
ar
X

iv
:1

01
2.

31
41

v5
  [

m
at

h.
N

T
] 

 1
4 

Ju
l 2

01
1

Preprint, arXiv:1012.3141

ON SUMS INVOLVING PRODUCTS OF

THREE BINOMIAL COEFFICIENTS

Zhi-Wei Sun

Department of Mathematics, Nanjing University
Nanjing 210093, People’s Republic of China

zwsun@nju.edu.cn
http://math.nju.edu.cn/∼zwsun

Abstract. In this paper we mainly employ the Zeilberger algorithm to

study congruences for sums of terms involving products of three binomial

coefficients. Let p > 3 be a prime. We prove that

p−1
∑

k=0

(2k
k

)2( 2k
k+d

)

64k
≡ 0 (mod p2)

for all d ∈ {0, . . . , p − 1} with d ≡ (p + 1)/2 (mod 2). If p ≡ 1 (mod 4)
and p = x2 + y2 with x ≡ 1 (mod 4) and y ≡ 0 (mod 2), then we show

p−1
∑

k=0

(2k
k

)2( 2k
k+1

)

(−8)k
≡ 2p−2x2 (mod p2) and

p−1
∑

k=0

(2k
k

)( 2k
k+1

)2

(−8)k
≡ −2p (mod p2)

by means of determining x mod p2 via

(−1)(p−1)/4 x ≡

(p−1)/2
∑

k=0

k + 1

8k

(2k

k

)2

≡

(p−1)/2
∑

k=0

2k + 1

(−16)k

(2k

k

)2

(mod p2).

We also solve the remaining open cases of Rodriguez-Villegas’ conjectural

congruences on

p−1
∑

k=0

(2k
k

)2(3k
k

)

108k
,

p−1
∑

k=0

(2k
k

)2(4k
2k

)

256k
,

p−1
∑

k=0

(2k
k

)(3k
k

)(6k
3k

)

123k

modulo p2.
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1. Introduction

Let p be an odd prime. It is known that (see, e.g., S. Ahlgren [A], L.
van Hammer [vH] and T. Ishikawa [I])

(p−1)/2
∑

k=0

(−1)k
(

−1/2

k

)3

≡

{

4x2 − 2p (mod p2) if p = x2 + y2 (4 | x− 1 & 2 | y),

0 (mod p2) if p ≡ 3 (mod 4).

Clearly,
(

−1/2

k

)

=

(

2k
k

)

(−4)k
for all k ∈ N = {0, 1, 2, . . .},

and

(

2k

k

)

=
(2k)!

(k!)2
≡ 0 (mod p) for any k =

p+ 1

2
, . . . , p− 1.

After his determination of
∑p−1

k=0

(

2k
k

)

/mk mod p2 (where m ∈ Z and m 6≡
0 (mod p)) in [Su1], the author [Su2, Su3] raised some conjectures on
∑p−1

k=0

(

2k
k

)3
/mk mod p2 with m ∈ {1,−8, 16,−64, 256,−512, 4096}; for

example, the author [Su2] conjectured that

p−1
∑

k=0

(

2k

k

)3

≡

{

4x2 − 2p (mod p2) if ( p7 ) = 1 & p = x2 + 7y2 (x, y ∈ Z),

0 (mod p2) if ( p
7
) = −1, i.e., p ≡ 3, 5, 6 (mod 7),

(1.1)
where (−) denotes the Legendre symbol. (It is known that if ( p7 ) = 1

then p = x2 + 7y2 for some x, y ∈ Z; see, e.g., [C, p. 31].) Quite recently
the author’s twin brother Zhi-Hong Sun [S2] made remarkable progress on
those conjectures; in particular, he proved (1.1) in the case ( p

7
) = −1 and

confirm the author’s conjecture on
∑p−1

k=0

(

2k
k

)3
/(−8)k mod p2.

Let p = 2n+1 be an odd prime. It is easy to see that for any k = 0, . . . , n
we have

(

n+ k

2k

)

=

∏k
j=1(−(2j − 1)2)

4k(2k)!

k
∏

j=1

(

1−
p2

(2j − 1)2

)

≡

(

2k
k

)

(−16)k
(mod p2).

(1.2)
Based on this observation Z. H. Sun [S2] studied the polynomial

fn(x) =
n
∑

k=0

(

n+ k

2k

)(

2k

k

)2

xk
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and found the key identity

fn(x(x+ 1)) = Dn(x)
2 (1.3)

in his approach to (1.1), where

Dn(x) :=
n
∑

k=0

(

n+ k

2k

)(

2k

k

)

xk =
n
∑

k=0

(

n

k

)(

n+ k

k

)

xk.

Note that those numbers Dn = Dn(1) (n ∈ N) are the so-called central
Delannoy numbers and Pn(x) := Dn((x−1)/2) is the Legendre polynomial
of degree n.

Recall that Catalan numbers are those integers

Cn =
1

n+ 1

(

2n

n

)

=

(

2n

n

)

−

(

2n

n+ 1

)

(n ∈ N)

while Schröder numbers are given by

Sn :=

n
∑

k=0

(

n+ k

2k

)

Ck =

n
∑

k=0

(

n

k

)(

n+ k

k

)

1

k + 1
.

We define the Schröder polynomial of degree n by

Sn(x) :=

n
∑

k=0

(

n+ k

2k

)

Ckx
k. (1.4)

For basic information about Dn and Sn, the reader may consult [CHV],
[Sl], and p. 178 and p. 185 of [St].

Via Schröder polynomials and the Zeilberger algorithm (cf. [PWZ]), we
obtain the following result.

Theorem 1.1. Let p be an odd prime. We have

p−1
∑

k=0

(

2k
k

)2( 2k
k+d

)

64k
≡ 0 (mod p2) (1.5)

for all d ∈ {0, 1, . . . , p−1} with d ≡ (p+1)/2 (mod 2). If p ≡ 3 (mod 4),
then

p−1
∑

k=0

(

2k
k

)2( 2k
k+1

)

64k
≡ (2p+ 2− 2p−1)

(

(p− 1)/2

(p+ 1)/4

)2

(mod p2) (1.6)

Now we state our second theorem the first part of which plays a key
role in our proof of the second part.
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Theorem 1.2. Let p ≡ 1 (mod 4) be a prime and write p = x2 + y2 with

x ≡ 1 (mod 4) and y ≡ 0 (mod 2).
(i) We can determine x mod p2 in the following way:

(−1)(p−1)/4 x ≡

(p−1)/2
∑

k=0

k + 1

8k

(

2k

k

)2

≡

(p−1)/2
∑

k=0

2k + 1

(−16)k

(

2k

k

)2

(mod p2).

(1.7)
Also,

(p−1)/2
∑

k=0

(

2k
k

)

Ck

8k
≡ −2

p−1
∑

k=0

k
(

2k
k

)2

8k
≡ (−1)(p−1)/4

(

2x−
p

x

)

(mod p2),

(1.8)

S(p−1)/2 ≡

(p−1)/2
∑

k=0

(

2k
k

)

Ck

(−16)k
≡ −8

(p−1)/2
∑

k=0

k
(

2k
k

)2

(−16)k

≡(−1)(p−1)/4 2
(

2x−
p

x

)

(mod p2),

(1.9)

(p−1)/2
∑

k=0

k2
(

2k
k

)2

8k
≡ (−1)(p−1)/4

(

x−
3p

4x

)

(mod p2), (1.10)

and
(p−1)/2
∑

k=0

k2
(

2k
k

)2

(−16)k
≡ (−1)(p+3)/4 p

16x
(mod p2). (1.11)

(ii) We have

p−1
∑

k=0

(

2k
k

)2( 2k
k+1

)

(−8)k
≡ 2p− 2x2 (mod p2) (1.12)

and
p−1
∑

k=0

(

2k
k

)(

2k
k+1

)2

(−8)k
≡ −2p (mod p2). (1.13)

Remark 1.1. Let p be an odd prime. We conjecture that

p−1
∑

k=0

k + 1

8k

(

2k

k

)2

+

(p−1)/2
∑

k=0

2k + 1

(−16)k

(

2k

k

)2

≡

{

2( 2
p
)x (mod p3) if p = x2 + y2 (4 | x− 1 & 2 | y),

0 (mod p2) if p ≡ 3 (mod 4).



SUMS INVOLVING PRODUCTS OF THREE BINOMIAL COEFFICIENTS 5

Motivated by his study of Gaussian hypergeometric series and Calabi-
Yau manifolds, in 2003 Rodriguez-Villegas [RV] raised some conjectures
on congruences. In particular, he conjectured that for any prime p > 3 we
have

p−1
∑

k=0

(

2k
k

)2(3k
k

)

108k
≡ b(p) (mod p2),

p−1
∑

k=0

(

2k
k

)2(4k
2k

)

256k
≡ c(p) (mod p2),

(1.14)
and

p−1
∑

k=0

(

2k
k

)(

3k
k

)(

6k
3k

)

123k
≡

(p

3

)

a(p) (mod p2), (1.15)

where

∞
∑

n=1

a(n)qn = q
∞
∏

n=1

(1− q4n)6 = η(4z)6,

∞
∑

n=1

b(n)qn = q

∞
∏

n=1

(1− q6n)3(1− q2n)3 = η3(6z)η3(2z),

∞
∑

n=1

c(n)qn = q

∞
∏

n=1

(1− qn)2(1− q2n)(1− q4n)(1− q8n)2 = η2(8z)η(4z)η(2z)η2(z),

and the Dedekind η-function is given by

η(z) = q1/24
∞
∏

n=1

(1− qn) (Im(z) > 0 and q = e2πiz).

In 1892 F. Klein and R. Fricke proved that (see also [SB])

a(p) =

{

4x2 − 2p (mod p2) if p ≡ 1 (mod 4) and p = x2 + y2 (2 ∤ x),

0 if p ≡ 3 (mod 4).

By [SB] we also have

b(p) =

{

4x2 − 2p if p ≡ 1 (mod 3) and p = x2 + 3y2 with x, y ∈ Z,

0 if p ≡ 2 (mod 3);

and

c(p) =

{

4x2 − 2p if (−2
p
) = 1 and p = x2 + 2y2 with x, y ∈ Z,

0 if (−2
p
) = −1, i.e., p ≡ 5, 7 (mod 8).
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Via an advanced approach involving the p-adic Gamma function and Gauss
and Jacobi sums, E. Mortenson [M] managed to provide a partial solution
of (1.14) and (1.15), with the following things open:

p−1
∑

k=0

(

2k
k

)2(3k
k

)

108k
≡ b(p) = 0 (mod p2) if p ≡ 5 (mod 6), (1.16)

p−1
∑

k=0

(

2k
k

)2(4k
2k

)

256k
≡ c(p) (mod p2) if p ≡ 3 (mod 4), (1.17)

p−1
∑

k=0

(

2k
k

)(

3k
k

)(

6k
3k

)

123k
≡ −a(p) (mod p2) if p ≡ 5 (mod 6). (1.18)

(See also K. Ono [O, Chapter 11] for an introduction to this method.)
Concerning (1.16)-(1.18), Mortenson’s approach [M] only allowed him to
show that for each of them the squares of both sides of the congruence are
congruent modulo p2.

Our following theorem confirms (1.16)-(1.18) and hence completes the
proof of (1.14) and (1.15). So far, all conjectures of Rodriguez-Villegas
[RV] involving at most three products of binomial coefficients have been
proved!

Theorem 1.3. Let p > 3 be a prime.

(i) Given d ∈ {0, . . . , p− 1}, we have

p−1
∑

k=0

(

2k
k+d

)(

2k
k

)(

3k
k

)

108k
≡ 0 (mod p2) if d ≡

1 + ( p3 )

2
(mod 2), (1.19)

p−1
∑

k=0

(

2k
k+d

)(

2k
k

)(

4k
2k

)

256k
≡ 0 (mod p2) if d ≡

1 + (−2
p )

2
(mod 2), (1.20)

p−1
∑

k=0

(

2k
k+d

)(

3k
k

)(

6k
3k

)

123k
≡ 0 (mod p2) if d ≡

1 + (−1
p )

2
(mod 2). (1.21)

(ii) If p ≡ 3 (mod 8) and p = x2 + 2y2 with x, y ∈ Z, then

p−1
∑

k=0

(

2k
k

)2(4k
2k

)

256k
≡ 4x2 − 2p (mod p2). (1.22)

(iii) If p ≡ 5 (mod 12) and p = x2 + y2 with 2 ∤ x and 2 | y, then

p−1
∑

k=0

(

2k
k

)(

3k
k

)(

6k
3k

)

123k
≡ 2p− 4x2 (mod p2). (1.23)

In the case d = 1, Theorem 1.3(i) yields the following new result. (Note

that
(

2k
k

)(

3k
k+1

)

= 2
(

2k
k+1

)(

3k
k

)

for any k ∈ N.)
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Corollary 1.1. Let p > 3 be a prime. Then

p−1
∑

k=0

(

2k
k

)2( 3k
k+1

)

108k
≡ 0 (mod p2) if p ≡ 1 (mod 3), (1.24)

p−1
∑

k=0

(

4k
2k

)(

2k
k

)(

2k
k+1

)

256k
≡ 0 (mod p2) if p ≡ 1, 3 (mod 8), (1.25)

p−1
∑

k=0

(

6k
3k

)(

3k
k

)(

2k
k+1

)

123k
≡ 0 (mod p2) if p ≡ 1 (mod 4). (1.26)

We will prove Theorems 1.1-1.3 in Sections 2-4 respectively.

2. Proof of Theorem 1.1

Lemma 2.1. For any positive integer n we have

n
∑

k=1

(

n+ k

2k

)(

2k

k

)(

2k

k + 1

)

xk−1(x+ 1)k+1 = n(n+ 1)Sn(x)
2. (2.1)

Proof. Observe that

Sn(x)
2 =

n
∑

k=0

(

n+ k

2k

)

Ckx
k

n
∑

l=0

(

n+ l

2k

)

Clx
l =

2n
∑

m=0

am(n)xm,

where

am(n) :=
m
∑

k=0

(

n+ k

2k

)

Ck

(

n+m− k

2m− 2k

)

Cm−k.

Also, the coefficient of xm on the left-hand side of (2.1) coincides with

bm(n) :=

m+1
∑

k=1

(

n+ k

2k

)(

2k

k

)(

2k

k + 1

)(

k + 1

m+ 1− k

)

=
m
∑

k=0

(

n+ k + 1

2k + 2

)(

2k + 2

k + 1

)(

2k + 2

k

)(

k + 2

m− k

)

.

Thus, for the validity of (2.1) it suffices to show that bm(n) = n(n+1)am(n)
for all m = 0, 1, . . . . Obviously, a0(n) = 1 and b0(n) = n(n + 1). Also,
a1(n) = n(n+1) and b1(n) = n2(n+1)2. By the Zeilberger algorithm via
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Mathematica (version 7) we find that both um = am(n) and um = bm(n)
satisfy the following recursion:

(m+ 2)(m+ 3)(m+ 4)um+2

=2(2mn2 + 5n2 + 2mn + 5n−m3 − 6m2 − 11m− 6)um+1

− (m+ 1)(m− 2n)(m+ 2n+ 2)um.

So bm(n) = n(n+ 1)am(n) for all m ∈ N. This proves (2.1). �

Proof of Theorem 1.1. (i) We first determine
∑p−1

k=0

(

2k
k

)2( 2k
k+1

)

/64k mod

p2 via Lemma 2.1, which actually led the author to the study of (1.5).
Recall the following combinatorial identity (cf. [Su2, (4.3)]):

n
∑

k=0

(

n+ k

2k

)

Ck

(−2)k
=

{

(−1)(n−1)/2C(n−1)/2/2
n if 2 ∤ n,

0 if 2 | n.

Set n = (p− 1)/2. Applying (2.1) with x = −1/2 we get

n
∑

k=1

(

n+ k

2k

)(

2k

k

)(

2k

k + 1

)

1

(−2)k−12k+1
= n(n+ 1)Sn

(

−
1

2

)2

.

Thus, with the help of (1.2), we have

p−1
∑

k=0

(

2k
k

)2( 2k
k+1

)

64k
≡

n
∑

k=1

(

n+ k

2k

)(

2k

k

)(

2k

k + 1

)

1

(−4)k

=− n(n+ 1)Sn

(

−
1

2

)2

≡
1

4
Sn

(

−
1

2

)2

≡

{

0 (mod p2) if p ≡ 1 (mod 4)

C2
(n−1)/2/2

2n+2 (mod p2) if p ≡ 3 (mod 4).

In the case p ≡ 3 (mod 4), clearly

C2
(n−1)/2

22n+2
=

(

(

(p−1)/2
(p+1)/4

)

2
p−1

)2

4× 2p−1

≡
1

(1− 2p)(1 + p qp(2))

(

(p− 1)/2

(p+ 1)/4

)2

≡(1 + 2p− p qp(2))

(

(p− 1)/2

(p+ 1)/4

)2

(mod p2)

where qp(2) = (2p−1 − 1)/p. Therefore (1.5) with d = 1 holds if p ≡ 1
(mod 4), and (1.6) is valid when p ≡ 3 (mod 4).
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(ii) For d = 0, 1, 2, . . . set

ud =

p−1
∑

k=0

(

2k
k

)2( 2k
k+d

)

64k
=

∑

d6k<p

(

2k
k

)2( 2k
k+d

)

64k
.

By the Zeilberger algorithm we find the recursion

(2d+ 1)2ud − (2d+ 3)2ud+2 =
(2p− 1)2(d+ 1)

64p−1p

(

2p

p+ d+ 1

)(

2p− 2

p− 1

)2

.

Note that
(

2p− 2

p− 1

)

= pCp−1 ≡ 0 (mod p).

If 0 6 d < p− 2, then
(

2p

p+ d+ 1

)

=
2p

p+ d+ 1

(

2p− 1

p+ d

)

≡ 0 (mod p)

and hence
(2d+ 1)2ud ≡ (2d+ 3)2ud+2 (mod p2).

For d ∈ {0, . . . , p−3} with d ≡ (p+1)/2 (mod 2), clearly p 6= 2d+1 < 2p
and hence

ud+2 ≡ 0 (mod p2) =⇒ ud ≡ 0 (mod p2).

If p ≡ 3 (mod 4) then p − 1 ≡ (p + 1)/2 (mod 2); if p ≡ 1 (mod 4) then
p−2 ≡ (p+1)/2 (mod 2) and p−2 > (p+1)/2. Thus, if d ∈ {p−1, p−2}
and d ≡ (p+1)/2 (mod 2), then d > (p+1)/2 and hence ud ≡ 0 (mod p2).
It follows that ud ≡ 0 (mod p2) (i.e., (1.5) holds) for all d ∈ {0, . . . , p−1}
with d ≡ (p+ 1)/2 (mod 2).

By the above we have completed the proof of Theorem 1.1. �

3. Proof of Theorem 1.2

Lemma 3.1. For any n ∈ N we have

n
∑

k=0

(

2k

k

)3(
k

n− k

)

(−16)n−k =

n
∑

k=0

(

2k

k

)2(
2(n− k)

n− k

)2

. (3.1)

Proof. For n = 0, 1, both sides of (3.1) take the values 1 and 8 respectively.
Let un denote the left-hand side of (3.1) or the right-hand side of (3.1).
Via the Zeilberger algorithm for Mathematica, we obtain the recursion

(n+ 2)3un+2 = 8(2n+ 3)(2n2 + 6n+ 5)un+1 − 256(n+ 1)3un (n ∈ N).

So, by induction (3.1) holds for all n = 0, 1, 2, . . . . �
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Lemma 3.2. Let p be an odd prime. Then

p−1
∑

n=0

n+ 1

8n

n
∑

k=0

(

2k

k

)2(
2(n− k)

n− k

)2

≡

p−1
∑

n=0

2n+ 1

(−16)n

n
∑

k=0

(

2k

k

)2(
2(n− k)

n− k

)2

≡p

(

−1

p

)

(mod p3).

Proof. In view of Lemma 3.1, we have

p−1
∑

n=0

n+ 1

8n

n
∑

k=0

(

2k

k

)2(
2(n− k)

n− k

)2

=

p−1
∑

n=0

n+ 1

8n

n
∑

k=0

(

2k

k

)3(
k

n− k

)

(−16)n−k

=

p−1
∑

k=0

(

2k
k

)3

8k

p−1−k
∑

j=0

(k + j + 1)

(

k

j

)

(−16)j

8j

≡

(p−1)/2
∑

k=0

(

2k
k

)3

8k

(

(k + 1)

k
∑

j=0

(

k

j

)

(−2)j − 2k

k−1
∑

j=1

(

k − 1

j − 1

)

(−2)j−1

)

=

(p−1)/2
∑

k=0

(

2k
k

)3

8k
(

(k + 1)(−1)k − 2k(−1)k−1
)

≡

p−1
∑

k=0

3k + 1

(−8)k

(

2k

k

)3

(mod p3).

In [Su3] the author conjectured that

p−1
∑

k=0

3k + 1

(−8)k

(

2k

k

)3

≡ p

(

−1

p

)

+ p3Ep−3 (mod p4),

where E0, E1, E2, . . . are Euler numbers given by

E0 = 1 and
n
∑

k=0
2|k

(

n

k

)

En−k = 0 (n = 1, 2, 3, . . . ).

The last congruence is still open but [GZ] confirmed that

p−1
∑

k=0

3k + 1

(−8)k

(

2k

k

)3

≡ p

(

−1

p

)

(mod p3).
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So we have

p−1
∑

n=0

n+ 1

8n

n
∑

k=0

(

2k

k

)2(
2(n− k)

n− k

)2

≡ p

(

−1

p

)

(mod p3).

Similarly,

p−1
∑

n=0

2n+ 1

(−16)n

n
∑

k=0

(

2k

k

)2(
2(n− k)

n− k

)2

=

p−1
∑

n=0

2n+ 1

(−16)n

n
∑

k=0

(

2k

k

)3(
k

n− k

)

(−16)n−k

≡

(p−1)/2
∑

k=0

(

2k
k

)3

(−16)k

(

(2k + 1)

k
∑

j=0

(

k

j

)

+ 2k

k
∑

j=1

(

k − 1

j − 1

))

≡

p−1
∑

k=0

3k + 1

(−8)k

(

2k

k

)3

≡ p

(

−1

p

)

(mod p3).

This concludes the proof. �

Lemma 3.3. Let p be an odd prime. Then

2

(p−1)/2
∑

k=0

k
(

2k
k

)3

8k
+

(p−1)/2
∑

k=0

(

2k
k

)

Ck

8k
≡2p2

(

2

p

)

(mod p3),

8

(p−1)/2
∑

k=0

k
(

2k
k

)3

(−16)k
+

(p−1)/2
∑

k=0

(

2k
k

)

Ck

(−16)k
≡2p2

(

−1

p

)

(mod p3),

(p−1)/2
∑

k=0

(2k2 + 4k + 1)

(

2k
k

)2

8k
≡p2

(

2

p

)

(mod p3),

(p−1)/2
∑

k=0

(8k2 + 4k + 1)

(

2k
k

)2

(−16)k
≡p2

(

−1

p

)

(mod p3).
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Proof. By induction, for every n = 0, 1, 2, . . . we have

n
∑

k=0

(

2k +
1

k + 1

)

(

2k
k

)2

8k
=
(2n+ 1)2

(n+ 1)8n

(

2n

n

)2

,

n
∑

k=0

(

8k +
1

k + 1

)

(

2k
k

)2

(−16)k
=

(2n+ 1)2

(n+ 1)(−16)n

(

2n

n

)2

,

n
∑

k=0

(2k2 + 4k + 1)

(

2k
k

)2

8k
=
(2n+ 1)2

8n

(

2n

n

)2

,

n
∑

k=0

(8k2 + 4k + 1)

(

2k
k

)2

(−16)k
=
(2n+ 1)2

(−16)n

(

2n

n

)2

.

Applying these identities with n = (p−1)/2 we immediately get the desired
congruences. �

Let p ≡ 1 (mod 4) be a prime and write p = x2+y2 with x ≡ 1 (mod 4)

and y ≡ 0 (mod 2). In 1828 Gauss showed the congruence
(

(p−1)/2
(p−1)/4

)

≡ 2x

(mod p). In 1986, S. Chowla, B. Dwork and R. J. Evans [CDE] used Gauss
and Jacobi sums to prove that

(

(p− 1)/2

(p− 1)/4

)

≡
2p−1 + 1

2

(

2x−
p

2x

)

(mod p2), (3.2)

which was first conjectured by F. Beukers. (See also [BEW] and [HW] for
further related results.) In 2009, the author (see [Su2]) conjectured that

(p−1)/2
∑

k=0

(

2k
k

)2

8k
≡

(p−1)/2
∑

k=0

(

2k
k

)2

(−16)k
≡ (−1)(p−1)/4

(

2x−
p

2x

)

(mod p2),

(3.3)
and this was confirmed by Z. H. Sun [S1] with helps of (3.2) and Legendre
polynomials.

Proof of Theorem 1.2(i). By (1.2),

S(p−1)/2 ≡

(p−1)/2
∑

k=0

(

2k
k

)

Ck

(−16)k
(mod p2).

In view of this and Lemma 3.3 and (3.3), it suffices to show (1.7).
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As p |
(

2k
k

)

for all k = (p+ 1)/2, . . . , p− 1, we have

p−1
∑

n=0

n+ 1

8n

n
∑

k=0

(

2k

k

)2(
2(n− k)

n− k

)2

=

p−1
∑

k=0

(

2k
k

)2

8k

p−1
∑

n=k

n+ 1

8n−k

(

2(n− k)

n− k

)2

=

p−1
∑

k=0

(

2k
k

)2

8k

p−1−k
∑

j=0

k + j + 1

8j

(

2j

j

)2

≡

(p−1)/2
∑

k=0

(

2k
k

)2

8k

(p−1)/2
∑

j=0

(k + 1) + (j + 1)− 1

8j

(

2j

j

)2

=2

(p−1)/2
∑

k=0

(

2k
k

)2

8k

(p−1)/2
∑

j=0

(j + 1)
(

2j
j

)2

8j
−

( p−1
∑

k=0

(

2k
k

)2

8k

)2

(mod p2).

Similarly,

p−1
∑

n=0

2n+ 1

(−16)n

n
∑

k=0

(

2k

k

)2(
2(n− k)

n− k

)2

≡2

(p−1)/2
∑

k=0

(

2k
k

)2

(−16)k

(p−1)/2
∑

j=0

(2j + 1)
(

2j
j

)2

(−16)j
−

( p−1
∑

k=0

(

2k
k

)2

(−16)k

)2

(mod p2).

Combining these with Lemma 3.2 and (3.3), we immediately obtain (1.7). �

Lemma 3.4. Let p ≡ 1 (mod 4) be a prime. Write p = x2 + y2 with

x ≡ 1 (mod 4) and y ≡ 0 (mod 2). Then

D(p−1)/2 ≡ (−1)(p−1)/4
(

2x−
p

2x

)

(mod p2). (3.4)

Proof. By (1.2),

D(p−1)/2 ≡

(p−1)/2
∑

k=0

(

2k
k

)2

(−16)k
(mod p2).

So (3.4) follows from (3.3). �

Remark 3.1. If p is a prime with p ≡ 3 (mod 4), then n = (p− 1)/2 is odd
and hence

Dn ≡
n
∑

k=0

(−1)k
(

2k
k

)2

16k
=

n
∑

k=0

(−1)k
(

−1/2

k

)2

≡
n
∑

k=0

(−1)k
(

n

k

)2

=
n
∑

k=0

(−1)n−k

(

n

k

)2

= 0 (mod p).
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The following result was conjectured by the author [Su2] and confirmed
by Z. H. Sun [S2].

Lemma 3.5. Let p be an odd prime. Then

p−1
∑

k=0

(

2k
k

)3

(−8)k
≡

{

4x2 − 2p (mod p2) if 4 | p− 1 & p = x2 + y2 (2 ∤ x),

0 (mod p2) if p ≡ 3 (mod 4).

(3.5)

Remark 3.2. Fix an odd prime p = 2n+ 1. By (1.2) and (1.3) we have

p−1
∑

k=0

(

2k
k

)3

(−8)k
≡

n
∑

k=0

(

n+ k

2k

)(

2k

k

)2

2k = D2
n (mod p2).

Hence (3.5) follows from Lemma 3.4 and Remark 3.1.

Lemma 3.6. For any positive integer n we have

n
∑

k=0

(

n+ k

2k

)(

2k

k

)2
2k + 1

(k + 1)2
xk(x+ 1)k+1 =

Sn(x)

2
(Dn−1(x) +Dn+1(x)).

(3.6)

Proof. Note that

Sn(x)(Dn−1(x) +Dn+1(x)) =
2n+1
∑

m=0

cm(n)xm

where

cm(n) =
m
∑

k=0

(

n+ k

2k

)

Ck

(

2m− 2k

m− k

)((

n− 1 +m− k

2m− 2k

)

+

(

n+ 1 +m− k

2m− 2k

))

=2

m
∑

k=0

(

n+ k

2k

)

Ck

(

n+m− k

2m− 2k

)(

2m− 2k

m− k

)

(m+ n− k)2 − n(2m− 2k − 1)

(m+ n− k)(n−m+ k + 1)
.

By the Zeilberger algorithm we find that um = cm(n)/2 satisfies the re-
cursion

(m+ 2)(m+ 3)2(m2 + 5m+ 6 + 4n(n+ 1))um+2 + 2P (m,n)um+1

=(m+ 2)((2n+ 1)2 −m2)(m2 + 7m+ 12 + 4n(n+ 1))um

(3.7)
where P (m,n) denotes the polynomial

m5 + 11m4 + 45m3 + 83m2 + 64m+ 12 + 20n4 − 40n3 − 58n2 − 38n

− 25mn+m2n+ 2m3n− 33mn2 +m2n2 + 2m3n2 − 16mn3 − 8mn4.
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Clearly the coefficient of xm on the left-hand side of (3.6) coincides with

dm(n) =
m
∑

k=0

(

n+ k

2k

)(

2k

k

)2(
k + 1

m− k

)

2k + 1

(k + 1)2
.

By the Zeilberger algorithm um = dm(n) also satisfies the recursion (3.7).
Thus we have dm(n) = cm(n) by induction on m. So (3.6) holds. �

Proof of Theorem 1.2(ii). Write p = 2n+ 1. By (2.1),

n
∑

k=0

(

n+ k

2k

)(

2k

k

)(

2k

k + 1

)

2k =
n(n+ 1)

2
S2
n.

Thus, by (1.2) and (1.9) we have

p−1
∑

k=0

(

2k
k

)2( 2k
k+1

)

(−8)k
≡

n
∑

k=0

(

n+ k

2k

)(

2k

k

)(

2k

k + 1

)

2k

≡
p2 − 1

8
4(4x2 − 4p) (mod p2)

and hence (1.12) holds.
Now we consider (1.13). Observe that

(

2k

k + 1

)2

=

(

1−
2k + 1

(k + 1)2

)(

2k

k

)2

for k = 0, 1, 2, . . . ,

and

(

2(p− 1)

p− 1

)(

2(p− 1)

(p− 1) + 1

)2

=
p

2p− 1

(

2p− 1

p− 1

)(

2p− 2

p− 2

)2

≡ −p (mod p2).

Thus we have

p−1
∑

k=0

(

2k
k

)(

2k
k+1

)2

(−8)k
≡ −p+

n
∑

k=0

(

2k
k

)3

(−8)k
−

n
∑

k=0

(2k + 1)
(

2k
k

)3

(k + 1)2(−8)k
(mod p2). (3.8)

By (1.2) and (3.6) with x = 1,

n
∑

k=0

(2k + 1)
(

2k
k

)3

(k + 1)2(−8)k
≡

n
∑

k=0

(

n+ k

2k

)(

2k

k

)2
(2k + 1)2k

(k + 1)2

=
Sn

4
(Dn−1 +Dn+1) (mod p2).
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It is known (cf. [Sl] and [St]) that

(n+ 1)Dn+1 = 3(2n+ 1)Dn − nDn−1 and Dn+1 − 3Dn = 2nSn.

Thus

n(Dn−1 +Dn+1) =3(2n+ 1)Dn −Dn+1

=3(2n+ 1)Dn − (3Dn + 2nSn) = 2n(3Dn − Sn)

and hence

n
∑

k=0

(2k + 1)
(

2k
k

)3

(k + 1)2(−8)k
≡

Sn

2
(3Dn − Sn) (mod p2).

With helps of (1.9) and (3.4), we have

Sn

2
(3Dn − Sn) ≡

(

2x−
p

x

)

(

3
(

2x−
p

2x

)

−

(

4x−
2p

x

))

(mod p2)

and hence
n
∑

k=0

(2k + 1)
(

2k
k

)3

(k + 1)2(−8)k
≡ 4x2 − p (mod p2).

Combining this with (3.5) and (3.8), we immediately obtain (1.13). �

4. Proof of Theorem 1.3

Lemma 4.1. Let p be an odd prime. Then, for any p-adic integer x 6≡
0,−1 (mod p) we have

p−1
∑

k=0

(

2k

k

)3 (
−x

64

)k

≡

(

x+ 1

p

) p−1
∑

k=0

(

2k

k

)2(
4k

2k

)(

x

64(x+ 1)2

)k

(mod p).

(4.1)

Proof. Taking n = (p − 1)/2 in the MacMahon identity (see, e.g., [G,
(6.7)])

n
∑

k=0

(

n

k

)3

xk =
n
∑

k=0

(

n+ k

2k

)(

2k

k

)(

n− k

k

)

xk(1 + x)n−2k

and noting (1.2) and the basic facts

(

n

k

)

≡

(

−1/2

k

)

=

(

2k
k

)

(−4)k
(mod p)
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and
(

n− k

k

)

≡

(

−1/2− k

k

)

=

(

4k
2k

)

(−4)k
(mod p),

we immediately get (4.1). �

Proof of Theorem 1.3. (i) For d = 0, 1, 2, . . . , we define

f(d) =

p−1
∑

k=0

(

2k
k+d

)(

2k
k

)(

3k
k

)

108k
, g(d) =

p−1
∑

k=0

(

2k
k+d

)(

2k
k

)(

4k
2k

)

256k
,

and

h(d) =

p−1
∑

k=0

(

2k
k+d

)(

3k
k

)(

6k
3k

)

123k
.

By the Zeilberger algorithm, we find the recursive relations:

(3d+ 1)(3d+ 2)f(d)− (3d+ 4)(3d+ 5)f(d+ 2)

=
(3p− 1)(3p− 2)(d+ 1)

108p−1p

(

2p

p+ d+ 1

)(

2p− 2

p− 1

)(

3p− 3

p− 1

)

,

(4d+ 1)(4d+ 3)g(d)− (4d+ 5)(4d+ 7)g(d+ 2)

=
(4p− 1)(4p− 3)(d+ 1)

256p−1p

(

2p

p+ d+ 1

)(

2p− 2

p− 1

)(

4p− 4

2p− 2

)

,

and

(6d+ 1)(6d+ 5)h(d)− (6d+ 7)(6d+ 11)h(d+ 2)

=
(6p− 1)(6p− 5)(d+ 1)

1728p−1p

(

2p

p+ d+ 1

)(

3p− 3

p− 1

)(

6p− 6

3p− 3

)

.

Recall that
(

2p−2
p−1

)

= pCp−1 ≡ 0 (mod p). Also,

(3p− 2)

(

3p− 3

p− 1

)

=p

(

3p− 2

p

)

≡ 0 (mod p),

(4p− 3)

(

4p− 4

2p− 2

)

=p

(

4p− 2

2p

)

≡ 0 (mod p),

(6p− 5)

(

6p− 6

3p− 3

)

=
3p(3p− 1)(3p− 2)

(6p− 3)(6p− 4)

(

6p− 3

3p

)

≡ 0 (mod p).

If 0 6 d < p− 1, then

(

2p

p+ d+ 1

)

=

(

2p

p− 1− d

)

≡ 0 (mod p).



18 ZHI-WEI SUN

So, by the above, for any d ∈ {0, . . . , p− 1} we have

(3d+ 1)(3d+ 2)f(d) ≡(3d+ 4)(3d+ 5)f(d+ 2) (mod p2),
(4.2)

(4d+ 1)(4d+ 3)g(d) ≡(4d+ 5)(4d+ 7)g(d+ 2) (mod p2),
(4.3)

(6d+ 1)(6d+ 5)h(d) ≡(6d+ 7)(6d+ 11)h(d+ 2) (mod p2).
(4.4)

Fix 0 6 d 6 p− 1. If d ≡ (1 + ( p3 ))/2 (mod 2), then it is easy to verify
that {3d + 1, 3d + 2} ∩ {p, 2p} = ∅, hence (3d + 1)(3d + 2) 6≡ 0 (mod p)
and thus by (4.2) we have

f(d+ 2) ≡ 0 (mod p2) =⇒ f(d) ≡ 0 (mod p2).

If d ≡ (1 + (−2
p ))/2 (mod 2), then {4d + 1, 4d + 3} ∩ {p, 3p} = ∅, hence

(4d+ 1)(4d+ 3) 6≡ 0 (mod p) and thus by (4.3) we have

g(d+ 2) ≡ 0 (mod p2) =⇒ g(d) ≡ 0 (mod p2).

If d ≡ (1+ (−1
p
))/2 (mod 2), then {6d+1, 6d+3}∩ {p, 3p, 5p} = ∅, hence

(6d+ 1)(6d+ 3) 6≡ 0 (mod p) and thus (4.4) yields

h(d+ 2) ≡ 0 (mod p2) =⇒ h(d) ≡ 0 (mod p2).

Since

f(p) = f(p+ 1) = g(p) = g(p+ 1) = h(p) = h(p+ 1) = 0,

by the above for every d = p+1, p, . . . , 0 we have the desired (1.19)-(1.21).
(ii) Assume that p ≡ 3 (mod 8) and p = x2 + 2y2 with x, y ∈ Z. Since

4x2 6≡ 0 (mod p) and Mortenson [M] already proved that the squares of
both sides of (1.22) are congruent modulo p2, (1.22) is reduced to its mod
p form. Applying (4.1) with x = 1 we get

p−1
∑

k=0

(

2k
k

)3

(−64)k
≡

(

2

p

) p−1
∑

k=0

(

2k
k

)2(4k
2k

)

256k
(mod p).

By [A, Theorem 5(3)], we have

(

−1

p

) n
∑

k=0

(

n

k

)2(
n+ k

k

)

(−1)k ≡ 4x2 − 2p (mod p),
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where n = (p− 1)/2. For k = 0, . . . , n clearly
(

n

k

)2(
n+ k

k

)

(−1)k =

(

(p− 1)/2

k

)2(
−(p+ 1)/2

k

)

≡

(

−1/2

k

)3

=

(

2k
k

)3

(−64)k
(mod p),

therefore
p−1
∑

k=0

(

2k
k

)3

(−64)k
≡

(

−1

p

)

(4x2 − 2p) (mod p)

and hence (1.22) follows.
(iii) Finally we suppose p ≡ 5 (mod 12) and write p = x2 + y2 with x

odd and y even. Once again it suffices to show the mod p form of (1.23)
in view of Mortenson’s work [M]. As Z. H. Sun observed,

(

(p− 5)/6 + k

2k

)(

2k

k

)

≡

(

k − 5/6

2k

)(

2k

k

)

=

(

3k
k

)(

6k
3k

)

(−432)k
(mod p)

for all k = 0, 1, 2, . . . . If p/6 < k < p/3 then p |
(

6k
3k

)

; if p/3 < k < p/2

then p |
(

3k
k

)

; if p/2 < k < p then p |
(

2k
k

)

. Thus

p−1
∑

k=0

(

2k
k

)(

3k
k

)(

6k
3k

)

123k
≡

(p−5)/6
∑

k=0

(

(p− 5)/6 + k

2k

)(

2k

k

)2 (

−
1

4

)k

=D2n

(

−
1

2

)2

(mod p) (by (1.3)),

where n = (p− 5)/12. Note that

D2n

(

−
1

2

)

=
1

(−4)n

(

2n

n

)

by [G, (3.133) and (3.135)], and
(

(p− 1)/2

(p− 1)/4

)

≡ 12(−432)n
(

2n

n

)

(mod p)

by P. Morton [Mo]. Therefore

D2n

(

−
1

2

)2

=
1

16n

(

2n

n

)2

≡

(

(p−1)/2
(p−1)/4

)2

126n+2
≡

(

12

p

)(

(p− 1)/2

(p− 1)/4

)2

(mod p).

Thus, by applying Gauss’ congruence
(

(p−1)/2
(p−1)/4

)

≡ 2x (mod p) (cf. [BEW,

(9.0.1)] or [HW]) we immediately get the mod p form of (1.23) from the
above.

The proof of Theorem 1.3 is now complete. �
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