ON SUMS INVOLVING PRODUCTS OF THREE BINOMIAL COEFFICIENTS

Zhi-Wei Sun

Department of Mathematics, Nanjing University Nanjing 210093, People's Republic of China zwsun@nju.edu.cn http://math.nju.edu.cn/~zwsun

ABSTRACT. In this paper we mainly employ the Zeilberger algorithm to study congruences for sums of terms involving products of three binomial coefficients. Let p > 3 be a prime. We prove that

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{2k}{k+d}}{64^k} \equiv 0 \pmod{p^2}$$

for all $d \in \{0, \ldots, p-1\}$ with $d \equiv (p+1)/2 \pmod{2}$. If $p \equiv 1 \pmod{4}$ and $p = x^2 + y^2$ with $x \equiv 1 \pmod{4}$ and $y \equiv 0 \pmod{2}$, then we show

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{2k}{k+1}}{(-8)^k} \equiv 2p - 2x^2 \pmod{p^2} \text{ and } \sum_{k=0}^{p-1} \frac{\binom{2k}{k} \binom{2k}{k+1}^2}{(-8)^k} \equiv -2p \pmod{p^2}$$

by means of determining $x \mod p^2$ via

$$(-1)^{(p-1)/4} x \equiv \sum_{k=0}^{(p-1)/2} \frac{k+1}{8^k} {\binom{2k}{k}}^2 \equiv \sum_{k=0}^{(p-1)/2} \frac{2k+1}{(-16)^k} {\binom{2k}{k}}^2 \pmod{p^2}.$$

We also solve the remaining open cases of Rodriguez-Villegas' conjectural congruences on

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{3k}{k}}{108^k}, \quad \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{4k}{2k}}{256^k}, \quad \sum_{k=0}^{p-1} \frac{\binom{2k}{k} \binom{3k}{k} \binom{6k}{3k}}{12^{3k}}$$

modulo p^2 .

²⁰¹⁰ Mathematics Subject Classification. Primary 11B65; Secondary 05A10, 11A07, 11E25.

Keywords. Central binomial coefficients, super congruences, Zeilberger's algorithm, Schröder numbers, binary quadratic forms.

Supported by the National Natural Science Foundation (grant 10871087) and the Overseas Cooperation Fund (grant 10928101) of China.

1. INTRODUCTION

Let p be an odd prime. It is known that (see, e.g., S. Ahlgren [A], L. van Hammer [vH] and T. Ishikawa [I])

$$\sum_{k=0}^{(p-1)/2} (-1)^k {\binom{-1/2}{k}}^3$$

$$\equiv \begin{cases} 4x^2 - 2p \pmod{p^2} & \text{if } p = x^2 + y^2 \ (4 \mid x - 1 \& 2 \mid y), \\ 0 \pmod{p^2} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

Clearly,

$$\binom{-1/2}{k} = \frac{\binom{2k}{k}}{(-4)^k} \text{ for all } k \in \mathbb{N} = \{0, 1, 2, \dots\},\$$

and

$$\binom{2k}{k} = \frac{(2k)!}{(k!)^2} \equiv 0 \pmod{p}$$
 for any $k = \frac{p+1}{2}, \dots, p-1.$

After his determination of $\sum_{k=0}^{p-1} {\binom{2k}{k}}/m^k \mod p^2$ (where $m \in \mathbb{Z}$ and $m \not\equiv 0 \pmod{p}$) in [Su1], the author [Su2, Su3] raised some conjectures on $\sum_{k=0}^{p-1} {\binom{2k}{k}}^3 / m^k \mod p^2$ with $m \in \{1, -8, 16, -64, 256, -512, 4096\}$; for example, the author [Su2] conjectured that

$$\sum_{k=0}^{p-1} \binom{2k}{k}^3 \equiv \begin{cases} 4x^2 - 2p \pmod{p^2} & \text{if } \left(\frac{p}{7}\right) = 1 \& p = x^2 + 7y^2 \ (x, y \in \mathbb{Z}), \\ 0 \pmod{p^2} & \text{if } \left(\frac{p}{7}\right) = -1, \text{ i.e., } p \equiv 3, 5, 6 \pmod{7}. \end{cases}$$
(1.1)

where (-) denotes the Legendre symbol. (It is known that if $(\frac{p}{7}) = 1$ then $p = x^2 + 7y^2$ for some $x, y \in \mathbb{Z}$; see, e.g., [C, p. 31].) Quite recently the author's twin brother Zhi-Hong Sun [S2] made remarkable progress on those conjectures; in particular, he proved (1.1) in the case $\left(\frac{p}{7}\right) = -1$ and confirm the author's conjecture on $\sum_{k=0}^{p-1} {\binom{2k}{k}}^3 / (-8)^k \mod p^2$. Let p = 2n+1 be an odd prime. It is easy to see that for any $k = 0, \ldots, n$

we have

$$\binom{n+k}{2k} = \frac{\prod_{j=1}^{k} (-(2j-1)^2)}{4^k (2k)!} \prod_{j=1}^{k} \left(1 - \frac{p^2}{(2j-1)^2}\right) \equiv \frac{\binom{2k}{k}}{(-16)^k} \pmod{p^2}.$$
(1.2)

Based on this observation Z. H. Sun [S2] studied the polynomial

$$f_n(x) = \sum_{k=0}^n \binom{n+k}{2k} \binom{2k}{k}^2 x^k$$

and found the key identity

$$f_n(x(x+1)) = D_n(x)^2$$
(1.3)

in his approach to (1.1), where

$$D_n(x) := \sum_{k=0}^n \binom{n+k}{2k} \binom{2k}{k} x^k = \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k} x^k.$$

Note that those numbers $D_n = D_n(1)$ $(n \in \mathbb{N})$ are the so-called central Delannoy numbers and $P_n(x) := D_n((x-1)/2)$ is the Legendre polynomial of degree n.

Recall that Catalan numbers are those integers

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n+1} \quad (n \in \mathbb{N})$$

while Schröder numbers are given by

$$S_n := \sum_{k=0}^n \binom{n+k}{2k} C_k = \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k} \frac{1}{k+1}.$$

We define the Schröder polynomial of degree n by

$$S_n(x) := \sum_{k=0}^n \binom{n+k}{2k} C_k x^k.$$
 (1.4)

For basic information about D_n and S_n , the reader may consult [CHV], [SI], and p. 178 and p. 185 of [St].

Via Schröder polynomials and the Zeilberger algorithm (cf. [PWZ]), we obtain the following result.

Theorem 1.1. Let p be an odd prime. We have

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{2k}{k+d}}{64^k} \equiv 0 \pmod{p^2}$$
(1.5)

for all $d \in \{0, 1, \dots, p-1\}$ with $d \equiv (p+1)/2 \pmod{2}$. If $p \equiv 3 \pmod{4}$, then

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{2k}{k+1}}{64^k} \equiv (2p+2-2^{p-1}) \binom{(p-1)/2}{(p+1)/4}^2 \pmod{p^2} \tag{1.6}$$

Now we state our second theorem the first part of which plays a key role in our proof of the second part.

Theorem 1.2. Let $p \equiv 1 \pmod{4}$ be a prime and write $p = x^2 + y^2$ with $x \equiv 1 \pmod{4}$ and $y \equiv 0 \pmod{2}$. (i) We can determine $x \mod p^2$ in the following way:

$$(-1)^{(p-1)/4} x \equiv \sum_{k=0}^{(p-1)/2} \frac{k+1}{8^k} \binom{2k}{k}^2 \equiv \sum_{k=0}^{(p-1)/2} \frac{2k+1}{(-16)^k} \binom{2k}{k}^2 \pmod{p^2}.$$
(1.7)

Also,

$$\sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}C_k}{8^k} \equiv -2\sum_{k=0}^{p-1} \frac{k\binom{2k}{k}^2}{8^k} \equiv (-1)^{(p-1)/4} \left(2x - \frac{p}{x}\right) \pmod{p^2},$$
(1.8)

$$S_{(p-1)/2} \equiv \sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}C_k}{(-16)^k} \equiv -8 \sum_{k=0}^{(p-1)/2} \frac{k\binom{2k}{k}^2}{(-16)^k}$$
$$\equiv (-1)^{(p-1)/4} 2\left(2x - \frac{p}{x}\right) \pmod{p^2},$$
(1.9)

$$\sum_{k=0}^{(p-1)/2} \frac{k^2 \binom{2k}{k}^2}{8^k} \equiv (-1)^{(p-1)/4} \left(x - \frac{3p}{4x} \right) \pmod{p^2}, \tag{1.10}$$

and

$$\sum_{k=0}^{(p-1)/2} \frac{k^2 \binom{2k}{k}^2}{(-16)^k} \equiv (-1)^{(p+3)/4} \frac{p}{16x} \pmod{p^2}.$$
 (1.11)

(ii) We have

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{2k}{k+1}}{(-8)^k} \equiv 2p - 2x^2 \pmod{p^2}$$
(1.12)

and

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k} \binom{2k}{k+1}^2}{(-8)^k} \equiv -2p \pmod{p^2}.$$
 (1.13)

Remark 1.1. Let p be an odd prime. We conjecture that

$$\begin{split} &\sum_{k=0}^{p-1} \frac{k+1}{8^k} \binom{2k}{k}^2 + \sum_{k=0}^{(p-1)/2} \frac{2k+1}{(-16)^k} \binom{2k}{k}^2 \\ &\equiv \begin{cases} 2(\frac{2}{p})x \pmod{p^3} & \text{if } p \equiv x^2 + y^2 \ (4 \mid x - 1 \And 2 \mid y), \\ 0 \pmod{p^2} & \text{if } p \equiv 3 \pmod{4}. \end{cases} \end{split}$$

SUMS INVOLVING PRODUCTS OF THREE BINOMIAL COEFFICIENTS 5

Motivated by his study of Gaussian hypergeometric series and Calabi-Yau manifolds, in 2003 Rodriguez-Villegas [RV] raised some conjectures on congruences. In particular, he conjectured that for any prime p > 3 we have

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{3k}{k}}{108^k} \equiv b(p) \pmod{p^2}, \qquad \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{4k}{2k}}{256^k} \equiv c(p) \pmod{p^2},$$
(1.14)

and

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}\binom{3k}{\binom{6k}{3k}}\binom{6k}{3k}}{12^{3k}} \equiv \left(\frac{p}{3}\right) a(p) \pmod{p^2},\tag{1.15}$$

where

$$\sum_{n=1}^{\infty} a(n)q^n = q \prod_{n=1}^{\infty} (1 - q^{4n})^6 = \eta (4z)^6,$$
$$\sum_{n=1}^{\infty} b(n)q^n = q \prod_{n=1}^{\infty} (1 - q^{6n})^3 (1 - q^{2n})^3 = \eta^3 (6z)\eta^3 (2z),$$
$$\sum_{n=1}^{\infty} c(n)q^n = q \prod_{n=1}^{\infty} (1 - q^n)^2 (1 - q^{2n})(1 - q^{4n})(1 - q^{8n})^2 = \eta^2 (8z)\eta (4z)\eta (2z)\eta^2 (z),$$

and the Dedekind η -function is given by

$$\eta(z) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n) \quad (\text{Im}(z) > 0 \text{ and } q = e^{2\pi i z}).$$

In 1892 F. Klein and R. Fricke proved that (see also [SB])

$$a(p) = \begin{cases} 4x^2 - 2p \pmod{p^2} & \text{if } p \equiv 1 \pmod{4} \text{ and } p = x^2 + y^2 \ (2 \nmid x), \\ 0 & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

By [SB] we also have

$$b(p) = \begin{cases} 4x^2 - 2p & \text{if } p \equiv 1 \pmod{3} \text{ and } p = x^2 + 3y^2 \text{ with } x, y \in \mathbb{Z}, \\ 0 & \text{if } p \equiv 2 \pmod{3}; \end{cases}$$

and

$$c(p) = \begin{cases} 4x^2 - 2p & \text{if } \left(\frac{-2}{p}\right) = 1 \text{ and } p = x^2 + 2y^2 \text{ with } x, y \in \mathbb{Z}, \\ 0 & \text{if } \left(\frac{-2}{p}\right) = -1, \text{ i.e., } p \equiv 5,7 \pmod{8}. \end{cases}$$

Via an advanced approach involving the p-adic Gamma function and Gauss and Jacobi sums, E. Mortenson [M] managed to provide a partial solution of (1.14) and (1.15), with the following things open:

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{3k}{k}}{108^k} \equiv b(p) = 0 \pmod{p^2} \quad \text{if } p \equiv 5 \pmod{6}, \qquad (1.16)$$

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{4k}{2k}}{256^k} \equiv c(p) \pmod{p^2} \quad \text{if } p \equiv 3 \pmod{4}, \tag{1.17}$$

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}\binom{3k}{\binom{6k}{3k}}}{12^{3k}} \equiv -a(p) \pmod{p^2} \quad \text{if } p \equiv 5 \pmod{6}.$$
(1.18)

(See also K. Ono [O, Chapter 11] for an introduction to this method.) Concerning (1.16)-(1.18), Mortenson's approach [M] only allowed him to show that for each of them the squares of both sides of the congruence are congruent modulo p^2 .

Our following theorem confirms (1.16)-(1.18) and hence completes the proof of (1.14) and (1.15). So far, all conjectures of Rodriguez-Villegas [RV] involving at most three products of binomial coefficients have been proved!

Theorem 1.3. Let p > 3 be a prime.

(i) Given $d \in \{0, ..., p-1\}$, we have

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k+d}\binom{2k}{k}\binom{3k}{k}}{108^k} \equiv 0 \pmod{p^2} \quad if \ d \equiv \frac{1+\binom{p}{3}}{2} \pmod{2}, \ (1.19)$$

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k+d}\binom{2k}{k}\binom{4k}{2k}}{256^k} \equiv 0 \pmod{p^2} \quad if \ d \equiv \frac{1+\binom{-2}{p}}{2} \pmod{2}, \ (1.20)$$

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k+d}\binom{3k}{k}\binom{6k}{3k}}{12^{3k}} \equiv 0 \pmod{p^2} \quad if \ d \equiv \frac{1+\binom{-1}{p}}{2} \pmod{2}. \ (1.21)$$

(ii) If $p \equiv 3 \pmod{8}$ and $p = x^2 + 2y^2$ with $x, y \in \mathbb{Z}$, then

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{4k}{2k}}{256^k} \equiv 4x^2 - 2p \pmod{p^2}.$$
 (1.22)

(iii) If $p \equiv 5 \pmod{12}$ and $p = x^2 + y^2$ with $2 \nmid x$ and $2 \mid y$, then

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}\binom{3k}{k}\binom{6k}{3k}}{12^{3k}} \equiv 2p - 4x^2 \pmod{p^2}.$$
 (1.23)

In the case d = 1, Theorem 1.3(i) yields the following new result. (Note that $\binom{2k}{k}\binom{3k}{k+1} = 2\binom{2k}{k+1}\binom{3k}{k}$ for any $k \in \mathbb{N}$.)

Corollary 1.1. Let p > 3 be a prime. Then

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{3k}{k+1}}{108^k} \equiv 0 \pmod{p^2} \quad if \ p \equiv 1 \pmod{3}, \tag{1.24}$$

$$\sum_{k=0}^{p-1} \frac{\binom{4k}{2k}\binom{2k}{k}\binom{2k}{k+1}}{256^k} \equiv 0 \pmod{p^2} \quad if \ p \equiv 1,3 \pmod{8}, \qquad (1.25)$$

$$\sum_{k=0}^{p-1} \frac{\binom{6k}{3k}\binom{3k}{k}\binom{2k}{k+1}}{12^{3k}} \equiv 0 \pmod{p^2} \quad if \ p \equiv 1 \pmod{4}.$$
(1.26)

We will prove Theorems 1.1-1.3 in Sections 2-4 respectively.

2. Proof of Theorem 1.1

Lemma 2.1. For any positive integer n we have

$$\sum_{k=1}^{n} \binom{n+k}{2k} \binom{2k}{k} \binom{2k}{k+1} x^{k-1} (x+1)^{k+1} = n(n+1)S_n(x)^2.$$
(2.1)

Proof. Observe that

$$S_n(x)^2 = \sum_{k=0}^n \binom{n+k}{2k} C_k x^k \sum_{l=0}^n \binom{n+l}{2k} C_l x^l = \sum_{m=0}^{2n} a_m(n) x^m$$

where

$$a_m(n) := \sum_{k=0}^m \binom{n+k}{2k} C_k \binom{n+m-k}{2m-2k} C_{m-k}.$$

Also, the coefficient of x^m on the left-hand side of (2.1) coincides with

$$b_m(n) := \sum_{k=1}^{m+1} \binom{n+k}{2k} \binom{2k}{k} \binom{2k}{k+1} \binom{k+1}{m+1-k} \\ = \sum_{k=0}^m \binom{n+k+1}{2k+2} \binom{2k+2}{k+1} \binom{2k+2}{k} \binom{k+2}{m-k}.$$

Thus, for the validity of (2.1) it suffices to show that $b_m(n) = n(n+1)a_m(n)$ for all $m = 0, 1, \ldots$ Obviously, $a_0(n) = 1$ and $b_0(n) = n(n+1)$. Also, $a_1(n) = n(n+1)$ and $b_1(n) = n^2(n+1)^2$. By the Zeilberger algorithm via Mathematica (version 7) we find that both $u_m = a_m(n)$ and $u_m = b_m(n)$ satisfy the following recursion:

$$(m+2)(m+3)(m+4)u_{m+2}$$

=2(2mn² + 5n² + 2mn + 5n - m³ - 6m² - 11m - 6)u_{m+1}
- (m+1)(m - 2n)(m + 2n + 2)u_m.

So $b_m(n) = n(n+1)a_m(n)$ for all $m \in \mathbb{N}$. This proves (2.1). \Box

Proof of Theorem 1.1. (i) We first determine $\sum_{k=0}^{p-1} {\binom{2k}{k}}^2 {\binom{2k}{k+1}}/{64^k} \mod p^2$ via Lemma 2.1, which actually led the author to the study of (1.5).

Recall the following combinatorial identity (cf. [Su2, (4.3)]):

$$\sum_{k=0}^{n} \binom{n+k}{2k} \frac{C_k}{(-2)^k} = \begin{cases} (-1)^{(n-1)/2} C_{(n-1)/2}/2^n & \text{if } 2 \nmid n, \\ 0 & \text{if } 2 \mid n. \end{cases}$$

Set n = (p-1)/2. Applying (2.1) with x = -1/2 we get

$$\sum_{k=1}^{n} \binom{n+k}{2k} \binom{2k}{k} \binom{2k}{k+1} \frac{1}{(-2)^{k-1}2^{k+1}} = n(n+1)S_n\left(-\frac{1}{2}\right)^2.$$

Thus, with the help of (1.2), we have

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{2k}{k+1}}{64^k} \equiv \sum_{k=1}^n \binom{n+k}{2k} \binom{2k}{k} \binom{2k}{k+1} \frac{1}{(-4)^k}$$
$$= -n(n+1)S_n \left(-\frac{1}{2}\right)^2 \equiv \frac{1}{4}S_n \left(-\frac{1}{2}\right)^2$$
$$\equiv \begin{cases} 0 \pmod{p^2} & \text{if } p \equiv 1 \pmod{4} \\ C_{(n-1)/2}^2/2^{2n+2} \pmod{p^2} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

In the case $p \equiv 3 \pmod{4}$, clearly

$$\frac{C_{(n-1)/2}^2}{2^{2n+2}} = \frac{\left(\binom{(p-1)/2}{(p+1)/4}\frac{2}{p-1}\right)^2}{4 \times 2^{p-1}} \\
\equiv \frac{1}{(1-2p)(1+p\,q_p(2))} \binom{(p-1)/2}{(p+1)/4}^2 \\
\equiv (1+2p-p\,q_p(2)) \binom{(p-1)/2}{(p+1)/4}^2 \pmod{p^2}$$

where $q_p(2) = (2^{p-1} - 1)/p$. Therefore (1.5) with d = 1 holds if $p \equiv 1 \pmod{4}$, and (1.6) is valid when $p \equiv 3 \pmod{4}$.

(ii) For d = 0, 1, 2, ... set

$$u_d = \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{2k}{k+d}}{64^k} = \sum_{d \le k < p} \frac{\binom{2k}{k}^2 \binom{2k}{k+d}}{64^k}.$$

By the Zeilberger algorithm we find the recursion

$$(2d+1)^2 u_d - (2d+3)^2 u_{d+2} = \frac{(2p-1)^2 (d+1)}{64^{p-1} p} \binom{2p}{p+d+1} \binom{2p-2}{p-1}^2.$$

Note that

$$\binom{2p-2}{p-1} = pC_{p-1} \equiv 0 \pmod{p}.$$

If $0 \leq d , then$

$$\binom{2p}{p+d+1} = \frac{2p}{p+d+1}\binom{2p-1}{p+d} \equiv 0 \pmod{p}$$

and hence

$$(2d+1)^2 u_d \equiv (2d+3)^2 u_{d+2} \pmod{p^2}.$$

For $d \in \{0, \ldots, p-3\}$ with $d \equiv (p+1)/2 \pmod{2}$, clearly $p \neq 2d+1 < 2p$ and hence

$$u_{d+2} \equiv 0 \pmod{p^2} \implies u_d \equiv 0 \pmod{p^2}$$

If $p \equiv 3 \pmod{4}$ then $p-1 \equiv (p+1)/2 \pmod{2}$; if $p \equiv 1 \pmod{4}$ then $p-2 \equiv (p+1)/2 \pmod{2}$ and $p-2 \ge (p+1)/2$. Thus, if $d \in \{p-1, p-2\}$ and $d \equiv (p+1)/2 \pmod{2}$, then $d \ge (p+1)/2$ and hence $u_d \equiv 0 \pmod{p^2}$. It follows that $u_d \equiv 0 \pmod{p^2}$ (i.e., (1.5) holds) for all $d \in \{0, \ldots, p-1\}$ with $d \equiv (p+1)/2 \pmod{2}$.

By the above we have completed the proof of Theorem 1.1. \Box

3. Proof of Theorem 1.2

Lemma 3.1. For any $n \in \mathbb{N}$ we have

$$\sum_{k=0}^{n} \binom{2k}{k}^{3} \binom{k}{n-k} (-16)^{n-k} = \sum_{k=0}^{n} \binom{2k}{k}^{2} \binom{2(n-k)}{n-k}^{2}.$$
 (3.1)

Proof. For n = 0, 1, both sides of (3.1) take the values 1 and 8 respectively. Let u_n denote the left-hand side of (3.1) or the right-hand side of (3.1). Via the Zeilberger algorithm for Mathematica, we obtain the recursion

$$(n+2)^3 u_{n+2} = 8(2n+3)(2n^2+6n+5)u_{n+1} - 256(n+1)^3 u_n \ (n \in \mathbb{N}).$$

So, by induction (3.1) holds for all n = 0, 1, 2, ...

Lemma 3.2. Let p be an odd prime. Then

$$\sum_{n=0}^{p-1} \frac{n+1}{8^n} \sum_{k=0}^n \binom{2k}{k}^2 \binom{2(n-k)}{n-k}^2$$
$$\equiv \sum_{n=0}^{p-1} \frac{2n+1}{(-16)^n} \sum_{k=0}^n \binom{2k}{k}^2 \binom{2(n-k)}{n-k}^2$$
$$\equiv p\left(\frac{-1}{p}\right) \pmod{p^3}.$$

Proof. In view of Lemma 3.1, we have

$$\begin{split} &\sum_{n=0}^{p-1} \frac{n+1}{8^n} \sum_{k=0}^n \binom{2k}{k}^2 \binom{2(n-k)}{n-k}^2 \\ &= \sum_{n=0}^{p-1} \frac{n+1}{8^n} \sum_{k=0}^n \binom{2k}{k}^3 \binom{k}{n-k} (-16)^{n-k} \\ &= \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{8^k} \sum_{j=0}^{p-1-k} (k+j+1)\binom{k}{j} \frac{(-16)^j}{8^j} \\ &\equiv \sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}^3}{8^k} \binom{(k+1)}{2^k} \sum_{j=0}^k \binom{k}{j} (-2)^j - 2k \sum_{j=1}^{k-1} \binom{k-1}{j-1} (-2)^{j-1} \binom{k}{j} \\ &= \sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}^3}{8^k} \left((k+1)(-1)^k - 2k(-1)^{k-1} \right) \\ &\equiv \sum_{k=0}^{p-1} \frac{3k+1}{(-8)^k} \binom{2k}{k}^3 \pmod{p^3}. \end{split}$$

In [Su3] the author conjectured that

$$\sum_{k=0}^{p-1} \frac{3k+1}{(-8)^k} \binom{2k}{k}^3 \equiv p\left(\frac{-1}{p}\right) + p^3 E_{p-3} \pmod{p^4},$$

where E_0, E_1, E_2, \ldots are Euler numbers given by

$$E_0 = 1$$
 and $\sum_{\substack{k=0\\2|k}}^n \binom{n}{k} E_{n-k} = 0 \ (n = 1, 2, 3, ...).$

The last congruence is still open but [GZ] confirmed that

$$\sum_{k=0}^{p-1} \frac{3k+1}{(-8)^k} \binom{2k}{k}^3 \equiv p\left(\frac{-1}{p}\right) \pmod{p^3}.$$

So we have

$$\sum_{n=0}^{p-1} \frac{n+1}{8^n} \sum_{k=0}^n \binom{2k}{k}^2 \binom{2(n-k)}{n-k}^2 \equiv p\left(\frac{-1}{p}\right) \pmod{p^3}.$$

Similarly,

$$\begin{split} &\sum_{n=0}^{p-1} \frac{2n+1}{(-16)^n} \sum_{k=0}^n \binom{2k}{k}^2 \binom{2(n-k)}{n-k}^2 \\ &= \sum_{n=0}^{p-1} \frac{2n+1}{(-16)^n} \sum_{k=0}^n \binom{2k}{k}^3 \binom{k}{n-k} (-16)^{n-k} \\ &\equiv \sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}^3}{(-16)^k} \binom{(2k+1)}{j} \sum_{j=0}^k \binom{k}{j} + 2k \sum_{j=1}^k \binom{k-1}{j-1} \end{pmatrix} \\ &\equiv \sum_{k=0}^{p-1} \frac{3k+1}{(-8)^k} \binom{2k}{k}^3 \equiv p \binom{-1}{p} \pmod{p^3}. \end{split}$$

This concludes the proof. $\hfill\square$

Lemma 3.3. Let p be an odd prime. Then

$$2\sum_{k=0}^{(p-1)/2} \frac{k\binom{2k}{k}^3}{8^k} + \sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}C_k}{8^k} \equiv 2p^2 \left(\frac{2}{p}\right) \pmod{p^3},$$

$$8\sum_{k=0}^{(p-1)/2} \frac{k\binom{2k}{k}^3}{(-16)^k} + \sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}C_k}{(-16)^k} \equiv 2p^2 \left(\frac{-1}{p}\right) \pmod{p^3},$$

$$\sum_{k=0}^{(p-1)/2} (2k^2 + 4k + 1)\frac{\binom{2k}{k}^2}{8^k} \equiv p^2 \left(\frac{2}{p}\right) \pmod{p^3},$$

$$\sum_{k=0}^{(p-1)/2} (8k^2 + 4k + 1)\frac{\binom{2k}{k}^2}{(-16)^k} \equiv p^2 \left(\frac{-1}{p}\right) \pmod{p^3}.$$

Proof. By induction, for every $n = 0, 1, 2, \ldots$ we have

$$\sum_{k=0}^{n} \left(2k + \frac{1}{k+1}\right) \frac{\binom{2k}{k}^2}{8^k} = \frac{(2n+1)^2}{(n+1)8^n} \binom{2n}{n}^2,$$

$$\sum_{k=0}^{n} \left(8k + \frac{1}{k+1}\right) \frac{\binom{2k}{k}^2}{(-16)^k} = \frac{(2n+1)^2}{(n+1)(-16)^n} \binom{2n}{n}^2,$$

$$\sum_{k=0}^{n} (2k^2 + 4k + 1) \frac{\binom{2k}{k}^2}{8^k} = \frac{(2n+1)^2}{8^n} \binom{2n}{n}^2,$$

$$\sum_{k=0}^{n} (8k^2 + 4k + 1) \frac{\binom{2k}{k}^2}{(-16)^k} = \frac{(2n+1)^2}{(-16)^n} \binom{2n}{n}^2.$$

Applying these identities with n = (p-1)/2 we immediately get the desired congruences. \Box

Let $p \equiv 1 \pmod{4}$ be a prime and write $p = x^2 + y^2$ with $x \equiv 1 \pmod{4}$ and $y \equiv 0 \pmod{2}$. In 1828 Gauss showed the congruence $\binom{(p-1)/2}{(p-1)/4} \equiv 2x \pmod{p}$. In 1986, S. Chowla, B. Dwork and R. J. Evans [CDE] used Gauss and Jacobi sums to prove that

$$\binom{(p-1)/2}{(p-1)/4} \equiv \frac{2^{p-1}+1}{2} \left(2x - \frac{p}{2x}\right) \pmod{p^2}, \tag{3.2}$$

which was first conjectured by F. Beukers. (See also [BEW] and [HW] for further related results.) In 2009, the author (see [Su2]) conjectured that

$$\sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}^2}{8^k} \equiv \sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}^2}{(-16)^k} \equiv (-1)^{(p-1)/4} \left(2x - \frac{p}{2x}\right) \pmod{p^2},$$
(3.3)

and this was confirmed by Z. H. Sun [S1] with helps of (3.2) and Legendre polynomials.

Proof of Theorem 1.2(i). By (1.2),

$$S_{(p-1)/2} \equiv \sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}C_k}{(-16)^k} \pmod{p^2}.$$

In view of this and Lemma 3.3 and (3.3), it suffices to show (1.7).

As
$$p \mid \binom{2k}{k}$$
 for all $k = (p+1)/2, \dots, p-1$, we have

$$\sum_{n=0}^{p-1} \frac{n+1}{8^n} \sum_{k=0}^n \binom{2k}{k}^2 \binom{2(n-k)}{n-k}^2$$

$$= \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2}{8^k} \sum_{n=k}^{p-1} \frac{n+1}{8^{n-k}} \binom{2(n-k)}{n-k}^2$$

$$= \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2}{8^k} \sum_{j=0}^{p-1-k} \frac{k+j+1}{8^j} \binom{2j}{j}^2$$

$$\equiv \sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}^2}{8^k} \sum_{j=0}^{(p-1)/2} \frac{(k+1)+(j+1)-1}{8^j} \binom{2j}{j}^2$$

$$= 2 \sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}^2}{8^k} \sum_{j=0}^{(p-1)/2} \frac{(j+1)\binom{2j}{j}^2}{8^j} - \left(\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2}{8^k}\right)^2 \pmod{p^2}.$$

Similarly,

$$\sum_{n=0}^{p-1} \frac{2n+1}{(-16)^n} \sum_{k=0}^n \binom{2k}{k}^2 \binom{2(n-k)}{n-k}^2$$
$$\equiv 2 \sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}^2}{(-16)^k} \sum_{j=0}^{(p-1)/2} \frac{(2j+1)\binom{2j}{j}^2}{(-16)^j} - \left(\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2}{(-16)^k}\right)^2 \pmod{p^2}.$$

Combining these with Lemma 3.2 and (3.3), we immediately obtain (1.7).

Lemma 3.4. Let $p \equiv 1 \pmod{4}$ be a prime. Write $p = x^2 + y^2$ with $x \equiv 1 \pmod{4}$ and $y \equiv 0 \pmod{2}$. Then

$$D_{(p-1)/2} \equiv (-1)^{(p-1)/4} \left(2x - \frac{p}{2x} \right) \pmod{p^2}.$$
 (3.4)

Proof. By (1.2),

$$D_{(p-1)/2} \equiv \sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}^2}{(-16)^k} \pmod{p^2}.$$

So (3.4) follows from (3.3). \Box

Remark 3.1. If p is a prime with $p \equiv 3 \pmod{4}$, then n = (p-1)/2 is odd and hence

$$D_n \equiv \sum_{k=0}^n (-1)^k \frac{\binom{2k}{k}^2}{16^k} = \sum_{k=0}^n (-1)^k \binom{-1/2}{k}^2$$
$$\equiv \sum_{k=0}^n (-1)^k \binom{n}{k}^2 = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k}^2 = 0 \pmod{p}.$$

The following result was conjectured by the author [Su2] and confirmed by Z. H. Sun [S2].

Lemma 3.5. Let p be an odd prime. Then

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{(-8)^k} \equiv \begin{cases} 4x^2 - 2p \pmod{p^2} & \text{if } 4 \mid p-1 \& p = x^2 + y^2 \ (2 \nmid x), \\ 0 \pmod{p^2} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$
(3.5)

Remark 3.2. Fix an odd prime p = 2n + 1. By (1.2) and (1.3) we have

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{(-8)^k} \equiv \sum_{k=0}^n \binom{n+k}{2k} \binom{2k}{k}^2 2^k = D_n^2 \pmod{p^2}.$$

Hence (3.5) follows from Lemma 3.4 and Remark 3.1.

Lemma 3.6. For any positive integer n we have

$$\sum_{k=0}^{n} \binom{n+k}{2k} \binom{2k}{k}^2 \frac{2k+1}{(k+1)^2} x^k (x+1)^{k+1} = \frac{S_n(x)}{2} (D_{n-1}(x) + D_{n+1}(x)).$$
(3.6)

Proof. Note that

$$S_n(x)(D_{n-1}(x) + D_{n+1}(x)) = \sum_{m=0}^{2n+1} c_m(n)x^m$$

where

$$c_m(n) = \sum_{k=0}^m \binom{n+k}{2k} C_k \binom{2m-2k}{m-k} \left(\binom{n-1+m-k}{2m-2k} + \binom{n+1+m-k}{2m-2k} \right)$$
$$= 2\sum_{k=0}^m \binom{n+k}{2k} C_k \binom{n+m-k}{2m-2k} \binom{2m-2k}{m-k} \frac{(m+n-k)^2 - n(2m-2k-1)}{(m+n-k)(n-m+k+1)}.$$

By the Zeilberger algorithm we find that $u_m = c_m(n)/2$ satisfies the recursion

$$(m+2)(m+3)^2(m^2+5m+6+4n(n+1))u_{m+2}+2P(m,n)u_{m+1}$$

=(m+2)((2n+1)^2-m^2)(m^2+7m+12+4n(n+1))u_m
(3.7)

where P(m, n) denotes the polynomial

$$m^{5} + 11m^{4} + 45m^{3} + 83m^{2} + 64m + 12 + 20n^{4} - 40n^{3} - 58n^{2} - 38n - 25mn + m^{2}n + 2m^{3}n - 33mn^{2} + m^{2}n^{2} + 2m^{3}n^{2} - 16mn^{3} - 8mn^{4}.$$

Clearly the coefficient of x^m on the left-hand side of (3.6) coincides with

$$d_m(n) = \sum_{k=0}^m \binom{n+k}{2k} \binom{2k}{k}^2 \binom{k+1}{m-k} \frac{2k+1}{(k+1)^2}.$$

By the Zeilberger algorithm $u_m = d_m(n)$ also satisfies the recursion (3.7). Thus we have $d_m(n) = c_m(n)$ by induction on m. So (3.6) holds. \Box

Proof of Theorem 1.2(ii). Write p = 2n + 1. By (2.1),

$$\sum_{k=0}^{n} \binom{n+k}{2k} \binom{2k}{k} \binom{2k}{k+1} 2^{k} = \frac{n(n+1)}{2} S_{n}^{2}.$$

Thus, by (1.2) and (1.9) we have

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{2k}{k+1}}{(-8)^k} \equiv \sum_{k=0}^n \binom{n+k}{2k} \binom{2k}{k} \binom{2k}{k+1} 2^k$$
$$\equiv \frac{p^2 - 1}{8} 4(4x^2 - 4p) \pmod{p^2}$$

and hence (1.12) holds.

Now we consider (1.13). Observe that

$$\binom{2k}{k+1}^2 = \left(1 - \frac{2k+1}{(k+1)^2}\right) \binom{2k}{k}^2$$
 for $k = 0, 1, 2, \dots$,

and

$$\binom{2(p-1)}{p-1}\binom{2(p-1)}{(p-1)+1}^2 = \frac{p}{2p-1}\binom{2p-1}{p-1}\binom{2p-2}{p-2}^2 \equiv -p \pmod{p^2}.$$

Thus we have

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}\binom{2k}{k+1}^2}{(-8)^k} \equiv -p + \sum_{k=0}^n \frac{\binom{2k}{k}^3}{(-8)^k} - \sum_{k=0}^n \frac{(2k+1)\binom{2k}{k}^3}{(k+1)^2(-8)^k} \pmod{p^2}.$$
(3.8)

By (1.2) and (3.6) with x = 1,

$$\sum_{k=0}^{n} \frac{(2k+1)\binom{2k}{k}^3}{(k+1)^2(-8)^k} \equiv \sum_{k=0}^{n} \binom{n+k}{2k} \binom{2k}{k}^2 \frac{(2k+1)2^k}{(k+1)^2}$$
$$= \frac{S_n}{4} (D_{n-1} + D_{n+1}) \pmod{p^2}.$$

It is known (cf. [Sl] and [St]) that

$$(n+1)D_{n+1} = 3(2n+1)D_n - nD_{n-1}$$
 and $D_{n+1} - 3D_n = 2nS_n$.

Thus

$$n(D_{n-1} + D_{n+1}) = 3(2n+1)D_n - D_{n+1}$$

= 3(2n+1)D_n - (3D_n + 2nS_n) = 2n(3D_n - S_n)

and hence

$$\sum_{k=0}^{n} \frac{(2k+1)\binom{2k}{k}^3}{(k+1)^2(-8)^k} \equiv \frac{S_n}{2}(3D_n - S_n) \pmod{p^2}.$$

With helps of (1.9) and (3.4), we have

$$\frac{S_n}{2}(3D_n - S_n) \equiv \left(2x - \frac{p}{x}\right) \left(3\left(2x - \frac{p}{2x}\right) - \left(4x - \frac{2p}{x}\right)\right) \pmod{p^2}$$

and hence

$$\sum_{k=0}^{n} \frac{(2k+1)\binom{2k}{k}^3}{(k+1)^2(-8)^k} \equiv 4x^2 - p \pmod{p^2}.$$

Combining this with (3.5) and (3.8), we immediately obtain (1.13).

4. Proof of Theorem 1.3

Lemma 4.1. Let p be an odd prime. Then, for any p-adic integer $x \not\equiv 0, -1 \pmod{p}$ we have

$$\sum_{k=0}^{p-1} \binom{2k}{k}^3 \left(\frac{-x}{64}\right)^k \equiv \left(\frac{x+1}{p}\right) \sum_{k=0}^{p-1} \binom{2k}{k}^2 \binom{4k}{2k} \left(\frac{x}{64(x+1)^2}\right)^k \pmod{p}.$$
(4.1)

Proof. Taking n = (p - 1)/2 in the MacMahon identity (see, e.g., [G, (6.7)])

$$\sum_{k=0}^{n} \binom{n}{k}^{3} x^{k} = \sum_{k=0}^{n} \binom{n+k}{2k} \binom{2k}{k} \binom{n-k}{k} x^{k} (1+x)^{n-2k}$$

and noting (1.2) and the basic facts

$$\binom{n}{k} \equiv \binom{-1/2}{k} = \frac{\binom{2k}{k}}{(-4)^k} \pmod{p}$$

16

and

$$\binom{n-k}{k} \equiv \binom{-1/2-k}{k} = \frac{\binom{4k}{2k}}{(-4)^k} \pmod{p},$$

we immediately get (4.1). \Box

Proof of Theorem 1.3. (i) For $d = 0, 1, 2, \ldots$, we define

$$f(d) = \sum_{k=0}^{p-1} \frac{\binom{2k}{k+d}\binom{2k}{k}\binom{3k}{k}}{108^k}, \quad g(d) = \sum_{k=0}^{p-1} \frac{\binom{2k}{k+d}\binom{2k}{k}\binom{4k}{2k}}{256^k},$$

and

$$h(d) = \sum_{k=0}^{p-1} \frac{\binom{2k}{k+d} \binom{3k}{k} \binom{6k}{3k}}{12^{3k}}.$$

By the Zeilberger algorithm, we find the recursive relations:

$$=\frac{(3d+1)(3d+2)f(d) - (3d+4)(3d+5)f(d+2)}{108^{p-1}p} \binom{2p}{p+d+1} \binom{2p-2}{p-1} \binom{3p-3}{p-1},$$

$$=\frac{(4d+1)(4d+3)g(d) - (4d+5)(4d+7)g(d+2)}{256^{p-1}p} {2p \choose p+d+1} {2p-2 \choose p-1} {4p-4 \choose 2p-2},$$

and

$$(6d+1)(6d+5)h(d) - (6d+7)(6d+11)h(d+2) = \frac{(6p-1)(6p-5)(d+1)}{1728^{p-1}p} {2p \choose p+d+1} {3p-3 \choose p-1} {6p-6 \choose 3p-3}.$$

Recall that $\binom{2p-2}{p-1} = pC_{p-1} \equiv 0 \pmod{p}$. Also,

$$(3p-2)\binom{3p-3}{p-1} = p\binom{3p-2}{p} \equiv 0 \pmod{p},$$

$$(4p-3)\binom{4p-4}{2p-2} = p\binom{4p-2}{2p} \equiv 0 \pmod{p},$$

$$(6p-5)\binom{6p-6}{3p-3} = \frac{3p(3p-1)(3p-2)}{(6p-3)(6p-4)}\binom{6p-3}{3p} \equiv 0 \pmod{p}.$$

If $0 \leq d , then$

$$\binom{2p}{p+d+1} = \binom{2p}{p-1-d} \equiv 0 \pmod{p}.$$

So, by the above, for any $d \in \{0, \ldots, p-1\}$ we have

$$(3d+1)(3d+2)f(d) \equiv (3d+4)(3d+5)f(d+2) \pmod{p^2},$$

$$(4.2)$$

$$(4d+1)(4d+3)g(d) \equiv (4d+5)(4d+7)g(d+2) \pmod{p^2},$$

$$(6d+1)(6d+5)h(d) \equiv (6d+7)(6d+11)h(d+2) \pmod{p^2}.$$

$$(4.4)$$

Fix $0 \leq d \leq p-1$. If $d \equiv (1+(\frac{p}{3}))/2 \pmod{2}$, then it is easy to verify that $\{3d+1, 3d+2\} \cap \{p, 2p\} = \emptyset$, hence $(3d+1)(3d+2) \not\equiv 0 \pmod{p}$ and thus by (4.2) we have

$$f(d+2) \equiv 0 \pmod{p^2} \implies f(d) \equiv 0 \pmod{p^2}$$

If $d \equiv (1 + (\frac{-2}{p}))/2 \pmod{2}$, then $\{4d + 1, 4d + 3\} \cap \{p, 3p\} = \emptyset$, hence $(4d + 1)(4d + 3) \not\equiv 0 \pmod{p}$ and thus by (4.3) we have

$$g(d+2) \equiv 0 \pmod{p^2} \implies g(d) \equiv 0 \pmod{p^2}.$$

If $d \equiv (1 + (\frac{-1}{p}))/2 \pmod{2}$, then $\{6d + 1, 6d + 3\} \cap \{p, 3p, 5p\} = \emptyset$, hence $(6d + 1)(6d + 3) \not\equiv 0 \pmod{p}$ and thus (4.4) yields

$$h(d+2) \equiv 0 \pmod{p^2} \implies h(d) \equiv 0 \pmod{p^2}$$

Since

$$f(p) = f(p+1) = g(p) = g(p+1) = h(p) = h(p+1) = 0,$$

by the above for every $d = p+1, p, \ldots, 0$ we have the desired (1.19)-(1.21).

(ii) Assume that $p \equiv 3 \pmod{8}$ and $p = x^2 + 2y^2$ with $x, y \in \mathbb{Z}$. Since $4x^2 \not\equiv 0 \pmod{p}$ and Mortenson [M] already proved that the squares of both sides of (1.22) are congruent modulo p^2 , (1.22) is reduced to its mod p form. Applying (4.1) with x = 1 we get

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{(-64)^k} \equiv \left(\frac{2}{p}\right) \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2 \binom{4k}{2k}}{256^k} \pmod{p}.$$

By [A, Theorem 5(3)], we have

$$\left(\frac{-1}{p}\right)\sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k} (-1)^{k} \equiv 4x^{2} - 2p \pmod{p},$$

where n = (p-1)/2. For $k = 0, \ldots, n$ clearly

$$\binom{n}{k}^{2} \binom{n+k}{k} (-1)^{k} = \binom{(p-1)/2}{k}^{2} \binom{-(p+1)/2}{k}$$
$$\equiv \binom{-1/2}{k}^{3} = \frac{\binom{2k}{k}^{3}}{(-64)^{k}} \pmod{p},$$

therefore

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{(-64)^k} \equiv \left(\frac{-1}{p}\right) (4x^2 - 2p) \pmod{p}$$

and hence (1.22) follows.

(iii) Finally we suppose $p \equiv 5 \pmod{12}$ and write $p = x^2 + y^2$ with x odd and y even. Once again it suffices to show the mod p form of (1.23) in view of Mortenson's work [M]. As Z. H. Sun observed,

$$\binom{(p-5)/6+k}{2k}\binom{2k}{k} \equiv \binom{k-5/6}{2k}\binom{2k}{k} = \frac{\binom{3k}{k}\binom{6k}{3k}}{(-432)^k} \pmod{p}$$

for all k = 0, 1, 2, ... If p/6 < k < p/3 then $p \mid \binom{6k}{3k}$; if p/3 < k < p/2 then $p \mid \binom{3k}{k}$; if p/2 < k < p then $p \mid \binom{2k}{k}$. Thus

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}\binom{3k}{k}\binom{6k}{3k}}{12^{3k}} \equiv \sum_{k=0}^{(p-5)/6} \binom{(p-5)/6+k}{2k}\binom{2k}{k}^2 \left(-\frac{1}{4}\right)^k$$
$$= D_{2n} \left(-\frac{1}{2}\right)^2 \pmod{p} \quad (by \ (1.3)),$$

where n = (p-5)/12. Note that

$$D_{2n}\left(-\frac{1}{2}\right) = \frac{1}{(-4)^n} \binom{2n}{n}$$

by [G, (3.133) and (3.135)], and

$$\binom{(p-1)/2}{(p-1)/4} \equiv 12(-432)^n \binom{2n}{n} \pmod{p}$$

by P. Morton [Mo]. Therefore

$$D_{2n}\left(-\frac{1}{2}\right)^2 = \frac{1}{16^n} \binom{2n}{n}^2 \equiv \frac{\binom{(p-1)/2}{(p-1)/4}^2}{12^{6n+2}} \equiv \left(\frac{12}{p}\right) \binom{(p-1)/2}{(p-1)/4}^2 \pmod{p}.$$

Thus, by applying Gauss' congruence $\binom{(p-1)/2}{(p-1)/4} \equiv 2x \pmod{p}$ (cf. [BEW, (9.0.1)] or [HW]) we immediately get the mod p form of (1.23) from the above.

The proof of Theorem 1.3 is now complete. \Box

References

- [A] S. Ahlgren, Gaussian hypergeometric series and combinatorial congruences, in: Symbolic computation, number theory, special functions, physics and combinatorics (Gainesville, FI, 1999), pp. 1-12, Dev. Math., Vol. 4, Kluwer, Dordrecht, 2001.
- [BEW] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, John Wiley & Sons, 1998.
- [CHV] J. S. Caughman, C. R. Haithcock and J. J. P. Veerman, A note on lattice chains and Delannoy numbers, Discrete Math. 308 (2008), 2623–2628.
- [C] D. A. Cox, Primes of the Form $x^2 + ny^2$, John Wiley & Sons, 1989.
- [G] H. W. Gould, Combinatorial Identities, Morgantown Printing and Binding Co., 1972.
- [GZ] J. Guillera and W. Zudilin, "Divergent" Ramanujan-type supercongruences, preprint, arXiv:1004.4337.
- [HW] R. H. Hudson and K. S. Williams, *Binomial coefficients and Jacobi sums*, Trans. Amer. Math. Soc. 281 (1984), 431–505.
- [I] T. Ishikawa, Super congruence for the Apéry numbers, Nagoya Math. J. 118 (1990), 195–202.
- [M] E. Mortenson, Supercongruences for truncated $_{n+1}F_n$ hypergeometric series with applications to certain weight three newforms, Proc. Amer. Math. Soc. **133** (2005), 321–330.
- [Mo] P. Morton, Explicit identities for invariants of elliptic curves, J. Number Theory 120 (2006), 234–271.
- [O] K. Ono, Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, Amer. Math. Soc., Providence, R.I., 2003.
- $[\mathrm{PWZ}]$ M. Petkovšek, H. S. Wilf and D. Zeilberger, A=B, A K Peters, Wellesley, 1996.
- [RV] F. Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds, in: Calabi-Yau Varieties and Mirror Symmetry (Toronto, ON, 2001), pp. 223-231, Fields Inst. Commun., 38, Amer. Math. Soc., Providence, RI, 2003.
- [SI] N. J. A. Sloane, Sequences A001850, A006318 in OEIS (On-Line Encyclopedia of Integer Sequences), http://oeis.org.
- [St] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999.
- [SB] J. Stienstra and F. Beukers, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces, Math. Ann. 271 (1985), 269–304.
- [S1] Z. H. Sun, Congruences concerning Legendre polynomials, Proc. Amer. Math. Soc. 139 (2011), 1915–1929.
- [S2] Z. H. Sun, Congruences concerning Legendre polynomials (II), preprint, 2010, arXiv:1012.3898. http://arxiv.org/abs/1012.3898.
- [Su1] Z. W. Sun, Binomial coefficients, Catalan numbers and Lucas quotients, Sci. China Math. 53 (2010), 2473–2488.
- [Su2] Z. W. Sun, On congruences related to central binomial coefficients, J. Number Theory 131 (2011), in press. http://arxiv.org/abs/0911.2415.
- [Su3] Z. W. Sun, Super congruences and Euler numbers, Sci. China Math., in press. http://arxiv.org/abs/1001.4453.
- [vH] L. van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-adic Functional Analysis (Nijmegen, 1996), pp. 223–236, Lecture Notes in Pure and Appl. Math., Vol. 192, Dekker, 1997.