai,j′ = 0,

Ai,j , otherwise.
(58)

Note that θ(A)vec(X) = 0 corresponds to m equality constraints of two variables.

In this section, we focus on the LP decodable permutation code Λ(θ(A), 0,E, s), where A ∈ S and E
4
= (

m︷ ︸︸ ︷
=,= . . . ,=)T .

The symbol 1 denotes the vector of length m whose entries are all ones. Extensions of the analysis for more general classes

of LP decodable permutation codes are possible, but we here focus on the simplest class to explain the idea of the analysis.

Throughout this section, we assume that components of the initial vector s differ each other.

B. Probabilistic analysis on average cardinality of codes

The number of codewords in Λ(θ(A), 0,E, s) is given by

M(A)
4
=
∑
X∈Πn

I[θ(A) vec(X) E 0], (59)

where I is the indicator function. The indicator function takes the value one when the given condition is true and otherwise

gives the value zero. The next lemma gives the average cardinality of this code.

Lemma 4 (Average cardinality of codes): The average cardinality of Λ(θ(A), 0,E, s) is given by

E[M(A)] = n!

((
n
2

)
+
(
n2−n

2

)(
n2

2

) )m
, (60)

where the operator E denotes the expectation defined on (S, P ).

Proof: From the definition of M(A), the expectation of the cardinality M(A) can be written as

E[M(A)] =
∑
A∈S

P (A)M(A)

=
∑
A∈S

P (A)
∑
X∈Πn

I[θ(A) vec(X) E 0]. (61)

By changing the order of summation, we can further transform this into

E[M(A)] =
∑
X∈Πn

∑
A∈S

P (A)I[θ(A) vec(X) E 0]

=
n!(
n2

r

)m ∑
A∈S

I[θ(A) vec(X ′) E 0], (62)

where X ′ is an arbitrary permutation matrix in Πn. The last equality is due to the symmetry of the ensemble. Namely, this means

that the quantity
∑
A∈S I[θ(A) vec(X ′)E0] does not depend on the choice of X ′. The evaluation of

∑
A∈S I[θ(A) vec(X ′)E0]

can be performed on the basis of the following combinatorial argument.
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It is evident that any X ′ ∈ Πn contains n-ones as its components. This implies that x′
4
= vec(X ′) is a binary vector of

length n2 with Hamming weight n. Let I1
4
= {i ∈ [1, n2] | x′i = 1}, where x′i is the ith element of x′. Consider the first row

of A, which is denoted by aT . The relation θ(aT )x′ = 0 holds if and only if

|{i ∈ I1 | ai = 1}| = 2 or |{i ∈ [1, n2]\I1 | ai = 1}| = 2. (63)

The number of possible ways to choose such a vector a is given by(
n

2

)
+

(
n2 − n

2

)
. (64)

The term
(
n
2

)
corresponds to the number of possible ways such that I1 (of cardinality n) contains 2-ones. On the other hand,(

n2−n
2

)
represents the number of possible ways that remaining parts contains 2-ones. Since each row of A can be chosen

independently, we consequently have

∑
A∈S

I[θ(A) vec(X ′) E 0] =

((
n

2

)
+

(
n2 − n

2

))m
. (65)

Substituting (65) into (62), we immediately obtain the claim of the lemma.

Example 10: In this experiment, the number of 10 × 10 permutation matrices satisfying randomly generated equality

constraints of two variables was counted. Figure 7 plots the cardinality of 100-samples for the cases where m = 30, 40, 50.

The figure includes the ensemble average of the cardinality given by (60) and the sample mean of the cardinality. The figure

shows that cardinalities are scattered around the ensemble average and that the sample mean agree with the ensemble average

with reasonable accuracy.

This figure shows a trade-off relation between the number of additional equalities m and the cardinality. As (60) indicates,

the average cardinality is an exponentially decreasing function of m.
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Fig. 7. Relation between additional equalities m and average cardinality
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C. Probabilistic analysis on weight distribution

The origin o
4
= (o1, . . . , on) is an arbitrary permutation vector of length n; namely, o ∈ Λ(s). The number of codewords of

Λ(θ(A), 0,E, s) with Hamming weight w is denoted by Lw(A), where the Hamming weight wH(·) is defined by

wH(x)
4
=

n∑
i=1

I[oi 6= xi], (66)

where x = (x1, . . . , xn). This means the Hamming weight of x is equal to the Hamming distance between the origin and x.

In other words, Lw(A) is defined as

Lw(A)
4
=

∑
x∈Λ(θ(A),0,E,s)

I[wH(x) = w]. (67)

The set {L1(A), . . . , Ln(A)} is referred to as the weight distribution of Λ(θ(A), 0,E, s).

The next lemma gives the ensemble average of the weight distribution.

Lemma 5: The average weight distribution of the linearly constrained permutation code Λ(θ(A), 0,E, s) is given by

E[Lw(A)] =

(
n

w

)⌊
w! + 1

e

⌋((n
2

)
+
(
n2−n

2

)(
n2

2

) )m
. (68)

Proof: The weight distribution Lw(A) can also be expressed as

Lw(A) =
∑

X∈Zw(o)

I[θ(A) vec(X) E 0], (69)

where Zw(o) is defined by

Zw(o)
4
= {X ∈ Πn : wH(Xs) = w}. (70)

The expectation can be simplified as follows:

E[Lw(A)] =
∑
A∈S

P (A)
∑

X∈Zw(o)

I[θ(A) vec(X) E 0]

=
1(

n2

r

)m ∑
X∈Zw(o)

∑
A∈S

I[θ(A) vec(X) E 0]

=

((
n
2

)
+
(
n2−n

2

)(
n2

2

) )m
|Zw(o)|.

(71)

The last equality is due to the symmetry of the ensemble and (65).

The cardinality of Zw(o) is given by the following combinatorial argument. Let x ∈ Λ(s) be an arbitrary vector satisfying

wH(x) = w. The index set Idiff is defined by Idiff (x)
4
= {i ∈ [1, n] | oi 6= xi}. Let T ⊂ [1, n] be an index set of cardinality

w. The quantity |{x ∈ Λ(s) | T = Idiff (x)}| is equal to the number of derangements of length w, which is known to be

b(w! + 1)/ec [33]. Note that the number of possible ways to choose T is
(
n
w

)
. Thus, we have the equality

|Zw(o)| =
(
n

w

)⌊
w! + 1

e

⌋
. (72)

This completes the proof of the lemma.

Note that the origin assumed here may not be included in Λ(θ(A), 0,E, s).



24

VII. CONCLUSION

In this paper, a novel class of permutation codes, LP decodable permutation codes, is introduced. The LP decodable property

is the main feature of this class of permutation codes.

The set of doubly stochastic matrices, i.e., the Birkhoff polytope, have n! integral vertices which are permutation matrices.

Additional linear constraints defines a code polytope which plays a fundamental role in the coding scheme presented in this

paper. An LP decodable permutation code is the set of integral vertices of a code polytope.

In an LP decoding process, a certain linear objective function is maximized under the assumption that the feasible set is a

code polytope. The decoding performance can be evaluated from geometrical properties of a code polytope.

The choice of additional linear constraints are crucial to construct good codes. In this paper, two approaches are discussed;

namely, structured permutation matrices and randomly constrained permutation matrices.

Section V introduces some classes of structured linearly permutation matrices. Especially, it has been shown that the pure

involution codes have several nice properties; they are easy to encode and their error correction performance is much better

than the trivial repetition code.

The random constraints discussed in Section VI enable us to use probabilistic methods for analyzing some properties of

codes. The probabilistic methods [26] are very powerful tool for grasping the relation between the number of constraints and

important code parameters such as the cardinality of a code.

Although the paper provides fundamental aspects of the LP decodable permutation codes, a number of problems remain still

open. The following list is a part of open problems.

1) Construction of good block permutation codes including a choice of an initial vector

2) Efficient algorithm for solving the LP problem arising in the LP decoding.

3) Permutation modulation for linear vector channels; let H be a n× n real matrix. An ML decoding problem for a linear

vector channel can be formulated as

minimize ||y −Hx||2 subject to x ∈ Λ(A, b,E, s). (73)

As discussed in this paper, the decoding problem can be relaxed to a quadratic programming (QP) problem:

minimize ||y −Hx||2 subject to x ∈ P(A, b,E, s). (74)

A QP-based decoding algorithm like [31] appears interesting for this problem.

4) An application to rank modulation

Further investigation on related topics may open an interesting interdisciplinary research field among coding and combinatorial

optimization.

APPENDIX

1) Code polytopes for some classes of linearly constrained permutation matrices: Table I presents linear constraints for some

sets of permutation matrices and their integrality of corresponding code polytopes. In this table, it is assumed that X ∈ R4×4.

The integrality is numerically checked with the vertex enumeration program cdd based on double description method by K.

Fukuda [32].

Some remarks on Table I are listed as follows.
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TABLE I

CODE POLYTOPES AND ITS PROPERTIES (n = 4)

set of perm. matrices additional constraints integrality |V |

cyclic perm. mat. (75) Y 4

derangement trace(X) = 0 Y 9

involution X = XT N 14

transposition (1) trace(X) = n− 2 N 20

transposition (2) trace(X) = n− 2 Y 6

X = XT

2× 2 block constraints (50) N 28

2× 2 block constraints (50) and (77) Y 8

The column of integrality (Y/N) represents the code polytope is integral (Y) or not (N). The column #V denotes the number of vertices on the code polytope.

1) Cyclic permutation matrices The cyclic permutation matrices of order 4 is given by the following additional linear

constraints:

X1,1 = X2,2, X2,2 = X3,3, X3,3 = X4,4

X2,1 = X3,2, X3,2 = X4,3, X4,3 = X1,4

X3,1 = X4,2, X4,2 = X1,3, X1,3 = X2,4

X4,1 = X1,2, X1,2 = X2,3, X2,3 = X3,4. (75)

In a similar way as in the case n = 4, we can define the cyclic permutation matrices of order n. The general expression

the constraint for n× n cyclic permutation matrices is given by

∀i, j ∈ [1, n], Xi,j = X(i mod n)+1,(j mod n)+1. (76)

2) Transposition: The permutation matrices satisfying the linear constraint trace(X) = n− 2 exactly coincides with the set

of transpositions (i.e., permutations of two elements). Note that the constraint trace(X) = n− 2 does not give the tight

polytope. Combining a redundant constraint X = XT (i.e., the involution constraint) to the trace constraint, the relaxed

polytope becomes tight. This example indicates that redundant constraints are necessary for constructing a tight polytope

in some cases.

3) Block constraint: The linear constraints for block permutation matrices (50) introduced in Theorem 3 does not give the

tight polytope in n = 4. However, combining (50) and a set of redundant constraints (i.e., 90 degree rotation of (50))

X1,1 +X1,2 +X2,3 +X2,4 = 1

X2,1 +X2,2 +X1,3 +X1,4 = 1

X3,1 +X3,2 +X4,3 +X4,4 = 1

X4,1 +X4,2 +X3,3 +X3,4 = 1, (77)

we have the convex hull of 2× 2 block permutation matrices. This case also shows importance of redundant constraints

from the optimization perspective. From this result, it is expected that the LP decoding performance of block permutation

codes might be improved by incorporating these redundant linear equalities.
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Proof of Theorem 3

Proof: In the first part of the proof, we will show that any block permutation matrix satisfies (49).

Assume that k, b ∈ [1, γ] and l ∈ [1, ν] are arbitrary chosen. From the definition of the skewed column set U (l)
k,b, the left-hand

side of (49) can be rewritten as ∑
(u,v)∈U(l)

k,b

Xu,v =
∑

(u,v)∈T (l)
k,b

Xu,v

+
∑

k′∈[1,γ]\{k}

 ∑
(u,v)∈T (l mod ν)+1

k′,b

Xu,v

 .

(78)

Recall that X is assumed to be a block permutation matrix. This means that there exists a unique block index κ ∈ [1, γ]

satisfying X(Bκ,b) 6= 0 for given block index b, and the sub-matrix X(Bκ,b) is a permutation matrix. If k = κ holds, then∑
(u,v)∈U(l)

k,b

Xu,v =
∑

(u,v)∈T (l)
k,b

Xu,v = 1 (79)

holds. Otherwise (i.e., k 6= κ), the equality ∑
(u,v)∈U(l)

k,b

Xu,v =
∑

(u,v)∈T (l mod ν)+1
κ,b

Xu,v = 1. (80)

holds. Thus, it has been proved that (49) holds if X is a block permutation matrix.

We then move to the opposite direction; i.e., (49) implies that X is a block permutation matrix.

Assume that a block index b ∈ [1, γ] and a subindex l ∈ [1, ν] are arbitrary chosen. Let j = ν(b − 1) + l. Since X is a

permutation matrix, there exists the unique row index i ∈ [1, n] satisfying Xi,j = 1. The block Bk,b containing the set of

indices (i, j) is uniquely determined because the blocks are mutually disjoint. Under this setting, it is clear that X(Bk,b) 6= 0

holds.

In the following, we will show that

k′ 6= k ⇒ X(Bk′,b) = 0. (81)

From the definition of the block index k, It is clear that∑
(u,v)∈T (l)

k,b

Xu,v = 1 (82)

holds. Combining Eq. (78) and Eq. (82), we immediately obtain

∑
k′∈[1,γ],k′ 6=k

 ∑
(u,v)∈T (l mod ν)+1

k′,b

Xu,v

 = 0. (83)

This equality implies that

(u, v) ∈
⋃

k′∈[1,γ]\{k}

T
(l mod ν)+1
k′,b ⇒ Xu,v = 0. (84)

Because X is a permutation matrix, ∑
(i,j)∈T (l mod ν)+1

k,b

= 1 (85)
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should be satisfied. Applying the same argument iteratively, we consequently have

(u, v) ∈
⋃

k′∈[1,γ]\{k}

⋃
l′∈[1,ν]

T
(l′)
k′,b ⇒ Xu,v = 0. (86)

This statement is equivalent to k′ 6= k ⇒ X(Bk′,b) = 0. Due to the definition of the block permutation matrix, it has been

proved that X should be a block permutation matrix.
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