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ON k-LEHMER NUMBERS

JOSÉ MARÍA GRAU AND ANTONIO M. OLLER-MARCÉN

Abstract. Lehmer’s totient problem consists of determining the set of pos-
itive integers n such that ϕ(n)|n − 1 where ϕ is Euler’s totient function. In
this paper we introduce the concept of k-Lehmer number. A k-Lehmer num-
ber is a composite number such that ϕ(n)|(n − 1)k. The relation between
k-Lehmer numbers and Carmichael numbers leads to a new characterization
of Carmichael numbers and to some conjectures related to the distribution of
Carmichael numbers which are also k-Lehmer numbers.

AMS 2000 Mathematics Subject Classification: 11A25,11B99

1. Introduction

Lehmer’s totient problem asks about the existence of a composite number such
that ϕ(n)|(n − 1), where ϕ is Euler’s totient function. Some authors denote these
numbers by Lehmer numbers. In 1932, Lehmer (see [13]) showed that every Lemher
numbers n must be odd and square-free, and that the number of distinct prime
factors of n, d(n), must satisfy d(n) > 6. This bound was subsequently extended
to d(n) > 10. The current best result, due to Cohen and Hagis (see [9]), is that n
must have at least 14 prime factors and the biggest lower bound obtained for such
numbers is 1030 (see [17]). It is known that there are no Lehmer numbers in certain
sets, such as the Fibonacci sequence (see [15]), the sequence of repunits in base g

for any g ∈ [2, 1000] (see [8]) or the Cullen numbers (see [11]). In fact, no Lemher
numbers are known up to date. For further results on this topic we refer the reader
to [3, 4, 16, 18, 19].

A Carmichael number is a composite positive integer n satisfying the congruence
bn−1 ≡ 1 (mod n) for every integer b relatively prime to n. Korselt (see [12]) was
the first to observe the basic properties of Carmichael numbers, the most important
being the following characterization:

Proposition 1 (Korselt, 1899). A composite number n is a Carmichael number if
and only if n is square-free, and for each prime p dividing n, p− 1 divides n− 1.

Nevertheless, Korselt did not find any example and it was Robert Carmichael in
1910 (see [6]) who found the first and smallest of such numbers (561) and hence the
name “Carmichael number” (which was introduced by Beeger in [5]). In the same
paper Carmichael presents a function λ defined in the following way:

• λ(2) = 1, λ(4) = 2.
• λ(2k) = 2k−2 for every k ≥ 3.
• λ(pk) = ϕ(pk) for every odd prime p.

• λ(pk1
1 · · · pkm

m ) = lcm
(

λ(pk1
1 ), . . . , λ(pkm

m )
)

.

With this function he gave the following characterization:
1

http://arxiv.org/abs/1012.2337v2


2 JOSÉ MARÍA GRAU AND ANTONIO M. OLLER-MARCÉN

Proposition 2 (Carmichael, 1910). A composite number n is a Carmichael number
if and only if λ(n) divides (n− 1).

In 1994 Alford, Granville and Pomerance (see [1]) answered in the affirmative
the longstanding question whether there were infinitely many Carmichael num-
bers. From a more computational viewpoint, the paper [14] gives an algorithm
to construct large Carmichael numbers. In [2] the distribution of certain types of
Carmichael numbers is studied.

In this work we introduce the condition ϕ(n)|(n − 1)k (that we shall call k-
Lehmer property and the associated concept of k-Lehmer numbers. In the first
section we give some properties of the sets Lk (the set of numbers satisfying the

k-Lehmer property) and L∞ :=
⋃

k≥1

Lk, characterizing this latter set. In the second

section we show that every Carmichael number is also a k-Lehmer number for some
k. Finally, in the third section we use Chernick’s formula to construct Camichael
numbers in Lk \ Lk−1 and we give some related conjectures.

2. A generalization of Lehmer’s totient property

Recall that a Lehmer number is a composite integer n such that ϕ(n)|n − 1.
Following this idea we present the definition below.

Definition 1. Given k ∈ N, a k-Lehmer number is a composite integer n such that
ϕ(n)|(n− 1)k. If we denote by Lk the set:

Lk := {n ∈ N | ϕ(n)|(n− 1)k},

it is clear that k-Lehmer numbers are the composite elements of Lk.

Once we have defined the family of sets {Lk}k≥1 and since Lk ⊆ Lk+1 for every
k, it makes sense to define a set L∞ in the following way:

L∞ :=

∞
⋃

k=1

Lk.

The set L∞ is easily characterized in the following proposition.

Proposition 3.

L∞ = {n ∈ N | rad(ϕ(n))|n − 1}.

Proof. Let n ∈ L∞. Then n ∈ Lk for some k ∈ N. Now, if p is a prime dividing
ϕ(n), it follows that p divides (n− 1)k and, being prime, it also divides n− 1. This
proves that rad(ϕ(n))|n − 1.

On the other hand, if rad(ϕ(n))|n − 1 it is clear that ϕ(n)|(n − 1)k for some
k ∈ N. Thus n ∈ Lk ⊆ L∞ and the proof is complete. �

Obviously, the composite elements of L1 are precisely the Lehmer numbers and
the Lehmer property asks whether L1 contains composite numbers or not. Nev-
ertheless, for all k > 1, Lk always contains composite elements. For instance, the
first few composite elements of L2 are (sequence A173703 in OEIS):

{561, 1105, 1729, 2465, 6601, 8481, 12801, 15841, 16705, 19345, 22321, 30889, 41041, . . .}.

Observe that in the previous list of elements of L2 there are no products of two
distinct primes. We will now prove this fact, which is also true for Carmichael
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numbers. Observe that this property is no longer true for L3 since, for instance,
15 ∈ L3 and also the product of two Fermat primes lies in L∞.

In order to show that no product of two distinct odd primes lies in L2 we will
give a stronger result which determines when an integer of the form n = pq (with
p 6= q odd primes) lies in a given Lk.

Proposition 4. Let p and q be distinct odd primes and let k ≥ 2. Put p = 2adα+1
and q = 2bdβ + 1 with d, α, β odd and gcd(α, β) = 1. We can assume without loss
of generality that a ≤ b. Then n = pq ∈ Lk if and only if a+ b ≤ ka and αβ|dk−2.

Proof. By definition pq ∈ Lk if and only if ϕ(pq) = (p − 1)(q − 1) = 2a+bd2αβ

divides (pq − 1)k =
(

2a+bd2αβ + 2adα+ 2bdβ
)k
. If we expand the latter using the

multinomial theorem it easily follows that pq ∈ Lk if and only if 2a+bd2αβ divides
2kadkαk + 2kbdkβk = 2kadk

(

αk + 2k(b−a)βk
)

.

Now, if a 6= b observe that
(

αk + 2k(b−a)βk
)

is odd and, since gcd(α, β) = 1, it

follows that gcd(α, αk +2k(b−a)βk) = gcd(β, αk +2k(b−a)βk) = 1. This implies that
pq ∈ Lk if and only if a+ b ≤ ka and αβ divides dk−2 as claimed.

If a = b then pq ∈ Lk if and only if αβ divides dk−2
(

αk + βk
)

and the result
follows like in the previous case. Observe that in this case the condition a+ b ≤ ka

is vacuous since k ≥ 2. �

Corollary 1. If p and q are distinct odd primes, then pq 6∈ L2.

Proof. By the previous proposition and using the same notation, pq ∈ L2 if and
only if a + b ≤ 2a and αβ divides 1. Since a ≤ b the first condition implies that
a = b and the second condition implies that α = β = 1. Consequently p = q, a
contradiction. �

It would be interesting to find an algorithm to construct elements in a given Lk.
The easiest step in this direction, using similar ideas to those in Proposition 6, is
given in the following result.

Proposition 5. Let pr = 2r · 3 + 1. If pN and pM are primes and M −N is odd,
then n = pNpM ∈ LK for K = min{k | kN ≥ M +N} and n 6∈ LK−1.

We will end this section with a table showing some values of the counting function
for some Lk. If

Ck(X) := ♯{n ∈ Lk : x ≤ X},

we have the following data:

n 1 2 3 4 5 6 7 8
C2(10

n) 5 26 170 1236 9613 78535 664667 5761621
C3(10

n) 5 29 179 1266 9714 78841 665538 5763967
C4(10

n) 5 29 182 1281 9784 79077 666390 5766571
C5(10

n) 5 30 184 1303 9861 79346 667282 5769413
C∞(10n) 5 30 188 1333 10015 80058 670225 5780785

This table leads us to the following conjecture about the asymptotic behavior of
Ck(X).

Conjecture 1. For every k > 1, the asymptotic behavior of Ck does not depend
on k and, in particular:

Ck(x) ∈ O(
x

log log x
)
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3. Relation with Carmichael numbers

This section will study the relation of L∞ with square-free integers and with
Carmichael numbers. The characterization of L∞ given in Proposition 3 allows us
to present the following straightforward lemma which, in particular, implies that
L∞ has zero asymptotic density (like the set of cyclic numbers, whose counting
function is O( x

log log log x
), see [10]).

Lemma 1. If n ∈ L∞, then n is a cyclic number; i.e., gcd(n, ϕ(n)) = 1 and
consequently square-free.

Recall that every Lehmer number (if any exists) must be a Carmichael number.
The converse is clearly false but, nevertheless, we can see that every Carmichael
number is a k-Lehmer number for some k ∈ N.

Proposition 6. If n is a Carmichael number, then n ∈ L∞

Proof. Let n be a Carmichael number. By Korselt’s criterion n = p1 · · · pm and pi−1
divides n−1 for every i ∈ {1, . . . ,m}. We have that ϕ(n) = (p1−1) · · · (pm−1) and
we can put rad(ϕ(n)) = q1 · · · qr with qj distinct primes. Now let j ∈ {1, . . . , r},
since qj divides ϕ(n) it follows that qj divides pi − 1 for some i ∈ {1, . . . ,m} and
also that qj divides n− 1. This implies that rad(ϕ(n)) divides n− 1 and the result
follows. �

The two previous results lead to a characterization of Carmichael numbers which
slightly modifies Korselt’s criterion. Namely, we have the following result.

Theorem 1. A composite number n is a Carmichael number if and only if rad(ϕ(n))
divides n− 1 and p− 1 divides n− 1 for every p prime divisor of n.

Proof. We have already seen in Proposition 6 that if n is a Carmichael number,
then rad(ϕ(n)) divides n−1 and, by Korselt’s criterion p−1 divides n−1 for every
p prime divisor of n.

Conversely, if rad(ϕ(n)) divides n−1 then by Lemma 1 we have that n is square-
free so it is enough to apply Korselt’s criterion again. �

The set L∞ not only contains every Carmichael numbers (which are absolute
pseudoprimes) but all the elements of L∞ are Fermat pseudoprimes to some base
b with 1 < b < n− 1. In fact, we have:

Proposition 7. Let n ∈ L∞ be a composite integer and let b be an integer such

that b ≡ 2
ϕ(n)

rad(ϕ(n)) (mod n). Then n is a Fermat pseudoprime to base b.

Proof. Since n ∈ L∞, it is odd and rad(ϕ(n)) divides n− 1. Thus:

bn−1 ≡ 2
ϕ(n)(n−1)
rad(ϕ(n)) = 2ϕ(n) n−1

rad(ϕ(n)) ≡ 1 (mod n).

�

4. Carmichael numbers in Lk\Lk−1. some conjectures.

Recall the list of elements from L2 given in the previous section:

L2 = {561,1105,1729,2465,6601, 8481, 12801,15841, 16705, 19345, 22321, 30889, 41041 . . .}.
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Here, numbers in boldface are Carmichael numbers. Observe that not every Carmichael
number lies in L2, the smallest absent one being 2821. Although 2821 doe not lie
in L2 in is easily seen that 2821 lies in L3.

It would be interesting to study the way in that Carmichael numbers are dis-
tributed among the sets Lk. In this section we will present a first result in this
direction together with some conjectures.

Recall Chernick’s formula (see [7]):

Uk(m) = (6m+ 1)(12m+ 1)

k−2
∏

i=1

(9 · 2im+ 1).

Uk(m) is a Carmichael number provided all the factors are prime and 2k−4 divides
m. Whether this formula produces an infinity quantity of Carmichael numbers is
still not known, but we will see that it behaves quite nicely with respect to our sets
Lk.

Proposition 8. Let k > 2. If (6m+1), (12m+1) and (9·2im+1) for i = 1, . . . , k−2
are primes and m ≡ 0 (mod 2k−4) is not a power of 2, then Uk(m) ∈ Lk \ Lk−1.

Proof. It can be easily seen by induction (we give no details) that Uk(n) − 1 =

2232m
(

2k−3 +
∑k−1

i=1 aim
i
)

. On the other hand we have that ϕ (Uk(m)) = 2
k2

−3k+8
2 32k−2mk.

Let us see that Uk(m) ∈ Lk. To do so we study two cases:

• Case 1: 3 ≤ k ≤ 5.

In this case k2−3k+8
2 < 2k and, consequently:

ϕ (Uk(m)) = 2
k2

−3k+8
2 32k−2mk

∣

∣ (2232m)k
∣

∣ (Uk(m)− 1)k.

• Case 2: k ≥ 6.
Since 2k−4 divides m we have that 2k−4 divides 2k−3+

∑k−1
i=1 aim

i. Con-

sequently, since k(k − 4) < k2−3k+8
2 in this case, we get that:

ϕ (Uk(m)) = 2
k2

−3k+8
2 32k−2mk

∣

∣ 2k(k−4)32k−2mk
∣

∣ (Uk(m)− 1)k.

Now, we will see that Uk(m) 6∈ Lk−1. Since Uk(m)− 1)k−1 = 22k−232k−2(2k−3+
(

∑k−1
i=1 aim

i
)k−1

, it follows that Uk(m) ∈ Lk−1 if and only if 2
(k−3)(k−4)

2 m divides
(

∑k−1
i=1 aim

i
)k−1

. If we put m = 2hm′ with m′ odd this latter condition implies

that m′|2k−3k − 1 which is clearly a contradiction because m is not a power of 2.
This ends the proof. �

This result motivates the following conjecture.

Conjecture 2. For every k ∈ N, Lk+1 \ Lk contains infinitely many Carmichael
numbers.

Now, given k ∈ N, let us denote by α(k) the smallest Carmichael number n such
that n 6∈ Lk:

α(k) = min{n | n is a Carmichael number, n 6∈ Lk}.
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The following table presents the first few elements of this sequence (A207080 in
OEIS):

k α(k) Prime Factors
1 561 3
2 2821 3
3 838201 4
4 41471521 5
5 45496270561 6
6 776388344641 7
7 344361421401361 8
8 375097930710820681 9
9 330019822807208371201 10

These observations motivate the following conjectures which close the paper:

Conjecture 3. For every k ∈ N, α(k) ∈ Lk+1.

Conjecture 4. For every 2 < k ∈ N, α(k) has k + 1 prime factors.
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