
ar
X

iv
:1

01
1.

66
26

v2
 [

m
at

h.
L

O
]

 2
 D

ec
 2

01
0

On Guessing Whether A Sequence Has

A Certain Property
Samuel Alexander

alexander@math.ohio-state.edu

Abstract: A concept of “guessability” is defined for sets of sequences
of naturals. Eventually, these sets are thoroughly characterized. To do this,
a nonstandard logic is developed, a logic containing symbols for the ellipsis
as well as for functions without fixed arity. New proofs are given for some
seemingly-unrelated known results.

1 Motivation

Suppose we are playing a game. I am reading a fixed sequence, one entry
at a time. You are trying to guess whether 0 is in the sequence. You can
revise your guess with each new revealed entry, and you win if your guesses
converge to the correct answer. You have an obvious strategy: always guess
no, until 0 appears (if ever), then guess yes forever. The set of sequences
containing 0 is guessable.

Suppose, instead, you are trying to guess whether my sequence contains
infinitely many zeroes. We will see there is no strategy, not even if your
computation power is unlimited. The set of sequences with infinitely many
zeroes is unguessable.

A sequence f : N → N is onto if ∀m ∃n f(n) = m. This definition uses
nested quantifiers: quantifiers appear in the scope of other quantifiers. Is it
possible to give an alternate definition without nested quantifiers? The an-
swer is “no”, but how to prove it? We’ll give a proof of a very strong negative
answer, strong in the sense that nested quantifiers cannot be eliminated even
in an extremely powerful language. Of course, the technique generalizes to a
wide class of things, not just the onto sequences.

1

http://arxiv.org/abs/1011.6626v2

2 Basics

Let NN be the set of sequences f : N → N, and let N
<N be the set of finite

sequences.

Definition 1. A function G : N<N → {0, 1} guesses (and is a guesser for) a
set S ⊆ N

N if for every f : N → N, there exists some m > 0 such that for all
n > m,

G(f(0), . . . , f(n)) =

{

1, if f ∈ S;
0, if f 6∈ S.

A set S ⊆ N
N is guessable if it has a guesser.

The next test is very useful for showing nonguessability, though its con-
verse is not true.

Theorem 1. Let S ⊆ N
N. Suppose that, for every finite sequence g ∈ N

<N,
there are sequences g1, g2 ∈ N

N extending g with g1 ∈ S and g2 6∈ S. Then S
is nonguessable.

Proof. Suppose S has a guesser G. I’ll define a sequence f : N → N such that
G(f(0), . . . , f(n)) fails to converge, which violates the definition of guesser.

Clearly S 6= ∅, so let s1 : N → N be some sequence in S. By definition
of guesser, we can find some x1 such that G(s1(0), . . . , s1(x1)) = 1. Let
f(0) = s1(0), . . . , f(x1) = s1(x1).

Inductively, suppose I’ve defined x1 < · · · < xk and f(0), . . . , f(xk) such
that G(f(0), . . . , f(xi)) ≡ i (mod 2) for i = 1, . . . , k. By the theorem’s hy-
pothesis, we can find some sk+1 : N → N, extending the finite sequence
(f(0), . . . , f(xk)), such that sk+1 is in S iff k+1 ≡ 1 (mod2). By definition of
guesser, find xk+1 > xk such that G(sk+1(0), . . . , sk+1(xk+1)) ≡ k+1 (mod 2).
Let f(xk + 1) = sk+1(xk + 1), . . . , f(xk+1) = sk+1(xk+1).

This defines sequences f : N → N and x1 < x2 < · · · with the property
that G(f(0), . . . , f(xi)) ≡ i (mod 2) for every i > 0. This contradicts that
G(f(0), . . . , f(n)) is supposed to converge.

Using this test, we can immediately confirm, for example, the set of se-
quences containing infinitely many zeroes is nonguessable, as is the set of
onto sequences.

Remark 1. Theorem 1 is constructive up to certain choices. Starting with a
set S satisfying the hypotheses of Theorem 1 and naively trying to guess it,

2

and being systematic in the choices from the proof, can lead to the creation of
a concrete sequence which thwarts the naive guessing attempt. In an informal
sense, it should be especially difficult for someone not in the know to guess
whether the resulting sequence lies in S. And the more sophisticated the
futile guessing attempt, the more difficult the resulting sequence becomes.
For some explicit examples, see sequences A082691, A182659, and A182660
in Sloane’s OEIS [4].

Tsaban and Zdomskyy also briefly mention a somewhat similar notion of
guessable sets in their paper [5].

3 A Logic for Ellipses

Because guessers are functions which do not have “arity” in the usual sense,
instead being defined on the whole space N<N of finite sequences, and since we
care so much about expressions like G(f(0), . . . , f(n)), we will extend logic
to mesh better with these sorts of expressions. I assume familiarity with
basic first-order logic, which Enderton [2] has written about extensively, as
has Bilaniuk [1].

Definition 2. A language with ellipses is a standard language of first-order
logic, with a constant symbol 0, together with a set of function symbols of
arity N

<N and a special logical symbol · · ·x for every variable x.

To avoid confusion, we’ll use · · ·x for the syntactical symbol and . . . for
meta-ellipses. For example, G(s(0), . . . , s(2)) is a meta-abbreviation for

G(s(0), s(1), s(2)),

different than G(s(0), · · ·x , s(2)) which has no counterpart in classical logic.

Definition 3. If L is a language with ellipses, then the terms of L (and
their free variables) are defined inductively:

1. x is a term, for any variable x, and FV (x) = {x}.

2. c is a term, for any constant symbol c, and FV (c) = ∅.

3. If f is a function symbol of arity n or arity N
<N, and t1, . . . , tn are

terms, then f(t1, . . . , tn) is a term with free vars FV (t1)∪· · ·∪FV (tn).

3

4. If G is an N
<N-ary function symbol, and u, v are terms, and x is a

variable, then G(u(0), · · ·x , u(v)) is a term with free variables

(FV (u)\{x}) ∪ FV (v).

The well-formed formulas of L are defined as usual from these terms. Term
substitution is defined by the usual induction with two new cases:

• If y 6= x then

G(u(0), · · ·x , u(v))(y|t) = G(u(y|t)(0), · · ·x , u(y|t)(v(y|t))).

• G(u(0), · · ·x , u(v))(x|t) = G(u(0), · · ·x , u(v(x|t))).

Amodel for a language with ellipses L is a model M for the classical part
of L , together with a function GM : M<N → M for each N

<N-ary function
symbol G in L . However, defining how an arbitrary model evaluates terms
is difficult. We’ll only be interested in one very specific family of models,
where there is no trouble evaluating terms.

Definition 4. The following models lie at the heart of all later results.

• Lmax is the language with ellipses which contains a constant symbol
n for every n ∈ N, an n-ary function symbol w̃ for every function
w : Nn → N (n > 0), an n-ary predicate symbol p̃ for every subset
p ⊆ N

n (n > 0), an N
<N-ary function symbol G̃ for every function

G : N<N → N, and one additional unary function symbol f .

• For every function f : N → N, Mf is the model, on the language Lmax,
with universe N, which interprets n as n for every n, and interprets w̃
as w for every w : N

n → N, and which interprets p̃ as p for every
p ⊆ N

n, and which interprets G̃ as G for every G : N<N → N, and
which interprets f as f .

If n ∈ N then n̄ denotes the numeral n of n.

Definition 5. Let f : N → N. The semantics of Mf are defined as follows.
Let s be any assignment from the variables to N.

• (Mf , s) interprets terms t into naturals tMf ,s, or ts if there is no ambi-
guity, according to the usual inductive definition, with one new case:

4

– If u, v are terms and x is a variable and G is an N
<N-ary function

symbol, then

G(u(0), · · ·x , u(v))
s = GMf (u(x|0)s, . . . , u (x |vs)

s
) .

• For example, the interpretation of G̃(f(x)(0), · · ·x , f(x)(99)) is

G(f(0), . . . , f(99)),

while the interpretation of G̃(f(x)(0), · · ·x , f(x)(f(y))) is

G(f(0), . . . , f(f(ys))).

• From here, the remaining semantics of Mf are defined as usual.

In classical logic, every term with no free variables has the property that
its interpretation in any model depends only on finitely many values of the
interpretations of the function symbols in that model. For example, the
interpretation of 5 + (2 · 3) depends only on one value of · and one value of
+. Similar properties are true of our Mf models.

Lemma 2. Suppose u is a term with no free variables, and c is a constant
symbol. For any f : N → N, Mf |= u = c iff there is some k such that
whenever g : N → N extends (f(0), . . . , f(k)), Mg |= u = c and to check
whether Mg |= u = c using the inductive definition of semantics for Mg, it
is not necessary to query g(i) for any i > k.

Proof. (⇒): Induction on complexity of u.

• u cannot be a variable, since it has no free variables. If u is a constant
symbol, the lemma is trivial.

• Maybe u is h(u1, . . . , un) for some n-ary (or N<N-ary) function symbol
h other than f , and some terms u1, . . . , un with no free variables. If
Mf |= h(u1, . . . , un) = c, then there are a1, . . . , an ∈ N such that
hMf (a1, . . . , an) = cMf and Mf |= ui = āi for i = 1, . . . , n. Since āi
is a constant symbol, by induction find k1, . . . , kn such that for any
i = 1, . . . , n and any g : N → N with g(0) = f(0), . . . , g(ki) = f(ki),
Mg |= ui = āi, and checking this by definition of semantics does not
require querying g(j) for any j > ai. Then k = max{k1, . . . , kn} works
(using the fact hMg does not depend on g since h is not f).

5

• Maybe u is f(v) where v is a term with no free variables. If Mf |=
f(v) = c then there’s a ∈ N such that f(a) = cMf and Mf |= v = ā.
Since ā is a constant symbol, by induction find k0 such that whenever
g(0) = f(0), . . . , g(k0) = f(k0), then Mg |= v = ā, and checking Mg |=
v = ā does not require querying g(i) for any i > k0. Let k = max{k0, a}.
Suppose g(0) = f(0), . . . , g(k) = f(k). Then f(v)Mg = fMg(vMg) =
g(a) = f(a) = cMf . So Mg |= f(v) = c, and to check so, we only
had to query g(a) in addition to any queries we had to make to check
Mg |= v = ā, so we did not have to query g(i) for any i > k.

• Maybe u is G(v(0), · · ·x , v(w)) where v, w are terms, x is a variable,
FV (w) = ∅, FV (v) ⊆ {x}, and G is an N

<N-ary function symbol. If
Mf |= G(v(0), · · ·x , v(w)) = c then

GMf

(

v(x|0)Mf , . . . , v
(

x
∣

∣

∣
wMf

)Mf

)

= cMf .

Since Mf |= w = wMf , find some number k−1 such that whenever

g extends (f(0), ..., f(k−1)), Mg |= w = wMf and checking so does

not require queries beyond g(k−1). Since Mf |= v(x|i) = v(x|i) for
i = 0, . . . , wMf , find k0, . . . , kwMf such that for each i = 0, . . . , wMf ,

if g(0) = f(0), . . . , g(ki) = f(ki) then Mg |= v(x|i) = v(x|i) can be
confirmed without querying g beyond g(ki).

Let k = max{k−1, k0, . . . , kwMf }. Suppose g(0) = f(0), . . . , g(k) =

f(k). Then Mg |= w = wMf , so wMg = wMf . Similarly v(x|i)Mg =
v(x|i)Mf for i = 0, . . . , wMf . And GMg = GMf . It follows that

Mg |= G(v(0), · · ·x , v(w)) = c,

and checking so does not require any queries to g(j) for any j > k.

(⇐). Suppose there’s some k so that whenever g extends (f(0), . . . , f(k))
then Mg |= u = c (nevermind the extra information about queries). In
particular, f itself extends (f(0), . . . , f(k)), so Mf |= u = c.

Corollary 3. Let φ be a quantifier-free sentence. For any f : N → N, Mf |=
φ iff there’s some k such that for every g : N → N extending (f(0), . . . , f(k)),
Mg |= φ, and in checking Mg |= φ by the inductive definition of semantics,
we never need to query g(i) for any i > k.

6

Proof. • Maybe φ is u = v for terms u, v with no free variables. Assume
Mf |= u = v. Then Mf |= u = uMf and Mf |= v = uMf . By
Lemma 2, find k big enough that whenever g(0) = f(0), . . . , g(k) =

f(k), then Mg |= u = uMf and Mg |= v = uMf and both facts can be
confirmed without querying g beyond g(k). For any such g, Mg |= u =
v, verifiable with no additional g-queries. The converse is trivial.

• Maybe φ is p̃(u1, . . . , un) for an n-ary predicate symbol p̃ and terms
u1, . . . , un with no free variables. Then φ is equivalent (in every M·) to
g̃(u1, . . . , un) = 1 where g is the characteristic function of p, so we’re
done by the previous case.

• Maybe φ is φ1 ∧ φ2. Assume Mf |= φ. Inductively, find k1 and k2 such
that if g extends (f(0), . . . , f(ki)) then Mg |= φi is verifiable with no g-
queries beyond g(ki). Then any g extending (f(0), . . . , f(max{k1, k2}))
has Mg |= φ, verifiable without querying beyond g(max{k1, k2}). The
converse is trivial.

• The cases of other propositional connectives are similar.

Lemma 4. (The Weak Substitution Lemma) For a formula φ, an assignment
s, and a constant symbol c, and for any f : N → N, Mf |= φ[s(x|cs)] iff
Mf |= φ(x|c)[s].

Proof. In the Appendix.

A full Substitution Lemma is also true, but it requires a nonclassical
definition of substitutable, which goes too take us too far away from the
matters this paper is actually concerned with.

4 Guessability and Quantifiers

Definition 6. Let S ⊆ N
N be a set of sequences. Let φ be a sentence in

Lmax. We say that φ defines S if, for every f : N → N, Mf |= φ iff f ∈ S.

Lemma 5. Suppose S ⊆ N
N is guessable. Then S is defined by some sentence

∃x ∀y φ and also by some sentence ∀x ∃y ψ, where φ and ψ are quantifier-free.

7

Proof. S is guessed by a guesser G. For any f : N → N, f ∈ S if and only if
G(f(0), . . . , f(n)) = 1 for all n sufficiently large. Therefore S is defined by

∃x ∀y ((y > x) → G̃(f(z)(0), · · ·z , f(z)(y)) = 1),

where “y > x” is shorthand for >̃(y, x). Similarly, S is also defined by

∀x ∃y ((y > x) ∧ G̃(f(z)(0), · · ·z , f(z)(y)) = 1).

We will prove the converse of Lemma 5 shortly. To that end, a piece of
technical machinery is needed.

Definition 7. A set S ⊆ N
N is overguessable if there is a function µ : N<N →

N ∪ {∞} such that:

1. For any f ∈ S, µ(f(0), . . . , f(n)) is eventually bounded by a finite
number.

2. For any f 6∈ S, µ(f(0), . . . , f(n)) → ∞ as n→ ∞.

Lemma 6. Suppose S ⊆ N
N is defined by the sentence ∃x ∀y φ where φ is

quantifier-free. Then S is overguessable.

Proof. Given a tuple (n0, . . . , nk), define µ(n0, . . . , nk) as follows. Let h :
N → N be defined by h(i) = ni if i ≤ k, h(i) = 0 otherwise. Given a pair
(a, b) ∈ N

2, consider the sentence φ(x, y|ā, b̄). Attempt to check whether
Mh |= φ(x, y|ā, b̄), using the inductive definition of the semantics of Mh.
If, in so doing, you must query h(i) for some i > k, say that the attempt
failed. Otherwise, say the attempt succeeded. If the attempt failed, or if
Mh |= φ(x, y|ā, b̄), then say that (a, b) is nice.

Call a number a very nice if (a, b) is nice for every b. If there is any
very nice number, then let µ(n0, . . . , nk) be the smallest very nice number.
Otherwise let µ(n0, . . . , nk) = ∞.

I claim this µ works.
First, suppose f ∈ S. Since S is defined by ∃x ∀y φ, Mf |= ∃x ∀y φ. By

the Weak Substitution Lemma, for some a, Mf |= φ(x, y|ā, b̄) for every b.
When we attempt to check whether Mh |= φ(x, y|ā, b̄) in the definition of
µ(f(0), . . . , f(k)), if the attempt succeeds, then Mh |= φ(x, y|ā, b̄) because
Mf |= φ(x, y|ā, b̄) and we never had to look at the part of h which disagrees

8

with f . So (a, b) is nice for every b, so a is very nice, so µ(f(0), . . . , f(k)) is
bounded by a.

Next, suppose f 6∈ S. Let a ∈ N, I claim µ(f(0), ..., f(n)) 6= a for all
n sufficiently large. Since f 6∈ S, Mf 6|= ∃x ∀y φ. By the Weak Substi-
tution Lemma, there is some b such that Mf 6|= φ(x, y|ā, b̄). Since φ is a
quantifier-free sentence, we invoke Corollary 3 on ¬φ(x, y|ā, b̄) and find k

such that Mg 6|= φ(x, y|ā, b̄) whenever g extends (f(0), . . . , f(k)), and, to
check whether Mg |= φ(x, y|ā, b̄), we do not need to query h(i) for i > k.
Then, in the definition of µ(f(0), . . . , f(k)), for pair (a, b), the attempt suc-
ceeds and Mh 6|= φ(x, y|ā, b̄), so (a, b) is not nice, so a is not very nice,
so µ(f(0), . . . , f(k)) 6= a, in fact, µ(f(0), . . . , f(j)) 6= a for all j ≥ k. By
arbitrariness of a, µ(f(0), ..., f(n)) → ∞.

Proposition 7. The converse of Lemma 6 also holds. S ⊆ N
N is defined by

some sentence ∃x ∀y φ with φ quantifier-free, iff S is overguessable.

Proof. (⇒) is Lemma 6. Conversely, suppose S is overguessed by µ : N<N →
N ∪ {∞}. Define µ′ : NN → N by saying µ′(n) = µ(n) + 1 if µ(n) 6= ∞,
µ′(n) = 0 if µ(n) = ∞. For any f : N → N, f ∈ S iff µ(f(0), . . . , f(n)) is
eventually bounded by some finite number, which is true iff µ′(f(0), . . . , f(n))
is eventually bounded by some finite number and eventually nonzero. This
latter equivalence can be expressed by

∃m1 ∃m2 ∀m3 ((m3 > m2) → (0 < µ′(f(0), . . . , f(m3)) < m1)).

Let d : N → N
2 be any onto map from N to N

2. Write d(n) = (d1(n), d2(n)),
thus defining two functions d1, d2 : N → N. Then the above formula is
equivalent to

∃m ∀m3 ((m3 > d2(m)) → (0 < µ′(f(0), . . . , f(m3)) < d1(m))).

This can be formalized in Lmax, providing a sentence ∃x ∀y φ which defines
S, with φ quantifier-free.

Example 8. Every countable subset of NN is overguessable.

Proof. Let S ⊆ N
N be countable. Define g : N2 → N by saying g(m,n) =

hm(n) where hm is the mth element of S. Then S is defined by

∃x ∀y g̃(x, y) = f(y).

By Lemma 6, S is overguessable.

9

Theorem 9. A set S ⊆ N
N is guessable if and only if it is defined by some

sentence ∀x ∃y φ and also by some sentence ∃x ∀y ψ, where φ and ψ are
quantifier-free.

Proof. (⇒) By Theorem 5.
(⇐) Suppose S is defined by sentences ∀x ∃y φ and ∃x ∀y ψ, where φ and

ψ are quantifier-free.
By Lemma 6, find µ : N<N → N ∪ {∞} which overguesses S. And since

Sc is defined by ∃x ∀y ¬φ, use Lemma 6 again to find ν : N<N → N ∪ {∞}
which overguesses Sc.

Define G : N<N → {0, 1} by saying G(n0, . . . , nk) = 1 if µ(n0, . . . , nk) ≤
ν(n0, . . . , nk) and 0 otherwise. If f ∈ S then µ(f(0), . . . , f(k)) is eventually
bounded by a finite number and ν(f(0), . . . , f(k)) → ∞, so G(f(0), . . . , f(k))
converges to 1. The other case is similar.

Remark 2. Guessable and overguessable sets of sequences are analogous to
computable and computably enumerable sets of naturals, respectively. One
shows that ∆1 sets (in a much weaker logical setting than Lmax) of naturals
are computable by showing that they and their complements are c.e. by
using the characterization of c.e. sets as sets which are Σ1-definable (in the
weaker setting). By comparison, I’ve shown that ∆2 sets of sequences (in
a very strong logical setting) are guessable by showing that they and their
complements are overguessable by using the characterization of overguessable
sets as Σ2-definable (in the stronger setting). These analogous phenomena in
computability theory have been written about by Rogers [3], Enderton [2],
Bilaniuk [1], and many other authors.

Corollary 10. Suppose S ⊆ N
N is definable by a sentence ∀x ∃y φ where φ

is quantifier-free. If S is countable then S is guessable.

Proof. Suppose S is countable. In the proof of Example 8, we showed S is
definable by a sentence ∃x ∀y ψ where ψ is quantifier-free. By Theorem 9, S
is guessable.

Example 11. There are uncountably many permutations of N.

Proof. A function f : N → N is a permutation iff

∀m1 ∀m2 ∃n ((f(m1) = f(m2) → m1 = m2) ∧ f(n) = m2).

10

By appropriately coding 〈m1, m2〉, the set S of permutations is defined by a
sentence ∀x ∃y φ where φ is quantifier-free.

Permutations are not guessable. If G were a permutation-guesser, it
would diverge on the following sequence. Let f(0) = 0, f(1) = 1, and so
on until G(f(0), . . . , f(k1)) = 1 (this must happen since G would converge
to 1 if we kept going forever). Then skip a number, f(k1 + 1) = k1 + 2,
f(k1 + 2) = k1 + 3, and keep going until G(f(0), . . . , f(k2)) = 0. Then fill in
the gap, f(k2+1) = k1+1, and resume where we left off, f(k2+2) = k2+2,
and so on until G(f(0), . . . , f(k3)) = 1. This process shows permutations are
unguessable.

By Corollary 10, S is uncountable.

Example 12. (Cantor) There are uncountably many real numbers.

Proof. Consider the set A of irrationals in the interval (0, 1) which have
infinitely many 5s in their decimal expansions. There is an obvious bijection
between A and the set S of sequences f : N → {0, 9} such that f(n) = 5
infinitely often. This set S is defined by ∀x ∃y ((y > x) ∧ f(y) = 5). By
Corollary 10, if S is countable then it is guessable. But it is not: if G were a
guesser for S, then we could define a sequence on whose initial segments G
does not converge. Namely, let f(0) = . . . = f(xk) = 0 where xk is big enough
that G(f(0), ..., f(xk)) = 0, and then let f(xk + 1) = · · · = f(xk+1) = 5,
where xk+1 > xk is big enough that G(f(0), ..., f(xk+1)) = 1. And so on,
alternating, forever. This shows S is not guessable, so S is not countable, so
A is uncountable, so R is uncountable.

Lemma 13. If S ⊆ N
N is definable by a sentence φ without nested quantifiers

(that is, no quantifier appearing in the scope of another), then S is guessable.

Proof. If so, then φ is a propositional combination of quantifier-free sentences
and sentences of the form ∀xφ0 and ∃xφ1 where φ0, φ1 are quantifier-free.
The sets defined by these component sentences are guessable by Theorem 9.
Clearly guessable sets are closed under union, intersection, and complement,
so S itself is guessable.

Example 14. The definition of onto functions cannot be simplified to get
rid of nested quantifiers, not even with the full power of Lmax.

Proof. By Lemma 13 and the fact the set of onto functions is not guessable
(by Theorem 1).

11

Appendix: The Weak Substitution Lemma

We prove Theorem 4, which said: For a formula φ, an assignment s, and
a constant symbol c, and for any f : N → N, Mf |= φ[s(x|cs)] iff Mf |=
φ(x|c)[s].

Proof. By the inductive argument used to prove the full Substitution Lemma
in classical logic, most of which we omit. But there are tricky new cases for
our new terms.

Claim: For any terms u, v, constant symbol c, variables x 6= y, and assign-
ment s,

G(u(0), · · ·x , u(v))(y|c)
s = G(u(0), · · ·x , u(v))

s(y|c).

The details are (using the induction hypothesis repeatedly):

G(u(0), · · ·x , u(v))(y|c)
s = G (u(y|c)(0), · · ·x , u(y|c)(v(y|c)))

s

= GMf

(

u(y|c)(x|0)s, . . . , u(y|c)
(

x
∣

∣

∣
v(y|c)s

)s)

= GMf

(

u(x|0)s(y|c), . . . , u
(

x
∣

∣

∣
vs(y|c)

)s(y|c)
)

= G(u(0), · · ·x , u(v))
s(y|c).

Claim: For any terms u, v, constant symbol c, and variable x and assignment
s,

G(u(0), · · ·x , u(v))(x|c)
s = G(u(0), · · ·x , u(v))

s(x|c).

Using the induction hypothesis repeatedly:

G(u(0), · · ·x , u(v))(x|c)
s = G(u(0), · · ·x , u(v(x|c)))

s

= GMf

(

u(x|0)s, . . . , u
(

x
∣

∣

∣
v(x|c)s

)s)

= GMf

(

u(x|0)s, . . . , u
(

x
∣

∣

∣
vs(x|c)

)s)

= GMf

(

u(x|0)s(x|c), . . . , u
(

x
∣

∣

∣
vs(x|c)

)s(x|c)
)

= G(u(0), · · ·x , u(v))
s(x|c).

The 2nd-to-last equation is justified because the terms whose “exponents”
are changed do not depend on x.

A full Substitution Lemma also holds in Mf , but it requires a non-classical
definition of substitutability and we don’t need it for our results anyway.

12

References

[1] S. Bilaniuk, A Problem Course in Mathematical Logic. Self-published,
1991. http://euclid.trentu.ca/math/sb/pcml/pcml-16.pdf

[2] H. Enderton, A Mathematical Introduction to Logic. Academic Press,
London, 2nd Edition, 2001.

[3] H. Rogers, Theory of Recursive Functions and Effective Computability.
The MIT Press, Cambridge, 1987.

[4] N. J. A. Sloane, Online Encyclopedia of Integer Sequences (OEIS),
http://www.oeis.org/.

[5] B. Tsaban & L. Zdomskyy, Combinatorial images of sets of reals and
semifilter trichotomy, J. of Symbolic Logic 73 (2008), 1278-1288.

13

http://euclid.trentu.ca/math/sb/pcml/pcml-16.pdf
http://www.oeis.org/

	1 Motivation
	2 Basics
	3 A Logic for Ellipses
	4 Guessability and Quantifiers

