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Abstract— A set of linearly constrained permutation matrices
are proposed for constructing permutation codes. Making use
of linear constraints imposed on the permutation matrices,we
can formulate a soft-decoding problem for the proposed class
of permutation codes as a linear programming (LP) problem.
An efficient LP solver based on simplex methods or interior
point methods can be employed for solving this LP problem.
Two types of linear constraints are discussed; one is structured
constraints and another is random constraints. The structured
constraints based on block permutation matrices lead to an
efficient encoding algorithm. On the other hand, the random
constraints enable us to use probabilistic methods for analyzing
several code properties such as the average cardinality andthe
average weight distribution.

I. I NTRODUCTION

The class of linear codes defined over a finite field is
ubiquitously employed in digital equipments for achieving
reliable communication and storage systems. For example,
the class of codes includes practically important codes such
as Reed-Solomon codes, BCH codes, and LDPC codes. The
linearity of codes enables us to use efficient encoding and
decoding algorithms based on their linear algebraic properties.

On the other hand, there are some classes of nonlinear codes
which are interesting from both theoretical and practical points
of view. The class ofpermutation codesis such a class of
nonlinear codes.

The origin of permutation codes dates back to 60’s. Slepian
[17] proposed a class of simple permutation codes, which
is calledpermutation modulation, and efficient soft decoding
algorithms for them. The variant I code [17] is obtained by
applying all the permutations to the initial vector

(

n1
︷ ︸︸ ︷
µ1, µ1 . . . , µ1

n2
︷ ︸︸ ︷
µ2, . . . , µ2 · · ·

nk
︷ ︸︸ ︷
µk, µk . . . , µk),

whereµi is a real value andn = n1+ · · ·+nk. This work has
been extended and further investigated by many researchers;
Biglieri and Elia [19], Karlof [18], Ingemarsson [20] studied
optimization of the initial vector of the permutation modula-
tion. Berger et al. [21] discussed applications of permutation
codes to source coding problems.

There is another thread of researches on a class of per-
mutation codes of lengthn whose codeword contains exactly
n-distinct symbols; i.e., any codeword can be obtained by
applying a permutation to an initial vector, e.g.,(0, 1, . . . , n−
1).

Some fundamental properties of such permutation codes
were discussed in Blake et al. [1], and Frankl and Deza [8].
Vinck [13] [14] proposed applications of permutation codes
for power-line communication and this triggered subsequent
works on permutation codes. Wadayama and Vinck [16] pre-
sented a multi-level construction of permutation codes with
large minimum distance. Many constructions for permutation
codes have been developed so far, including the construction
given in [4] [6]. Especially, the idea of a distance-preserving
map due to Vinck and Ferreira [15] had influence on the study
of permutation codes such as subsequent works by Chang et
al. [2] [3].

Recently, rank modulation codes for flash memory proposed
by Jiang et al. [9] [10] produced renewed interest in permu-
tation codes. For example, for flash memory coding, Kløve
et al. gave a new construction for permutation codes based
on Chebyshev Distance [11], which is an appropriate distance
measure for flash memory coding. Barg and Mazumdar [24]
also studied some fundamental bounds on permutation codes
in terms of the Kendall tau distance.

In order to employ a permutation code in a practical ap-
plication, efficient encoding and soft-decoding algorithms are
crucial to achieve reliable communication over noisy channels,
such as an AWGN channel. Nonlinearity of permutation codes
prevents the use of conventional encoding and decoding tech-
niques based on linear algebraic properties. Although much
works on permutation codes have been conducted, an aspect
of efficient soft-decoding has not been intensively discussed
so far. Therefore, there is still room for further researches on
permutation codes with efficient encoding and soft-decoding
algorithms.

In this paper, a new class of permutation codes calledLP
decodable permutation codesis introduced. An LP decodable
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permutation code is obtained by applying permutation matrices
satisfying certain linear constraints to ann-dimensional real
initial vector.

It is well known that permutation matrices are vertices of the
Birkhoff polytope [35], which is the set of doubly stochastic
matrices. Thus, a set of linearly constrained permutation
matrices can be expressed by a set of linear equalities and
linear inequalities. This property leads to the main feature of
this class of permutation codes:LP-decodable property. For
this class of codes, a decoding problem can be formulated
as a linear programming (LP) problem. This means that we
can exploit efficient LP solvers based on simplex methods or
interior point methods to decode LP decodable permutation
codes.

Furthermore, for a combination of this class of codes and
its LP decoding, the maximum likelihood (ML) certificate
property can be proved as in the case of the LP decoding for
LDPC codes [7]. This is due to the fact that the LP problem
given in this paper is a relaxed problem of an ML decoding
problem.

In general, the fundamental polytope [27] [7] employed
for LP decoding of LDPC codes contains many fractional
vertices which are major source of sub-optimality of LP
decoding. The constraints corresponding to an LDPC matrix
are defined based onF2-arithmetics. On the other hand, an
LP decoder works on the real number field. This domain
“mismatch” produces many undesirable fractional verticeson
the fundamental polytope. One of motivations of this work is
to establish a coding scheme without this mismatch. Namely,
the LP decodable permutation codes are defined on the real
number field and they are decoded by using an LP solver
working on the real number field as well.

The organization of the paper is as follows. Section II
introduces some definitions and notation required for discus-
sion. Section III gives the definition of the LP decodable
permutation codes and its decoding algorithm. Section IV
provides analysis for decoding performance of LP decoding
and ML decoding. Section V presents a class of block permu-
tation codes which are easy to encode with a combinatorial
algorithm. Section VI offers probabilistic analysis on the
cardinality and weight distribution of random LP decodable
permutation codes. Section VII gives a concluding summary.

II. PRELIMINARIES

A. Notation and definition

In this paper, matrices are represented by capital letters and
a vector is assumed to be a column vector. LetX be an
n × n real matrix. The notationX ≥ 0 means that every
element inX is non-negative. The notationvec(X) represents
a vectorization ofX given by

vec(X)
△
= (X1,1 · · ·X1,n X2,1 · · ·X2,n, X3,1 · · ·Xn,n)

T .

The vector1 is the all-one vector whose length is deter-
mined by the context. The norm|| · || denotes the Euclidean

norm given by||x|| △
= (xTx)1/2. The trace functiontrace(X)

returns the sum of the diagonal elements ofX . The setsR and
Z are the sets of real numbers and integers, respectively. The
set [α, β] denotes the set of consecutive integers fromα ∈ Z

to β ∈ Z.
The symbolE is defined by






a1
...

am




E






b1
...
bm




⇔ ∀i ∈ [1,m], ai ⋆i bi,

where⋆i is either= or ≤. For simplicity, the notationE =
(⋆1, ⋆2, . . . , ⋆m) is used to defineE (e.g.,E = (≤,=,≤)).

The next definition gives a class of matrices of crucial
importance in this paper.

Definition 1 (Permutation matrix):An n × n binary real

matrix X
△
= (Xi,j)i,j∈[1,n] ∈ {0, 1}n×n is called apermu-

tation matrix if and only if

∀i, j ∈ [1, n],
∑

j′∈[1,n]

Xi,j′ = 1,
∑

i′∈[1,n]

Xi′,j = 1. (1)

The set ofn× n permutation matrices is denoted byΠn.
It is also known that ann× n binary matrix is a permutation
matrix if and only if the Hamming weights of every column
and every row are exactly 1. The cardinality ofΠn is n!.

Removing the binary constraint from the definition of
the permutation matrices, we have the definition of doubly
stochastic matrices.

Definition 2 (Doubly stochastic matrix):An n × n non-

negative real matrixX
△
= (Xi,j)i,j∈[1,n] is called adoubly

stochastic matrix if and only if (1) holds.
The following theorem for a double stochastic matrix im-

plies that the set of doubly stochastic matrices is a convex
polytope.

Theorem 1 (Birkhoff-von Neumann theorem [35] [36] ):
Every doubly stochastic matrix is a convex combination of
permutation matrices.
A simple proof of Birkhoff-von Neumann theorem can be
found in [39].

The set ofn × n doubly stochastic matrices is a polytope
called theBirkhoff polytopeBn [35], which is also known
as perfect matching polytope. The Birkhoff polytope is a
(n − 1)2-dimensional convex polytope withn!-vertices and
n2-facets [34]. The Birkhoff-von Neumann theorem implies
that any vertex (i.e., extreme point) of the Birkhoff polytope
is a permutation matrix.

B. LP decoding for permutation vectors

Assume thats ∈ R
n, called theinitial vector, is given1.

The set of images ofs by left action ofX ∈ Πn is called the
permutation vectorsof s, which is given by

Λ(s)
△
= {Xs | X ∈ Πn}. (2)

For example, ifs = (0, 1, 2)T , thenΛ(s) is given by

Λ(s) = {(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1)(2, 1, 0)}.
1The elements ins are not necessarily distinct each other.



We here consider a situation such that a vector ofΛ(s)
is transmitted to a receiver over an AWGN channel. In such
a case, it is desirable to use an ML decoding algorithm to
estimate the transmitted vector. The ML decoding rule can be
describe as

x̂ = arg min
x∈Λ(s)

||y − x||2, (3)

wherey is a received word.
The next theorem states that the ML decoding forΛ(s) can

be formulated as the following LP problem.
Theorem 2 (LP decoding and ML certificate property):

Assume that a vector inΛ(s) is transmitted over an AWGN
channel andy ∈ R

n is received on the receiver side. LetX∗

be the solution of the following LP problem:

maximizetrace(CTX)

subject to

X ∈ R
n×n

X1 = 1

1
TX = 1

T

X ≥ 0, (4)

whereC
△
= ysT . If X∗ is integral,x̂ = X∗s holds.

Proof: The linear constraints in the above LP problem
implies thatX is constrained to be a doubly stochastic matrix.

One the other hand, the ML decoding rule can be recast as
follows:

x̂ = arg min
x∈Λ(s)

||y − x||2

= (arg min
X∈Πn

||y −Xs||2)s

= (arg min
X∈Πn

(||y||2 − 2yT (Xs) + ||Xs||2))s

= (arg max
X∈Πn

yTXs)s = (arg max
X∈Πn

trace(CTX))s,

whereC = ysT . Note that

trace(CTX) =

n∑

i=1

n∑

j=1

Ci,jXi,j . (5)

Since the vertices of the Birkhoff polytope is a permutation
matrix, the ML decoding can be formulated as an integer LP
(ILP) problem:

maximizetrace(CTX)

subject toX ∈ Bn, X is an integral matirx.

By removing the integral constraint (X is an integral matrix),
we obtain the LP problem (4). If the solution of this LP
problem is integral, it must coincide with the solution of the
above ILP problem.

As we have seen, the feasible set of the above LP problem
is the Birkhoff polytope. Thus, an output of the above LP is
highly likely integral.

The following example illustrates an LP decoding proce-
dure.

Example 1:Let s
△
= (0, 1)T . In this case, the set of per-

mutation vectors becomesΛ(s) = {(0, 1)T , (1, 0)T }. Assume
that y = (0.9, 0.2)T is received. In this case,

C = ysT =

(
0.9
0.2

)

(0 1) =

(
0 0.9
0 0.2

)

is obtained. By letting

X =

(
X1,1 X1,2

X2,1 X2,2

)

,

we have the objective function

trace

((
0 0
0.9 0.2

)(
X1,1 X1,2

X2,1 X2,2

))

= 0.9X1,2+0.2X2,2.

As a result, the LP decoding problem is given by

maximize0.9X1,2 + 0.2X2,2 subject to

X1,1 +X1,2 = 1, X2,1 +X2,2 = 1,

X1,1 +X2,1 = 1, X1,2 +X2,2 = 1

X1,1, X1,2, X2,1, X2,2 ≥ 0.

The solution of the problem is

X∗ =

(
0 1
1 0

)

,

and then we have the estimated wordX∗s = (1, 0)T .

III. L INEARLY CONSTRAINED PERMUTATION MATRICES

AND LP DECODABLE PERMUTATION CODES

It is natural to consider an extension of the LP decoding
presented in the previous section. Additional linear constraints
imposed onΠn produce a restricted set ofΛ(s). A decoding
problem of such a set can be formulated as an LP problem,
as in the case of the ML decoding ofΛ(s).

A. Definitions

The next definition for linearly constrained permutations
gives an LP-decodable subset ofΛ(s).

Definition 3 (linearly constrained permutation matrix):
Let m,n be positive integers. Assume thatA ∈ Z

m×n2

, b ∈
Z
m andE are given. A set oflinearly constrained permutation

matricesis defined by

Π(A, b,E)
△
= {X ∈ Πn | A vec(X)E b}. (6)

Note thatA vec(X) E b formally represents additionalm
equalities and inequalities. These additional constraints pro-
vide a restriction on permutation matrices.

From the linearly constrained permutation matrices, LP
decodable permutation codes are naturally defined as follows.

Definition 4 (LP decodable permutation code):Assume
the same set up as in Definition 3. Suppose also thats ∈ R

n

is given. The set of vectorsΛ(A, b,E, s) given by

Λ(A, b,E, s)
△
= {Xs ∈ R

n | X ∈ Π(A, b,E)} (7)



is called an LP decodable permutation code.
If

X(1), X(2)(X(1) 6= X(2)) ∈ Π(A, b,E) ⇒ X(1)s 6= X(2)s
(8)

holds, then an LP decodable permutation code is said to
be non-singlar. Namely, there is one-to-one correspondence
between permutation matrices inΠ(A, b,E) and codewords
of Λ(A, b,E, s) if a code is non-singular. Note that a code
may become singular if identical symbols exist ins.

The next example shows a case where an additional linear
constraint imposes a restriction on permutation matrices.

Example 2:Consider the set of linearly constrained permu-
tation matrices which consists of4 × 4 permutation matrices
satisfying the linear constrainttrace(X) = 0. The constraint
implies that the diagonal elements of the permutation matrices
are constrained to be zero. This means that such permutation
matrices correspond to permutations without fixed points,
which are calledderangements. For n = 4, there are 9-
derangement permutation matrices as follows:







0100
1000
0001
0010













0100
0010
0001
1000













0100
0001
1000
0010













0010
1000
0001
0100













0010
0001
1000
0100













0010
0001
0100
1000













0001
1000
0100
0010













0001
0010
1000
0100













0001
0010
0100
1000







.

In this case, the triple(A, b,E) is defined by

A = vec(I), b = 0, E = (=), (9)

whereI is the4×4 identity matrix. Multiplying these matrices
to the initial vectors = (0, 1, 2, 3)T from left, we immediately
obtain the members ofΛ(A, b,E, (0, 1, 2, 3)T ):

(1, 0, 3, 2)T , (1, 2, 3, 0)T , (1, 3, 0, 2)T ,
(2, 0, 3, 1)T , (2, 3, 0, 1)T , (2, 3, 1, 0)T ,
(3, 0, 1, 2)T , (3, 2, 0, 1)T , (3, 2, 1, 0)T .

(10)

This code is thus non-singular. If the initial vector is

s = (0, 0, 0, 0)T ,

then the resulting code has the only codeword(0, 0, 0, 0). In
this case, the code is singular.

B. LP decoding for LP decodable permutation codes

The LP decoding ofΛ(A, b,E, s) is a natural extension
of the LP decoding forΛ(s). Assume that a vector in
Λ(A, b,E, s) is transmitted over an AWGN channel and
y ∈ R

n is given. The procedure for the LP decoding of
Λ(A, b,E, s) is given as follows.

LP decoding for an LP decodable permutation code
1) Solve the following LP problem and letX∗ be the

solution.

maximizetrace(CTX)

subject to

X ∈ R
n×n,

X ≥ 0,

X1 = 1,

1
TX = 1

T ,

A vec(X) E b, (11)

whereC = ysT .
2) OutputX∗s if X∗ is integral. Otherwise, declare decod-

ing failure.

C. Remarks

There are several remarks that should be made on the LP
decoding forΛ(A, b,E, s).

The feasible set of (11) is a subset of the feasible set of (4).
All the matrices inΠ(A, b,E) are feasible and permutation
matrices which do not belong toΠ(A, b,E) are infeasible.
This implies that all the integral points of the feasible set(11)
coincide withΠ(A, b,E).

The LP problem (11) is a relaxed problem of the ML
decoding problem over AWGN channels:

minimize ||y − x||2 subject tox ∈ Λ(A, b,E, s). (12)

This can be easily shown, as in the case (4). As a consequence
of the above properties on integral points and on the relaxation,
it can be concluded that the LP decoding forΛ(A, b,E, s) has
the ML-certificate property as well. Namely, if the output of
LP decoding is not decoding failure (i.e.,X∗ is integral), the
output is exactly the same as the solution of the minimum
distance decoding problem (12).

The feasible set of the LP problem (11) is the intersection of
the Birkhoff polytope and a (possibly unbounded) convex set
defined by the additional constraints. The intersection becomes
a polytope which is called acode polytope. The decoding
performance of LP decoding is closely related to the code
polytope given by the following definition.

Definition 5 (Code polytope):The polytopeP(A, b,E) de-
fined by

P(A, b,E)
△
= Bn ∩ {X ∈ R

n×n | A vec(X)E b} (13)

is called the code polytope forΠ(A, b,E), whereBn is the
Birkhoff polytope corresponding toΠn.

Figure 1 illustrates a code polytope. It should be remarked
that the set of integral vertices of the code polytope coin-
cides with Π(A, b,E). Due to additional linear constraints
A vec(X) E b, a code polytope may have some fractional
vertices, which contain components of fractional number.

In an LP decoding process, these fractional vertices becomes
a possible candidate of an LP solution. Thus, these fractional
vertices can be considered aspseudo permutation matrices
which degrade the decoding performance of the LP decoding.
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Fig. 1. Code polytopeP(A, b,E)

IV. A NALYSIS FOR DECODING PERFORMANCE OFLP
DECODING AND ML DECODING

In this section, upper bounds on decoding error probability
for LP decoding and ML decoding are presented.

A. Upper bound on LP decoding error probability

An advantage of the LP formulation of a decoding algorithm
is its simplicity for detailed decoding performance analysis.
The geometrical properties of a code polytope is closely re-
lated to its decoding performance of the LP decoding. We can
evaluate the block error probability of the proposed scheme
with reasonable accuracy if we have enough information on a
set of vertices of a code polytope. The bound presented in this
section has close relationship to the pseudo codeword analysis
on LDPC codes [5].

In this section, a set of parametersA, b,E, s are assumed
to be given. LetV be the set of vertices of the code polytope
P(A, b,E, s). In general,V contains fractional vertices.

The next lemma gives bridge between a code polytope and
corresponding decoding error probability.

Lemma 1 (Upper bound on block error rate for LPD):
Assume that a codewordXs is transmitted to a receiver via an
AWGN channel, whereX ∈ Π(A, b,E). The additive white
Gaussian noise with mean 0 and varianceσ2 is assumed.
The receiver uses the LP decoding algorithm presented in
the previous section. In this case, the block error probability
PLP (X) is upper bounded by

PLP (X) ≤
∑

X̃∈V \{X}

Q

(

||Xs||2 − (X̃s)TXs

σ||X̃s−Xs||

)

, (14)

where the Q-function is the tail probability of the normal
Gaussian distribution, which is given by

Q(x)
△
=

∫ ∞

x

1√
2π

exp

(

− t2

2

)

dt. (15)

Proof: Let y = Xs + z, wherez is an additive white
Gaussian noise term. We first consider the pairwise block error

probabilityPe(X, X̃) betweenX andX̃ ∈ Π(A, b,E), which
is given by

Pe(X, X̃)
△
= Prob[yT X̃s ≥ yTXs]. (16)

Namely,Pe(X, X̃) is the probability such that̃Xs is more
likely than Xs for a giveny under the assumption that only
X̃ andX are allowable permutation matrices.

The differenceyT X̃s− yTXs can be transformed into

yT X̃s− yTXs = (Xs+ z)T (X̃s−Xs)

= (X̃s−Xs)T z + (X̃s−Xs)TXs

= (X̃s−Xs)T z

− (||Xs||2 − (X̃s)TXs). (17)

We thus have

Prob[yT X̃s ≥ yTXs] = Prob[aT z ≥ b], (18)

wherea ∈ R
n andb ∈ R are given by

a
△
= X̃s−Xs, (19)

b
△
= ||Xs||2 − (X̃s)TXs. (20)

The left-hand side ofaT z ≥ b is a linear combination of
Gaussian noises. The mean ofaT z is zero and the variance is
given by

V ar[aT z] = σ2||a||2. (21)

The probability such that the Gaussian random variableaT z
takes a value larger than or equal tob can be expressed as

Pe(X, X̃) = Prob[aT z ≥ b]

= Q

(
b

σ||a||

)

. (22)

Combining the union bound and this pairwise error probability,
we immediately obtain the claim of this lemma.

The upper bound on decoding error probability in Lemma
1 naturally leads to a pseudo distance measure onR

n×n.
Definition 6 (Pseudo distance):The function

Ds(X, X̃)
△
=

||Xs||2 − (X̃s)TXs

||X̃s−Xs||
(23)

is called thepseudo distancewhereX, X̃ ∈ R
n×n are doubly

stochastic matrices.
Note thatDs(·, ·) is not a distance function since it does not
satisfy the axioms of distance. In terms of decoding error
probability, geometry of the vertices of a code polytope should
be established based on this pseudo distance.

For example, in high SNR regime, theminimum pseudo
distance

∆s
△
= min

X∈Π(A,b,E),X̃∈V,X̃ 6=X
Ds(X, X̃) (24)

is expected to be highly influential to the decoding error
probability.



Example 3:Assume thatX ∈ R
3×3. Suppose the linear

constrainttrace(X) = 1. In this case, the code polytope has
the following 5-vertices:

M (1) △
=





1 0 0
0 0 1
0 1 0



 , M (2) △
=





0 1 0
1 0 0
0 0 1



 ,

M (3) △
=





0 0 1
0 1 0
1 0 0



 , M (4) △
=





1/3 0 2/3
2/3 1/3 0
0 2/3 1/3



 ,

M (5) △
=





1/3 2/3 0
0 1/3 2/3

2/3 0 1/3



 . (25)

In this case, the set of vertices consists of 3-integral vertices
and 2-fractional vertices. Lets = (0, 1, 2)T . The pseudo
distance distribution formM (1) is given by

Ds(M
(1),M (2)) = 1.388730

Ds(M
(1),M (3)) = 1.224745

Ds(M
(1),M (4)) = 1.224745

Ds(M
(1),M (5)) = 1.224745.

The minimum pseudo distance of this code polytope is∆s =
1.224745.

B. Upper bound on ML decoding error probability

Assume the same setting as in the previous subsection.
In the case of ML decoding, we can neglect the effect of
fractional vertices. Therefore, we obtain an upper bound on
the ML block error probability

PML(X) ≤
∑

X̃∈Π(A,b,E)\{X}

Q

(

||Xs||2 − (X̃s)TXs

σ||X̃s−Xs||

)

=
∑

X̃∈Π(A,b,E)\{X}

Q

(

||X̃s−Xs||
2σ

)

(26)

based on a similar argument. The above equality holds since
||Xs|| = ||X̃s|| holds for anyX̃ ∈ Π(A, b,E). Note that this
simplification cannot apply toX̃ if which X̃ is a fractional
vertex. This is because the preservation of Euclidean norm
does not hold in general for a doubly stochastic matrix. For
example, we have
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣





1/3 2/3 0
0 1/3 2/3
2/3 0 1/3



 s

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

= 1.9147 6= ||s|| =
√
5, (27)

wheres = (0, 1, 2)T .
If Π(A, b,E) have a group structure under the matrix

multiplication, the above upper bound can be further simplified
as

PML ≤
∑

X̃∈Π(A,b,E)\{I}

Q

(

||X̃s− s||
2σ

)

. (28)

It should be remarked that the second upper bound (28) is
independent of the transmitted codeword. In order to prove

the bound (28), it is sufficient to proveΠ(A, b,E) is distance
invariant with respect to the Euclidean distance.

In the following, the distance invariant property of
Π(A, b,E) will be shown. Let us define the Euclidean distance
enumerator by

WX(Z)
△
=

∑

X̃∈Π(A,b,E)

Z ||Xs−X̃s||. (29)

This enumerator has the information on distance distributions
measured from the permutation matrixX .

The next lemma states that the Euclidean distance enumer-
ator does not depend on the center pointX if the linearly
constrained permutation matrices have a group structure. This
property can be regarded as adistance invariance propertyof
permutation codes.

Lemma 2 (Distance invariance):If Π(A, b,E) forms a
group under the matrix multiplication overR, the equality

WX(Z) = W (Z) (30)

holds for anyX ∈ Π(A, b,E). Thepseudo weight enumerator
W (Z) is defined byW (Z) = WI(Z) whereI is then × n
identity matrix.

Proof: SinceΠ(A, b,E) forms a group, the inverseX−1

belongs toΠ(A, b,E) as well. Since the inverseX−1 induces
a symbol-wise permutation, it is evident that

||Xs− X̃s|| = ||X−1Xs−X−1X̃s|| = ||s−X−1X̃s|| (31)

holds for anyX, X̃ ∈ Π(A, b,E)(X 6= X̃). The Euclidean
distance enumerator can be rewritten as

WX(Z) =
∑

X̃∈Π(A,b,E)

Z ||Xs−X̃s||

=
∑

X̃∈Π(A,b,E)

Z ||s−X−1X̃s||

=
∑

X′∈Π(A,b,E)

Z ||s−X′s|| = W (Z). (32)

The second equality is a consequence of Eq. (31). The last
equality is due to the assumption thatΠ(A, b,E) forms a
group.

Example 4:We have performed the following computer
experiment for the following two codes:

1) LP decodable permutation code corresponding to the de-
rangements of length 5. The additional linear constraint
is trace(X) = 0. A transmitted word(1, 0, 4, 2, 3)T is
assumed. The code polytope has 44-vertices which are
all integral vertices.

2) LP decodable permutation code of length 5 correspond-
ing to an additional linear constraintX1,1 +X5,5 = 1.
A transmitted word(0, 4, 3, 2, 1)T is assumed. The code
polytope has 330-vertices. The set of vertices contains
36-integral vertices and 294-fractional vertices.

The AWGN channel with noise varianceσ2 is assumed. The
signal-to-noise ratio is defined bySNR = 10 log10

(
1/σ2

)
.



The LP decoding described in the previous section was em-
ployed for decoding.

Figure 2 presents the upper bounds and simulation results on
block error probability of these permutation code. It is readily
observed that the upper bounds presented in this section shows
reasonable agreement with the simulation results.

The both codes have the same minimum pseudo distance
0.707107 and similar cardinalities (44 and 36) but the derange-
ment code provides much better block error probabilities than
those of the code with the constraintX1,1+X5,5 = 1. This is
because the existence of fractional vertices (i.e., 294-fractional
vertices) severely degrades the decoding performance of the
code with the constraintX1,1 +X5,5 = 1 compared with the
derangement code.
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Fig. 2. Comparison of upper bounds and simulation results for LP decoding
on block error probabilities(n = 5)

V. STRUCTURED PERMUTATION MATRICES

An efficient encoding algorithm is required for realizing a
coded system employing the LP decodable permutation codes.
A straightforward way to implement an encoding map is the
use of a look-up table for converting a message vector to a
permutation matrix. If the cardinality ofΠ(A, b,E) is not too
large, a table look-up method for encoding may be practical.
An evident disadvantage of the table look-up approach is that
the use of this approach is limited to the case in which the
code length is sufficiently short.

In this section, we discuss structured constraints which
enable us to use efficient combinatorial algorithms for encod-
ing. Especially, the focus is on a set of linearly constrained
permutation matrices which forms a block-wise permutation
group. The set of block permutation matrices plays a key role
in this section.

A. Block permutation matrix

In this subsection, we prepare required definitions to handle
block permutation matrices.

Suppose the situation where the set[1, n]× [1, n] is divided
into mutually disjointγ × γ square blocks of sizeν × ν (i.e.,

n = γν holds). The square blocks are calledblockswhich is
explicitly defined as follows.

Definition 7 (Block):For k, b ∈ [1, γ], a block Bk,b is
defined by

Bk,b
△
= {(i, j) ∈ [1, n]2 | ν(k−1) < i ≤ νk, ν(b−1) < j ≤ νb}.

(33)
The indicesk andb are calledblock indices.

We further split a block into a set ofrectangle regions.
Definition 8 (Rectangle region):The rectangle regionT (l)

k,b

is defined as

T
(l)
k,b

△
= {(x, y) ∈ Bk,b | y = ν(b − 1) + l} (34)

for k, b ∈ [1, γ] and l ∈ [1, ν]. The subscriptk, b specifies
the block where the rectangle regionT (l)

k,b belongs to. The
superscriptl ∈ [1, ν], which is called asubindex, indicates
the relative position in the blockBk,b.

We are now ready to define a block permutation matrix
which is the basis for realizing a block-wise permutation
group.

Definition 9 (Block permutation matrix):Assume that a
permutation matrixX ∈ Πn is given. If, for anyb ∈ [1, γ],
there exists the unique block indexk satisfying

X(Bk,b) 6= 0 (35)

then X is called ablock permutation matrix. The notation
X(Bk,b) represents the sub-matrix ofX corresponding to the
block Bk,b.

From this definition, it is apparent that a nonzeroX(Bk,b) ∈
{0, 1}ν×ν is a permutation matrix ifX is a block permutation
matrix. Furthermore, there exists the unique block indexb
satisfyingX(Bk,b) 6= 0 for any block indexk ∈ [1, γ]. This
equivalent statement can be obtained by exchanging the role
of column and row in the above definition.

B. Linear constraints for block permutation matrix

In this subsection, a set of linear constraints providing a
block permutation is discussed. For preparation, we need the
definition of the skewed column setU (l)

k,b ⊂ [1, n]2 as follows.

Definition 10: (Skewed column set) For block indices
k, b ∈ [1, γ] and subindexl ∈ [1, ν], the skewed column setis
defined by

U
(l)
k,b

△
= T

(l)
k,b ∪




⋃

k′∈[1,γ]\{k}

T
(l mod ν)+1
k′,b



 . (36)

Figure 3 illustrates the subsets of[1, n] × [1, n] appeared so
far such as the blocks, the rectangle regions, and the skewed
column set.

The next theorem presents a set of linear constraints char-
acterizing block permutation matrices.

Theorem 3 (Characterization of block permutation matrix):
Let X ∈ Πn be a permutation matrix. The permutation matirx
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X is a block permutation matrix if and only if
∑

(u,v)∈U
(l)
k,b

Xu,v = 1 (37)

holds for anyb, k ∈ [1, γ], l ∈ [1, ν].
Proof: In the first part of the proof, we will show that

any block permutation matrix satisfies (37).
Assume thatk, b ∈ [1, γ] andl ∈ [1, ν] are arbitrary chosen.

From the definition of the skewed column setU
(l)
k,b, the left-

hand side of (37) can be rewritten as
∑

(u,v)∈U
(l)
k,b

Xu,v =
∑

(u,v)∈T
(l)
k,b

Xu,v

+
∑

k′∈[1,γ]\{k}






∑

(u,v)∈T
(l mod ν)+1

k′,b

Xu,v




 .

(38)

Recall thatX is assumed to be a block permutation matrix.
This means that there exists a unique block indexκ ∈ [1, γ]
satisfyingX(Bκ,b) 6= 0 for given block indexb, and the sub-
matrix X(Bκ,b) is a permutation matrix. Ifk = κ holds, then

∑

(u,v)∈U
(l)
k,b

Xu,v =
∑

(u,v)∈T
(l)
k,b

Xu,v = 1 (39)

holds. Otherwise (i.e.,k 6= κ), the equality
∑

(u,v)∈U
(l)
k,b

Xu,v =
∑

(u,v)∈T
(l mod ν)+1
κ,b

Xu,v = 1. (40)

holds. Thus, it has been proved that (37) holds ifX is a block
permutation matrix.

We then move to the opposite direction; i.e., (37) implies
thatX is a block permutation matrix.

Assume that a block indexb ∈ [1, γ] and a subindexl ∈
[1, ν] are arbitrary chosen. Letj = ν(b − 1) + l. SinceX
is a permutation matrix, there exists the unique row index
i ∈ [1, n] satisfying Xi,j = 1. The blockBk,b containing
the set of indices(i, j) is uniquely determined because the
blocks are mutually disjoint. Under this setting, it is clear that
X(Bk,b) 6= 0 holds.

In the following, we will show that

k′ 6= k ⇒ X(Bk′,b) = 0. (41)

From the definition of the block indexk, It is clear that
∑

(u,v)∈T
(l)
k,b

Xu,v = 1 (42)

holds. Combining Eq. (38) and Eq. (42), we immediately
obtain

∑

k′∈[1,γ],k′ 6=k






∑

(u,v)∈T
(l mod ν)+1

k′,b

Xu,v




 = 0. (43)

This equality implies that

(u, v) ∈
⋃

k′∈[1,γ]\{k}

T
(l mod ν)+1
k′,b ⇒ Xu,v = 0. (44)

BecauseX is a permutation matrix,
∑

(i,j)∈T
(l mod ν)+1
k,b

= 1 (45)

should be satisfied. Applying the same argument iteratively,
we consequently have

(u, v) ∈
⋃

k′∈[1,γ]\{k}

⋃

l′∈[1,ν]

T
(l′)
k′,b ⇒ Xu,v = 0. (46)

This statement is equivalent tok′ 6= k ⇒ X(Bk′,b) = 0. Due
to the definition of the block permutation matrix, it has been
proved thatX should be a block permutation matrix.

The next example clarifies the linear constraints character-
izing a 4× 4 block permutation matrix.

Example 5:Let n = 4, ν = 2, γ = 2. The necessary and
sufficient condition for a permutation matrixX ∈ Π4 being a
block permutation matrix are as follows:

X1,1 +X2,1 +X3,2 +X4,2 = 1

X1,2 +X2,2 +X3,1 +X4,1 = 1

X1,3 +X2,3 +X3,4 +X4,4 = 1

X1,4 +X2,4 +X3,3 +X4,3 = 1.

(47)

Figure 4 illustrates the allocation of each linear constraint on
a 4× 4 array.
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Fig. 4. Linear characterization of block permutation matrix (n = 4, ν =
2, γ = 2): The variables with the same number label participate in a single
linear equality.

C. Block permutation codes

Let us denote the set of block permutation matrices by

Π(n, ν)
△
= {X ∈ Πn | X satisfies(37)}. (48)

Note that we here employ a lighter notationΠ(n, ν) instead
of Π(A, b,E) since it explicitly express dependency onn and
ν. It should be remarked thatΠ(n, ν) forms a group under
matrix multiplication overR.

The class of block permutation codes defined below is a
class of LP decodable permutation codes.

Definition 11 (Block permutation code):Let n be a posi-
tive integer. A positive integerν is a divisor ofn. The initial
vectors belongs toRn. Theblock permutation codeC(n, ν, s)
is defined by

C(n, ν, s)
△
= {Xs ∈ R

n : X ∈ Π(n, ν)}. (49)

A block permutation code can be decoded by LP decoding.
We can use the linear equalities in Theorem 3 as the additional
linear constraintsA vec(X) E b in LP decoding for LP
decodable permutation codes. The size of the LP problem is
the following. The number of variables isn2 (i.e.,Xi,j). The
number of linear equality constraints is2n+ γn because the
number of linear equalities forX to be a doubly stochastic
matrix is 2n and the number of additional linear equalities
is γ2ν = γn for the block permutation constraint. The
number of inequality constraints isn2 corresponding to the
constraintX ≥ 0. In summary, the number of variables and
constraints are bounded byO(n2). Therefore, if an interior
point method is employed for solving this LP problem, we
obtain a reasonably accurate solution in polynomial time.

D. Encoding of block permutation codes

A block permutation matrix induces a block-wise permuta-
tion if it applies to a vector. This block permutation structure
supports a combinatorial encoding algorithm presented in this
subsection.

We here write the initial vectors as

s =






s1
...
sγ




 , (50)

where s1, s2, . . . , sγ ∈ R
ν . The next lemma explicitly indi-

cates the block permutation structure of the block permutation
codes.

Lemma 3 (Block permutation structure):Any codeword
Xs ∈ C(n, ν, s) can be represented as

Xs =






Q1sσ(1)
...

Qγsσ(γ)




 , (51)

whereσ ∈ Sγ , Q1, . . . , Qγ ∈ Πν . The setSγ is the set of
bijectionsσ : [1, γ] → [1, γ].

Proof: Any codeword ofC(n, ν, s) can be represented
by Xs where X is a block permutation matrix. From the
definition of the block permutation matrix, for anyb ∈ [1, γ],
there exists a unique block indexkb ∈ [1, γ] such that
X(Bkb,b)(k

′ 6= kb) becomes a permutation matrix. We here
introduce a mapσ : [1, γ] → [1, γ] which is defined by
σ(kb) = b for anyb ∈ [1, γ]. Due to the definition of the block
permutation matrix,σ is an injection. Furthermore, sinceσ is
an injection between the sets of the identical cardinality,it
should be a bijection.

On the basis of the above argument, it becomes clear that

Xs =








X(B1,σ(1))sσ(1)
X(B2,σ(2))sσ(2)

...
X(Bγ,σ(γ))sσ(γ)








(52)

holds for anyXs ∈ C(n, ν, s). By letting Qi
△
= X(Bi,σ(i)),

we have the claim of this lemma becauseQi is a permutation
matrix.
It should be remarked that the number of codewords of
C(n, ν, s) is γ!×(ν!)γ if C(n, ν, s) is non-singular. The block-
wise permutationσ in (51) and the permutation corresponding
to Qi are called inter-block and intra-block permutations,
respectively.

For a non-singular codeC(n, ν, s), consider an encoding
mapφ : [1, γ!× (ν!)γ ] → C(n, ν, s). Note that the set[1, γ!×
(ν!)γ ] corresponds to the message space. Lemma 3 suggests
that any efficient ranking algorithm (a bijection algorithm
converting an integer into a permutation) for permutations
can be used for encodingC(n, ν, s). For example, a simple
ranking algorithm based on an inversion table is discussed in
Sec. 5.1 of [25]. The encoding mapφ is a bijection and it is
invertible. This means that, from a codeword ofC(n, ν, s), we
can reconstruct the message corresponding to the codeword.

The details of an encoding algorithm for block permutation
codes is given as follows.
Combinatorial encoding algorithm for C(n, ν, s)

1) Convert a messagem ∈ [1, γ! × (ν!)γ ] into a message
vector(m0,m1, . . . ,mγ) ∈ [1, γ!]× [1, ν!]γ .

2) By using a ranking algorithm for permutations denoted
as a mapF , compute permutations corresponding to the
message vector:

(σ,Q1, Q2, . . . , Qγ) = F (m0,m1, . . . ,mγ) (53)



whereσ ∈ Sγ , Qi ∈ Πν .
3) Output 




Q1sσ(1)
...

Qγsσ(γ)




 (54)

as the codeword corresponding to the messagem.

E. Minimum squared Euclidean distance of block permutation
codes

In Section IV, we saw the minimum pseudo distance is one
of most influential parameters for LP decoding performance.
Unfortunately, the evaluation of the minimum pseudo distance
is not a trivial problem. As a possible alternative, we here eval-
uate the minimum squared Euclidean distance ofC(n, ν, s)
defined by

d2min
△
= min

x,y∈C(n,ν,s)(x 6=y)
||x− y||2. (55)

At least, we can say that decoding performance degrades even
with an ML decoder ifC(n, ν, s) has smalld2min.

The block-wise permutation structure can be exploited for
deriving a simple lower bound on the minimum squared
Euclidean distance.

Theorem 4 (Minimum squared Euclidean distance):Let us
define∆2

1 and∆2
2 by

∆2
1

△
= min

σ∈Sγ

min
Q1,Q2∈Πν(Q1 6=Q2)

||Q1(sσ(1))−Q2(sσ(1))||2

∆2
2

△
= min

σ∈Sγ

min
Q1,Q2∈Πν

||Q1(sσ(1))−Q2(sσ(2))||2. (56)

Assume that both∆2
1 and ∆2

2 are positive for givenn, ν, s.
In such a case,C(n, ν, s) is non-singular and the minimum
squared Euclidean distance ofC(n, ν, s) is given by

d2min = min{∆2
1, 2∆

2
2}. (57)

Proof: Assume that arbitrary two distict codewords
ca, cb ∈ C(n, ν, s)(ca 6= cb) are given. Lemma 3 guarantees
that ca andcb can be expressed as

ca =






Qa
1sσa(1)

...
Qa

γsσa(γ)




 , cb =






Qb
1sσb(1)

...
Qb

γsσb(γ)




 , (58)

where Qa
1 , . . . , Q

a
γ , Q

b
1, . . . , Q

b
γ ∈ Πν , σa, σb ∈ Sγ . The

assumptionca 6= cb implies

(σa, πa
1 , . . . , π

a
γ) 6= (σb, πb

1, . . . , π
b
γ). (59)

In the following, we will consider the following two cases.
1) Case A:σa = σb

In this case, there exists at least one block indexk′ ∈
[1, γ] which satisfiesQa

k′ 6= Qb
k′ . The squared Euclidian

distance betweenca andcb can be lower bounded by

||ca − cb||2 =

γ
∑

k=1

||Qa
ksσa(k) −Qb

ksσb(k)||2

≥ ||Qa
k′sσa(k′) −Qb

k′sσb(k′)||2

≥ ∆2
1. (60)

2) Case B:σa 6= σb

At least two block indicesξ, η ∈ [1, γ] (ξ 6= η) satisfies

σa(ξ) 6= σb(ξ), σa(η) 6= σb(η). (61)

This relations lead to the following lower bound:

||ca − cb||2 =

γ
∑

k=1

||Qa
ksσa(k) −Qb

ksσb(k)||2

≥ ||Qa
ξsσa(ξ) −Qb

ξsσb(ξ)||2

+ ||Qa
ηsσa(η) −Qb

ηsσb(η)||2

≥ 2∆2
2. (62)

Due to inequalities (60) and (62), we haved2min ≥
min{∆2

1, 2∆
2
2}. Thus, the assumption∆2

1 > 0,∆2
2 > 0

guarantees thatC(n, ν, s) is non-singular. It is clear that
there exists pairs of codewords satisfying (60) and (62) with
equality. Thus, we obtain the claim of the theorem.

Example 6:Let n = 6, γ = 3, ν = 2. The initial vectors
is assumed to bes = (4 1 5 2 6 3)T . In this case, we have

s1 =

(
4
1

)

, s2 =

(
5
2

)

, s3 =

(
6
3

)

From the definition of∆2
1,∆

2
2, we easily obtain∆2

1 =
18, ∆2

2 = 2. Applying Theorem 4, we haved2min =
min{18, 2×2} = 4. The number of codewords isγ!×(ν!)γ =
48

It should be remarked that∆2
1 and∆2

2 have a simpler form:

∆2
1 = min

k∈[1,γ]
min

Q∈Πν(Q6=I)
||sk −Q(sk)||2

∆2
2 = min

k,j∈[1,γ](k 6=j)
min
Q∈Πν

||sk −Q(sj)||2. (63)

The derivation of this simpler form is based on the group
structure ofΠν and on the norm preservation property of
permutation matrices.

The order of elements ins is highly influential to the min-
imum distance. The following corollary gives an appropriate
ordering in terms of the minimum squared Euclidean distance.
The idea is very similar toset partitioningfor constructing a
good trellis-coded modulation scheme due to Ungerboeck [23].

Corollary 1 (Set partitioning):Assume that the initial vec-
tor s is given by

s1
△
= (1 + (ν − 1)γ, . . . , 1 + 2γ, 1 + γ, 1)T

s2
△
= (2 + (ν − 1)γ, . . . , 2 + 2γ, 2 + γ, 2)T

...

sγ
△
= (γ + (ν − 1)γ, . . . , γ + 2γ, γ + γ, γ)T .

In this case, we haved2min = min{2γ2, 2ν}.
Proof: It is easy to see that∆2

1 = 2γ2,∆2
2 = ν. By using

Theorem 4, we immediately have the claim of corollary.



F. An extension of block permutation codes

Theorem 3 states that any codeword of a block permutation
code has the form in Eq. (51). A natural way to extend the
block permutation codes is to introduce a restriction on the
inter-block and the intra-block permutations. Namely, we can
choose the inter-block and intra-block permutations as

σ ∈ Tγ , Q1, . . . , Qγ ∈ Pν ,

whereTγ is a subset ofSγ andPν is a subset ofΠν . This re-
striction reduces the number of codewords but it may improve
the decoding performance. Combining linear constraints for
block permutation matrices and additional linear constraints
for Tγ and Pν , it is expected that such an extended block
permutation code is LP decodable.

A generalization of Theorem 4 is straightforward; we only
need to replace∆2

1 and∆2
2 by

∆
′2
1

△
= min

σ∈Tγ

min
Q1,Q2∈Pν(Q1 6=Q2)

||Q1(sσ(1))−Q2(sσ(1))||2

∆
′2
2

△
= min

σ∈Tγ

min
Q1,Q2∈Pν

||Q1(sσ(1))−Q2(sσ(2))||2 (64)

in order to obtain a generalized result.
Appropriate choice forTγ and Πν to construct a good

permutation code is an interesting open problem.

VI. RANDOMLY CONSTRAINED PERMUTATION MATRICES

In the previous section, we discussed a set of structured
permutation matrices. Another possible choice for linear con-
straints is to generate them randomly. Such random linear
constraints are amenable for probabilistic analysis and appears
interesting from information theoretic view. In this section, we
study a class of LP decodable permutation codes defined based
on random constraints.

A. Sparse constraint matrix ensemble

Since the LP decodable permutation codes are non-linear
codes, the cardinality of a given code cannot be determined
directly from the constraints in general. In the following
part of this section, we will analyze the cardinality of codes
and their Hamming weight distributions. A sparse constraint
matrix ensemble is assumed in the following analysis, which
has a close relationship to the analysis on average weight
distribution of LDPC ensembles [12].

Let S be the set of binary constraint matrices:

S
△
= {A ∈ {0, 1}m×n2

: every row ofA containsr-ones}.
(65)

We assign the uniform probability

P (A)
△
=

1
(
n2

r

)m (66)

to each matrix inS. The pair (S, P ) can be considered as
an ensemble of matrices, which becomes the basis of the
following probabilistic method.

Let α be a positive integer. In the following, we focus on the
linearly constrained permutation codeΛ(A,α1,E, s), where

A ∈ S and E = (

m
︷ ︸︸ ︷

≤,≤ . . . ,≤). The symbol1 denotes the
vector of lengthm whose entries are all ones. Extensions of the
analysis for more general classes of LP decodable permutation
codes are possible, but we here focus on the simplest class
to explain the idea of the analysis. Throughout this section,
we assume that components of the initial vectors differ each
other.

B. Probabilistic analysis on average cardinality of codes

The number of codewords inΛ(A,α1,E, s) is given by

M(A)
△
=
∑

X∈Πn

I[A vec(X)E α1], (67)

whereI is the indicator function. The indicator function takes
the value one when the given condition is true and otherwise
gives the value zero. The next lemma gives the average
cardinality of this code.

Lemma 4 (Average cardinality of codes):The average car-
dinality of Λ(A,α1,E, s) is given by

E[M(A)] = n!

(

1
(
n2

r

)

α∑

i=0

(
n

i

)(
n2 − n

r − i

))m

, (68)

where the operatorE denotes the expectation defined on
(S, P ).

Proof: From the definition ofM(A), the expectation of
the cardinalityM(A) can be written as

E[M(A)] =
∑

A∈S

P (A)M(A)

=
∑

A∈S

P (A)
∑

X∈Πn

I[A vec(X)E α1]. (69)

By changing the order of summation, we can further transform
this into

E[M(A)] =
∑

X∈Πn

∑

A∈S

P (A)I[A vec(X)E α1]

=
n!

(
n2

r

)m

∑

A∈S

I[A vec(X ′)E α1], (70)

whereX ′ is an arbitrary permutation matrix inΠn. The last
equality is due to the symmetry of the ensemble. Namely,
this means that the quantity

∑

A∈S I[A vec(X ′) E α1]
does not depend on the choice ofX ′. The evaluation of
∑

A∈S I[A vec(X ′)E α1] can be performed on the basis of
the following combinatorial argument. It is evident that any
X ′ ∈ Πn containsn-ones as its components. This implies that

x′ △
= vec(X ′) is a binary vector of lengthn2 with Hamming

weightn. Let I1
△
= {i ∈ [1, n2] | x′

i = 1}, wherex′
i is the ith

element ofx′. Consider the first row ofA, which is denoted
by aT . The relationaTx′ ≤ α holds if and only if

|{i ∈ I1 | ai = 1}| ≤ α. (71)

The number of possible ways to choose such a vectora is
given by

α∑

i=0

(
n

i

)(
n2 − n

r − i

)

.



The term
(
n
i

)(
n2−n
r−i

)
corresponds to the number of possible

ways such thatI1 (of cardinalityn) containsi-ones and the
other indices (of cardinalityn2−n) contain(r−i)-ones. Since
each row ofA can be chosen independently, we consequently
have

∑

A∈S

I[A vec(X ′)E α1] =

(
α∑

i=0

(
n

i

)(
n2 − n

r − i

))m

. (72)

Substituting (72) into (70), we immediately obtain the claim
of the lemma.

C. Probabilistic analysis on weight distribution

The origin o
△
= (o1, . . . , on) is an arbitrary permutation

vector of lengthn; namely,o ∈ Λ(s). The number of code-
words ofΛ(A,α1,E, s) with Hamming weightw is denoted
by Lw(A), where the Hamming weightwH(·) is defined by

wH(x)
△
=

n∑

i=1

I[oi 6= xi], (73)

wherex = (x1, . . . , xn). This means the Hamming weight of
x is equal to the Hamming distance between the origin andx.
In other words,Lw(A) is defined as

Lw(A)
△
=

∑

x∈Λ(A,α1,E,s)

I[wH(x) = w]. (74)

The set {L1(A), . . . , Ln(A)} is referred to as the weight
distribution ofΛ(A,α1,E, s).

The weight distribution indicates a geometric property of
Λ(A,α1,E, s). The next lemma gives the ensemble average
of the weight distribution.

Lemma 5:The average weight distribution of the linearly
constrained permutation codeΛ(A,α1,E, s) is given by

E[Lw(A)] =

(
n

w

)⌊
w! + 1

e

⌋(

1
(
n2

r

)

α∑

i=0

(
n

i

)(
n2 − n

r − i

))m

.

(75)
Proof: The weight distributionLw(A) can also be

expressed as

Lw(A) =
∑

X∈Zw(o)

I[A vec(X)E α1], (76)

whereZw(o) is defined by

Zw(o)
△
= {X ∈ Πn : wH(Xs) = w}. (77)

The expectation can be simplified as follows:

E[Lw(A)] =
∑

A∈S

P (A)
∑

X∈Zw(o)

I[A vec(X)E α1]

=
1

(
n2

r

)m

∑

X∈Zw(o)

∑

A∈S

I[A vec(X)E α1]

=

(

1
(
n2

r

)

α∑

i=0

(
n

i

)(
n2 − n

r − i

))m

|Zw(o)|.

(78)

The last equality is due to the symmetry of the ensemble and
equation (72).

The cardinality ofZw(o) is given by the following com-
binatorial argument. Letx ∈ Λ(s) be an arbitrary vector
satisfying wH(x) = w. The index setIdiff is defined by
Idiff (x) = {i ∈ [1, n] | oi 6= xi}. Let T ⊂ [1, n] be an index
set of cardinalityw. The quantity|{x ∈ Λ(s) | T = Idiff (x)}|
is equal to the number of derangements of lengthw, which is
known to be⌊(w! + 1)/e⌋ [33] [39]. Note that the number of
possible ways to chooseT is

(
n
w

)
. Thus, we have the equality

|Zw(o)| =
(
n

w

)⌊
w! + 1

e

⌋

. (79)

This completes the proof of the lemma.

VII. C ONCLUSION

In this paper, a novel class of permutation codes, LP
decodable permutation codes, is introduced. The LP decodable
property is the main feature of this class of permutation codes.

The set of doubly stochastic matrices, i.e., the Birkhoff
polytope, haven! integral vertices which are permutation
matrices. Additional linear constraints defines a code polytope
which plays a fundamental role in the coding scheme presented
in this paper. An LP decodable permutation code is the set of
integral vertices of a code polytope.

In an LP decoding process, a certain linear objective func-
tion is maximized under the assumption that the feasible setis
a code polytope. The decoding performance can be evaluated
from geometrical properties of a code polytope.

The choice of additional linear constraints are crucial to
construct good codes. In this paper, two approaches are dis-
cussed; namely, structured permutation matrices and randomly
constrained permutation matrices.

The key result of Section V is that block permutation
matrices can be characterized by a set of linear equalities.
The group structure of the block permutation matrices is
useful for efficient encoding. Bridging an algebraic property
(group structure) and a geometric property (code polytope)
appears a first step towards a novel paradigm for the study of
permutation codes.

The random constraints discussed in Section VI enable us
to use probabilistic methods for analyzing some sproperties of
codes. The probabilistic methods [26] are very powerful tool
for grasping the relation between the number of constraints
and important code parameters such as the cardinality of a
code.

Although the paper provides fundamental aspects of the
LP decodable permutation codes, many problems remain still
open. The following list is a part of open problems.

1) Construction of good block permutation codes; choice
of an initial vector, block size, and inter-block and intra-
block permutations.

2) Efficient algorithm for solving the LP problem arising
in the LP decoding.

3) Permutation modulation for linear vector channels; Let
H be an×n real matrix. An ML decoding problem for



a linear vector channel can be formulated as

minimize ||y −Hx||2 subject tox ∈ Λ(A, b,E, s).
(80)

As discussed in this paper, the decoding problem can be
relaxed to a quadratic programming (QP) problem:

minimize ||y −Hx||2 subject tox ∈ P(A, b,E, s).
(81)

A QP-based decoding algorithm like [31] appears inter-
esting for this problem.

4) Development of a theory for convex optimization over
a set of permutation matrices; see also Appendix.

Further investigation on related topics may open an interdisci-
plinary research field among coding, combinatorial optimiza-
tion and algebra.

APPENDIX

In this paper, we considered optimization problems defined
on a set of permutation matrices. The first part of Appendix
provides an abstract framework for this class of optimization
problems and show a relaxation approach to solve them.
The second part discusses convex relaxations of a set of
permutation matrices.

A. convex optimization over a set of permutation matrices

Let Q ⊂ Πn be a set of permutation matrices. Assume that
f : Rn×n → R be a convex function. Our target problem is
assumed to be

P1 : minimize f(X) subjectX ∈ Q. (82)

In this setting, the feasible set becomes a discrete set. Thus, the
problemP1 can be considered as a combinatorial problem. Of
course, in general, it is very hard to solveP1. We here consider
a relaxed problem ofP1:

P2 : minimize f(X) subjectX ∈ conv(Q), (83)

whereconv(Q) denotes the convex hull ofQ. Note thatf(X)
is a convex function with respect toX and the feasible set
conv(Q) is a convex set. This means thatP2 is a convex
programming problem. Therefore,P2 can be efficiently solved
with an interior point method. In general, the solution ofP2

andP1 are not equal. However, it is expected that the solution
of P2 is a good approximation of the solution ofP1.

In many cases,conv(Q) is not easy to handle. For exam-
ple, in some cases, finding linear equalities and inequalities
expressingconv(Q) is a non-trivial problem. In such cases, it
is useful to consider a relaxation ofconv(Q).

A relaxed polytopeP for conv(Q) should satisfy the
following conditions.

1) conv(Q) ⊂ P
2) The set of integral points inP coincides withQ.
3) The number of linear constraints expressingP is much

smaller than that ofconv(Q).

Base on a relaxed polytopeP , a relaxed problem

P3 : minimize f(X) subjectX ∈ P

can be defined. Note that a code polytope defined in this paper
does not coincide with the convex hull of an LP decodable
permutation code in general. This means that the LP decoding
can be considered as an instance ofP3.

B. Convex relaxation of a set of permutation matrices

We here discuss convex relaxations of some sets of per-
mutation matrices such as the set of involutions, permutation
matrices for cyclic group. Some results presented here giveus
insight for the convex relaxation of permutation matrices and
may become a start point for further progress on structured
LP decodable permutation codes.

1) Notation: We here refer the following constraints for
doubly stochastic matrix

X1 = 1, 1TX = 1T , X ≥ 0 (84)

as thebasic constraints. Let A be a set of linear constraints
including the basic constraints and additional linear constraints
(e.g., trace(X) = 0). In this section, the relaxed polytope
corresponding toA is denoted by

P(A)
△
= {X ∈ R

n×n : X satisfies all constraints inA}.
(85)

The set of permutation matrices satisfying the constraintsin
A is denoted by

Π(A)
△
= {X ∈ Πn : X satisfies all constraints inA}. (86)

It is known that an LP solution is achieved on a vertex
of a polytope in most cases. Therefore, it is desirable that
the relaxed polytopeP(A) coincides with the the convex
hull of Π(A) to avoid an fractional solution. If the equality
P(A) = conv (Π(A)) holds, then the relaxed polytope (or
code polytope) is said to betight. In other words, a tight
polytope, called a tight polytope in this paper, is a polytope
whose vertices are all integral. In some cases, linearly de-
pendent linear constraints are useful because such redundant
constraints tighten the relaxation.

2) Convex relaxations forn = 4: Table I presents linear
constraints for some sets of permutation matrices and their
tightness of corresponding relaxed polytopes. In this table, it is
assumed thatX ∈ R

4×4. The tightness is numerically checked
with the vertex enumeration programcdd based on double
description method by K. Fukuda [32].

Some remarks on Table I are listed as follows.

1) Cyclic group of order 4: The cyclic permutation matrices
of order 4 is given by the following additional linear
constraints:

X1,1 = X2,2, X2,2 = X3,3, X3,3 = X4,4

X2,1 = X3,2, X3,2 = X4,3, X4,3 = X1,4

X3,1 = X4,2, X4,2 = X1,3, X1,3 = X2,4

X4,1 = X1,2, X1,2 = X2,3, X2,3 = X3,4. (87)

The arrangement of equalities in4× 4 array is depicted
in Fig. 5. In a similar way as in the casen = 4, we can
define the cyclic permutation matrices of ordern. We



TABLE I

T IGHTNESS OF RELAXED POLYTOPES FOR SOME SETS OF PERMUTATION

MATRICES (n = 4)

set of perm. matrices additional constraints tightness#V

symmetric groupS4 none Y 24
cyclic groupC4 (87) Y 4
derangement trace(X) = 0 Y 9
involution X = XT N 14
transposition (1) trace(X) = n− 2 N 20
transposition (2) trace(X) = n− 2 Y 6

X = XT

Klein four group (89) Y 4
dihedral groupD8 (90) Y 8
2× 2 block constraints (47) N 28
2× 2 block constraints (47) and (91) Y 8

The column of tightness (Y/N) represents the relaxed polytope is tight (Y)
or not (N). The column#V denotes the number of vertices on the relaxed
polytope.

conjecture that this type of linear constraints for cyclic
permutation matrices, i.e.,

∀i, j ∈ [1, n], Xi,j = X(i mod n)+1,(j mod n)+1,
(88)

give a tight polytope. We confirmed that this linear
constraints also give the tight polytope whenn = 5.

! " # $

$ ! " #

# $ ! "

" # $ !

%&'()'*+,-./010)23*.10-)4

! " # $

" ! $ #

% & ' (

& % ( '

)*+,-./012.34516*7+13.-,.1&

Fig. 5. Constraints for cyclic permutation matrices and dihedral group with
order 8; The variables with the same number label constrained to be the same
value.

2) Transposition: The permutation matrices satisfying the
linear constrainttrace(X) = n − 2 exactly coincides
with the set of transpositions (i.e., permutations of two
elements). Note that the constrainttrace(X) = n − 2
does not give the tight polytope. Combining a redundant
constraintX = XT (i.e., the involution constraint)
to the trace constraint, the relaxed polytope becomes
tight. This example indicates that redundant constraints
are necessary for constructing a tight polytope in some
cases.

3) Klein four-group: The Klein four-group is isomorphic
to Z2 × Z2. This group structure imposes block-wise
diagonal structure on a permutation matrix. The convex
hull is given by the basic constraints and the following
constraints:

X2,1 = X1,2, X4,3 = X3,4,

X1,3 = X1,4, = X2,3 = X2,4 = 0,

X3,1 = X3,2 = X4,1 = X4,2 = 0. (89)

4) Dihedral groupD8: A set of permutation matrices cor-
responding to the dihedral group with order 8 is given
by the set of equalities (see also Fig. 5):

X1,2 = X2,1, X1,3 = X2,4, X3,1 = X4,2,

X3,4 = X4,3, X1,1 = X2,2, X1,4 = X2,3,

X4,1 = X3,2, X4,4 = X3,3. (90)

Symmetry (90 degree rotation around the center) of the
allocation of the equality constraints can be observed.
It suggests that linear constraints for a set of permu-
tation matrices forming a group may have this type of
symmetric structure.

5) Block constraint: The linear constraints for block permu-
tation matrices (47) introduced in Theorem 3 does not
give the tight polytope inn = 4. However, combining
(47) and a set of redundant constraints (i.e., 90 degree
rotation of (47))

X1,1 +X1,2 +X2,3 +X2,4 = 1

X2,1 +X2,2 +X1,3 +X1,4 = 1

X3,1 +X3,2 +X4,3 +X4,4 = 1

X4,1 +X4,2 +X3,3 +X3,4 = 1, (91)

we have the convex hull of2 × 2 block permutation
matrices. This case also shows importance of redundant
constraints from the optimization perspective. From this
result, it is expected that the LP decoding performance
of block permutation codes might be improved by in-
corporating this redundant linear equalities.

We here presented convex relaxations of some sets of per-
mutation matrices. Further exploration on this topic including
rigorous proof of the above mentioned conjectures appears
interesting not only from engineering point of view but also
from mathematical point of view.
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