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ABSTRACT. In this paper we mainly employ the Zeilberger algorithm to
study congruences for sums of terms involving products of three binomial
coefficients. Let p > 3 be a prime. We prove that

p—1 (2k)2 2k )
Z kili“rd =0 (mod p?)
= 64

foralld € {0,...,p—1} withd = (p+1)/2 (mod 2). If p =1 (mod 4)
and p = 22 4+ y? with 2 =1 (mod 4) and y =0 (mod 2), then we show

_ 2 _ 2
2 (zkk) (k2-f1) = (Qkk) szl)

Z T = 2p—222 (mod p?) and Z —— = —2p (mod p?)
im0 (9 = (=8
by means of determining  mod p? via
(p—1)/2 2 (p—1)/2 2
kE+1 2k 2k+1 2k
. o kzz;) () = kga (—16>k(k) (mod 7°).

We also solve the remaining open cases of Rodriguez-Villegas’ conjectural
congruences on

p—1 2k 3k)(6k)

(2k) (Bk) (2k) (4k
Z 108k Z 256k g 123k

modulo p?.
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1. INTRODUCTION

Let p be an odd prime. It is known that (see, e.g., S. Ahlgren [A], L.
van Hammer [vH| and T. Ishikawa [I])

(pilf/?(_l)k(_z/z)g

k=0

_{ 422 —2p (mod p?) ifp=a2+9y2 4|2—-1& 2]|y),

~ L 0 (mod p?) if p=3 (mod 4).
Clearly,

-1/2\ _ (%)
= for all ={0,1,2,...
(k) 1 orall ke N={0,1,2,...},

and

2K\ (2k)! _ _p+1
(k)_(k!)2_0 (mod p) for any k = 5 oD L.

After his determination of Zz;é (2:) /m* mod p? (where m € Z and m #
0 (mod p)) in [Sul], the author [Su2, Su3] raised some conjectures on
S, (Q:)B/mk mod p? with m € {1,-8,16,—64,256, —512,4096}; for
example, the author [Su2] conjectured that

”i(%)?’_ { 422 —2p (mod p?) if (2)=1& p=2a®+ Ty (z,y € Z),
k) L0 (mod p?) if (8)=-1, i.e., p=3,5,6 (mod 7),

(L.1)
where (—) denotes the Legendre symbol. (It is known that if (¥) = 1
then p = 22 + Ty? for some x,y € Z; see, e.g., [C, p.31].) Quite recently
the author’s twin brother Zhi-Hong Sun [S2] made remarkable progress on
those conjectures; in particular, he proved (1.1) in the case (£) = —1 and

N3

k=0

3
confirm the author’s conjecture on > 7_ (Qkk) /(—=8)% mod p?.
Let p = 2n+1 be an odd prime. It is easy to see that forany £ =0,... ,n
we have

<n2+kk;) I 1( (1—1 H( 23_21) )E (E}?)k (mod p?).
(1.2)

Based on this observation Z. H. Sun [S2] studied the polynomial

fo() = 2”: (n ;; k) (2:) ka

k=0
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and found the key identity
fu(z(z +1)) = Dn(z)? (1.3)

in his approach to (1.1), where

=02 £ )

Note that those numbers D,, = D, (1) (n € N) are the so-called central
Delannoy numbers and P, (x) := D,,((z—1)/2) is the Legendre polynomial
of degree n.

Recall that Catalan numbers are those integers

o ()= () () e

while Schroder numbers are given by

=2 (o200

Sy (z) == i (”;k) Cra. (1.4)

k=0

For basic information about D,, and S,,, the reader may consult [CHV],
[S1], and p. 178 and p. 185 of [St].

Via Schréder polynomials and the Zeilberger algorithm (cf. [PWZ]), we
obtain the following result.

Theorem 1.1. Let p be an odd prime. We have
-1 2k
Sy )

64"“ =0 (mod p?) (1.5)

k=0

foralld € {0,1,... ,p—1} withd = (p+1)/2 (mod 2). If p=3 (mod 4),
then
~1 k
SR

2
64k =(2p+2-2""") <<p i 1)/2) (mod p?) (1.6

(p+1)/4

OM

Now we state our second theorem the first part of which plays a key
role in our proof of the second part.
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Theorem 1.2. Let p=1 (mod 4) be a prime and write p = x* + y? with
x=1 (mod 4) and y =0 (mod 2).
(i) We can determine x mod p* in the following way:

(p—1)/2 2 (p—1)/2 2
k+1 2k 2k+1 2k
(=1) x kzzo g kZ:O 167 \ & (mod p°)
(1.7)
Also,
(r=1)/2 2k p—1 4 2k\2
Ch k _ p
Z (kg)k = —22 (812) = (—1)(p /4 (233— ;) (mod p?),
k=0 k=0 18)
1.8
(p=1)/2 (2k (p—=1)/2 ;. (2k\2
C k
Sp-n2= ) (k1)6§ =-8 > (fG)k
= (-16) = (=10 (1.9)
=(—1)P~1/49 (233 - g) (mod p?),
(p—1)/2 ;2 12K\ 2
k (k) - 3p 2
Z = (—1)P~D/4 (a: — —) (mod p*), (1.10)
k
— 8 4z
and o1/ )
p—1)/2 ;9 2k
k p
(_(f%gk = (_1><p+3>/4@ (mod p?). (1.11)
k=0
(ii) We have
ST IR
Z (—78)’—: =2p —22% (mod p?) (1.12)
k=0
and
Syl
Z (—78)4—’3 = —2p (mod p?). (1.13)
k=0

Remark 1.1. Let p be an odd prime. We conjecture that

Pl 1 /9% 2+(”‘Z”/2 % +1 (/2>
8\ k (—16)F \ k
)

k=0
- 2(%x(modp3) ifp=ao?+9y? 4|z-1&2]|y),
~ | 0 (mod p?) if p=3 (mod 4).
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Motivated by his study of Gaussian hypergeometric series and Calabi-
Yau manifolds, in 2003 Rodriguez-Villegas [RV] raised some conjectures
on congruences. In particular, he conjectured that for any prime p > 3 we
have

p—l (Sk) p—l (4k)

108k =blp) (mad 7, 256k =c(p) (mod p?),
. - (1.14)
and 1
p— 3k\ (6k
GO = (Mo woar. o)
k=0
where

Za(n = H 1—¢")% =n(42)°,
H (1= ¢")3(1 = ¢*")® = n’(62)n° (22),

(1= (1 = ¢™)(1 = ) = n*(82)n(42)n(22)n°(2),

Z c(n)q"
n=1
and the Dedekind n-function is given by

z) = g% H(l —¢") (Im(2) >0 and ¢ = *™%).

In 1892 F. Klein and R. Fricke proved that (see also [SB])

( )_{4332—2]9 (mod p?) ifp=1 (mod 4) and p = 22 + 92 (21 2),
“P= o if p=3 (mod 4).

By [SB]| we also have

B )_{4332—2}9 if p=1 (mod 3) and p = 2% + 3y? with z,y € Z,
7= o if p=2 (mod 3);

and

) {4x2—2p if (=2) =1 and p = 2% + 2y? with z,y € Z,
c(p) =

-2
p
0 if (=2) = —1, ie, p=5,7 (mod 8).
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Via an advanced approach involving the p-adic Gamma function and Gauss
and Jacobi sums, E. Mortenson [M] managed to provide a partial solution
of (1.14) and (1.15), with the following things open:

p—l (3k) _ _ o
Z 108’“ =b(p) =0 (mod p*) if p=5 (mod6), (1.16)
le ) G = c(p) (mod p*) if p=3 (mod 4) (1.17)
256k - = ; .
k=0
p—1 2k
() 231( ) = —a(p) (mod p®) ifp=5 (mod 6). (1.18)
k=0

(See also K. Ono [O, Chapter 11] for an introduction to this method.)
Concerning (1.16)-(1.18), Mortenson’s approach [M] only allowed him to
show that for each of them the squares of both sides of the congruence are
congruent modulo p?.

Our following theorem confirms (1.16)-(1.18) and hence completes the
proof of (1.14) and (1.15). So far, all conjectures of Rodriguez-Villegas
[RV] involving at most three products of binomial coefficients have been
proved!

Theorem 1.3. Let p > 3 be a prime.
(i) Given d € {0,...,p— 1}, we have

p—1 [ 2k \ (2k\ (3k p
S LG _ g uoa ey o= 228 (uoan), a9
k=0
p—1 [ 2k \ (2k\ (4k 14+ (=2
b G)G) _ o a2y iga= 12 (moa o), (120
k=0
p—1 [ 2k \ (3k\ (6k 14 (=L
k=0
(ii) If p= 3 (mod 8) and p = 22 + 2y? with x,y € Z, then
p—1 (2k:)2(4k:)
Z W =42® —2p (mod p?). (1.22)
k=0

(iii) If p=5 (mod 12) and p =z + y? with 24 x and 2 | y, then

p—1 3k (6k
Z 1(231( 0 =2p —42® (mod p?). (1.23)
k=0

In the case d = 1, Theorem 1.3(i) yields the following new result. (Note

that ( )(;’fl) 2(k2fl) (3kk) for any k € N.)
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Corollary 1.1. Let p > 3 be a prime. Then

D) 2
Z Tog" =0 (mod p*) ifp=1 (mod 3), (1.24)
k=0
S (2 )(253;]5}““) =0 (mod p°) ifp=1,3 (mod8), (1.25)
k=0
p—1 (6ky (3k\ ( 2k
(316)(11«2# =0 (mod p?) ifp=1 (mod 4). (1.26)

e
Il

0

We will prove Theorems 1.1-1.3 in Sections 2-4 respectively.

2. PROOF OF THEOREM 1.1

Lemma 2.1. For any positive integer n we have

k=1

Proof. Observe that
2 ~ (n+k px (A
Sp(x)” = Z( ok )Cka: 2 ( Cizt = Z am (N ,
where

L (n+k n+m—k

am(n) = ( 2%k )O"( 2m — 2k )O’”"“‘

k=0

Also, the coefficient of 2™ on the left-hand side of (2.1) coincides with

o= ()

k=1
_i n+k+1\ (2k+2\ (2k+2\ [ k+2
S\ 2k+2 k+1 k m—k)

Thus, for the validity of (2.1) it suffices to show that b,,(n) = n(n+1)a,(n)
for all m = 0,1,.... Obviously, ap(n) = 1 and bo(n) = n(n + 1). Also,
a;(n) =n(n+1) and by (n) = n?(n+ 1)2. By the Zeilberger algorithm via
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Mathematica (version 7) we find that both u,, = a,,(n) and u,, = by, (n)
satisfy the following recursion:

(m +2)(m + 3)(m + 4)tim 2
=2(2mn? + 50 + 2mn + 5n — m> — 6m? — 11m — 6)uym41
— (m+1)(m — 2n)(m + 2n + 2)u,,
So by (n) = n(n+ 1)ay,(n) for all m € N. This proves (2.1). O

Proof of Theorem 1.1. (i) We first determine 22;(1) (zkk) (k+1)/64k mod
p? via Lemma 2.1, which actually led the author to the study of (1.5).
Recall the following combinatorial identity (cf. [Su2, (4.3)]):

i(n—l—k) Cp (—1)("=D2C, 1y 0 /27 if 24,
(

_9Nk ;
=\ 2k 2) 0 if 2| n.

Set n = (p —1)/2. Applying (2.1) with z = —1/2 we get

2 () () s =t w5 ()

Thus, with the help of (1.2), we have

3OS (R () s

k=0 k=1

2 2
=—n(n+1)S, (—%) Sn (—1)
_ (0 (mod p?) if p=1 (mod 4)
:{ C’(Qn_l)/z/22”+2 (mod p?) if p=3 (mod 4).

[\

In the case p =3 (mod 4), clearly

2
(p—=1)/2y _2
C(2n 1)/2 _<((p—|—1)/4) p—1>
22n+2 - 4 x 9p—1

1 ((p )/2)2
(1=2p)(1+pg2) \(p+1)/4

2
—-1)/2
=(14+2p—pgp(2) ((p )/ ) (mod p?)

(p+
where ¢,(2) = (2P~! — 1)/p. Therefore (1.5) with d = 1 holds if p = 1
(mod 4), and (1.6) is valid when p = 3 (mod 4).
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(ii) Ford = 0,1,2,... set

2 2
() () 3 ()" ()
: 64~ el 64~

p
Uqd =

e
Il

By the Zeilberger algorithm we find the recursion

2
. > _(@p—1d+1) [ 2p \(2p-2
(2d + 1)“uqg — (2d + 3)“ugq2 = 64P—1p p+d+1)\p—-1/ "

Note that

p—1
If0<d<p-—2, then

o))
p+d+1) p+d+1\p+d

(2d + 1)%ug = (2d + 3)%ugs2  (mod p?).

Ford € {0,...,p—3} withd = (p+1)/2 (mod 2), clearly p # 2d+1 < 2p
and hence

2p —2
( P ) =pCp_1 =0 (mod p).

0 (mod p)

and hence

Ugr2 =0 (mod p?) = ug=0 (mod p?).

If p=3 (mod4) then p—1=(p+1)/2 (mod 2); if p=1 (mod 4) then
p—2=(p+1)/2 (mod 2) and p—2 > (p+1)/2. Thus, ifd € {p—1,p—2}
and d = (p+1)/2 (mod 2), then d > (p+1)/2 and hence ug =0 (mod p?).
It follows that ug = 0 (mod p?) (i.e., (1.5) holds) for all d € {0,... ,p—1}
with d = (p+1)/2 (mod 2).

By the above we have completed the proof of Theorem 1.1. [

3. PROOF OF THEOREM 1.2

Lemma 3.1. For any n € N we have

L N N ST 31 o N ) RS

k=0 k=0

Proof. For n =0, 1, both sides of (3.1) take the values 1 and 8 respectively.
Let u, denote the left-hand side of (3.1) or the right-hand side of (3.1).
Via the Zeilberger algorithm for Mathematica, we obtain the recursion

(n 4 2)%Upy0 = 8(2n + 3)(2n2 + 6n 4 5)upy1 — 256(n + 1)3u, (n € N).
So, by induction (3.1) holds for all n =0,1,2,.... O
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Lemma 3.2. Let p be an odd prime. Then
in z”: 26\ 2 /2(n — k)\ >
8” k n—=k
k=0

on + 1 Z <2k>2 <2(n - k))2
= (16" = o\ K n—k

1 5

=p|— | (mod p°).

p

Proof. In view of Lemma 3.1, we have

p‘o n8-: 1 z”: <2:) 2 <2(:_—:)) 2

n

"63
>—‘o

—

p 3
_ 3k+1<2kk) (tmod p).

0
In [Su3] the author conjectured that

p—1 3
3k+1 /2K —1
S G (e) =0(5) 7B modst

k=0
where Fy, E1, E>, ... are Euler numbers given by
Eo=1 and ;0 <Z)En_k =0(n=1,23,...).

2(k
The last congruence is still open but [GZ] confirmed that

SRR (5) e

k=0
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So we have

3 3
o -
003
3|+
—_
o~
3
(@)
VS
= B
~__
VR
)
SES)
L
o
~—
[\
[l
=
N
|
= | L
~__
=
o
(oW
i}
w
S—

Similarly,

n k=0
p-1 Z (z:)3<n f k>(_16)n_k

S n () )
B Z 2n + 1

This concludes the proof. [

Lemma 3.3. Let p be an odd prime. Then

(p—1)/2 k(Qkk)S (p—1)/2 (zkk)Ok:

2 Z gk + Z 3k =2p”

k=0 k=0 (=16)F
(p—1)/2 (2k)2
Z (2k? + 4k + 1) ;k =p? (—) (mod p?),
k=0
(p—1)/2 (2k)2

= (
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Proof. By induction, for every n =0,1,2,... we have

5 () B = (o)’
1:0 (8]“ Ty 1) ((—Qfé)k :(nfq;—lfwn <2:)2’

n 2k 2 2
2n +1)% (2n
k_o(k+k+)8k gn o)

n 2k 2 2 790\ 2
k_0(8k:2 + 4k 4+ 1) <E’12;>k :fﬁ;){ﬁ (2n) .

Applying these identities with n = (p—1)/2 we immediately get the desired
congruences. [J

Let p=1 (mod 4) be a prime and write p = 2% +y? with x = 1 (mod 4)
and y =0 (mod 2). In 1828 Gauss showed the congruence (gj%i) =2zr
(mod p). In 1986, S. Chowla, B. Dwork and R. J. Evans [CDE] used Gauss

and Jacobi sums to prove that

(8;: EZ) = WTH (233 - 2%) (mod p?), (3.2)

which was first conjectured by F. Beukers. (See also [BEW] and [HW] for
further related results.) In 2009, the author (see [Su2]) conjectured that

(p—1)/2 (2k)2 (p—1)/2 (2k)2

. QkEZ

k=0 k=0

(~)@/ (20— ) (mod p?),
T

(3.3)
and this was confirmed by Z. H. Sun [S1] with helps of (3.2) and Legendre
polynomials.

Proof of Theorem 1.2(i). By (1.2),

(p—1)/2 (zk)Ok
Sp-1)/2 = Z (flG)k (mod p?).

k=0

In view of this and Lemma 3.3 and (3.3), it suffices to show (1.7).
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Asp| (2kk) forall k=(p+1)/2,...,p—1, we have

i ; 1 i (2:)2 (2(:_-:))2

n=0 k=0
SN L L (20’
k n—k
k=0 8 n==k 8
Ak +J +1(27\?
o ]k Z j
k=0 Jj=0

< k41 1) —1/25\°
=3 ey ()

k=0 j=0 J
(p— 1)/2( )2(19 1)/2 (j+1)( )2 p—1 (2k)2 2
k 2
=2 Z Z T—( 8’“) (mod p?).
7=0 k=0
Simllarly,

Z 2n+1 Z (%) ( k))2
n=0 k=0 k

(p—1)/2 (2k)2 (p—1)/2 (2j +1)(23 (p—l k)2

= L Thp X~ 2

Combining these with Lemma 3.2 and (3.3), we immediately obtain (1.7).

2
) (mod p?).

Lemma 3.4. Let p = 1 (mod 4) be a prime. Write p = 2% + y? with

=1 (mod 4) and y =0 (mod 2). Then
— (_1)(p—1)/4 _ P 2
Dip1y2 = (~1) (2:1: 23:) (mod p?). (3.4)

Proof. By (1.2),
(p—1)/2 (%)2

Dp-nyp= )

k=0
So (3.4) follows from (3.3). O

(mod p?).

Remark 3.1. If p is a prime with p =3 (mod 4), then n = (p—1)/2 is odd

and hence

n 2K\ 2 n B 5
=3t - ()

k=0 k=0

z;(—l)’f (’;) DICI (’;) _ 0 (mod p).
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The following result was conjectured by the author [Su2] and confirmed
by Z. H. Sun [S2].

Lemma 3.5. Let p be an odd prime. Then

pz_:l (2:)3 _ { 422 — 2p (mod p?) ifd|p—1&p=2*+9y* (21 2),
e~ (=8)* = | 0 (mod p?) if p=3 (mod 4).

(3.5)
Remark 3.2. Fix an odd prime p = 2n + 1. By (1.2) and (1.3) we have

LB () -

k:O( k=0

Hence (3.5) follows from Lemma 3.4 and Remark 3.1.

Lemma 3.6. For any positive integer n we have

—~\ 2k k) (k+1)2 2
(3.6)
Proof. Note that
2n+1
Sn(2)(Dp-1(2) + Dnt1()) = Z ()™
m=0
where
~ (n+k 2m —2k\ ((n—1+m —k n+l+m—k
%(n)—Z( 2%k )C’“< m— k )(( 2m — 2k )+< 2m — 2k ))

k=0
L n+k n+m—k\ (2m —2k\ (m+n—k)?> —n(2m — 2k — 1)
=2 Ch :
—\ 2k 2m — 2k m—k (m+n—Fk)(n—m+k+1)
By the Zeilberger algorithm we find that u,, = ¢;,(n)/2 satisfies the re-
cursion

(m+2)(m + 3)%(m? +5m + 6 + 4n(n + 1)) umy2 + 2P(m, n)tm 11

=(m+2)((2n + 1) —m?)(m? + Tm + 12 + 4n(n + 1))uy,
(3.7)
where P(m,n) denotes the polynomial

m® + 11m* + 45m> + 83m? + 64m + 12 + 20n* — 40n> — 58n% — 38n

— 25mn +m?n + 2m3n — 33mn? + m?n? + 2m3n? — 16mn>® — 8mn*.
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Clearly the coefficient of 2™ on the left-hand side of (3.6) coincides with
I (kR (267 (k1 2k +1
dpm(n) = Ty
(n) ;_()( 2%k )(k) (m—k) (k + 1)2

By the Zeilberger algorithm w,,, = d,,(n) also satisfies the recursion (3.7).
Thus we have d,,(n) = ¢,,(n) by induction on m. So (3.6) holds. O

Proof of Theorem 1.2(ii). Write p = 2n + 1. By (2.1),

S () = s

Thus, by (1.2) and (1.9) we have

—1 k n
X (k2+1) Z n+k\ 2K\ [ 2k )k
2k k kE+1
k=0 k=0
P’ -

8

14(41’2 — 4p) (mod p?)

and hence (1.12) holds.
Now we consider (1.13). Observe that

2k \?2 2k + 1 2k\ 2
—(1- 22" for k=0,1.2. ...
<k+1) < <k+1>2)<k> ork =012,
and

<2§f—_11)) ((192(—})1_) i) 1)2 N 2pp— 1 (?:f) (?:;)2 =-—p (modp?).

Thus we have

p—l 2k no 2k\3 n 2k\ 3

By (1.2) and (3.6) with = =1,

2k D)) SN kY (20 2k + 1)2¢
;(k+1)2(—8)k _k;)( 2k )(k) (k+1)2
Sn

:I<Dn—1 + Dyy1) (mod p2).
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It is known (cf. [S]] and [St]) that

(n+1)Dp11 =3(2n+1)D,, —nD,,—; and D,y — 3D, =2nS,.
Thus

n(Dn—l + Dn—l—l) :3(2n + 1)Dn - Dn—|—1
=3(2n+1)D, — (3D, + 2nS,) = 2n(3D,, — S,)

and hence

(ke 1)(2kk) %(SDR —S,) (mod p?).

With helps of (1.9) and (3.4), we have

Sn

3 (3D = 5n) = <2x_ g) (3 (2“3_ %) - <4ﬂf— %)) (mod p?)

and hence 5
n 2k
Z(%H)(k) 4

(k+1)2(—8)k = —p (mod p?).

k=0
Combining this with (3.5) and (3.8), we immediately obtain (1.13). O

4. PROOF OF THEOREM 1.3

Lemma 4.1. Let p be an odd prime. Then, for any p-adic integer x %
0, —1 (mod p) we have

p—1 3 k p—1 2 k
— 2 4
Z 2 =) = (X ! Z " N (mod p).
k 64 p k 2k) \ 64(z+1)?
k=0 k=0
(4.1)
Proof. Taking n = (p — 1)/2 in the MacMahon identity (see, e.g., [G,

(6.7)])
R G0 [ (O

k=0

and noting (1.2) and the basic facts

(1) = ()= 5 oot
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()= (1)

we immediately get (4.1). O
Proof of Theorem 1.3. (i) For d =0,1,2,..., we define

and

’il ) G0 GH ( d):p_l (E) (B (50
108k Y 2568
k=0 k=0

and
e () G Go)

h<d) = 123k

k=0

By the Zeilberger algorithm, we find the recursive relations:

(3d+1)(3d+2)f(d) — (3d +4)(3d +5) f(d + 2)
Bp—1)(Bp—2)(d+1) 2p 2p—2\ (3p—3
N 108P=Tp <p+d+1><p—1)<p—1>’

(4d +1)(4d + 3)g(d) — (4d + 5)(4d + T)g(d + 2)
(4p—1)(4p—3)(d+ 1) 2p 2p — 2\ [4p — 4
B 256~ 1p <p+d+1><p—1)<2p—2)’

(6 +1)(6d + 5)h(d) — (6d + 7)(6d + 11)A(d + 2)
(6p —1)(6p —5)(d+ 1) 2p 3p—3\ [6p—6
- 17287 1p (p+d+1)(p—1)(3p—3)'

Recall that (2p 2) pCp—_1 =0 (mod p). Also,

and

(",
(4p —3) (;:;l) =p(4p2; 2) =0 (mod p),
6p— 6\ _3pBp—1)(3p—2) (6p—3) _
(6p—5)<3p_3) =~6p —3)(6p — D) ( 35 ):0 (mod p)

If0<d<p—1, then

(p+25+ 1) - (p —21p— d) =0 (modp).
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So, by the above, for any d € {0,... ,p— 1} we have

(3d +1)(3d 4+ 2) f(d) =(3d + 4)(3d 4+ 5) f(d + 2) (mod p?),

(4.2)
(4d 4 1)(4d + 3)g(d) =(4d + 5)(4d + T)g(d + 2) (mod p?),

(4.3)
(6d + 1)(6d 4 5)h(d) =(6d + 7)(6d + 11)h(d + 2) (mod p?).

(4.4)

Fix0<d<p-1Ifd=(1+ (%))/2 (mod 2), then it is easy to verify
that {3d + 1,3d + 2} N {p,2p} = 0, hence (3d + 1)(3d + 2) # 0 (mod p)
and thus by (4.2) we have

f(d+2) =0 (mod p*) = f(d) =0 (mod p?).

Ifd=(1+ (3 2))/2 (mod 2), then {4d + 1,4d + 3} N {p,3p} = 0, hence
(4d + 1)(4d + ) # 0 (mod p) and thus by (4.3) we have

9(d+2) =0 (mod p*) = g(d) =0 (mod p?).

Ifd=(1+ (_71))/2 (mod 2), then {6d+ 1,6d+ 3} N {p, 3p,5p} = (), hence
(6d +1)(6d+ 3) # 0 (mod p) and thus (4.4) yields

h(d+2) =0 (mod p*) = h(d) =0 (mod p?).
Since

flp)=flp+1)=gp) =gp+1)="nh(p) =h(p+1) =0,

by the above for every d = p+1,p, ... ,0 we have the desired (1.19)-(1.21).

(ii) Assume that p =3 (mod 8) and p = 2% + 2y? with z,y € Z. Since
422 # 0 (mod p) and Mortenson [M] already proved that the squares of
both sides of (1.22) are congruent modulo p?, (1.22) is reduced to its mod
p form. Applying (4.1) with z = 1 we get

(LR e

k:
k=0 k=0 256

(]

By [A, Theorem 5(3)], we have

RIE0) 1Yo =or-

k=0
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where n = (p—1)/2. For k =0,... ,n clearly

Sl R e I

3

(V%) = i ot

therefore 1 o3
) (E%i)k = (_—1) (4% — 2p) (mod p)

k=0 p

and hence (1.22) follows.

(iii) Finally we suppose p = 5 (mod 12) and write p = 22 + y? with z
odd and y even. Once again it suffices to show the mod p form of (1.23)
in view of Mortenson’s work [M]. As Z. H. Sun observed,

(p=5)/6+ k) (2k) _ (k=5/6) (20) _ (G (o0
2k k) 2k k (—432)Fk
for all k =0,1,2,.... If p/6 < k < p/3 then p | (g’;), if p/3 <k <p/2
then p | (3kk); if p/2 < k < p then p | (2:) Thus

S EEE 5 (07551 (3 : () ’“

b, (%) (modp) (by (13)),

where n = (p — 5)/12. Note that

by [G, (3.133) and (3.135)], and
(p—1)/2Y _ n(2n
(o 1y7a) =282 (%)) ot
by P. Morton [Mo]. Therefore

—1)/2)2
D _1 2: i 2n 2: (22—1%4) — E (p_1>/2 ? (mod )
2\ 72 167\ n) — 1200k2 — \p ) \(p-1)/4 ).
Thus, by applying Gauss’ congruence (gj%i) = 2z (mod p) (cf. [BEW,
(9.0.1)] or [HW]) we immediately get the mod p form of (1.23) from the
above.

The proof of Theorem 1.3 is now complete. [



20

ZHI-WEI SUN

REFERENCES

S. Ahlgren, Gaussian hypergeometric series and combinatorial congruences, in:
Symbolic computation, number theory, special functions, physics and combina-
torics (Gainesville, FI, 1999), pp. 1-12, Dev. Math., Vol. 4, Kluwer, Dordrecht,
2001.

B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, John
Wiley & Sons, 1998.

J. S. Caughman, C. R. Haithcock and J. J. P. Veerman, A note on lattice chains
and Delannoy numbers, Discrete Math. 308 (2008), 2623-2628.

D. A. Cox, Primes of the Form 2 + ny?, John Wiley & Sons, 1989.

H. W. Gould, Combinatorial Identities, Morgantown Printing and Binding Co.,
1972.

J. Guillera and W. Zudilin, “Divergent” Ramanujan-type supercongruences,
preprint, brXiv:1004.4337.

R. H. Hudson and K. S. Williams, Binomial coefficients and Jacobi sums, Trans.
Amer. Math. Soc. 281 (1984), 431-505.

T. Ishikawa, Super congruence for the Apéry numbers, Nagoya Math. J. 118
(1990), 195—-202.

E. Mortenson, Supercongruences for truncated n4+1Fn hypergeometric series
with applications to certain weight three newforms, Proc. Amer. Math. Soc.
133 (2005), 321-330.

P. Morton, Explicit identities for invariants of elliptic curves, J. Number The-
ory 120 (2006), 234-271.

K. Ono, Web of Modularity: Arithmetic of the Coefficients of Modular Forms
and gq-series, Amer. Math. Soc., Providence, R.I., 2003.

M. Petkovsek, H. S. Wilf and D. Zeilberger, A = B, A K Peters, Wellesley,
1996.

F. Rodriguez-Villegas, Hypergeometric families of Calabi- Yau manifolds, in:
Calabi-Yau Varieties and Mirror Symmetry (Toronto, ON, 2001), pp. 223-231,
Fields Inst. Commun., 38, Amer. Math. Soc., Providence, RI, 2003.

N. J. A. Sloane, Sequences A001850, A006318 in OEIS (On-Line Encyclopedia
of Integer Sequences), http://oeis.ord.

R. P. Stanley, Fnumerative Combinatorics, Vol. 2, Cambridge Univ. Press,
Cambridge, 1999.

J. Stienstra and F. Beukers, On the Picard-Fuchs equation and the formal
Brauer group of certain elliptic K3-surfaces, Math. Ann. 271 (1985), 269-304.
Z. H. Sun, Congruences concerning Legendre polynomials, Proc. Amer. Math.
Soc. 139 (2011), 1915-1929.

Z. H. Sun, Congruences concerning Legendre polynomials (II), preprint, 2010,
brXiv:1012.3894. http://arxiv.org/abs/1012.3894.

Z. W. Sun, Binomial coefficients, Catalan numbers and Lucas quotients, Sci.
China Math. 53 (2010), 2473—-2488.

Z. W. Sun, On congruences related to central binomial coefficients, J. Number
Theory 131 (2011), in press. http://arxiv.org/abs/0911.241§.

Z. W. Sun, Super congruences and Fuler numbers, Sci. China Math., in press.
http://arxiv.org/abs/1001.4453.

L. van Hamme, Some conjectures concerning partial sums of generalized hyper-
geometric series, in: p-adic Functional Analysis (Nijmegen, 1996), pp. 223-236,
Lecture Notes in Pure and Appl. Math., Vol. 192, Dekker, 1997.



http://arxiv.org/abs/1004.4337
http://oeis.org
http://arxiv.org/abs/1012.3898
http://arxiv.org/abs/1012.3898
http://arxiv.org/abs/0911.2415
http://arxiv.org/abs/1001.4453

