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Abstract— A set of linearly constrained permutation matrices There is another thread of researches on a class of per-
are proposed for constructing permutation codes. Making us  mutation codes of length whose codeword contains exactly

of linear constraints imposed on the permutation matrices,we n-distinct symbols; i.e., any codeword can be obtained by
can formulate a soft-decoding problem for the proposed clas Ivi t,t'. t initial ¢ 1
of permutation codes as a linear programming (LP) problem. applying a permutation to an initial vector, e.g), 1,..., 7 —

An efficient LP solver based on simplex methods or interior 1).
point methods can be employed for solving this LP problem.  Some fundamental properties of such permutation codes

Two types of linear constraints are discussed; one is struated were discussed in Blake et al. [1], and Frankl and Deza [8].
constraints and another is random constraints. The structued Vinck [13] [14] proposed applications of permutation codes

constraints based on block permutation matrices lead to an f i icati d this tri d sub
efficient encoding algorithm. On the other hand, the random 'OF POWer-lineé communication and tnis triggered subseguen

constraints enable us to use probabilistic methods for angking WOrks on permutation codes. Wadayama and Vinck [16] pre-
several code properties such as the average cardinality anthe sented a multi-level construction of permutation codedh wit

average weight distribution. large minimum distance. Many constructions for permutatio

l. INTRODUCTION codes have been developed so far, including the constructio
%iven in [4] [6]. Especially, the idea of a distance-pressgv
map due to Vinck and Ferreira [15] had influence on the study
f permutation codes such as subsequent works by Chang et

The class of linear codes defined over a finite field
ubiquitously employed in digital equipments for achievin

reliable communication and storage systems. For exampa "[2] [3]

the class of codes includes practically important codeé suc'Recentl rank modulation codes for flash memory oroposed
as Reed-Solomon codes, BCH codes, and LDPC codes. The Y, y prop

linearity of codes enables us to use efficient encoding ap{ﬁ Jiang et al. [9] [10] produced renewed interest in permu-

) , I~ L ion codes. For example, for flash memory coding, Klagve
decoding algorithms based on their linear algebraic pitagser . "
. et al. gave a new construction for permutation codes based
On the other hand, there are some classes of nonlinear code

which are interesting from both theoretical and practicahts on Chebyshev Distance [L1], which is an appropriate digtanc

. . . measure for flash memory coding. Barg and Mazumdar [24]
of view. The class ofpermutation codess such a class of . .
nonlinear codes. also studied some fundamental bounds on permutation codes

The origin of permutation codes dates back to 60’s. Slepi(l;{ﬁltermiI of tthe Ker|1dall tau d|st;;1r:_ce. de i fical
[17] proposed a class of simple permutation codes, which n order *o employ a permutation code In a practical ap-

is called permutation modulationand efficient soft decoding pllca_tl(l)?, eﬁ:f'ent erlw_cct);ljmg and sqft-(ttl_ecodmg algonmtsl:
algorithms for them. The variant | code [17] is obtained bgrucﬂa 0 acA\lAe/\(/;eNre r']a eclor'\r:mllj_mca !:)n (;ver nmfytp nd
applying all the permutations to the initial vector uch as an channel. Nonlinearity of permutation codes

prevents the use of conventional encoding and decoding tech

mn1 na Nk . . . .
—_———— — nigues based on linear algebraic properties. Although much
(Mla,ul "'1:“1#21'"7/’L2“.Mk}7/'bk}"'7ﬂkl)7

works on permutation codes have been conducted, an aspect
wherey; is a real value and = n; +- - - +ny. This work has of efficient soft-decoding has not been intensively disedss
been extended and further investigated by many researchecsfar. Therefore, there is still room for further reseascha
Biglieri and Elia [19], Karlof [18], Ingemarsson [20] stwdl permutation codes with efficient encoding and soft-deapdin
optimization of the initial vector of the permutation modul algorithms.

tion. Berger et al. [21] discussed applications of permiotat  In this paper, a new class of permutation codes cdlled
codes to source coding problems. decodable permutation codésintroduced. An LP decodable
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permutation code is obtained by applying permutation ro@sri returns the sum of the diagonal elementskafThe setsR and
satisfying certain linear constraints to andimensional real Z are the sets of real numbers and integers, respectively. The
initial vector. set [a, 8] denotes the set of consecutive integers frora Z

Itis well known that permutation matrices are vertices ef thto 8 € Z.
Birkhoff polytope [35], which is the set of doubly stochasti The symbol< is defined by
matrices. Thus, a set of linearly constrained permutation
matrices can be expressed by a set of linear equalities and
linear inequalities. This property leads to the main featoir : < : & Vi € [1,m], a; %i bi,
this class of permutation codeksP-decodable propertyFor Gm bn

this class of codes, a decoding problem can be formula%ﬂere*i is either— or <. For simplicity, the notationd —

as a Ilnegr programming (LP) problem. Thls means that vggl’*% ..., %m) is used to defined (e.g.,< = (<, =, <)).

can exploit efficient LP solvers based on simplex methods "The next definition gives a class of matrices of crucial

interior point methods to decode LP decodable permmatiﬂﬂportance in this paper.

codes. o _ Definition 1 (Permutation matrix)An n x n binary real
Furthermore, for a combination of this class of codes and_. . A nxn

its LP decoding, the maximum likelihood (ML) certificate "X X = (Xij)ijenn € {0,1} is called apermu-

property can be proved as in the case of the LP decoding %’FO” matrixif and only if

LDPC codes [7]. This is due to the fact that the LP problem Vi, j € [1,n], Z Xy =1, Z Xv,;=1. (1)

given in this paper is a relaxed problem of an ML decoding i eltm] i elm]

problem. The set ofn x n permutation matrices is denoted bly,.

In general, the fundamental polytope [27] [7] employeq . . L .
. . ; is also known that am x n binary matrix is a permutation
for LP decoding of LDPC codes contains many fractional ~ .~ : : :
atrix if and only if the Hamming weights of every column

vertices which are major source of sub-optimality of LI{jﬂnnd every row are exactly 1. The cardinality T, is .

decoding. The constraints corresponding to an LDPC mamXRemoving the binary constraint from the definition of

are defined based of,-arithmetics. On the other hand, a . . .
LP decoder works on the real number field. This dom;}he permutation matrices, we have the definition of doubly

_ . . . . sqochastic matrices.
mismatch” produces many undesirable fractional vertices L . .

o : . Definition 2 (Doubly stochastic matrix)An n x n non-
the fundamental polytope. One of motivations of this work is _ A i
to establish a coding scheme without this mismatch. Namefjg9ative real matrixX' = (X, ;)i je.n is called adoubly
the LP decodable permutation codes are defined on the ra@chastic matrixif and only if (I) holds.

O
number field and they are decoded by using an LP solverT he following theorem for a double stochastic matrix im-

working on the real number field as well. plies that the set of doubly stochastic matrices is a convex

The organization of the paper is as follows. Sectigh RelYtope. _ _
introduces some definitions and notation required for discu_ 11eorem 1 (Birkhoff-von Neumann theorem [35] [36] ):

sion. SectiorTll gives the definition of the LP decodablEVery dqubly sto.chastic matrix is a convex combination of
permutation codes and its decoding algorithm. Secfiogh RE'Mutation matrices.

provides analysis for decoding performance of LP decodify SMPle proof of Birkhoff-von Neumann theorem can be
and ML decoding. Sectid]V presents a class of block permi@ynd in [39]- _ o

tation codes which are easy to encode with a combinatoriall '€ S€t 0fn x 7 doubly stochastic matrices is a polytope
algorithm. Sectior VI offers probabilistic analysis on th&alled theBirkhoff polytopeB,, [35], which is also known
cardinality and weight distribution of random LP decodabl@S Perfect matching polytope. The Birkhoff polytope is a

5 b : ) )
permutation codes. Sectién VIl gives a concluding summarg]; — 1)°-dimensional convex polytope with!-vertices and
n*-facets [34]. The Birkhoff-von Neumann theorem implies

[l. PRELIMINARIES that any vertex (i.e., extreme point) of the Birkhoff poly&
is a permutation matrix.

ai b1

A. Notation and definition

In this paper, matrices are represented by capital letreds 8. LP decoding for permutation vectors
a vector is assumed to be a column vector. Détbe an  Assume thats € R”, called theinitial vector, is givef.
n x n real matrix. The notationX > 0 means that every The set of images of by left action of X < II,, is called the
element inX is non-negative. The notatiorc(X) represents permutation vectorsf s, which is given by
a vectorization ofX given by A
A(s) ={Xs| X e11,}. (2)

A T
X)= (X114 - Xim Xo1 - Xon. X1+ Xnn) . ) o
vee(X) = (Xua b 221 > 1 ) For example, ifs = (0,1,2)7, thenA(s) is given by

The vectorl is the all-one vector whose length is deter, , .
mined by the context. The norf- || denotes the EuclideanA(S) =1(0,1,2),(0,2,1),(1,0,2), (1,2,0),(2,0,1)(2, 1,0)}

. A .
norm given by||z|| = (z”x)'/2. The trace functionrace(X) 1The elements irs are not necessarily distinct each other.



We here consider a situation such that a vectorA¢$) Example 1:Let s = (0,1)T. In this case, the set of per-
is transmitted to a receiver over an AWGN channel. In sughutation vectors becomes(s) = {(0,1)7, (1,0)7}. Assume
a case, it is desirable to use an ML decoding algorithm thaty = (0.9,0.2)7 is received. In this case,
estimate the transmitted vector. The ML decoding rule can be

. T 0.9 0 0.9
describe as C=ys = (01) =
R . 9 : 0.2 0 0.2
i = arg mln)||y—:v|| , 3)

zEA(s is obtained. By letting

wherey is a received word. X114 Xio
The next theorem states that the ML decoding/£ds) can X = ( X271 X272 ) )
be formulated as the following LP problem. ' '
Theorem 2 (LP decoding and ML certificate property): We have the objective function
Assume that a vector i\(s) is transmitted over an AWGN 0 0 X1 Xio
channel and; € R" is received on the receiver side. L&t trace (( 0.9 0.2 ) ( Xon Xoo

)) = 0.9X1,2+0.2X272.
be the solution of the following LP problem:

As a result, the LP decoding problem is given by

maximizetrace(CT X) o _
maximize0.9.X; 5 + 0.2X, 5 subject to

subject to
X e Roen Xi1+X12=1, Xo1+Xoo=1,
X1 = 1 Xia+Xon =1, Xip+Xpp=1
1Tx - 17T X1, X1,2,X21,X22 > 0.
X > o, (4) The solution of the problem is
A T * ia i A * * 0 1
whereC = ys* . If X* is integral,z = X*s holds. X' = 10 )
Proof: The linear constraints in the above LP problem
implies thatX is constrained to be a doubly stochastic matrixand then we have the estimated woxds = (1,0)7. 0
One the other hand, the ML decoding rule can be recast as
follows: [1l. L INEARLY CONSTRAINED PERMUTATION MATRICES
' AND LP DECODABLE PERMUTATION CODES
S : 2 . . . .
T = argmglAl?S) Iy — =l It is natural to consider an extension of the LP decoding
— (arg min |jy — Xs|[%)s presented in the previous section. Additional linear camsts
N gXeHn 4 imposed onll,, produce a restricted set of(s). A decoding
= (arg min (|Jy|]* = 2y7(Xs) + || Xs[*))s problem of such a set can be formulated as an LP problem,
Xell, as in the case of the ML decoding 4 s).
= (arg max y” Xs)s = (arg max trace(CT X))s, o
X €Il X €Il A. Definitions
whereC = ys”. Note that The next definition for linearly constrained permutations
n n gives an LP-decodable subset /ofs).
trace(CT X) = ZZ Ci;j Xi;. (5) Definition 3 (linearly constrained permutation maztrix):
== Let m,n be positive integers. Assume thate Z™*"™ | b €

Sj h . f the Birkhoff pol , . Z™ andd are given. A set ofinearly constrained permutation
ince the vertices of the Birkhoff polytope is a permutatiof) .+i-asis defined by

matrix, the ML decoding can be formulated as an integer LP

(ILP) problem: (A, b, <) £ {X €11, | A vec(X) < b}. (6)
maximizetrace(C* X) O
subject toX € B,,, X is an integral matirx Note that A vec(X) < b formally represents additionah

. _ o _ ~_equalities and inequalities. These additional constsapmb-
By removing the integral constraink(is an integral matrix), vide a restriction on permutation matrices.

we obtain the LP probler(4). If the solution of this LP  From the linearly constrained permutation matrices, LP
problem is integral, it must coincide with the solution oBth gecodable permutation codes are naturally defined as fellow
above ILP problem. [ |

~ As we have seen, the feasible set of the above LP problempefinition 4 (LP decodable permutation code)ssume

IS the B|rkh0ff pOlytOpe. ThUS, an Output Of the abOVe LP |ﬂ']e same set up as in Def|n|t|® 3. Suppose a|50!§t|’ERn

highly likely integral. is given. The set of vector&(A, b, <, s) given by
The following example illustrates an LP decoding proce-

dure. A(Ab,<,5) £ {Xs €R™ | X €TI(A,b, <)}  (7)



is called an LP decodable permutation code. 7 LP decoding for an LP decodable permutation code

If 1) Solve the following LP problem and lek* be the
solution.
XM XA (x® £ X@) e (A, b,9) = XWs £ X
i T
8) maximizetrace(C™ X)

holds, then an LP decodable permutation code is said to subject to
be non-singlar Namely, there is one-to-one correspondence X e R
between permutation matrices Ii(A, b, 1) and codewords X > 0
of A(A,b,<,s) if a code is non-singular. Note that a code - 7
may become singular if identical symbols existsin X1 = 1,

The next example shows a case where an additional linear 1'x = 17,
constraint imposes a restriction on permutation matrices. Avec(X) < b, (11)

Example 2:Consider the set of linearly constrained permu- T
tation matrices which consists d@fx 4 permutation matrices whereC =ys. ,
satisfying the linear constraintace(X) = 0. The constraint 2) OutputX™s if X is integral. Otherwise, declare decod-
implies that the diagonal elements of the permutation reri ing failure.
are constrained to be zero. This means that such permutatibnRemarks

matrices correspond to permutations without fixed points, There are several remarks that should be made on the LP
which are calledderangementsFor n = 4, there are 9- decoding forA(A, b, <, s).

derangement permutation matrices as follows: The feasible set of (11) is a subset of the feasible séflof (4).
0100 0100 0100 All the matrices inll(A,b, <) are feasible and permutation
1000 0010 0001 matrices which do not belong tbi(A,b, <) are infeasible.
0001 0001 1000 Th_is i_mplie_s that all the integral points of the feasible @&f)
0010 1000 0010 coincide withII(A, b, <).
The LP problem[(T1) is a relaxed problem of the ML
0010 0010 0010 . .
1000 0001 0001 decoding problem over AWGN channels:
0001 1000 0100 minimize ||y — z||? subject tox € A(A,b,<,s).  (12)
0100 0100 1000 This can be easily shown, as in the cdde (4). As a consequence
0001 0001 0001 of the above properties on integral points and on the relexat
1000 0010 0010 | it can be concluded that the LP decoding A4, b, <, s) has
0100 1000 0100 the ML-certificate property as well. Namely, if the output of
0010 0100 1000 LP decoding is not decoding failure (i.€%* is integral), the
In this case, the tripl€A, b, <) is defined b o_utput is exact!y the same as the solution of the minimum
ple <) 4 distance decoding problem{12).
A=vec(l), b=0, d=(=), 9) The feasible set of the LP problem {11) is the intersection of

) _ ) i o . the Birkhoff polytope and a (possibly unbounded) convex set
wherel is the4 x 4 identity matm; Multiplying these matrices efined by the additional constraints. The intersectiombess
to th_e initial vectors = (0, 1,2, 3)* from Ieft:,Fwe immediately 5 polytope which is called @ode polytope The decoding
obtain the members af(4,b, <, (0,1,2,3)7): performance of LP decoding is closely related to the code

(1,0,3,2)T, (1,2,3,0)7, (1,3,0,2)7, ponto_p(.a.given by the following definition.
(2,0,3, D)7, (2,3,0,1)T, (2,3,1,0)7, 10) Definition 5 (Code polytope)The polytopeP (A, b, 1) de-
(3,0,1,2)7, (3,2,0,1)T, (3,2,1,0)7. fined by
This code is thus non-singular. If the initial vector is P(A,b, <) 2 B, N {X e R™™" | Avec(X) b} (13)
s =(0,0,0,0)7, is called the code polytope fdi(A4,b, <), whereB,, is the

Birkhoff polytope corresponding tol,,. 0
then the resulting code has the only codew(id), 0,0). In Figure[1 illustrates a code polytope. It should be remarked
this case, the code is singular.  that the set of integral vertices of the code polytope coin-
cides with II(A, b, <). Due to additional linear constraints
A vec(X) < b, a code polytope may have some fractional
The LP decoding ofA(A, b, <, s) is a natural extension vertices, which contain components of fractional number.
of the LP decoding forA(s). Assume that a vector in Inan LP decoding process, these fractional vertices besome
A(A,b,4,5) is transmitted over an AWGN channel andh possible candidate of an LP solution. Thus, these fragtion
y € R™ is given. The procedure for the LP decoding ofertices can be considered pseudo permutation matrices
A(A,b, <, s) is given as follows. which degrade the decoding performance of the LP decoding.

B. LP decoding for LP decodable permutation codes



probability P.(X, X) betweenX and X e II(4, b, <), which

is given by
O« Integral vertex

P.(X,X) 2 ProblyT Xs > yT Xs]. (16)

Code pol S . 5
Al Namely, P.(X, X) is the probability such thakX's is more

o likely than X's for a giveny under the assumption that only
X and X are aIIowapIe permutation matrices.
b Fractional The differencey” Xs — y7 X s can be transformed into
e vertex
i Birkhoff polytope yI'Xs—yTXs = (Xs+2)T(Xs—Xs)
' = (Xs—Xs)Tz4+ (Xs—Xs)TXs
. = (Xs—Xs)T2
Fig. 1. Code polytopeP (A, b, <) (||X ||2 (X' )TX ) a7
S — S S).
We thus have
IV. ANALYSIS FOR DECODING PERFORMANCE OkP s T T
DECODING AND ML DECODING Probly” Xs > y" Xs] = Probla” z > b], (18)

In this section, upper bounds on decoding error probabiliyherea € R™ andb € R are given by

for LP decoding and ML decoding are presented. -
Xs— Xs, (29)

| Xs]2 - (Xs)T Xs. (20)

a

> e

A. Upper bound on LP decoding error probability

. An anaqta_tge of the L!D formulatl_on of a decoding alggnthm The left-hand side of”z > b is a linear combination of
is its simplicity for detailed decoding performance analys : : ; . ,
. . : Gaussian noises. The meanddtz is zero and the variance is
The geometrical properties of a code polytope is closely re:
. ! : iven by
lated to its decoding performance of the LP decoding. We can T 21112
evaluate the block error probability of the proposed scheme Varfa®z] = o7|la||". (21)

with reasonable accuracy if we have enough information on o probability such that the Gaussian random variaBle
set of vertices of a code polytope. The bound presentedsn thiyas a value larger than or equallizan be expressed as
section has close relationship to the pseudo codeword sinaly

on LDPC codes [5]. P.(X,X) = Problaz>1]
In this section, a set of parametefisb, <, s are assumed b
to be given. Letl” be the set of vertices of the code polytope = @ ollal] ) (22)

P(A,b,<,s). In generalV contains fractional vertices.

The next lemma gives bridge between a code polytope aﬁambining the union bound and this pairwise error probhili
corresponding decoding error probability. we immediately obtain the claim of this lemma. ]

Lemma 1 (Upper bound on block error rate for LPD): The upper bound on decoding error probability in Lemma

Assume that a codeworl s is transmitted to a receiver via aHI natgrgl_ly leads to a psgudo distance mgasurRW.
AWGN channel, whereX € II(A, b, 9). The additive white Definition 6 (Pseudo distance)rhe function

Gaussian noise with mean 0 and variance is assumed. oA ||Xs|? - (XS)TXS
The receiver uses the LP decoding algorithm presented in Dy(X,X) = X5 — Xs| (23)
the previous section. In this case, the block error prokgbil 5 5
Prp(X) is upper bounded by is called thepseudo distancevhere X, X € R"*" are doubly
) - o stochastic matrices. 0
Prp(X) < Z Q [1Xs]] — (Xs)” Xs . (14) Note thatD,(-,-) is not a distance function since it does not
Revixt ol|Xs — Xs| satisfy the axioms of distance. In terms of decoding error

probability, geometry of the vertices of a code polytopewustio
where the Q-function is the tail probability of the normabe established based on this pseudo distance.

Gaussian distribution, which is given by For example, in high SNR regime, thinimum pseudo
A1 /2 distance
= — —— | dt. 15 -
Q@) / \/%QXP( 2) (13) AL min Dy(X, X) (24)

XET(Ab,Q),XeV,X#X

Proof: Lety = Xs + z, wherez is an additive white iS expected to be highly influential to the decoding error
Gaussian noise term. We first consider the pairwise bloai erProbability.



Example 3:Assume thatX € R®*3. Suppose the linear the bound[(28), it is sufficient to prové(A4, b, <) is distance
constrainttrace(X') = 1. In this case, the code polytope hagnvariant with respect to the Euclidean distance.
the following 5-vertices: In the following, the distance invariant property of
TI(A, b, <) will be shown. Let us define the Euclidean distance

N 1 00 N 010 tor b
A 00 1|, M2 1 0 0], enumerator by
01 0 0 0 1 Wy (Z2) A Z Zl1Xs=Xsl| (29)
0ol /30 2/3 X€eT(A,b,<
M® 2 Lo 1o |, M2 23 13 0 |, (4.0.9)
1 00 0 2/3 1/3 This enumerator has the information on distance distiiosti
1/3 2/3 0 measured from the permutation mateik
6y A& The next lemma states that the Euclidean distance enumer-
M = 0 1/3 2/3 |. (25) _ .
2/3 0 1/3 ator does not depend on the center paltif the linearly

constrained permutation matrices have a group structunie. T

In this case, the set of vertices consists of 3-integralicest property can be regarded aslstance invariance propertyf
and 2-fractional vertices. Les = (0,1,2)”. The pseudo permutation codes.

" ) holds for anyX € TI(A, b, <). Thepseudo weight enumerator
Dy(M™, M™) = 1.224745. W (Z) is defined byW (Z) = W;(Z) wherel is then x n
identity matrix.

distance distribution form/(!) is given by Lemma 2 (Distance invariance)f II(A,b,<) forms a
Dy(M i) M(z)) —  1.388730 group under the matrix multiplication ové, the equality
Dy(M® MOy = 1224745 Wx(Z) =W (Z) (30)
Dy(M® MWY = 1224745
( (5

The minimum pseudo distance of this code polytopAjs=

1.994745. 0 Proof: Sincell(A,b, Q) forms a group, the invgzrsk’*1
belongs toll(A4, b, <) as well. Since the invers& ~! induces
B. Upper bound on ML decoding error probability a symbol-wise permutation, it is evident that

Assume the same setting as in the previous subsectio Lxs X 1%sll = [ls— X 1%
In the case of ML decoding, we can neglect the effect oiﬂX XS” = [IX™Xs Xsl| = ls = X7 ]| (31)

fractional vertices. Therefore, we obtain an upper bound @@ids for any X, X e (A, b, <)(X # X). The Euclidean

the ML block error probability distance enumerator can be rewritten as
Xs|]2 = (Xs)TXs _ [|Xs—Xs||
Px) < Y Q <|| P~ (X ) Wxz) = Yz
Rl AN X} ol[Xs — Xs| Ken(Ab,9) ,
~ — [|s—X7"Xs]|
| Xs — Xs|| = > 7z
— Z Q — (26) Xell(A,b,9)
Ken(AbD\(x} - oozl Xl = w(z). (32
based on a similar argument. The above equality holds since X'€TI(A,b,<)

|| Xs|| = || Xs|| holds for anyX € II(A, b, <). Note that this
simplification cannot apply toX if which X is a fractional o :
vertex. This is because the preservation of Euclidean noﬁ'ﬂua“ty is due to the assumption thE(4, 5, <) forms a

. ; : . [ |
does not hold in general for a doubly stochastic matrix. F&foup ] .
example, we have Example 4:We have performed the following computer

experiment for the following two codes:
/3 2/3 0 Vi 1) LP decodable permutation code corresponding to the de-
0 1/3 2/3 |s|| = 19147 # [[s|][ = V5, (27) rangements of length 5. The additional linear constraint
2/3 0 173 is trace(X) = 0. A transmitted word(1,0,4,2,3)7 is
wheres = (0,1,2)7. assumed. The code polytope has 44-vertices which are
If TI(A,b,<) have a group structure under the matrix  all integral vertices.
multiplication, the above upper bound can be further sifigeli ~ 2) LP decodable permutation code of length 5 correspond-

The second equality is a consequence of Egl (31). The last

as ing to an additional linear constraitf; ; + X55 = 1.
||XS —s]| A transmitted word0, 4, 3,2,1)T is assumed. The code
Prr < Z Q TS (28) polytope has 330-vertices. The set of vertices contains
X eI(A,b,D\{I}

36-integral vertices and 294-fractional vertices.

It should be remarked that the second upper bolindl (28)Tike AWGN channel with noise varianee is assumed. The
independent of the transmitted codeword. In order to prosgnal-to-noise ratio is defined by NR = 10log;, (1/0—2) .



The LP decoding described in the previous section was em= ~yv holds). The square blocks are callelbckswhich is
ployed for decoding. explicitly defined as follows.

Figure[2 presents the upper bounds and simulation results oefinition 7 (Block): For k,b € [1,7], a block By is
block error probability of these permutation code. It isdiba defined by
observed that the upper bounds presented in this sectiovssho

reasonable agreement with the simulation results. By = {(4,5) € [L,n]* | v(k—1) <i < vk,v(b—1) < j < vb}.
The both codes have the same minimum pseudo distance (33)
0.707107 and similar cardinalities (44 and 36) but the derangd-e indicesk andb are calledblock indices 0

ment code provides much better block error probabilitiemth We further split a block into a set géctangle regions
those of the code with the constraili ; + X5 5 = 1. This is Definition 8 (Rectangle region)The rectangle regioﬂ“,ﬁfz
because the existence of fractional vertices (i.e., 28dtibnal is defined as

vertices) severely degrades the decoding performanceeof th
code with the constraink; ; + X5 5 = 1 compared with the
derangement code. 0

1>

T 2 {(@,y) € Bro ly=vb-1D)+1}  (39)
for k,b € [1,4] and! € [1,v]. The subscript:,b specifies
the block where the rectangle regidf‘;glg belongs to. The
10° superscriptl € [1,v], which is called asubindex indicates
the relative position in the blocBy, ;. 0

We are now ready to define a block permutation matrix

T which is the basis for realizing a block-wise permutation
g e group.
% ) \\\ Definition 9 (Block permutation matrix)Assume that a
o 10 == permutation matrixX € II,, is given. If, for anyb € [1,4],
g - there exists the unique block indéxsatisfying
o S
Upper bound: derangement i SN X(Bk,b) 7& 0 (35)
LP decoding: derangement
Upper bound: X; ;+Xg 5=1 ——— N then X is called ablock permutation matrixThe notation
102 LP decoding: X3, 1#Xs =1 —~— \ X (Bg,) represents the sub-matrix &f corresponding to the
4 5 6 7 8 9 10 block By . 0
SNR [dB] From this definition, it is apparent that a nonzéf¢B, ;,) €

{0,1}**¥ is a permutation matrix ifX is a block permutation
matrix. Furthermore, there exists the unique block index
satisfying X (By,) # 0 for any block indexk € [1,~]. This
equivalent statement can be obtained by exchanging the role
V. STRUCTURED PERMUTATION MATRICES of column and row in the above definition.

An efficient encoding algorithm is required for realizing & Linear constraints for block permutation matrix
coded system employing the LP decodable permutation codes.

A straightforward way to implement an encoding map is the In this subse_ctio_n, a set of linear constraints providing a
use of a look-up table for converting a message vector toPpCk permutation is discussed. Forl preparation, we need th
permutation matrix. If the cardinality dfi(A, b, <) is not too definition of the skewed column sé’t,gz C [1,n]* as follows.
large, a table look-up method for encoding may be practical.

An evident disadvantage of the table look-up approach is tha Definition 10: (Skewed column set) For block indices
the use of this approach is limited to the case in which tteb € [1,7] and subindex € [1,v], the skewed column sés

Fig. 2. Comparison of upper bounds and simulation resuft& Fodecoding
on block error probabilitiegn = 5)

code length is sufficiently short. defined by
In this section, we discuss structured constraints which
enable us to use efficient combinatorial algorithms for eRco U,El?) A T;EIZ U U T]gf7£10d v+ | (36)

ing. Especially, the focus is on a set of linearly constrdine '
permutation matrices which forms a block-wise permutation

group. The set of block permutation matrices plays a key role ) O
in this section. Figure[3 illustrates the subsets @df n] x [1,n] appeared so

far such as the blocks, the rectangle regions, and the skewed

K e[1\{k}

A. Block permutation matrix column set.
In this subsection, we prepare required definitions to fendl The next theorem presents a set of linear constraints char-
block permutation matrices. acterizing block permutation matrices.

Suppose the situation where the Eetn] x [1,n] is divided Theorem 3 (Characterization of block permutation matrix):
into mutually disjointy x v square blocks of size x v (i.e., Let X € II,, be a permutation matrix. The permutation matirx



block index b Assume that a block indek € [1,~] and a subindex €
[1,v] are arbitrary chosen. Let = v(b — 1) + . Since X

skewed is a permutation matrix, there exists the unique row index
column block i € [1,n] satisfying X; ; = 1. The block By, containing
set Bk;,b the set of indiceqs, j) is uniquely determined because the
U(Q) blocks are mutually disjoint. Under this setting, it is cl¢faat
k.b X (By,) # 0 holds.
In the following, we will show that
block index )
k v k 75 k= X(Bklyb) =0. (41)
From the definition of the block indek, It is clear that
> Xuw=1 (42)
Iﬁg (wo)et)
subindex recta_ngle hold_s. Combining Eq.[(38) and Ed._{42), we immediately
region obtain

Fig. 3. Blocks, rectangle regions and skewed column set
> > Xuo | =0.  (43)
k'€[1,v],k'#k (“-VU)GT,S;M V)41
X is a block permutation matrix if and only if

Z Xu,v =1 (37)
(wyeud) wvye |J TUrM s Xue=0. (44

holds for anyb, k € [1,4],1 € [1,v]. Kella\ k)
Proof. In the first part of the proof, we will show thatgecausex is a permutation matrix,
any block permutation matrix satisfids {37).
Assume thatk, b € [1,~] andl € [1,v] are arbitrary chosen. Z -1 (45)
From the definition of the skewed column ié,ill)), the left-
hand side of[(37) can be rewritten as ’

Z X o = Z X should be satisfied. Applying the same argument iteratively
Y v we consequently have

This equality implies that

.. I mod v 1
(i) €T, ™

(u.,v)GU,ilyg7 (u,v)GTlgl’g7
+ 0y > Xuw | - K[\ {k} UElLY]

k! , k (I mod v)+1 . . .
e[\ {k} (u)ET,, | This statement is equivalent 6 # k = X (B ;) = 0. Due
(38) to the definition of the block permutation matrix, it has been
Recall thatX is assumed to be a block permutation matriX"ved thatX should be a block permutation matrix. ~ m
This means that there exists a unique block ingex [1, 7] The next example clarifies the linear constraints character

satisfying X (B,.,) # 0 for given block indexb, and the sub- 1ZiNg @4 x 4 block permutation matrix.

matrix X (B, ;) is a permutation matrix. If: =  holds, then ~ Example 5:Let n = 4,1 = 2,7 = 2. The necessary and
sufficient condition for a permutation matriX < I, being a

Y Xuw= > Xyu=1 (39) Dblock permutation matrix are as follows:
(u.,v)GU,(cl}7 (u,v)GTlgl’g7

holds. Otherwise (i.e% # k), the equality Xt Xon+Xapt+Xyp = 1

Xio+Xoo+X31+Xy1 = 1

Z Xuw = Z Xuw=1. (40) Xig+Xog+Xga+Xyy = 1

(w)EU, ()€l Xia+Xoa+ Xag+Xag = 1.
holds. Thus, it has been proved tHatl(37) holdXifs a block (47)

permutation matrix.
We then move to the opposite direction; i.€.1(37) implieBigure[4 illustrates the allocation of each linear constrain
that X is a block permutation matrix. a4 x 4 array.



where sy, s2,...,s, € R”. The next lemma explicitly indi-

112]8]4 cates the block permutation structure of the block perrartat
112134 codes.
Lemma 3 (Block permutation structurekny  codeword
2| 1| 4| 3 Xs e C(n,v,s) can be represented as
21|43 @150(1)
Xs= , (51)
Fig. 4. Linear characterization of block permutation mafm = 4,v = Q"’S"('V)

2_,7 =2): T_he variables with the same number label participate imgles whereo € 87, Q1,. .., Q7 € II,. The set87 is the set of
linear equality. .
bijectionso : [1,79] — [1,7].

Proof: Any codeword ofC(n,v,s) can be represented
by Xs where X is a block permutation matrix. From the
. ) definition of the block permutation matrix, for armye [1, ],
Let us denote the set of block permutation matrices by inere exists a unique block indek, € [1,4] such that
X (B, ») (K" # k) becomes a permutation matrix. We here
introduce a mapr : [1,7] — [1,7] which is defined by
Note that we here employ a lighter notatibln, ) instead (k) = b for anyb € [1,~]. Due to the definition of the block
of TI(A, b, <) since it explicitly express dependency orand permutation matrixg is an injection. Furthermore, sineeis
v. It should be remarked thdl(n,v) forms a group under an injection between the sets of the identical cardinaiity,

C. Block permutation codes

I(n,v) 2 {X €11, | X satisfies(37)}. (48)

matrix multiplication overR. should be a bijection.

The class of block permutation codes defined below is aOn the basis of the above argument, it becomes clear that
class of LP decodable permutation codes. X(By.o(1))S0(1)

Definition 11 (Block permutation code):et n be a posi- X(Bg7g(2))sg(2)
tive integer. A positive integew is a divisor ofn. The initial Xs= T (52)
vectors belongs taR™. Theblock permutation cod€'(n, v, s) :
is defined by X(By,(1))S0(v)

C(n,v,s) £ {Xs€R": X € II(n,v)}. (49) holds for anyXs € C(n, v, s). By letting Q; = X (B, »().
we have the claim of this lemma becau@gis a permutation

O  matrix. ]

A block permutation code can be decoded by LP decoding.should be remarked that the number of codewords of
We can use the linear equalities in Theofém 3 as the additiopdy, ,, 5) is~!x ()7 if C(n, v, s) is non-singular. The block-
linear constraintsA vec(X) < b in LP decoding for LP yise permutation in (51) and the permutation corresponding
decodable permutation codes. The size of the LP problemyis ). are calledinter-block and intra-block permutations
the following. The number of variables is’ (i.e., X; ;). The respectively.
number of linear equality constraints s + yn because theé  For a non-singular cod€'(n, v, s), consider an encoding
number of linear equalities foX to be a doubly stochastic map 4 . [1, 4! x (11)?] — C(n, v, s). Note that the seftl, v! x
matrix is 2n and the number of additional linear equalitie$,1)1] corresponds to the message space. Leffima 3 suggests
i 2 — i i .. . . .. . .
is v*v = ~n for the block per_mQutatlon constraint. Theyhat any efficient ranking algorithm (a bijection algorithm
number of inequality constraints is* corresponding to the converting an integer into a permutation) for permutations
constraintX > 0. In summary, the number of variables angzy pe used for encoding(n, v, s). For example, a simple
constraints are bounded by (n?). Therefore, if an interior y3nking algorithm based on an inversion table is discussed i
point method is employed for solving this LP problem, w&ec, 51 of [25]. The encoding mapis a bijection and it is
obtain a reasonably accurate solution in polynomial time. jnyertible. This means that. from a codeword@(n, v, s), we
can reconstruct the message corresponding to the codeword.
) o ) The details of an encoding algorithm for block permutation

A block permutation matrix induces a block-wise permutasgdes is given as follows.
tion if it applies to a vector. This block permutation stwe compinatorial encoding algorithm for C(n, v, s)

supports a combinatorial encoding algorithm presentedim t 1) Convert a message € [1,~! x ()] into a message
subsection. ’

D. Encoding of block permutation codes

. o vector (mo, ma, ..., my) € [1,7!] x [1,]7.
We here write the initial vectos as 2) By using a ranking algorithm for permutations denoted
81 as a map, compute permutations corresponding to the
g — : ’ (50) message vector:

S.’Y (07Q15Q27"'7Q7):F(m()amlv'-'vm’y) (53)



wheres € S, Q; € 11,,. 2) Case Bis® # o

3) Output At least two block indices,n € [1,v] (£ # n) satisfies
Q154(1)
; (54) oU(€) £ 0M(E), a"(m) £o"(n). (61
Q50(v) This relations lead to the following lower bound:
as the codeword corresponding to the message ,
E. Minimum squared Euclidean distance of block permutation le" = PIP = > 11Qfsoem) — Qhsarl
codes k=1

|Q¢ 500 (e) — Qo)
1Q5500(m) = Qnsor(n I
A2, 62)

In Sectior W, we saw the minimum pseudo distance is one
of most influential parameters for LP decoding performance.
Unfortunately, the evaluation of the minimum pseudo diséan
is not a trivial problem. As a possible alternative, we hesad-e

uate the minimum squared Euclidean distanceC6f, v, s) Due to inequalities [(80) and(62), we hav& >

v + v

defined by min{A2? 2A2}. Thus, the assumptio\? > 0,AZ > 0
Q2 - min Iz — yl|2. (55) guarantees that’(n,v,s) is non-singular. It is clear that
T g yeC(n,p,8) (vy) there exists pairs of codewords satisfyifig](60) dnd (62 wit

At least, we can say that decoding performance degrades e¢@nality. Thus, we obtain the claim of the theorem.
with an ML decoder ifC(n, v, s) has smalld?,;,,. Example 6:Let n = 6,7 = 3,v = 2. The initial vectors

The block-wise permutation structure can be exploited fis assumed to be = (4 1 5 2 6 3)T. In this case, we have
deriving a simple lower bound on the minimum squared

Euclidean distance. 51 = ( 4 )7 S9 = ( X ), Sg = ( 6 )
Theorem 4 (Minimum squared Euclidean distandegt us 1 2 3
defineA? and A% b
Al 2 DY From the definition of A2, A2, we easily obtainA? =
A2 2 min min 1Q1(501)) — Qa(s0(n))l[> 18, A} = 2. Applying Theorem[#, we havel2,, =
7€57 Q1,Q2€l1, (Q17Q2) min{18,2x 2} = 4. The number of codewords ig x (v!)? =
A :
A3 = min  min  [|Qi(ssq)) — Qa(so(2)l*.  (56) 48 O

7€8y Q1. €lly It should be remarked tha? and A2 have a simpler form:

Assume that botm\? and A2 are positive for givem, v, s.
In such a case(’(n,v, s) is non-singular and the minimum Af = kgﬁn]Qeﬁn(Qﬂ)
squared Euclidean distance @f{n, v, s) is given by 9 7 e )
A} = min ||s; — Q(s;)|[*.  (63)

min
d?,,, = min{A} 2A3}. (57) ? k.jely](k#5) Q€M
Proof: Assume that arbitrary two distict codeword
¢ cb € C(n,v,s)(c* # c) are given. Lemm@&l3 guarantee

thatc® andc® can be expressed as

in sk — Q(sk)|?

SThe derivation of this simpler form is based on the group
Jtructure ofII, and on the norm preservation property of
permutation matrices.

QYSoa(1) ll)sob(l) The order of elements in is highly influential to the min-
& = : , = : , (58) imum distance. The following corollary gives an approgiat
Q%5 Qb 5.0 ordering in terms of the minimum squared Euclidean distance
) 7ot () The idea is very similar t@et partitioningfor constructing a
where Qf,...,Q%,Q%,...,Q% € 1L, 0”0 € S,. The good trellis-coded modulation scheme due to Ungerboedk [23
assumption:=® # ¢* implies
(0%, 78, ..., 7%) # (ab, 7, ... ’Wg)_ (59) Corollary 1 (Set partitioning):Assume that the initial vec-

tor s is given by
In the following, we will consider the following two cases.

]_) Case A:0® = gt S1 é (1—!—(1/—1)7,...,1+27,1+7,1)T
In this case, there exists at least one block inéex A T
[1,~] which satisfies)?, # Q!,. The squared Euclidian s2. = Q2+ @-1)7...,2+21,247,2)
distance betweer® andc® can be lower bounded by :
v JA T
a a sy = (Y+@ =1y, v+2%7+7.7)"-
lle* =P = ZHQ/@SUG(;@) — Q1 sov (|17 !
k=1 , ) In this case, we havé? . = min{2v?% 2v}.
> Qksgary = Qursar (el Proof: Itis easy to see thak? = 2% A% = v. By using
> A2 (60) Theorenl#, we immediately have the claim of corollarym
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A e Sandd = (,<...,<). The symboll denotes the
Theoren(B states that any codeword of a block permutatiggeor of lengthn whose entries are all ones. Extensions of the

code has the form in Eql(51). A natural way to extend th£1alysis for more general classes of LP decodable permntati

block permutation codes is to introduce a restriction on the 4oq are possible, but we here focus on the simplest class

inter-block and the intra-block permutations. Namely, @@ € 1, oyplain the idea of the analysis. Throughout this segtion

choose the inter-block and intra-block permutations as we assume that components of the initial vectatiffer each
0'67;1 Ql?""Q’YEPI/7 other.

B. Probabilistic analysis on average cardinality of codes

F. An extension of block permutation codes

whereT, is a subset of, and P, is a subset ofl,. This re- . o
striction reduces the number of codewords but it may improve The number of codewords iA(4, a1, <, s) is given by
the decoding performance. Combining linear constraints fo A

= <
block permutation matrices and additional linear constgsi M(4) Z 1[4 vec(X) S a1}, 67)

for 7, and P,, it is expected that such an extended block , o e I _
permutation code is LP decodable wherel is the indicator function. The indicator function takes

A generalization of Theoref 4 is straightforward; we only“_e value one when the given condition is tr_ue and otherwise
need to replacé\? and A2 by gives th_e valug zero. The next lemma gives the average
cardinality of this code.
A'f 2 in min 1Q1(s0(1)) — QQ(SU(I))||2 _ Lemma 4 (Average cardinglity of codeshhe average car-
€Ty Q1,Q26 P (Q17#Q2) dinality of A(A, a1, <, s) is given by
N

A8 2 i i, QG) ~ Qe O (LZ()(_) e
( Y

3 . .
in order to obtain a generalized result. 9 I ANV AN

Appropriate choice for7, and I, to construct a good where the operatoE denotes the expectation defined on
permutation code is an interesting open problem. (S, P).
Proof: From the definition ofd/(A), the expectation of

the cardinalityM (A) can be written as
In the previous section, we discussed a set of structured

VI. RANDOMLY CONSTRAINED PERMUTATION MATRICES

permutation matrices. Another possible choice for linear-c E[M(4)] = Z P(A)M(4)
straints is to generate them randomly. Such random linear A€s
constraints are amenable for probabilistic analysis apears = Z P(A) Z I1A vec(X) < al]. (69)
interesting from information theoretic view. In this sectj we AeS Xel,
study a class of LP decodable permutation codes defined baBgdhanging the order of summation, we can further transform
on random constraints. this into
A. Sparse constraint matrix ensemble E(M(A)] = > Y P(A)I[A vec(X) dal]

Since the LP decodable permutation codes are non-linear XEIT'” AeS
codes, the cardinality of a given code cannot be determined - % Z I[A vec(X') < ad], (70)
directly from the constraints in general. In the following (") Acs

part of this section, we will analyze the cardinality of cede, here x7 is an arbitrary permutation matrix ifi,,. The last
and their Hamming weight distributions. A sparse constraiy 5jity is due to the symmetry of the ensemble. Namely,
matrix ensemble is assymed in the foIIqwmg analysis, Wh'_‘fhis means that the quantity", ¢ /[A vec(X’) < al]
has a close relationship to the analysis on average weigilt.q ot depend on the choice &F. The evaluation of
distribution of LDPC ensembles [12]. _ > acs I[A vec(X') < al] can be performed on the basis of

Let S be the set of binary constraint matrices: H ; ; ; ; ;

the following combinatorial argument. It is evident thatyan
) i : A

= {A € {0, 1}m><n2 . every row of A containsr-ones. X Ae 11, contfa\mm—_ones as its components. ThIS |mpI|§s that
(65) 2’ = vec(X') is a binary vector of length? with Hamming
We assign the uniform probability weightn. Let I; 2 {i € [1,n?] | 2% = 1}, wherez!, is theith
element ofz’. Consider the first row ofd, which is denoted
P(A) = Gk (66) by a”. The relationa”z’ < o holds if and only if

to each matrix inS. The pair (S, P) can be considered as ) )
an ensemble of matrices, which becomes the basis of thae number of possible ways to choose such a vectes

A1

following probabilistic method. given by N )
Let o be a positive integer. In the following, we focus on the Z (”) (" - ”) _
linearly constrained permutation cod€ A, o1, <, s), where —\1 r—1



The term (’;) ("::Z") corresponds to the number of possibl@he last equality is due to the symmetry of the ensemble and

ways such thaf/; (of cardinality n) containsi-ones and the equation [7R).

other indices (of cardinality? —n) contain(r —i)-ones. Since  The cardinality ofZ,, (o) is given by the following com-

each row ofA can be chosen independently, we consequentijnatorial argument. Letr € A(s) be an arbitrary vector

have satisfying wg () = w. The index setly;¢s is defined by
Liigs(x) ={i € [1,n] | 0; # x;}. Let T C [1,n] be an index

Z 1A vec(X') Sal] = (i <n> <n2 - n>> . (72) setof cardinalityw. The quantity{z € A(s) | T' = Lsifr(x)}]

Acs im0 \! r—e is equal to the number of derangements of lengtlwhich is
Substituting [7R) into[{70), we immediately obtain the wiai "”OW_” to be[ (w! +1)/e] [_33] [39). Note that the number .Of
of the lemma. - possible ways to choo<E is (Z) Thus, we have the equality

_ . . S n\ |w +1
C. Probabilistic analysis on weight distribution | Zw(0)| = (w) { . J . (79)

The origin o 2 o1,...,0,) IS an arbitrary permutation _, .
vector of lengthn; r(1amely,o € A(s). The number of code- This completes the proof of the lemma. -
words of A(4, al, <, s) with Hamming weightw is denoted VII. CONCLUSION
by Lq,(A), where the Hamming weighty (-) is defined by | this paper, a novel class of permutation codes, LP

A decodable permutation codes, is introduced. The LP ded®dab
wy (v) = ZH[Oi # i), (73) property is the main feature of this class of permutatioresod
i=1 The set of doubly stochastic matrices, i.e., the Birkhoff
wherex = (1, ...,,). This means the Hamming weight ofpolytope, haven! integral vertices which are permutation
x is equal to the Hamming distance between the originaand matrices. Additional linear constraints defines a code toply
In other words,L,,(A) is defined as which plays a fundamental role in the coding scheme predente
A in this paper. An LP decodable permutation code is the set of
L,(A) = Z Twg (z) = w]. (74) integral vertices of a code polytope.
zeA(A,al,q,s) In an LP decoding process, a certain linear objective func-

. . _tion is maximized under the assumption that the feasiblésset
The set{L;(4),...,Ln(A)} is referred to as the Welghta code polytope. The decoding performance can be evaluated

distribution of A(4, a1, 9, 5). from geometrical properties of a code polytope
The weight distribution indicates a geometric property ofPMm9g prop Polytope.

. The choice of additional linear constraints are crucial to
A(A,al,<,s). The next lemma gives the ensemble average . .
X C onstruct good codes. In this paper, two approaches are dis-
of the weight distribution.

Lemma 5:The average weight distribution of the Iinearlycussed' namely, structured permutation matrices and ralydo

constrained permutation codg A, a1, <, s) is given b constrained permutation matrices.
P ol =, 8) 159 y The key result of Sectiof ]V is that block permutation

n\ | w! +1 1 O /n)\ /n2—n\ )~ matrices can be characterized by a set of !inear eq_ualiti(_es.
ﬁz i - The group structure of the block permutation matrices is
r /) =0
(75)

useful for efficient encoding. Bridging an algebraic prdaper
Proof: The weight distributionZ.(A) can also be (group structure) and a geometric property (code polytope)
expressed as

elL. ()] =

w e r—1

appears a first step towards a novel paradigm for the study of
permutation codes.

Ly (A) = Z I[A vec(X) < al], (76) The random constraints discussed in Sedfioh VI enable us
X€Zu(0) to use probabilistic methods for analyzing some spropedie

codes. The probabilistic methods [26] are very powerful too

whereZ,, (o) is defined by for grasping the relation between the number of constraints

Zu(0) 2 (X €10, : wr(Xs) = w). 77) agggeimportant code parameters such as the cardinality of a
The expectation can be simplified as follows: Although the paper provides fundamental aspects of the
LP decodable permutation codes, many problems remain still
E[Lu(4)] = Z P(4) Z I[A vec(X) d o] open. The following list is a part of open problems.
Aaes X€Zu (o) 1) Construction of good block permutation codes; choice
= % Z Z I[A vec(X) < al] of an initial vector, block size, and inter-block and intra-
(V) xéZo(o) acs block permutations.
1 & 9 m 2) Efficient algorithm for solving the LP problem arising
= ( : Z <n> <n - n)) | Z(0)]. in the LP decoding.
(71) i—o \! r—1 3) Permutation modulation for linear vector channels; Let

(78) H be an x n real matrix. An ML decoding problem for



a linear vector channel can be formulated as can be defined. Note that a code polytope defined in this paper
does not coincide with the convex hull of an LP decodable
permutation code in general. This means that the LP decoding
%%n be considered as an instancePpf

minimize ||y — Hz||* subject tox € A(A,b, <, s).
(80)
As discussed in this paper, the decoding problem can
relaxed to a quadratic programming (QP) problem: B. Convex relaxation of a set of permutation matrices

minimize ||y — Hz||? subject tox € P(A,b, <, s). We_here di§cuss convex relaxation_s of some sets of per-
(81) mutqtlon matrlcgs such as the set of involutions, perrmn_au
A QP-based decoding algorithm like [31] appears intefhatrices for cyclic group. Some results presented herewgive
esting for this problem. insight for the convex re_laxatlon of permutation matrices a
4) Development of a theory for convex optimization ovefay become a start pqlnt for further progress on structured
a set of permutation matrices; see also Appendix. P decoda_ble. permutation codes. _ _
Further investigation on related topics may open an ingeieli dot)bll;k;ttzté%gst\i/zemgi:; refer the following constraints for
plinary research field among coding, combinatorial optaniz
tion and algebra. X1=1, 1"x=17, X>0 (84)

3

APPENDIX as thebasic constraintsLet A be a set of linear constraints
In this paper, we considered optimization problems definégrluding the basic constraints and additional linear tamsts
on a set of permutation matrices. The first part of Append(®.9., trace(X) = 0). In this section, the relaxed polytope
provides an abstract framework for this class of optimarati corresponding tod is denoted by
problems and show a relaxation approach to solve them.
The second part discusses convex relaxations of a set o
permutation matrices.

PA) = {X e R™": X satisfies all constraints in}.

(85)
The set of permutation matrices satisfying the constraimts
A. convex optimization over a set of permutation matrices A is denoted by

Let Q C II,, be a set of permutation matrices. Assume that
f:R™™™ — R be a convex function. Our target problem is
assumed to be It is known that an LP solution is achieved on a vertex

_ . of a polytope in most cases. Therefore, it is desirable that
Py« minimize f(X) subjectX € Q. (82) the rgla?(/edp polytopeP(A) coincides with the the convex
In this setting, the feasible set becomes a discrete ses, Tt hull of II(.A) to avoid an fractional solution. If the equality
problemP; can be considered as a combinatorial problem. @f(A) = conv (II(A)) holds, then the relaxed polytope (or
course, in general, it is very hard to soli?e. We here consider code polytope) is said to b#ght. In other words, a tight
a relaxed problem of;: polytope, called a tight polytope in this paper, is a polgop
N . whose vertices are all integral. In some cases, linearly de-
Py:  minimize f(X) subjectX € conv(Q), (83)  pendent linear constraints are useful because such redunda
whereconv(Q) denotes the convex hull @. Note thatf(X) constraints tighten the relaxation.
is a convex function with respect tf and the feasible set 2) Convex relaxations for, = 4: Table[l presents linear
conv(Q) is a convex set. This means th& is a convex constraints for some sets of permutation matrices and their
programming problem. Thereforg, can be efficiently solved tightness of corresponding relaxed polytopes. In thisetabls
with an interior point method. In general, the solution®f assumed thak e R***. The tightness is numerically checked
and P, are not equal. However, it is expected that the solutioith the vertex enumeration prograotdd based on double
of P, is a good approximation of the solution &f. description method by K. Fukuda [32].

In many casesconv(Q) is not easy to handle. For exam- Some remarks on Tablé | are listed as follows.

ple, in some cases, finding linear equalities and inegaaliti 1) Cyclic group of order 4: The cyclic permutation matrices

II(A) = {X €11, : X satisfies all constraints ii}. (86)

expressingonv(Q) is a non-trivial problem. In such cases, it of order 4 is given by the following additional linear
is useful to consider a relaxation ofnv(Q). constraints:

A relaxed polytopeP for conv(Q) should satisfy the
following conditions. X1 = Xpo, Xop=Xss, X33=Xaa

1) conv(Q) C P Xon = X2, Xgo=Xu3, Xyz3=X14

2) The set of integral points i® coincides withQ. X31 = Xy, Xyo=X13, X13=Xo4

3) The number of linear constraints expressipgs much X411 = Xio, Xi12=Xo3, Xo3=X34.(87)

)

smaller than that o€onv(Q).

Base on a relaxed polytog@, a relaxed problem The arrangement of equalities 4nx 4 array is depicted

in Fig.[H. In a similar way as in the case= 4, we can
P;:  minimize f(X) subjectX € P define the cyclic permutation matrices of orderWe



TABLE |

TIGHTNESS OF RELAXED POLYTOPES FOR SOME SETS OF PERMUTATION

MATRICES (n = 4)

4)
set of perm. matrices  additional constraints tightnesgV
symmetric groupSy none Y 24
cyclic groupCy @7 Y 4
derangement trace(X) =0 Y 9
involution X =XxT N 14
transposition (1) trace(X) =n—2 N 20
transposition (2) trace(X) =n—2 Y 6

X =XxT
Klein four group [(89) Y 4
dihedral groupDsg Y 8
2 x 2 block constraints[{47) N 28
2 x 2 block constraints[(47) and (P1) Y 8

The column of tightness (Y/N) represents the relaxed pplytes tight (Y)
or not (N). The column#V denotes the number of vertices on the relaxed
polytope.

Fig. 5. Constraints for cyclic permutation matrices ancedital group with
order 8; The variables with the same number label consttdinée the same
value.

2)

3)

5)
conjecture that this type of linear constraints for cyclic
permutation matrices, i.e.,

VZ,] S [Ln]a Xi,j = X(’L mod n)+1,(j mod n)+1,

(88)

give a tight polytope. We confirmed that this linear
constraints also give the tight polytope when= 5.

112 |4 )|3 5|1 |2]|6

3|12 4 1|15 [6 | 2

4 1312 4 7| 3

2|43 |1 4 | 3 | 7

Cyclic permutation matrix Dihedral group with order 8 We

Xi3
X3,1

Xy, = Xo3=X94=0,
X32=X41=X42=0.

(89)

Dihedral groupDs: A set of permutation matrices cor-
responding to the dihedral group with order 8 is given
by the set of equalities (see also Hig). 5):

Xi2=X01,X13=Xo4,X31=X4p,
X34=X43,X11=X22,X14= X3,

X411 = X32,X44=X33. (90)

Symmetry (90 degree rotation around the center) of the
allocation of the equality constraints can be observed.
It suggests that linear constraints for a set of permu-
tation matrices forming a group may have this type of
symmetric structure.

Block constraint: The linear constraints for block permu
tation matrices[(47) introduced in Theoréin 3 does not
give the tight polytope im = 4. However, combining
(47) and a set of redundant constraints (i.e., 90 degree
rotation of [4T))

Xii+Xio+Xoz+Xou 1
Xo1+Xoo+ X3+ X1 1
X311+ Xz2+ Xg3+ Xyg 1
Xag+Xao+ X33+ X34 1, (91)

we have the convex hull o2 x 2 block permutation
matrices. This case also shows importance of redundant
constraints from the optimization perspective. From this
result, it is expected that the LP decoding performance
of block permutation codes might be improved by in-
corporating this redundant linear equalities.

here presented convex relaxations of some sets of per-

mutation matrices. Further exploration on this topic iddhg

rigorous proof of the above mentioned conjectures appears
interesting not only from engineering point of view but also

from mathematical point of view.

Transposition: The permutation matrices satisfying t
linear constrainttrace(X) = n — 2 exactly coincides
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with the set of transpositions (i.e., permutations of two The first author appreciates Prof. Han Vinck for directing th

elements). Note that the constraimbce(X) = n — 2

author’s attention to the field of permutation codes. The firs

does not give the t|ght po'ytope. Combining a redundaﬁ.ﬂthor also wishes to thank Dr. Jun Muramatsu for inspiring

constraintX = X7 (i.e., the involution constraint) disc
to the trace constraint, the relaxed polytope becomes
tight. This example indicates that redundant constraints
are necessary for constructing a tight polytope in somg]
cases.

Klein four-group: The Klein four-group is isomorphic 2
to Zs x Zo. This group structure imposes block-wise
diagonal structure on a permutation matrix. The conve§l
hull is given by the basic constraints and the following
constraints:

Xo1

(4]

X192, Xu3= X34,

ussions on permutations.
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