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Abstract

We consider compositions of natural numbers when there are different types of each

natural number. Several recursions as well as some closed formulas for the number of

compositions is derived. We also find its relationships with some known classes of

integers such as Fibonacci, Catalan, Pell, Pell-Lucas, and Jacobsthal numbers.

1 Introduction

Let b = (b1, b2, . . .) be a sequence of nonnegative integers. Compositions of n in which there
are b1 different type of 1’s, b2 different type of 2’s, and so on, will be called generalized
compositions of n. We let c(n,b) denote its number. We may considered these compositions
as colored compositions in which each number i may be colored by one of bi colors. If all bi
are equal 1 then the standard compositions are obtained.

It is clear that the following recursion for c(n,b) holds

c(n,b) = b1c(n− 1,b) + b2c(n− 2,b) + · · ·+ bn−1c(1,b) + · · ·+ bn,

having b1 generalized compositions ending by one of 1’s, b2 generalized compositions ending
by one of 2’s, and so on. At the end, there are bn generalized compositions consisting of one
of n’s.

We define the sequence (a1, a2, . . .) such that a1 = 1, and

an+1 =
n

∑

i=1

bn+1−iai. (1)

It is clear that
an+1 = c(n,b), (n = 1, 2, . . .).

Equation (1) connects two sequences of nonnegative integers

(b1, b2, . . .), and (c1, c2, . . .),

where ci = ai+1, (i = 1, 2, . . .).
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Obviously, for each sequence (b1, b2, . . .) we may form the sequence (c1, c2, . . .). Conversely
is not true. Namely, equation (1) may be regarded as a recurrence relation with respect to
b’s, but it does not ultimately produce nonnegative integers.

The paper is organized as follows. In this section we find a simple but interesting con-
nection of generalized compositions with Catalan numbers.

In Section 2 we consider the case when b’s make an arithmetical progression. We shall
prove that then the numbers c(n,b) satisfy a three terms homogenous recursion with constant
coefficients. This means that a close formula for generalized compositions may be obtained.
In a particular case the number of generalized composition is a Pell-Lucas number.

In Section 3 we consider the case when bi is a square function of i. Then the numbers
c(n,b) satisfy a four terms homogenous recursion with constant coefficients. Thus, in this
case also we may derive an explicit formula for generalized compositions. Special attention is
put on triangular numbers. Several results will be obtained in the case when b’s are triangular
numbers. Then the a’s are sums of binomial coefficients. Some identities, concerning sums
of binomial coefficients, will be derived by the the use of Zeilberger’s algorithm, which is
described by Petkovsek and all., in [3].

In Section 4 we investigate the case when bi is an exponential function of i. In Section 5
two result concerning the floor and the ceil functions will be proved.

We shall see, in Section 6, that the generalized compositions are closely related with
Fibonacci numbers, as is the case with the standard compositions. Several recurrence re-
lations as well as some closed formulas for generalized compositions will be proved. New
relationships of Fibonacci numbers with Pell, Jacobsthal and other classes of numbers are
derived.

Note that there is a significant number of sequences in Sloane’s OEIS, [4], which terms
equal the number of generalized compositions. Comment of these sequences in OEIS offer
other interpretations of compositions. Sequence A145839 connects generalized compositions
with so called matrix compositions. Also A020729, A008776, A020698, A007484 connect
them with Pisot sequences.

Proposition 1. If b = (p, p, . . .), then

c(n,b) = p(1 + p)n−1.

Particulary, 2n−1 is the number of all compositions of n.

Proof. In this case the recurrence (1) becomes.

an+1 = p

n
∑

i=1

ai.

Replacing n by n + 1 yields

an+2 = p

n+1
∑

i=1

ai.
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By substraction we obtain
an+2 = (1 + p)an+1.

From this equation the assertion follows easily.

The next result shows that Catalan numbers give an example when b’s produce b’s again.

Proposition 2. If b = (C0, C1, . . .), where Ci, (i = 0, 1, . . .) are Catalan numbers, then

c(n,b) = Cn, (n ≥ 1).

Proof. In this case equation (1) has the form:

an+1 =
n

∑

i=1

Cn−iai =
n−1
∑

i=0

Cn−i−1ai+1.

The equation an+1 = Cn follows by induction, using the well-known Segner’s recurrence
formula for Catalan numbers.

2 Arithmetic Progressions

In this section we consider the case when bi is a linear function of i, that is, when b’s make
an arithmetic progression.

We shall prove that then the numbers of generalized compositions satisfy a three terms
recursion with constant coefficients. In this way the explicit formula for the number of
compositions may be obtained.

Proposition 3. Let n be a positive integer, let m, k be nonnegative integers, and let bi =
m(i− 1) + k, (i = 1, 2, . . .). Then

c(1,b) = k, c(2,b) = m+ k + k2,

c(n+ 1,b) = (k + 2)c(n,b) + (m− k − 1)c(n− 1,b).

Proof. Equation (1) takes the form:

an+1 =
n

∑

i=1

[m(n− i) + k]ai.

It is easy to see that
a2 = k, a3 = m+ k + k2.

Further, for n > 2 we have

an+1 = kan +
n−1
∑

i=1

[m(n− i) + k]ai = kan + (m+ k)an−1 +
n−2
∑

i=1

[m(n− 1− i) + k]ai +m

n−2
∑

i=1

ai.
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We conclude that

an+1 = (k + 1)an +man−1 +m

n−2
∑

i=1

ai. (2)

Replacing n by n + 1 yields

an+2 = (k + 1)an+1 +man +m

n−1
∑

i=1

ai. (3)

Subtracting equation (2) from (3) we obtain

an+2 = (2 + k)an+1 + (m− k − 1)an.

In the next corollary we give some particular cases.

Corollary 4. (i) If m = 1, k = 0 then

c(1,b) = 0, c(n,b) = 2n−2, (n > 1).

(ii) If m = 2, k = 0 then

c(n,b) = 2

⌊n

2
⌋

∑

i=0

(

n

2i

)

2i.

(iii) If m = 1, k = 1 then
c(n,b) = F2n.

(iv) If k = m− 1 then

c(1,b) = m− 1, c(n,b) = m2 · (m+ 1)n−2, (n > 1).

Proof. (i) is obvious.
In the case (ii) the recurrence equation takes the form

c(1,b) = 0, c(2,b) = 2,

c(n+ 1,b) = 2c(n,b) + c(n− 1,b),

which is the recurrence for Pell-Lucas numbers.
In the case (iii) the recurrence becomes

c(1,b) = 1, c(2,b) = 3,

c(n+ 1,b) = 3c(n,b)− c(n− 1,b).

4



This is the recurrence equation for Fibonacci numbers with even indices by Identity 7
from [1].

Finally, for k = m− 1 we have

c(1,b) = m− 1, c(2,b) = m2,

c(n+ 1,b) = (m+ 1)c(n,b), (n > 2),

and (iv) is true.

Remark 5. The formulas from the preceding corollary generate the following sequences from
OEIS.

m = 1, k = 0, A000079; m = 2, k = 0, Pell-Lucas numbers, A052542;
m = 1, k = 1, A001906.

In the case k = m− 1 we have
m = 2, A003946; m = 3, A055841; m = 4, A055842;
m = 5, A055846; m = 6, A055270; m = 7, A055847;
m = 8, A055995; m = 9, A055996; m = 10, A056002;
m = 11, A056116.

3 Square Functions

In the case that bi is a square function od i we obtain the four terms recurrence relation for
c(n,b). This means that we may obtained a closed formula for generalized compositions.

Proposition 6. Let n be a positive integer, and let k,m, p be arbitrary (rational) numbers
such that bi = ki2 +mi+ p, (i = 1, 2, . . .) are nonnegative integers. Then

c(1,b) = k +m+ p, c(2,b) = k2 +m2 + p2 + 2(km+mp + kp) + 4k + 2m+ p,

c(3,b) = 8k + 3m+ p+ 2(4k2 + 2m2 + p2 + 6km+ 5kp+ 3mp)+

+k3 +m3 + p3 + 3(km2 + kp2 +mp2 + 2kmp).

c(n+1,b) = (k+m+p+3)c(n,b)+(k−m−2p−3)c(n−1,b)+(p+1)c(n−2,b), (n ≥ 3).

Proof. We have

an+1 =

n
∑

i=1

[

k(n− i+ 1)2 +m(n− i+ 1) + p
]

ai.

It is easy to obtain the values a2, a3 and a4. For n > 3 we have

an+1 = (k + p+m)an +
n−1
∑

i=1

[

k(n− i+ 1)2 +m(n− i+ 1) + p
]

ai.

It follows that

an+1 = (k +m+ p+ 1)an + (3k +m)an−1 +
n−2
∑

i=1

[

k(2n− 2i+ 1) +m
]

ai. (4)
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Replacing n by n + 1 we obtain

an+2 = (k +m+ p+ 1)an+1 + (3k +m)an +
n−1
∑

i=1

[

k(2n− 2i+ 1) +m
]

ai + 2k
n−1
∑

i=1

ai. (5)

Subtracting (4) from (5) yields

an+2 = (k +m+ p+ 2)an+1 + (2k − p− 1)an + 2k
n−1
∑

i=1

ai. (6)

Replacing n by n + 1 we obtain

an+3 = (k +m+ p+ 2)an+2 + (2k − p− 1)an+1 + 2k
n

∑

i=1

ai. (7)

Finally, subtracting (6) from (7) yields

an+3 = (k +m+ p+ 3)an+2 + (k −m− 2p− 3)an+1 + (p+ 1)an.

In the next corollary we give two particular cases.

Corollary 7. (i) If k = 1, m = 0, p = −1 then

c(1,b) = 0, c(2,b) = 3,

c(n,b) = 8 · 3n−3, (n ≥ 3).

(ii) If k = 1, m = 1, p = −1 then

c(1,b) = 1, c(2,b) = 6, c(3,b) = 22,

c(n,b) =
9− 5

√
3

6
(2 +

√
3)n +

9 + 5
√
3

6
(2−

√
3)n.

Proof. The assertion (i) is true since, in this case, the recurrence equation becomes

c(n + 1,b) = 3c(n,b), (n ≥ 2).

In the case (ii) the recurrence takes the form:

c(n + 1,b) = 4c(n,b)− c(n− 1,b), (n ≥ 3).

Solving the characteristic equation of this three terms recurrence equation we conclude that
the assertion is true.
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Remark 8. We state two sequences from OEIS generated by the preceding formulas. k =
1, m = 0, p = −1, A118264, k = 1, m = 1, p = −1, A003699.

Since
(

n

2

)

is a square function of n we may derive from the preceding proposition some
formulas which connect triangular numbers with generalized compositions.

Corollary 9. (i) If bi =
(

i−2
2

)

, (i = 1, 2, . . .) then

c(1,b) = 1, c(2,b) = 1, c(3,b) = 1,

c(n + 1,b) = 4c(n,b)− 6c(n− 1,b) + 4c(n− 2,b), (n ≥ 3).

Explicitly,

c(n,b) =

n
∑

i=0

(

n

4n− 4i

)

.

(ii) If bi =
(

i−1
2

)

, (i = 1, 2, . . .) then

c(1,b) = 0, c(2,b) = 0, c(3,b) = 1,

c(n + 1,b) = 3c(n,b)− 3c(n− 1,b) + 2c(n− 2,b), (n ≥ 3).

Explicitly,

c(n,b) =

⌊n−3

3
⌋

∑

i=0

(

n− 1

3i+ 2

)

.

(iii) If bi =
(

i

2

)

, (i = 1, 2, . . .) then

c(1,b) = 0, c(2,b) = 1, c(3,b) = 3,

c(n+ 1,b) = 3c(n,b)− 2c(n− 1,b) + c(n− 2,b), (n ≥ 3).

Explicitly,

c(n,b) =
n

∑

i=0

(

n+ i

3i+ 2

)

.

(iv) If bi =
(

i+1
2

)

, (i = 1, 2, . . .) then

c(1,b) = 1, c(2,b) = 4, c(3,b) = 13,

c(n+ 1,b) = 4c(n,b)− 3c(n− 1,b) + c(n− 2,b), (n ≥ 3).

Explicitly,

c(n,b) =

n
∑

i=0

(

n+ 2i− 1

n− i

)

.
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Proof. The assertion (i) is obtained for k = 1
2
, m = −5

2
, p = 3.

The assertion (ii) is obtained for k = 1
2
, m = −3

2
, p = 1.

The assertion (iii) is obtained for k = 1
2
, m = −1

2
, p = 0.

The assertion (iv) is obtained for k = 1
2
, m = 1

2
, p = 0.

The explicit formulas are obtained by the use of Zeilberger’s algorithm, [3].

Remark 10. In the case bi =
(

i+2
2

)

, (i = 1, 2, . . .) we obtain A145839 which counts the
number of 3-compositions of n. This connects our compositions with the so called matrix
compositions.

The following sequences in OEIS are generated by the preceding formulas.
(i), A038503; (ii), A024495; (iii), A095263; (iv), A095263.

4 Exponential Functions

The following result concerns the case when bi is an exponential functions of i. Then, again,
the numbers c(n,b) satisfy a three terms homogeneous recurrence relation with constant
coefficients.

Proposition 11. Let n be a positive integer. If bi = k + pmi−1, (i = 1, 2, . . .), then

c(1,b) = k + p, c(2,b) = k + pm+ (k + p)2,

c(n,b) = (k +m+ p+ 1)c(n− 1,b)− (km+m+ p)c(n− 1,b), (n > 2).

Proof. Equation (1) has the form:

an+1 =

n
∑

i=1

(k + pmn−i)ai.

It follows that
a2 = k + p, a3 = k + pm+ (k + p)2.

Further we have

an+1 = (k + p)an +
n−1
∑

i=1

(k + pmn−i)ai = (k + p)an + k

n−1
∑

i=1

ai + p

n−1
∑

i=1

mn−iai.

Hence,

an+1 = (k + p)an + (k + p)an−1 + k

n−2
∑

i=1

ai + pm

n−2
∑

i=1

mn−1−iai + p(m− 1)an−1,

that is,

an+1 = (k + p+ 1)an + p(m− 1)an−1 + p(m− 1)
n−2
∑

i=1

mn−1−iai. (8)
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Replacing n by n + 1 we obtain

an+2 = (k + p+ 1)an+1 + p(m− 1)an + pm(m− 1)
n−1
∑

i=1

mn−1−iai. (9)

Subtracting (8) multiplied by m from (9) we obtain

an+2 = (k + p+m+ 1)an+1 − (p+m+mk)an.

Some particular cases of the preceding proposition follow.

Corollary 12. (i) If k = 0 then

c(n,b) = p(m+ p)n−1.

(ii) If k = 1, m = 2, p = 1 then
c(1,b), c(2,b) = 7,

c(n,b) = 5c(n− 1,b)− 5c(n− 2,b), (n > 2).

(iii) If k = −1, m = 2, p = 1 then
c(n,b) = F2n−2.

Proof. In the case k = 0 we have

c(1,b) = p, c(2,b) = p(m+ p),

c(n,b) = (m+ p + 1)c(n− 1,b)− (m+ p)c(n− 1,b), (n > 2).

The roots of the characteristic equation are α = 1, β = m+ p. Solving the system

c1α + c2β = p, c1α
2 + c2β

2 = p(m+ p),

yields c1 = 0, c2 =
p

m+p
, and the assertion (i) is true.

In the case (ii) we have
c(1,b) = 2, c(2,b) = 7,

c(n,b) = 5c(n− 1,b)− 5c(n− 2,b), (n > 2).

Finally, in the case (iii) we have

c(1,b) = 0, c(2,b) = 1,

c(n,b) = 3c(n− 1,b)− c(n− 2,b), (n > 2).

The assertion follows from Identity 7 in [1].
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Remark 13. We state sequences in OEIS defined with k = 0, p = 1, and m ranges from 2 to
39.
A000244, A000302, A000351, A000400, A000420, A001018, A001019, A011557, A001020,
A001021, A001022. A001023, A001024, A001025, A001026, A001027, A001029, A009964,
A009965, A009966, A009967, A009968, A009969, A009970, A009971, A009972, A009973,
A009974, A009975, A009976, A009977, A009978, A009979, A009980, A009981, A009982,
A009983, A009984.

More sequences follow
k=0, m=2, p=3, A005053; k=0, m=2, p=2, A081294; k=1, m=2, p=1, A052936;
k=1, m=3, p=1, A034999; k=0, m=2, p=4, A067411; k=0, m=3, p=2, A020729;
k=0, m=4, p=2, A167747; k=0, m=4, p=3, A169634; k=0, m=4, p=5, A067403;
k=0, m=4, p=6, A090019; k=0, m=5, p=2, A109808; k=0, m=5, p=3, A103333;
k=0, m=6, p=2, A013730; k=0, m=6, p=3, A013708; k=0, m=6, p=4, A093141;
k=2, m=2, p=1, A163606; k=-1, m=2, p=1, A001906; k=-2, m=2, p=1, A001333;
k=-1, m=3, p=1, A052530.

5 Floor and Ceil Functions

In this section we derive two results when bi is a floor, and a ceil function of i.

Proposition 14. Let n be a positive integer, and bi = ⌊ i
2
⌋, (i = 1, 2, . . .). Then

c(1,b) = 0, c(2,b) = 1, c(3,b) = 1,

c(n,b) = c(n− 1,b) + 2c(n− 2,b)− c(n− 3,b), (n > 3).

Proof. It is easy to see that
a2 = 0, a3 = a4 = 1.

For n > 3 we have

an+1 =

n−1
∑

i=1

⌊

n− i+ 1

2

⌋

ai = an−1 +

n−2
∑

i=1

⌊

n− i+ 1

2

⌋

ai =

= an + an−1 +

n−2
∑

i=1

{⌊

n− i+ 1

2

⌋

−
⌊

n− 1− i+ 1

2

⌋}

ai.

It follows that

an+1 = an + an−1 +
n−2
∑

i=1

(−1)n−i+1 + 1

2
ai. (10)

Replacing n by n + 1 we obtain

an+2 = an+1 + an −
n−1
∑

i=1

(−1)n−i+1 + 1

2
ai +

n−1
∑

i=1

ai. (11)
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Substituting (10) into (11) yields

an+2 = 2an +

n−1
∑

i=1

ai. (12)

Replacing n by n + 1 we have

an+3 = 2an+1 +

n
∑

i=1

ai. (13)

Subtracting (12) from (13) yields

an+3 = an+2 + 2an+1 − an.

Remark 15. Sequence A006053 is generated by this function.

In a similar way the following proposition may be proved:

Proposition 16. Let n be a positive integer, and bi = ⌈ i

2
⌉, (i = 1, 2, . . .). Then

c(1,b) = 1, c(2,b) = 2, c(3,b) = 5,

c(n,b) = 2c(n− 1,b) + c(n− 2,b)− c(n− 3,b), (n > 3).

Remark 17. Sequence A006054 is generated by this function.

6 Fibonacci numbers

In this section we prove several formulas in which the number of compositions is related with
Fibonacci numbers.

Our first result extends the result from [2], where compositions with two different types
of 1 are considered, as well as some other known results about standard compositions.

Proposition 18. Let n be a positive integer, let p, q be a nonnegative integers, and let
b = (p, q, q, . . .). Then

c(1,b) = p, c(2,b) = p2 + q,

c(n,b) = (1 + p)c(n− 1,b) + (q − p)c(n− 2,b), (n > 2). (14)

Explicitly,
c(n,b) = uαn + vβn,

where

α =
1 + p+

√

(p− 1)2 + 4q

2
, β =

1 + p−
√

(p− 1)2 + 4q

2
,
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u =
4q − (p− 1)2 + (p− 1)

√

(p− 1)2 + 4q

2
√

(p− 1)2 + 4q
,

v =
4q + (p− 1)2 − (p− 1)

√

(p− 1)2 + 4q

2
√

(p− 1)2 + 4q
.

Proof. In this case equation (1) has the form:

an+1 = pan + q

n−1
∑

i=1

ai.

We easily obtain that
a2 = p, a3 = p2 + q.

Next we have

an+1 = pan + qan−1 − pan−1 + pan−1 + q

n−2
∑

i=1

ai =

= (1 + p)an + (q − p)an−1.

The characteristic equation for this recurrence is x2 − (p+ 1)x− q + p = 0. Solving this
equation we obtain the explicit formula.

In the following corollary we shall state some particular cases of this proposition. The
first is the well-known formula for the number of all standard compositions. In the rest
Fibonacci numbers are produced.

Corollary 19.(i) If b = (0, 1, 1, . . .) then c(n,b) = Fn−1. This is the well-known result that
says that there are Fn−1 compositions of n in which each part is ≥ 2.

(ii) If b = (2, 1, 1, . . .) then c(n,b) = F2n+1. This is the result from [2].

(iii) If b = (3, 4, 4, . . .) then
c(n,b) = F3n+1.

Proof. (i). In this case we have p = 0, q = 1. It follows that

α =
1 +

√
5

2
, β =

1−
√
5

2
, u =

5−
√
5

10
, v =

5 +
√
5

10
,

and the assertion follows from Binet formula.
(ii). In this case we have p = 2, q = 1 and the recurrence relation has the form

a2 = 2, a3 = 5, an+1 = 3an − an−1.

The assertion follows by induction using Identity 17 from [1].
(iii). The recurrence equation in this case has the form

an+1 = 4an + an−1.
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It is easy to prove that for Fibonacci numbers the following identity holds

Fk+2 = 4Fk−1 + Fk−4.

Using induction and this identity we conclude that the assertion holds.

Remark 20. We state several sequences from OEIS which are generated by (14).

p=2, q=1, A001519; p=3, q=1 A007052; p=4, q=1, A018902;
p=5, q=1, A018903; p=6, q=1, A018904; p=1, q=2, A001333;
p=1, q=3, A026150; p=1, q=4, A046717; p=1, q=5, A084057;
p=1, q=6, A002533; p=1, q=7, A083098; p=1, q=8, A083100;
p=1 ,q=9, A003665; p=1, q=10, A002535; p=1, q=11, A083101;
p=1, q=12, A090042; p=1, q=13, A125816; p=1, q=14, A133343;
p=1, q=15, A133345; p=1, q=16, A120612; p=1, q=17, A133356;
p=1, q=18, A125818; p=2, q=3, A052924; p=2, q=4, A104934;
p=2, q=6, A122117; p=3, q=2, A001835; p=3, q=4, A033887;
p=3, q=6, A122558; p=3, q=8, A083217; p=3, q=9, A147518;
p=4, q=2, A052913; p=4, q=3, A004253; p=4, q=5, A100237;
p=5, q=2, A158869; p=5, q=4, A001653.

The next result also generalizes a classical result for standard compositions.

Proposition 21. If b = (p, 1, 0, 0, . . .) where m is a positive integer then

c(n,b) =

⌊n

2
⌋

∑

i=0

(

n− i

i

)

pn−2i.

Proof. The recurrence relation for Fibonacci polynomials is

Fn+1(x) = xFn(x) + Fn−1(x).

It follows that for a positive integer p we have Fn+1(p) = c(n,b). The required equation
follows from the well-known formula for Fibonacci polynomials.

As an immediate consequence we obtain the following well-known result.

Corollary 22. The number of compositions of n in which each part is either 1 or 2 is Fn+1.

Proof. Take p = 1 in the preceding proposition and apply Identity 4 in [1].

Remark 23. As before, we state a few sequences from OEIS obtained for different values of
p.

p=3, A000129. Pell numbers, p=4, A006190, p=5, A001076,
p=6, A052918, p=7, A054413.
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The following result also extends a well-known result for standard compositions.

Proposition 24. Let n be a positive integer, let p, q be nonnegative integers, and let b =
(p, q, p, q, . . .). Then

c(1,b) = p, c(2,b) = p2 + q,

c(n,b) = pc(n− 1,b) + (1 + q)c(n− 2,b), (n > 2).

Proof. In this case we first have

a2n+1 =
2n
∑

i=1

b2n−i+1ai.

Hence,
a2m+1 = q(a1 + a3 + · · ·+ a2m−1) + p(a2 + a4 + · · ·+ a2m) =

= qa2m−1 + pa2m + a2m−1 = pa2m + (1 + q)a2m−1,

and the assertion is true for even n. Also,

a2m =

2m−1
∑

i=1

b2m−iai,

that is
a2m = p(a1 + a3 + · · ·+ a2m−1) + q(a2 + a4 + · · ·+ a2m−2) =

= pa2m−1 + qa2m−2 + a2m−2 = pa2m−1 + (1 + q)a2m−2.

Hence, the assertion is also true for odd n.

Corollary 25. Let n be a positive integer, and let b = (1, 0, 1, 0, . . .). Then

c(n,b) = Fn.

In other word, Fn is the number of compositions of n in which all parts are odd.

Proof. Since p = 1, q = 0 the recurrence from the preceding propositions becomes recurrence
relation for Fibonacci numbers.

Remark 26. The following sequences from OEIS are generated by the formula from this
proposition.

p=1, q=2, A105476, p=2,q=1, A052945, p=2,q=3, A162770.

In the rest of this section Fibonacci numbers play the role of the b’s.
We shall prove that there are a closed formula for c(n,b) in the case when

bi = Fm+k(i−1), (i = 1, 2, . . . , n)

where m ≥ −1 and k ≥ 0 are arbitrary integers. For this we need the following identities
for Fibonacci numbers.
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Lemma 27. Let m ≥ −1, k ≥ 0 be integers. Then

Fm+2k + Fm−2k = Fm(F2k−1 + F2k+1). (15)

Also,
Fm+2k−1 − Fm−2k+1 = Fm(F2k−2 + F2k). (16)

Proof. The assertion (15) is obviously true for m = 0. Since F−(2k−1) = F2k−1 it is also true
for m = 1 and m = −1. Assume that it is true for m1 such that 0 ≤ m1 < m. Then, for
m ≥ 2 we have

Fm+2k + Fm−2k = Fm−1+2k + Fm−1−2k + Fm−2+2k + Fm−2−2k.

Using the induction hypothesis yields

Fm+2k + Fm−2k = (Fm−1 + Fm−2)(F2k−1 + F2k+1) = Fm(F2k−1 + F2k+1).

The assertion (16) may be proved in a similar way.

Proposition 28. Let m ≥ −1 be an integer, let k be a nonnegative integer, and let bi =
Fm+k(i−1), (i = 1, 2, . . . , n). Then,

c(1,b) = Fm, c(2,b) = Fm+k + F 2
m,

c(n+ 1,b) = (Fm + Fk−1 + Fk+1)c(n,b) + (−1)k−1(Fm−k + 1)c(n− 1,b), (n > 1).

Proof. We have

a1 = 1, an+1 =
n

∑

i=1

Fm+k(n−i)ai.

For n = 1, 2 we easily obtain

a2 = Fm, a3 = Fm+k + F 2
m.

Assume that k is even and denote k = 2p. Then for n > 2 we obtain

an+1 =

n
∑

i=1

Fm+2p(n−i)ai.

Using (15) yields

(F2p−1 + F2p+1)an+1 =
n

∑

i=1

Fm+2p(n+1−i)ai +
n

∑

i=1

Fm+2p(n−1−i)ai =

= an+2 − Fman+1 + an + Fm−2kan,

and the assertion holds.
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If k is odd and k = 2p− 1, then for n > 2 we have

an+1 =

n
∑

i=1

Fm+(2p−1)(n−i)ai.

Using (16) yields

(F2p−2 + F2p)an+1 =

n
∑

i=1

Fm+(2p−1)(n+1−i)ai −
n

∑

i=1

Fm+(2p−1)(n−1−i)ai =

= an+2 − Fman+1 − an − Fm−2p+1an,

and the assertion also holds in this case.

Particulary, for k = 0 we have

Corollary 29. Let m ≥ −1 be an integer, and let b = (Fm, Fm, . . .). Then

c(n,b) = Fm(1 + Fm)
n−1, (n = 1, 2, . . .).

The preceding equation generalizes the formula for the number of all standard composi-
tion of n which is obtained for m = 1.

Remark 30. The preceding formula generates the following sequences in OEIS
m=1 or m=2, A000079, m=3, A008776, m=4, A002001

m=5, A052934, m=6, A055275.

Remark 31. We again state some sequences from OEIS generated with the formula from the
preceding proposition.

m=0, k=1 A001045 (Jacobsthal numbers) m=1, k=1 A000129, ( Pell numbers),

m=2, k=1, A028859; m=3, k=1, A007484; m=-1, k=2, A007051;
m=0, k=2, A000244; m=1, k=2, A007052; m=2, k=2, A001353;
m=3, k=2, A020698; m=-1, k=3, A147722; m=1, k=3, A005054;
m=3, k=3, A078469.

For our last result we need the following forth terms recursion for squares of Fibonacci
numbers:

Lemma 32. The following equation holds

F 2
n+3 = 2F 2

n+2 + 2F 2
n+1 − F 2

n .

Proof. The formula is easy to prove by squaring the expressions Fn+3 = 2Fn+1 + Fn and
Fn+2 = Fn+1 + Fn.
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Proposition 33. Let n be a positive integer, and let bi = F 2
k+i−1, (i = 1, 2, . . .). Then

c(1,b) = F 2
k , c(2,b) = F 2

k+1 + F 4
k , c(3,b) = F 2

k+2 + 2F 2
kF

2
k+1 + F 6

k ,

and, for n > 3,

c(n,b) = (F 2
k + 2)c(n− 1,b) + (2F 2

k−1 − F 2
k−2 + 2)c(n− 2,b)− (F 2

k−1 + 1)c(n− 3,b).

Proof. In this case we have

an+1 =
n

∑

i=1

F 2
k+n−iai.

Using the preceding lemma yields

an+1 = 2

n
∑

i=1

F 2
k+n−1−iai + 2

n
∑

i=1

F 2
k+n−2−iai −

n
∑

i=1

F 2
k+n−3−iai =

= 2F 2
k−1an + 2an + 2F 2

k−2an + 2F 2
k−1an−1 + 2an−1 − F 2

k−3an−
−F 2

k−2an−1 − F 2
k−1an−2 − an−2.

Using the preceding lemma once more we obtain

an+1 = (F 2
k + 2)an + (2F 2

k−1 − F 2
k−2 + 2)an−1 − (F 2

k−1 + 1)an−2,

and the assertion is proved.

Remark 34. The following two sequences in OEIS are generated by the preceding formula:
m=0, A054854, m=1, A030186.
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