ON k-LEHMER NUMBERS

JOSÉ MARÍA GRAU AND ANTONIO M. OLLER-MARCÉN

Abstract

Lehmer's totient problem consists of determining the set of positive integers n such that $\varphi(n) \mid n-1$ where φ is Euler's totient function. In this paper we introduce the concept of k-Lehmer number. A k-Lehmer number is a composite number such that $\varphi(n) \mid(n-1)^{k}$. The relation between k-Lehmer numbers and Carmichael numbers leads to a new characterization of Carmichael numbers and to some conjectures related to the distribution of Carmichael numbers which are also k-Lehmer numbers.

AMS 2000 Mathematics Subject Classification: 11A25,11B99

1. Introduction

Lehmer's totient problem asks about the existence of a composite number such that $\varphi(n) \mid(n-1)$, where φ is Euler's totient function. Some authors denote these numbers by Lehmer numbers. In 1932, Lehmer (see [13]) showed that every Lemher numbers n must be odd and square-free, and that the number of distinct prime factors of $n, d(n)$, must satisfy $d(n)>6$. This bound was subsequently extended to $d(n)>10$. The current best result, due to Cohen and Hagis (see [9]), is that n must have at least 14 prime factors and the biggest lower bound obtained for such numbers is 10^{30} (see [17]). It is known that there are no Lehmer numbers in certain sets, such as the Fibonacci sequence (see [15]), the sequence of repunits in base g for any $g \in[2,1000]$ (see [8) or the Cullen numbers (see [11]). In fact, no Lemher numbers are known up to date. For further results on this topic we refer the reader to $3,4,16,18,19$.

A Carmichael number is a composite positive integer n satisfying the congruence $b^{n-1} \equiv 1(\bmod n)$ for every integer b relatively prime to n. Korselt (see [12]) was the first to observe the basic properties of Carmichael numbers, the most important being the following characterization:

Proposition 1 (Korselt, 1899). A composite number n is a Carmichael number if and only if n is square-free, and for each prime p dividing $n, p-1$ divides $n-1$.

Nevertheless, Korselt did not find any example and it was Robert Carmichael in 1910 (see [6]) who found the first and smallest of such numbers (561) and hence the name "Carmichael number" (which was introduced by Beeger in [5]). In the same paper Carmichael presents a function λ defined in the following way:

- $\lambda(2)=1, \lambda(4)=2$.
- $\lambda\left(2^{k}\right)=2^{k-2}$ for every $k \geq 3$.
- $\lambda\left(p^{k}\right)=\varphi\left(p^{k}\right)$ for every odd prime p.
- $\lambda\left(p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}\right)=\operatorname{lcm}\left(\lambda\left(p_{1}^{k_{1}}\right), \ldots, \lambda\left(p_{m}^{k_{m}}\right)\right)$.

With this function he gave the following characterization:

Proposition 2 (Carmichael, 1910). A composite number n is a Carmichael number if and only if $\lambda(n)$ divides $(n-1)$.

In 1994 Alford, Granville and Pomerance (see [1]) answered in the affirmative the longstanding question whether there were infinitely many Carmichael numbers. From a more computational viewpoint, the paper [14] gives an algorithm to construct large Carmichael numbers. In [2] the distribution of certain types of Carmichael numbers is studied.

In this work we introduce the condition $\varphi(n) \mid(n-1)^{k}$ (that we shall call k Lehmer property and the associated concept of k-Lehmer numbers. In the first section we give some properties of the sets L_{k} (the set of numbers satisfying the k-Lehmer property) and $L_{\infty}:=\bigcup_{k \geq 1} L_{k}$, characterizing this latter set. In the second section we show that every Carmichael number is also a k-Lehmer number for some k. Finally, in the third section we use Chernick's formula to construct Camichael numbers in $L_{k} \backslash L_{k-1}$ and we give some related conjectures.

2. A generalization of Lehmer's totient property

Recall that a Lehmer number is a composite integer n such that $\varphi(n) \mid n-1$. Following this idea we present the definition below.

Definition 1. Given $k \in \mathbb{N}$, a k-Lehmer number is a composite integer n such that $\varphi(n) \mid(n-1)^{k}$. If we denote by L_{k} the set:

$$
L_{k}:=\left\{n \in \mathbb{N}|\varphi(n)|(n-1)^{k}\right\}
$$

it is clear that k-Lehmer numbers are the composite elements of L_{k}.
Once we have defined the family of sets $\left\{L_{k}\right\}_{k \geq 1}$ and since $L_{k} \subseteq L_{k+1}$ for every k, it makes sense to define a set L_{∞} in the following way:

$$
L_{\infty}:=\bigcup_{k=1}^{\infty} L_{k}
$$

The set L_{∞} is easily characterized in the following proposition.
Proposition 3.

$$
L_{\infty}=\{n \in \mathbb{N}|\operatorname{rad}(\varphi(\mathrm{n}))| \mathrm{n}-1\} .
$$

Proof. Let $n \in L_{\infty}$. Then $n \in L_{k}$ for some $k \in \mathbb{N}$. Now, if p is a prime dividing $\varphi(n)$, it follows that p divides $(n-1)^{k}$ and, being prime, it also divides $n-1$. This proves that $\operatorname{rad}(\varphi(n)) \mid n-1$.

On the other hand, if $\operatorname{rad}(\varphi(n)) \mid n-1$ it is clear that $\varphi(n) \mid(n-1)^{k}$ for some $k \in \mathbb{N}$. Thus $n \in L_{k} \subseteq L_{\infty}$ and the proof is complete.

Obviously, the composite elements of L_{1} are precisely the Lehmer numbers and the Lehmer property asks whether L_{1} contains composite numbers or not. Nevertheless, for all $k>1, L_{k}$ always contains composite elements. For instance, the first few composite elements of L_{2} are (sequence A173703 in OEIS):
$\{561,1105,1729,2465,6601,8481,12801,15841,16705,19345,22321,30889,41041, \ldots\}$.
Observe that in the previous list of elements of L_{2} there are no products of two distinct primes. We will now prove this fact, which is also true for Carmichael
numbers. Observe that this property is no longer true for L_{3} since, for instance, $15 \in L_{3}$ and also the product of two Fermat primes lies in L_{∞}.

In order to show that no product of two distinct odd primes lies in L_{2} we will give a stronger result which determines when an integer of the form $n=p q$ (with $p \neq q$ odd primes) lies in a given L_{k}.
Proposition 4. Let p and q be distinct odd primes and let $k \geq 2$. Put $p=2^{a} d \alpha+1$ and $q=2^{b} d \beta+1$ with d, α, β odd and $\operatorname{gcd}(\alpha, \beta)=1$. We can assume without loss of generality that $a \leq b$. Then $n=p q \in L_{k}$ if and only if $a+b \leq k a$ and $\alpha \beta \mid d^{k-2}$.
Proof. By definition $p q \in L_{k}$ if and only if $\varphi(p q)=(p-1)(q-1)=2^{a+b} d^{2} \alpha \beta$ divides $(p q-1)^{k}=\left(2^{a+b} d^{2} \alpha \beta+2^{a} d \alpha+2^{b} d \beta\right)^{k}$. If we expand the latter using the multinomial theorem it easily follows that $p q \in L_{k}$ if and only if $2^{a+b} d^{2} \alpha \beta$ divides $2^{k a} d^{k} \alpha^{k}+2^{k b} d^{k} \beta^{k}=2^{k a} d^{k}\left(\alpha^{k}+2^{k(b-a)} \beta^{k}\right)$.

Now, if $a \neq b$ observe that $\left(\alpha^{k}+2^{k(b-a)} \beta^{k}\right)$ is odd and, since $\operatorname{gcd}(\alpha, \beta)=1$, it follows that $\operatorname{gcd}\left(\alpha, \alpha^{k}+2^{k(b-a)} \beta^{k}\right)=\operatorname{gcd}\left(\beta, \alpha^{k}+2^{k(b-a)} \beta^{k}\right)=1$. This implies that $p q \in L_{k}$ if and only if $a+b \leq k a$ and $\alpha \beta$ divides d^{k-2} as claimed.

If $a=b$ then $p q \in L_{k}$ if and only if $\alpha \beta$ divides $d^{k-2}\left(\alpha^{k}+\beta^{k}\right)$ and the result follows like in the previous case. Observe that in this case the condition $a+b \leq k a$ is vacuous since $k \geq 2$.

Corollary 1. If p and q are distinct odd primes, then $p q \notin L_{2}$.
Proof. By the previous proposition and using the same notation, $p q \in L_{2}$ if and only if $a+b \leq 2 a$ and $\alpha \beta$ divides 1 . Since $a \leq b$ the first condition implies that $a=b$ and the second condition implies that $\alpha=\beta=1$. Consequently $p=q$, a contradiction.

It would be interesting to find an algorithm to construct elements in a given L_{k}. The easiest step in this direction, using similar ideas to those in Proposition 6, is given in the following result.

Proposition 5. Let $p_{r}=2^{r} \cdot 3+1$. If p_{N} and p_{M} are primes and $M-N$ is odd, then $n=p_{N} p_{M} \in L_{K}$ for $K=\min \{k \mid k N \geq M+N\}$ and $n \notin L_{K-1}$.

We will end this section with a table showing some values of the counting function for some L_{k}. If

$$
C_{k}(X):=\sharp\left\{n \in L_{k}: x \leq X\right\},
$$

we have the following data:

n	1	2	3	4	5	6	7	8
$C_{2}\left(10^{n}\right)$	5	26	170	1236	9613	78535	664667	5761621
$C_{3}\left(10^{n}\right)$	5	29	179	1266	9714	78841	665538	5763967
$C_{4}\left(10^{n}\right)$	5	29	182	1281	9784	79077	666390	5766571
$C_{5}\left(10^{n}\right)$	5	30	184	1303	9861	79346	667282	5769413
$C_{\infty}\left(10^{n}\right)$	5	30	188	1333	10015	80058	670225	5780785

This table leads us to the following conjecture about the asymptotic behavior of $C_{k}(X)$.

Conjecture 1. For every $k>1$, the asymptotic behavior of C_{k} does not depend on k and, in particular:

$$
C_{k}(x) \in \mathcal{O}\left(\frac{x}{\log \log x}\right)
$$

3. Relation with Carmichael numbers

This section will study the relation of L_{∞} with square-free integers and with Carmichael numbers. The characterization of L_{∞} given in Proposition 3 allows us to present the following straightforward lemma which, in particular, implies that L_{∞} has zero asymptotic density (like the set of cyclic numbers, whose counting function is $\mathcal{O}\left(\frac{x}{\log \log \log x}\right)$, see [10]).

Lemma 1. If $n \in L_{\infty}$, then n is a cyclic number; i.e., $\operatorname{gcd}(n, \varphi(n))=1$ and consequently square-free.

Recall that every Lehmer number (if any exists) must be a Carmichael number. The converse is clearly false but, nevertheless, we can see that every Carmichael number is a k-Lehmer number for some $k \in \mathbb{N}$.

Proposition 6. If n is a Carmichael number, then $n \in L_{\infty}$
Proof. Let n be a Carmichael number. By Korselt's criterion $n=p_{1} \cdots p_{m}$ and $p_{i}-1$ divides $n-1$ for every $i \in\{1, \ldots, m\}$. We have that $\varphi(n)=\left(p_{1}-1\right) \cdots\left(p_{m}-1\right)$ and we can put $\operatorname{rad}(\varphi(n))=q_{1} \cdots q_{r}$ with q_{j} distinct primes. Now let $j \in\{1, \ldots, r\}$, since q_{j} divides $\varphi(n)$ it follows that q_{j} divides $p_{i}-1$ for some $i \in\{1, \ldots, m\}$ and also that q_{j} divides $n-1$. This implies that $\operatorname{rad}(\varphi(n))$ divides $n-1$ and the result follows.

The two previous results lead to a characterization of Carmichael numbers which slightly modifies Korselt's criterion. Namely, we have the following result.

Theorem 1. A composite number n is a Carmichael number if and only if $\operatorname{rad}(\varphi(n))$ divides $n-1$ and $p-1$ divides $n-1$ for every p prime divisor of n.

Proof. We have already seen in Proposition 6 that if n is a Carmichael number, then $\operatorname{rad}(\varphi(n))$ divides $n-1$ and, by Korselt's criterion $p-1$ divides $n-1$ for every p prime divisor of n.

Conversely, if $\operatorname{rad}(\varphi(n))$ divides $n-1$ then by Lemma 1 we have that n is squarefree so it is enough to apply Korselt's criterion again.

The set L_{∞} not only contains every Carmichael numbers (which are absolute pseudoprimes) but all the elements of L_{∞} are Fermat pseudoprimes to some base b with $1<b<n-1$. In fact, we have:

Proposition 7. Let $n \in L_{\infty}$ be a composite integer and let b be an integer such that $b \equiv 2^{\frac{\varphi(n)}{\operatorname{rad(\varphi (n))}}}(\bmod n)$. Then n is a Fermat pseudoprime to base b.

Proof. Since $n \in L_{\infty}$, it is odd and $\operatorname{rad}(\varphi(n))$ divides $n-1$. Thus:

$$
b^{n-1} \equiv 2^{\frac{\varphi(n)(n-1)}{\operatorname{rad}(\varphi(n))}}=2^{\varphi(n) \frac{n-1}{\operatorname{rad}(\varphi(n))}} \equiv 1(\bmod n) .
$$

4. Carmichael numbers in $L_{k} \backslash L_{k-1}$. Some conjectures.

Recall the list of elements from L_{2} given in the previous section:
$L_{2}=\{\mathbf{5 6 1}, \mathbf{1 1 0 5}, \mathbf{1 7 2 9}, \mathbf{2 4 6 5}, \mathbf{6 6 0 1}, 8481,12801, \mathbf{1 5 8 4 1}, 16705,19345,22321,30889,41041 \ldots\}$.

Here, numbers in boldface are Carmichael numbers. Observe that not every Carmichael number lies in L_{2}, the smallest absent one being 2821. Although 2821 doe not lie in L_{2} in is easily seen that 2821 lies in L_{3}.

It would be interesting to study the way in that Carmichael numbers are distributed among the sets L_{k}. In this section we will present a first result in this direction together with some conjectures.

Recall Chernick's formula (see [7]):

$$
U_{k}(m)=(6 m+1)(12 m+1) \prod_{i=1}^{k-2}\left(9 \cdot 2^{i} m+1\right)
$$

$U_{k}(m)$ is a Carmichael number provided all the factors are prime and 2^{k-4} divides m. Whether this formula produces an infinity quantity of Carmichael numbers is still not known, but we will see that it behaves quite nicely with respect to our sets L_{k}.

Proposition 8. Let $k>2$. If $(6 m+1),(12 m+1)$ and $\left(9 \cdot 2^{i} m+1\right)$ for $i=1, \ldots, k-2$ are primes and $m \equiv 0\left(\bmod 2^{k-4}\right)$ is not a power of 2, then $U_{k}(m) \in L_{k} \backslash L_{k-1}$.

Proof. It can be easily seen by induction (we give no details) that $U_{k}(n)-1=$ $2^{2} 3^{2} m\left(2^{k-3}+\sum_{i=1}^{k-1} a_{i} m^{i}\right)$. On the other hand we have that $\varphi\left(U_{k}(m)\right)=2^{\frac{k^{2}-3 k+8}{2}} 3^{2 k-2} m^{k}$.

Let us see that $U_{k}(m) \in L_{k}$. To do so we study two cases:

- Case 1: $3 \leq k \leq 5$.

In this case $\frac{k^{2}-3 k+8}{2}<2 k$ and, consequently:

$$
\varphi\left(U_{k}(m)\right)=2^{\frac{k^{2}-3 k+8}{2}} 3^{2 k-2} m^{k}\left|\left(2^{2} 3^{2} m\right)^{k}\right|\left(U_{k}(m)-1\right)^{k}
$$

- Case 2: $k \geq 6$.

Since 2^{k-4} divides m we have that 2^{k-4} divides $2^{k-3}+\sum_{i=1}^{k-1} a_{i} m^{i}$. Consequently, since $k(k-4)<\frac{k^{2}-3 k+8}{2}$ in this case, we get that:

$$
\varphi\left(U_{k}(m)\right)=2^{\frac{k^{2}-3 k+8}{2}} 3^{2 k-2} m^{k}\left|2^{k(k-4)} 3^{2 k-2} m^{k}\right|\left(U_{k}(m)-1\right)^{k} .
$$

Now, we will see that $U_{k}(m) \notin L_{k-1}$. Since $\left.U_{k}(m)-1\right)^{k-1}=2^{2 k-2} 3^{2 k-2}\left(2^{k-3}+\right.$ $\left(\sum_{i=1}^{k-1} a_{i} m^{i}\right)^{k-1}$, it follows that $U_{k}(m) \in L_{k-1}$ if and only if $2^{\frac{(k-3)(k-4)}{2}} m$ divides $\left(\sum_{i=1}^{k-1} a_{i} m^{i}\right)^{k-1}$. If we put $m=2^{h} m^{\prime}$ with m^{\prime} odd this latter condition implies that $m^{\prime} \mid 2^{k-3} k-1$ which is clearly a contradiction because m is not a power of 2 . This ends the proof.

This result motivates the following conjecture.
Conjecture 2. For every $k \in \mathbb{N}, L_{k+1} \backslash L_{k}$ contains infinitely many Carmichael numbers.

Now, given $k \in \mathbb{N}$, let us denote by $\alpha(k)$ the smallest Carmichael number n such that $n \notin L_{k}$:

$$
\alpha(k)=\min \left\{n \mid n \text { is a Carmichael number, } n \notin L_{k}\right\} .
$$

The following table presents the first few elements of this sequence (A207080 in OEIS):

k	$\alpha(k)$	Prime Factors
1	561	3
2	2821	3
3	838201	4
4	41471521	5
5	45496270561	6
6	776388344641	7
7	344361421401361	8
8	375097930710820681	9
9	330019822807208371201	10

These observations motivate the following conjectures which close the paper:
Conjecture 3. For every $k \in \mathbb{N}, \alpha(k) \in L_{k+1}$.
Conjecture 4. For every $2<k \in \mathbb{N}$, $\alpha(k)$ has $k+1$ prime factors.

References

[1] W. R. Alford, Andrew Granville, and Carl Pomerance. There are infinitely many Carmichael numbers. Ann. of Math. (2), 139(3):703-722, 1994.
[2] R. Balasubramanian and S. V. Nagaraj. Density of Carmichael numbers with three prime factors. Math. Comp., 66(220):1705-1708, 1997.
[3] William D. Banks, Ahmet M. Güloğlu, and C. Wesley Nevans. On the congruence $N \equiv A$ $(\bmod \phi(N))$. Integers, 8:A59, 8, 2008.
[4] William D. Banks and Florian Luca. Composite integers n for which $\phi(n) \mid n-1$. Acta Math. Sin. (Engl. Ser.), 23(10):1915-1918, 2007.
[5] N. G. W. H. Beeger. On composite numbers n for which $a^{n-1} \equiv(\bmod n)$ for every a prime to n. Scripta Math., 16:133-135, 1950.
[6] R. D. Carmichael. Note on a new number theory function. Bull. Amer. Math. Soc., 16(5):232238, 1910.
[7] Jack Chernick. On Fermat's simple theorem. Bull. Amer. Math. Soc., 45(4):269-274, 1939.
[8] Javier Cilleruelo and Florian Luca. Repunit Lehmer numbers. Proc. Edinburgh Math. Soc., to appear.
[9] G. L. Cohen and P. Hagis, Jr. On the number of prime factors of n if $\varphi(n) \mid(n-1)$. Nieuw Arch. Wisk. (3), 28(2):177-185, 1980.
[10] P. Erdös. Some asymptotic formulas in number theory. J. Indian Math. Soc. (N.S.), 12:75-78, 1948.
[11] José María Grau and Florian Luca. Cullen numbers with the Lehmer property. Proc. Amer. Math. Soc., 140(129-134), 2012.
[12] Korselt. Problème chinois. L'intermédiaire des mathématiciens, 6:142-143.
[13] D. H. Lehmer. On Euler's totient function. Bull. Amer. Math. Soc., 38(10):745-751, 1932.
[14] Günter Löh and Wolfgang Niebuhr. A new algorithm for constructing large Carmichael numbers. Math. Comp., 65(214):823-836, 1996.
[15] Florian Luca. Fibonacci numbers with the Lehmer property. Bull. Pol. Acad. Sci. Math., 55(1):7-15, 2007.
[16] Florian Luca and Carl Pomerance. On composite integers n for which $\varphi(n) \mid n-1$. Bol. Soc. Mat. Mexicana, to appear.
[17] Richard G.E. Pinch. A note on Lehmer's totient problem. Poster presented in ANTS VII, http://www.math.tu-berlin.de/~kant/ants/Poster/Pinch_Poster3.pdf.
[18] Carl Pomerance. On composite n for which $\varphi(n) \mid n-1$. II. Pacific J. Math., 69(1):177-186, 1977.
[19] Carl Pomerance. On the distribution of amicable numbers. J. Reine Angew. Math., 293/294:217-222, 1977.

Departamento de Matemáticas, Universidad de Oviedo, Avda. Calvo Sotelo, s/n, 33007 Oviedo, Spain

E-mail address: grau@uniovi.es
Centro Universitario de la Defensa, Ctra. Huesca s/n, 50090 Zaragoza, Spain
E-mail address: oller@unizar.es

