Robin inequality for 7-free integers

Patrick Solé Michel Planat

Abstract

Recall that an integer is t-free iff it is not divisible by p^{t} for some prime p. We give a method to check Robin inequality $\sigma(n)<e^{\gamma} n \log \log n$, for t-free integers n and apply it for $t=6,7$. We introduce Ψ_{t}, a generalization of Dedekind Ψ function defined for any integer $t \geq 2$ by $$
\Psi_{t}(n):=n \prod_{p \mid n}\left(1+1 / p+\cdots+1 / p^{t-1}\right)
$$

If n is t-free then the sum of divisor function $\sigma(n)$ is $\leq \Psi_{t}(n)$. We characterize the champions for $x \mapsto \Psi_{t}(x) / x$, as primorial numbers. Define the ratio $R_{t}(n):=\frac{\Psi_{t}(\bar{n})}{n \log \log n}$. We prove that, for all t, there exists an integer $n_{1}(t)$, such that we have $R_{t}\left(N_{n}\right)<e^{\gamma}$ for $n \geq n_{1}$, where $N_{n}=\prod_{k=1}^{n} p_{k}$. Further, by combinatorial arguments, this can be extended to $R_{t}(N) \leq e^{\gamma}$ for all $N \geq N_{n}$, such that $n \geq n_{1}(t)$. This yields Robin inequality for $t=6,7$. For t varying slowly with N, we also derive $R_{t}(N)<e^{\gamma}$.

Keywords: Dedekind Ψ function, Robin inequality, Riemann Hypothesis, Primorial numbers

I. Introduction

The Riemann Hypothesis (RH), which describes the non trivial zeroes of Riemann ζ function has been deemed the Holy Grail of Mathematics by several authors [1], [7]. There exist many equivalent formulations in the literature [5]. The one of concern here is that of Robin [12], which is given in terms of $\sigma(n)$ the sum of divisor function

$$
\sigma(n)<e^{\gamma} n \log \log n
$$

for $n \geq 5041$. Recall that an integer is $t-$ free iff it is not divisible by p^{t} for some prime p. The above inequality was checked for many infinite families of integers in [3], for instance 5 -free integers. In the present work we introduce a method to check the inequality for t-free integers for larger values of t and apply it to $t=6,7$. The idea of our method is to introduce the generalized Dedekind Ψ function defined for any integer $t \geq 2$ by

$$
\Psi_{t}(n):=n \prod_{p \mid n}\left(1+1 / p+\cdots+1 / p^{t-1}\right) .
$$

If $t=2$ this is just the classical Dedekind function which occurs in the theory of modular forms [4], in physics [10], and in analytic number theory [9]. By construction, if n is t-free then the sum of divisors function $\sigma(n)$ is $\leq \Psi_{t}(n)$. To see this note that the multiplicative function σ satisfies for any integer a in the range $t>a \geq 2$

$$
\sigma\left(p^{a}\right)=1+p+\cdots+p^{a}
$$

when the multiplicative function Ψ_{t} satisfies

$$
\Psi_{t}\left(p^{a}\right)=p^{a}+\cdots+1+\cdots+1 / p^{t-1-a}
$$

It turns out that the structure of champion numbers for the arithmetic function $x \mapsto \Psi_{t}(x) / x$ is much easier to understand than that of $x \mapsto \sigma(x) / x$, the super abundant numbers. They are exactly the so-called primorial numbers (product of first consecutive primes). We prove that, in order to maximize the ratio R_{t} it is enough to consider its value at primorial integers. Once this reduction is made, bounding above unconditionally R_{t} is easy by using classical lemmas on partial eulerian products. We conclude the article by some results on t-free integers $N \geq N_{n}$, valid for t varying slowly with N.

[^0]
II. Reduction to primorial numbers

Define the primorial number N_{n} of index n as the product of the first n primes

$$
N_{n}=\prod_{k=1}^{n} p_{k}
$$

so that $N_{0}=1, N_{1}=2, N_{2}=6, \cdots$ and so on. The primorial numbers (OEIS sequence $A 002110$ [11]) play the role here of superabundant numbers in [12] or primorials in [8]. They are champion numbers (ie left to right maxima) of the function $x \mapsto \Psi_{t}(x) / x$:

$$
\begin{equation*}
\frac{\Psi_{t}(m)}{m}<\frac{\Psi_{t}(n)}{n} \text { for any } m<n \tag{1}
\end{equation*}
$$

We give a rigorous proof of this fact.
Proposition 1: The primorial numbers and their multiples are exactly the champion numbers of the function $x \mapsto \Psi_{t}(x) / x$.

Proof: The proof is by induction on n. The induction hypothesis H_{n} is that the statement is true up to N_{n}. Sloane sequence $A 002110$ begins $1,2,4,6 \ldots$ so that H_{2} is true. Assume H_{n} true. Let $N_{n} \leq m<$ N_{n+1} denote a generic integer. The prime divisors of m are $\leq p_{n}$. Therefore $\Psi_{t}(m) / m \leq \Psi_{t}\left(N_{n}\right) / N_{n}$ with equality iff m is a multiple of N_{n}. Further $\Psi_{t}\left(N_{n}\right) / N_{n}<\Psi_{t}\left(N_{n+1}\right) / N_{n+1}$. The proof of H_{n+1} follows.

In this section we reduce the maximization of $R_{t}(n)$ over all integers n to the maximization over primorials.
Proposition 2: Let n be an integer ≥ 2. For any m in the range $N_{n} \leq m<N_{n+1}$ one has $R_{t}(m)<$ $R_{t}\left(N_{n}\right)$.

Proof: Like in the preceding proof we have

$$
\Psi_{t}(m) / m \leq \Psi_{t}\left(N_{n}\right) / N_{n}
$$

Since $0<\log \log N_{n} \leq \log \log m$, the result follows.

III. Ψ_{t} AT PRIMORIAL NUMBERS

We begin by an easy application of Mertens formula.
Proposition 3: For n going to ∞ we have

$$
\lim R_{t}\left(N_{n}\right)=\frac{e^{\gamma}}{\zeta(t)}
$$

Proof: Writing $1+1 / p=\left(1-1 / p^{2}\right) /(1-1 / p)$ in the definition of $\Psi(n)$ we can combine the Eulerian product for $\zeta(t)$ with Mertens formula

$$
\prod_{p \leq x}(1-1 / p)^{-1} \sim e^{\gamma} \log (x)
$$

to obtain

$$
\Psi\left(N_{n}\right) \sim \frac{e^{\gamma}}{\zeta(t)} \log \left(p_{n}\right)
$$

Now the Prime Number Theorem [6, Th. 6, Th. 420] shows that $x \sim \theta(x)$ for x large, where $\theta(x)$ stands for Chebyshev's first summatory function:

$$
\theta(x)=\sum_{p \leq x} \log p
$$

This shows that, taking $x=p_{n}$ we have

$$
p_{n} \sim \theta\left(p_{n}\right)=\log \left(N_{n}\right)
$$

The result follows.
This motivates the search for explicit upper bounds on $R_{t}\left(N_{n}\right)$ of the form $\frac{e^{\gamma}}{\zeta(t)}(1+o(1))$. In that direction we have the following bound.

Proposition 4: For n large enough to have $p_{n} \geq 20000$, we have

$$
\frac{\Psi_{t}\left(N_{n}\right)}{N_{n}} \leq \frac{\exp \left(\gamma+2 / p_{n}\right)}{\zeta(t)}\left(\log \log N_{n}+\frac{1.1253}{\log p_{n}}\right)
$$

We prepare for the proof of the preceding Proposition by some Lemmas. First an upper bound on a partial Eulerian product from [13, (3.30) p.70].

Lemma 1: For $x \geq 2$, we have

$$
\prod_{p \leq x}(1-1 / p)^{-1} \leq e^{\gamma}\left(\log x+\frac{1}{\log x}\right)
$$

Next an upper bound on the tail of the Eulerian product for $\zeta(t)$.
Lemma 2: For $n \geq 2$ we have

$$
\prod_{p>p_{n}}\left(1-1 / p^{t}\right)^{-1} \leq \exp \left(2 / p_{n}\right)
$$

Proof: Use Lemma 6.4 in [3] with $x=p_{n}$. Bound $\frac{t}{t-1} x^{1-t}$ above by $2 / x$.
Lemma 3: For $n \geq 2263$, we have

$$
\log p_{n}<\log \log N_{n}+\frac{0.1253}{\log p_{n}}
$$

Proof: If $n \geq 2263$, then $p_{n} \geq 20000$. By [13], we know then that

$$
\log N_{n}>p_{n}\left(1-\frac{1}{8 p_{n}}\right)
$$

On taking log's we obtain

$$
\log \log N_{n}>\log p_{n}-\frac{0.1253}{p_{n}}
$$

upon using

$$
\log \left(1-\frac{x}{8}\right)>-0.1253 x
$$

for x small enough. In particular $x<1 / 20000$ is enough.
We are now ready for the proof of Proposition 4.

Proof:

Write

$$
\frac{\Psi_{t}\left(N_{n}\right)}{N_{n}}=\prod_{k=1}^{n} \frac{1-1 / p_{k}{ }^{t}}{1-1 / p_{k}}=\frac{\prod_{p>p_{n}}\left(1-1 / p^{t}\right)^{-1}}{\zeta(t)} \prod_{p \leq p_{n}}(1-1 / p)^{-1}
$$

and use both Lemmas to derive

$$
\frac{\Psi_{t}\left(N_{n}\right)}{N_{n}} \leq \frac{\exp \left(\gamma+2 / p_{n}\right)}{\zeta(t)}\left(\log p_{n}+\frac{1}{\log p_{n}}\right)
$$

Now we get rid of the first \log in the RHS by Lemma 3.

The result follows.
So, armed with this powerful tool, we derive the following significant Corollaries.
For convenience let

$$
f(n)=\left(1+\frac{1.1253}{\log p_{n} \log \log N_{n}}\right)
$$

Corollary 1: Let $n_{0}=2263$. Let $n_{1}(t)$ denote the least $n \geq n_{0}$ such that $e^{2 / p_{n}} f(n)<\zeta(t)$. For $n \geq n_{1}(t)$ we have $R_{t}\left(N_{n}\right)<e^{\gamma}$.

Proof:
Let $n \geq n_{0}$. We need to check that

$$
\exp \left(2 / p_{n}\right)\left(1+\frac{1.1253}{\log p_{n} \log \log N_{n}}\right) \leq \zeta(t)
$$

which, for fixed t holds for n large enough. Indeed $\zeta(t)>1$ and the LHS goes monotonically to 1^{+}for n large.

We give a numerical illustration of Corollary 1 in Table 1.

t	$n_{1}(t)$	$N_{n_{1}(t)}$
3	10	6.5×10^{9}
4	24	2.4×10^{34}
5	79	4.1×10^{163}
6	509	5.8×10^{1551}
7	10596	2.5×10^{48337}

TABLE I: The numbers in Corollary 1

We can extend this Corollary to all integers $\geq n_{0}$ by using the reduction of preceding section.
Corollary 2: For all $N \geq N_{n}$ such that $n \geq n_{1}(t)$ we have $R_{t}(N)<e^{\gamma}$.
Proof: Combine Corollary 1 with Proposition 2,
We are now in a position to derive the main result of this note.
Theorem 1: If N is a 7 -free integer, then $\sigma(N)<N e^{\gamma} \log \log N$.
Proof: If N is $\geq N_{n}$ with $n \geq n_{1}(7)$, then the above upper bound holds for $\Psi_{7}(N)$ by Corollary 2] hence for $\sigma(N)$ by the remark in the Introduction. If not, we invoke the results of [2], who checked Robin inequality for $5040<N \leq 10^{10^{10}}$, and observe that all 7 -free integers are >5040.

IV. VARYing t

We begin with an easy Lemma.
Lemma 4: Let t be a real variable. For t large, we have $\zeta(t)=1+\frac{1}{2^{t}}+o\left(\frac{1}{2^{t}}\right)$.
Proof: By definition, for $t>1$ we may write

$$
\zeta(t)=\sum_{n=1}^{\infty} \frac{1}{n^{t}}
$$

so that

$$
\zeta(t) \geq 1+\frac{1}{2^{t}}
$$

In the other direction, we write

$$
\zeta(t)=1+\frac{1}{2^{t}}+\frac{1}{3^{t}}+\sum_{n=4}^{\infty} \frac{1}{n^{t}}
$$

and compare the remainder of the series expansion of the ζ function with an integral:

$$
\sum_{n=4}^{\infty} \frac{1}{n^{t}}<\int_{3}^{\infty} \frac{d u}{u^{t}}=\frac{3}{(t-1) 3^{t}}=O\left(\frac{1}{3^{t}}\right)
$$

The result follows.
We can derive a result when t grows slowly with n.
Theorem 2: Let S_{n} be a sequence of integers such that $S_{n} \geq N_{n}$ for n large, and such that S_{n} is t-free with $t=o(\log \log n)$. For n large enough, Robin inequality holds for S_{n}.

Proof: For Corollary 2 to hold we need

$$
e^{2 / p_{n}} f(n)<\zeta(t)
$$

to hold, or , taking logs, the exact bound

$$
2 / p_{n}+\log f(n)<\log \zeta(t)
$$

or up to $o(1)$ terms

$$
2 / p_{n}+\frac{1.1253}{\log p_{n} \log \log N_{n}} \leq \log \zeta(t)
$$

In the LHS, the dominant term is of order $1 /\left(\log p_{n}\right)^{2}$, since, like in the proof of Proposition 3, we may write $p_{n} \sim \log N_{n}$. Now $p_{n} \sim n \log n$ by [6, Th. 8], entailing $\log p_{n} \sim \log n$ and $\left(\log p_{n}\right)^{2} \sim(\log n)^{2}$. In the RHS, with the hypothesis made on t we have, by Lemma 4 the estimate $\log \zeta(t) \sim \frac{1}{2^{t}}$. The result follows after comparing logarithms of both sides.

V. Conclusion

In this article we have proposed a technique to check Robin inequality for t-free integers for some values of t. The main idea has been to investigate the complex structure of the divisor function σ though the sequence of Dedekind psi functions ψ_{t}. The latter are simpler for the following reasons

- $\Psi_{t}(n)$ solely depends on the prime divisors of n and not on their multiplicity
- the champions of Ψ_{t} are the primorials instead of the colossally abundant numbers
- Ψ_{t} is easier to bound for n large because of connections with Eulerian products

Further, $\sigma(n) \leq \Psi_{t}(n)$ for t-free integers n. We checked Robin inequality for t-free integers for $t=6,7$ and $t=o(\log \log n)$. It is an interesting and difficult open problem to apply Theorem 2 to superabundant numbers or colossally abundant numbers for instance. We do not believe it is possible. New ideas are required to prove Robin inequality in full generality.

References

[1] Peter Borwein, Stephen Choi, Brendan Rooney and Andrea Weirathmueller The Riemann hypothesis. A resource for the afficionado and virtuoso alike. CMS Books in Mathematics. Springer, New York, 2008.
[2] Keith Briggs, Abundant numbers and the Riemann hypothesis. Experiment. Math. 15 (2006), no. 2, 251-256.
[3] YoungJu Choie, Nicolas Lichiardopol, Pieter Moree, Patrick Solé, On Robin’s criterion for the Riemann hypothesis, J. Théor. Nombres Bordeaux 19 (2007), no. 2, 357-372.
[4] J. A. Csirik, M. Zieve and J. Wetherell, On the genera of $X_{0}(N)$, unpublished manuscript (2001); available online at http://www.csirik.net/papers.html
[5] Brian J. Conrey, The Riemann hypothesis. Notices Amer. Math. Soc. 50 (2003), no. 3, 341-353.
[6] G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, Oxford (1979).
[7] Gilles Lachaud, L'hypothèse de Riemann : le Graal des mathématiciens. La Recherche Hors-Série no 20, August 2005.
[8] Jean-Louis Nicolas, Petites valeurs de la fonction d'Euler. J. Number Theory 17 (1983), no. 3, 375-388.
[9] Patrick Solé, Michel Planat, Extreme values of the Dedekind Ψ function, http://fr.arxiv.org/abs/1011.1825
[10] Michel Planat, Riemann hypothesis from the Dedekind psi function, hal.archives-ouvertes.fr/docs/00/52/64/54/PDF/RiemannHyp.pdf
[11] www.research.att.com/njas/sequences/
[12] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. Pures Appl. (9) 63 (1984), 187-213.
[13] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64-94.

[^0]: Telecom ParisTech, 46 rue Barrault, 75634 Paris Cedex 13, France.
 Institut FEMTO-ST, CNRS, 32 Avenue de l'Observatoire, F-25044 Besançon, France.

