COMBINATORICS OF THE TROPICAL TORELLI MAP

MELODY CHAN

Abstract

This paper is a combinatorial and computational study of the moduli space M_{g}^{tr} of tropical curves of genus g, the moduli space $A_{q}^{\text {tr }}$ of principally polarized tropical abelian varieties, and the tropical Torelli map. These objects were introduced recently by Brannetti, Melo, and Viviani. Here, we give a new definition of the category of stacky fans, of which M_{g}^{tr} and A_{g}^{tr} are objects and the Torelli map is a morphism. We compute the poset of cells of M_{g}^{tr} and of the tropical Schottky locus for genus at most 5. We show that A_{g}^{tr} is Hausdorff, and we also construct a finite-index cover for the space $A_{3}^{\text {tr }}$ which satisfies a tropical-type balancing condition. Many different combinatorial objects, including regular matroids, positive semidefinite forms, and metric graphs, play a role.

Contents

1. Introduction 2
2. The moduli space of tropical curves 4
§2.1. Definition of tropical curves. 4
$\S 2.2$. Definition of the moduli space of tropical curves 6
§2.3. Explicit computations of M_{g}^{tr} 7
3. Stacky fans 11
4. Principally polarized tropical abelian varieties 14
§4.1. Definition of principally polarized tropical abelian variety 15
§4.2. Voronoi reduction theory 16
§4.3. Construction of $A_{g}^{\text {tr }}$ 17
§4.4. The quotient space $\widetilde{S}_{\geq 0}^{g} / G L_{g}(\mathbb{Z})$ 23
5. Regular matroids and the zonotopal subfan 24
6. The tropical Torelli map 27
7. Tropical curves via level structure 31
§7.1. A tropical cover for $A_{3}^{\text {tr }}$ 31
§7.2. A tropical cover for $A_{2}^{\text {tr }}$ 33
References 34
[^0]
1. Introduction

This paper is a combinatorial and computational study of the tropical moduli spaces M_{g}^{tr} and A_{g}^{tr} and the tropical Torelli map.

There is, of course, a vast (to say the least) literature on the subjects of algebraic curves and moduli spaces in algebraic geometry. For example, two well-studied objects are the moduli space \mathcal{M}_{g} of smooth projective complex curves of genus g and the moduli space \mathcal{A}_{g} of g dimensional principally polarized abelian varieties. The Torelli map

$$
t_{g}: \mathcal{M}_{g} \rightarrow \mathcal{A}_{g}
$$

then sends a genus g algebraic curve to its Jacobian, which is a certain g-dimensional complex torus. The image of t_{g} is called the Torelli locus or the Schottky locus. The problem of how to characterize the Schottky locus inside \mathcal{A}_{g} is already very deep: see, for example, the survey of Grushevsky [11].

The perspective we take in this paper is the perspective of tropical geometry [12]. From this viewpoint, one replaces algebraic varieties with piecewise-linear or polyhedral objects. These latter objects are amenable to combinatorial techniques, but they still carry information about the former ones. Roughly speaking, the information they carry has to do with what is happening "at the boundary" or "at the missing points" of the algebraic object.

For example, the tropical analogue of \mathcal{M}_{g}, denoted $M_{g}^{\text {tr }}$, parametrizes certain weighted metric graphs, and it has a poset of cells corresponding to the boundary strata of the Deligne-Mumford compactification $\overline{\mathcal{M}_{g}}$ of \mathcal{M}_{g}. Under this correspondence, a stable curve C in $\overline{\mathcal{M}_{g}}$ is sent to its so-called dual graph. The irreducible components of C, weighted by their geometric genus, are the vertices of this graph, and each node in the intersection of two components is recorded with an edge. The correspondence in genus 2 is shown in Figure 4. A rigorous proof of this correspondence was given by Caporaso in [6, Section 5.3].

We remark that the correspondence above yields dual graphs that are just graphs, not metric graphs. There is not yet in the literature a sensible way to equip these graphs with edge lengths and thus produce an actual tropicalization map $\overline{\mathcal{M}_{g}} \rightarrow M_{g}^{\mathrm{tr}}$. So for now, the correspondence between $\overline{\mathcal{M}_{g}}$ and M_{g}^{tr} is not as tight as it ultimately should be. However, we anticipate that forthcoming work on Berkovich spaces by Baker, Payne, and Rabinoff will address this interesting point.

The starting point of this paper is the recent foundational paper by Brannetti, Melo, and Viviani [5]. In that paper, the authors rigorously define a plausible category for tropical moduli spaces called stacky fans.
(The term "stacky fan" is due to the authors of [5], and is unrelated, as far as we know, to the construction of Borisov-Chen-Smith in [3]). They further define the tropical versions M_{g}^{tr} and A_{g}^{tr} of \mathcal{M}_{g} and \mathcal{A}_{g} and a tropical Torelli map between them, and prove many foundational results, some of which we will review here.

We should also mention the work of Caporaso [6], who proves geometric results on $A_{g}^{\operatorname{tr}}$ considered just as a topological space, and Caporaso and Viviani [7], who prove a tropical Torelli theorem stating that the tropical Torelli map is "mostly" injective. Preceding that work is the paper of Mikhalkin and Zharkov [14] in which tropical curves and Jacobians are defined, albeit slightly differently, and studied in detail.

In laying the groundwork for the results we will present here, we ran into some inconsistencies in [5]. It seems that the definition of a stacky fan there is inadvertently restrictive. In fact, it excludes $M_{g}^{\operatorname{tr}}$ and A_{g}^{tr} themselves from being stacky fans. Also, there is a topological subtlety in defining A_{g}^{tr}, which we will address in $\S 4.4$. Thus, we find ourself doing some foundational work here too.

We begin in Section 2 by recalling the definition in [5] of the tropical moduli space M_{g}^{tr} and presenting computations, summarized in Theorem 2.12, for $g \leq 5$. With M_{g}^{tr} as a motivating example, we attempt a better definition of stacky fans in Section 3. In Section 4, we define the space $A_{g}^{\operatorname{tr}}$, recalling the necessary but beautiful combinatorics of Voronoi decompositions along the way, and prove that it is Hausdorff. Note that our definition of this space, Definition 4.8, is a modification of the one in [5, Section 4.2], and it corrects a minor error there. In Section 5 , we study the combinatorics of the zonotopal subfan. We review the tropical Torelli map in Section 6; Theorem 6.4 presents computations on the tropical Schottky locus for $g \leq 5$. Tables 1 and 2 compare the number of cells in the stacky fans M_{g}^{tr}, the Schottky locus, and A_{g}^{tr} for $g \leq 5$. In Section 7, we partially answer a question suggested by Diane Maclagan: we give finite-index covers of $A_{2}^{\operatorname{tr}}$ and $A_{3}^{\operatorname{tr}}$ that satisfy a tropical-type balancing condition.

Acknowledgments. The author thanks B. Sturmfels, F. Vallentin, and D. Maclagan for helpful discussions, F. Vallentin for many useful references and K. Vogtmann for the reference to [4], F. Shokrieh for insight on Delone subdivisions, and R. Masuda for much help with typesetting. The author is supported by a Graduate Research Fellowship from the National Science Foundation.

Figure 1. Poset of cells of M_{3}^{tr}, color-coded according to their images in $A_{3}^{\operatorname{tr}}$ via the tropical Torelli map.

2. The moduli space of tropical curves

In this section, we review the construction in [5] of the moduli space of tropical curves of a fixed genus g. This space is denoted M_{g}^{tr}. Then, we present explicit computations of these spaces in genus up to 5 .
§2.1. Definition of tropical curves. Before constructing the moduli space of tropical curves, let us review the definition of a tropical curve.

First, recall that a metric graph is a pair (G, l), where G is a finite connected graph, loops and parallel edges allowed, and l is a function

$$
l: E(G) \rightarrow \mathbb{R}_{>0}
$$

on the edges of G. We view l as recording lengths of the edges of G. The genus of a graph G is the rank of its first homology group:

$$
g(G)=|E|-|V|+1
$$

Definition 2.1. A tropical curve C is a triple (G, l, w), where (G, l) is a metric graph, and w is a weight function

$$
w: V(G) \rightarrow \mathbb{Z}_{\geq 0}
$$

on the vertices of G, with the property that only vertices with positive weight may have degree less than 3.

Definition 2.2. Two tropical curves (G, l, w) and $\left(G^{\prime}, l^{\prime}, w^{\prime}\right)$ are isomorphic if there is an isomorphism of graphs $G \stackrel{\cong}{\rightrightarrows} G^{\prime}$ that preserves edge lengths and preserves vertex weights.

We are interested in tropical curves only up to isomorphism. When we speak of a tropical curve, we will really mean its isomorphism class.

Definition 2.3. Given a tropical curve $C=(G, l, w)$, write

$$
|w|:=\sum_{v \in V(G)} w(v) .
$$

Then the genus of C is defined to be

$$
g(C)=g(G)+|w| .
$$

The combinatorial type of C is the pair (G, w), in other words, all of the data of C except for the edge lengths.

Remark 2.4. Informally, we view a weight of k at a vertex v as k loops, based at v, of infinitesimally small length. Each infinitesimal loop contributes once to the genus of C. Furthermore, the property that only vertices with positive weight may have degree 1 or 2 amounts to requiring that, were the infinitesimal loops really to exist, every vertex would have degree at least 3 .

Permitting vertex weights will ensure that the moduli space $M_{g}^{\text {tr }}$, once it is constructed, is complete. That is, a sequence of genus g tropical curves obtained by sending the length of a loop to zero will still converge to a genus g curve.

Of course, the real reason to permit vertex weights is so that the combinatorial types of genus g tropical curves correspond precisely to dual graphs of stable curves in $\overline{\mathcal{M}_{g}}$, as discussed in the introduction and in [6, Section 5.3]. See Figure 4.

Figure 2. A tropical curve of genus 3. Here, a, b, c are fixed positive real numbers.

Figure 2 shows an example of a tropical curve C of genus 3. Note that if we allow the edge lengths l to vary over all positive real numbers, we obtain all tropical curves of the same combinatorial type as C. This motivates our construction of the moduli space of tropical curves below. We will first group together curves of the same combinatorial type, obtaining one cell for each combinatorial type. Then, we will glue our cells appropriately to obtain the moduli space.
$\S 2.2$. Definition of the moduli space of tropical curves. Fix $g \geq$ 2. Our goal now is to construct a moduli space for genus g tropical curves, that is, a space whose points correspond to tropical curves of genus g and whose geometry reflects the geometry of the tropical curves in a sensible way. The following construction is due to the authors of [5].

First, fix a combinatorial type (G, w) of genus g. What is a parameter space for all tropical curves of this type? Our first guess might be a positive orthant $\mathbb{R}_{>0}^{|E(G)|}$, that is, a choice of positive length for each edge of G. But we have overcounted by symmetries of the combinatorial type (G, w). For example, in Figure 2, $(a, b, c)=(1,2,3)$ and $(a, b, c)=$ $(1,3,2)$ give the same tropical curve.

Furthermore, with foresight, we will allow lengths of zero on our edges as well, with the understanding that a curve with some zerolength edges will soon be identified with the curve obtained by contracting those edges. This suggests the following definition:

Definition 2.5. Given a combinatorial type (G, w), let the automorphism group $\operatorname{Aut}(G, w)$ be the set of all permutations $\varphi: E(G) \rightarrow$ $E(G)$ that arise from weight-preserving automorphisms of G. That is, $\operatorname{Aut}(G, w)$ is the set of permutations $\varphi: E(G) \rightarrow E(G)$ that admit a permutation $\pi: V(G) \rightarrow V(G)$ which preserves the weight function w, and such that if an edge $e \in E(G)$ has endpoints v and w, then $\varphi(e)$ has endpoints $\pi(v)$ and $\pi(w)$.

Now, the group $\operatorname{Aut}(G, w)$ acts naturally on the set $E(G)$, and hence on the orthant $\mathbb{R}_{\geq 0}^{E(G)}$, with the latter action given by permuting coordinates. We define $\overline{C(G, w)}$ to be the topological quotient space

$$
\overline{C(G, w)}=\frac{\mathbb{R}_{\geq 0}^{E(G)}}{\operatorname{Aut}(G, w)}
$$

Next, we define an equivalence relation on the points in the union

$$
\amalg^{\overline{C(G, w)},}
$$

as (G, w) ranges over all combinatorial types of genus g. Regard a point $x \in \overline{C(G, w)}$ as an assignment of lengths to the edges of G. Now, given two points $x \in \overline{C(G, w)}$ and $x^{\prime} \in \overline{C\left(G^{\prime}, w^{\prime}\right)}$, identify x and x^{\prime} if one of them is obtained from the other by contracting all edges of length zero. Note that contracting a loop, say at vertex v, means deleting that loop and adding 1 to the weight of v. Contracting a nonloop edge, say with endpoints v_{1} and v_{2}, means deleting that edge and identifying v_{1} and v_{2} to obtain a new vertex whose weight is $w\left(v_{1}\right)+w\left(v_{2}\right)$.

Finally, let \sim be the smallest equivalence relation containing the identification we have just defined. Now we glue the cells $\overline{C(G, w)}$ along \sim to obtain our moduli space:

Definition 2.6. The moduli space $M_{g}^{\operatorname{tr}}$ is the topological space

$$
M_{g}^{\operatorname{tr}}:=\coprod \overline{C(G, w)} / \sim
$$

where the disjoint union ranges over all combinatorial types of genus g, and \sim is the equivalence relation defined above.

In fact, the space $M_{g}^{\text {tr }}$ carries additional structure: it is an example of a stacky fan. We will define the category of stacky fans in Section 3.

Example 2.7. Figure 3 is a picture of M_{2}^{tr}. Its cells are quotients of polyhedral cones; the dotted lines represent symmetries, and faces labeled by the same combinatorial type are in fact identified. The poset of cells, which we will investigate next for higher g, is shown in Figure 4. It has two vertices, two edges and two 2-cells.
§2.3. Explicit computations of M_{g}^{tr}. Our next goal will be to compute the space $M_{g}^{\operatorname{tr}}$ for g at most 5 . The computations were done in Mathematica, and the code is available at

```
http://math.berkeley.edu/ ~mtchan/torelli/
```


Figure 3. The stacky fan M_{2}^{tr}.
What we compute, to be precise, is the partially ordered set P_{g} on the cells of M_{g}^{tr}. This poset is defined in Lemma 2.9 below. Our results, summarized in Theorem 2.12 below, provide independent verification of the first six terms of the sequence A174224 in [16]:

$$
0,0,7,42,379,4555,69808,1281678, \ldots
$$

This sequence, along with much more data along these lines, was first obtained by Maggiolo and Pagani by an algorithm described in [13].
Definition 2.8. Given two combinatorial types (G, w) and $\left(G^{\prime}, w^{\prime}\right)$ of genus g, we say that $\left(G^{\prime}, w^{\prime}\right)$ is a specialization, or contraction, of (G, w), if it can be obtained from (G, w) by a sequence of edge contractions. Here, contracting a loop means deleting it and adding 1 to the weight of its base vertex; contracting a nonloop edge, say with endpoints v_{1} and v_{2}, means deleting the edge and identifying v_{1} and v_{2} to obtain a new vertex whose weight we set to $w\left(v_{1}\right)+w\left(v_{2}\right)$.

Lemma 2.9. The relation of specialization on genus g combinatorial types yields a graded partially ordered set P_{g} on the cells of $M_{g}^{t r}$. The rank of a combinatorial type (G, w) is $|E(G)|$.

Proof. It is clear that we obtain a poset; furthermore, $\left(G^{\prime}, w^{\prime}\right)$ is covered by (G, w) precisely if $\left(G^{\prime}, w^{\prime}\right)$ is obtained from (G, w) by contracting a single edge. The formula for rank then follows.

Figure 4. Posets of cells of $M_{2}^{\operatorname{tr}}$ (left) and of $\overline{\mathcal{M}_{g}}$ (right).
For example, P_{2} is shown in Figure 4, it also appeared in [5, Figure1]. The poset P_{3} is shown in Figure 1. It is color-coded according to the Torelli map, as explained in Section 6.

Our goal is to compute P_{g}. We do so by first listing its maximal elements, and then computing all possible specializations of those combinatorial types. For the first step, we use Proposition 3.2.4(i) in [5], which characterizes the maximal cells of M_{g}^{tr} : they correspond precisely to combinatorial types $(G, \overline{0})$, where G is a connected 3-regular graph of genus g, and $\overline{0}$ is the zero weight function on $V(G)$. Connected, 3regular graphs of genus g are equivalently characterized as connected, 3 -regular graphs on $2 g-2$ vertices. These have been enumerated:

Proposition 2.10. The number of maximal cells of $M_{g}^{t r}$ is equal to the ($g-1$) term in the sequence
$2,5,17,71,388,2592,21096,204638,2317172,30024276,437469859, \ldots$
Proof. This is sequence A005967 in [16], the number of connected 3regular graphs on $2 g$ vertices.

In fact, the connected, 3-regular graphs of genus g have been conveniently written down for g at most 6 . This work was done in the 1970s by Balaban, a chemist whose interests along these lines were in molecular applications of graph theory. The graphs for $g \leq 5$ appear in his article [1], and the 388 genus 6 graphs appear in [2].

Given the maximal cells of M_{g}^{tr}, we can compute the rest of them:

Algorithm 2.11.

Input: Maximal cells of $M_{g}^{\text {tr }}$
Output: Poset of all cells of M_{g}^{tr}

1. Initialize P_{g} to be the set of all maximal cells of M_{g}^{tr}, with no relations. Let L be a list of elements of P_{g}.
2. While L is nonempty:

Let (G, w) be the first element of L. Remove (G, w) from L. Compute all 1-edge contractions of (G, w).
For each such contraction $\left(G^{\prime}, w^{\prime}\right)$:
If $\left(G^{\prime}, w^{\prime}\right)$ is isomorphic to an element $\left(G^{\prime \prime}, w^{\prime \prime}\right)$ already in the poset P_{g}, add a cover relation $\left(G^{\prime \prime}, w^{\prime \prime}\right) \leq$ (G, w).
Else, add $\left(G^{\prime}, w^{\prime}\right)$ to P_{g} and add a cover relation $\left(G^{\prime}, w^{\prime}\right) \leq(G, w)$. Add $\left(G^{\prime}, w^{\prime}\right)$ to the list L.

3. Return P_{g}.

We implemented this algorithm in Mathematica. The most costly step is computing graph isomorphisms in Step 2. Our results are summarized in the following theorem. By an f-vector of a poset, we mean the vector whose i-th entry is the number of elements of rank $i-1$.

Theorem 2.12. We obtained the following computational results:
(i) The moduli space $M_{3}^{t r}$ has 42 cells and f-vector

$$
(1,2,5,9,12,8,5)
$$

Its face poset P_{3} is shown in Figure 1.
(ii) The moduli space $M_{4}^{t r}$ has 379 cells and f-vector

$$
(1,3,7,21,43,75,89,81,42,17)
$$

(iii) The moduli space $M_{5}^{t r}$ has 4555 cells and f-vector

$$
(1,3,11,34,100,239,492,784,1002,926,632,260,71) .
$$

The posets P_{4} and P_{5} are much too large to display here, but are available at the website above.

Remark 2.13. The data of P_{3}, illustrated in Figure [1, is related, but not identical, to the data obtained by T. Brady in [4, Appendix A]. In that paper, the author enumerates the cells of a certain deformation retract, called K_{3}, of Culler-Vogtmann Outer Space, modulo the action of the group $\operatorname{Out}\left(F_{3}\right)$. In that setting, one only needs to consider bridgeless graphs with all vertices of weight 0 , thus throwing out all but 8 cells of the poset P_{3}. In turn, the cells of $K_{3} / \operatorname{Out}\left(F_{n}\right)$ correspond to chains in the poset on those eight cells, and it is these chains that are listed in Appendix A of [4]. We believe that further exploration of
the connection between Outer Space and M_{g}^{tr} would be interesting to researchers in both tropical geometry and geometric group theory.

3. Stacky fans

In Section 2, we defined the space M_{g}^{tr}. In Sections 4 and 6, we will define the space A_{g}^{tr} and the Torelli map $t_{g}^{\mathrm{tr}}: M_{g}^{\mathrm{tr}} \rightarrow A_{g}^{\mathrm{tr}}$. For now, however, let us pause and define the category of stacky fans, of which M_{g}^{tr} and A_{g}^{tr} are objects and t_{g}^{tr} is a morphism. The reader is invited to keep M_{g}^{tr} in mind as a running example of a stacky fan.

The purpose of this section is to offer a new definition of stacky fan, Definition 3.2, which we hope fixes an inconsistency in the definition by Brannetti, Melo, and Viviani, in Section 2.1 of [5]. We believe that their condition for integral-linear gluing maps is too restrictive and fails for M_{g}^{tr} and A_{g}^{tr}. However, we do think that their definition of a stacky fan morphism is correct, so we repeat it in Definition 3.5. We also prove that $M_{g}^{\text {tr }}$ is a stacky fan according to our new definition. The proof for $A_{g}^{\text {tr }}$ is deferred to $\S 4.3$.

Definition 3.1. A rational open polyhedral cone in \mathbb{R}^{n} is a subset of \mathbb{R}^{n} of the form $\left\{a_{1} x_{1}+\cdots+a_{t} x_{t}: a_{i} \in \mathbb{R}_{>0}\right\}$, for some fix vectors $x_{1}, \ldots, x_{t} \in \mathbb{Z}^{n}$. By convention, we also allow the trivial cone $\{0\}$.

Definition 3.2. Let $X_{1} \subseteq \mathbb{R}^{m_{1}}, \ldots, X_{k} \subseteq \mathbb{R}^{m_{k}}$ be full-dimensional rational open polyhedral cones. For each $i=1, \ldots, n$, let G_{i} be a subgroup of $G L_{m_{i}}(\mathbb{Z})$ which fixes the cone X_{i} setwise, and let X_{i} / G_{i} denote the topological quotient thus obtained. The action of G_{i} on X_{i} extends naturally to an action of G_{i} on the Euclidean closure $\overline{X_{i}}$, and we let $\overline{X_{i}} / G_{i}$ denote the quotient.

Suppose that we have, for each $i=1, \ldots, n$, a continuous map

$$
\alpha_{i}: \frac{\overline{X_{i}}}{\overline{G_{i}}} \rightarrow X
$$

and write $C_{i}=\alpha_{i}\left(\frac{X_{i}}{G_{i}}\right)$ and $\overline{C_{i}}=\alpha_{i}\left(\frac{\overline{X_{i}}}{G_{i}}\right)$ for each i. Suppose that the following properties hold for each index i :
(i) The restriction of α_{i} to $\frac{X_{i}}{G_{i}}$ is a homeomorphism onto C_{i},
(ii) We have an equality of sets $X=\coprod C_{i}$,
(iii) For each cone $\overline{X_{i}}$ and for each face $\overline{F_{i}}$ of $\overline{X_{i}}, \alpha_{i}\left(F_{i}\right)=\overline{C_{k}}$ for some k. Furthermore, $\operatorname{dim} F_{i}=\operatorname{dim} \overline{X_{k}}=m_{k}$, and there is an invertible linear map $L: \operatorname{span}\left\langle F_{i}\right\rangle \cong \mathbb{R}^{m_{k}} \rightarrow \mathbb{R}^{m_{k}}$ such that

- $L\left(F_{i}\right)=\overline{X_{k}}$,
- $L\left(\mathbb{Z}^{m_{i}} \cap \operatorname{span}\left(F_{i}\right)\right)=\mathbb{Z}^{m_{k}}$, and
- the following diagram commutes:

We say that $\overline{C_{k}}$ is a stacky face of $\overline{C_{i}}$ in this situation.
(iv) For each pair i, j,

$$
\overline{C_{i}} \cap \overline{C_{j}}=C_{k_{1}} \cup \cdots \cup C_{k_{t}}
$$

for some $C_{k_{1}}, \ldots, C_{k_{t}}$, where the $C_{k_{l}}$'s range over the common stacky faces of $\overline{C_{i}}$ and $\overline{C_{j}}$.
Then we say that X is a stacky fan, with cells $\left\{\frac{X_{i}}{G_{i}}\right\}$.
Remark 3.3. Condition (iii) in the definition above essentially says that $\overline{X_{i}}$ has a face F_{i} that looks "exactly like" $\overline{X_{k}}$, even taking into account where the lattice points are. It plays the role of the usual condition on polyhedral fans that the set of cones is closed under taking faces. Condition (iv) replaces the usual condition on polyhedral fans that the intersection of two cones is a face of each; here, we instead allow unions of common faces.

Theorem 3.4. The moduli space $M_{g}^{t r}$ is a stacky fan with cells

$$
C(G, w)=\frac{\mathbb{R}_{>0}^{E(G)}}{\operatorname{Aut}(G, w)}
$$

as (G, w) ranges over genus g combinatorial types. Its points are in bijection with tropical curves of genus g.

Proof. Recall that

$$
M_{g}^{\operatorname{tr}}=\frac{\amalg \overline{C(G, w)}}{\sim}
$$

where \sim is the relation generated by contracting zero-length edges. Thus, each equivalence class has a unique representative $\left(G_{0}, w, l\right)$ corresponding to an honest metric graph: one with all edge lengths positive. This gives the desired bijection.

Now we prove that M_{g}^{tr} is a stacky fan. For each (G, w), let

$$
\alpha_{G, w}: \overline{C(G, w)} \rightarrow \frac{\amalg \overline{C\left(G^{\prime}, w^{\prime}\right)}}{\sim}
$$

be the natural map. Now we check each of the requirements to be a stacky fan, in the order (ii), (iii), (iv), (i).

For (ii), the fact that

$$
M_{g}^{\operatorname{tr}}=\coprod C(G, w)
$$

follows immediately from the observation above.
Let us prove (iii). Given a combinatorial type (G, w), the corresponding closed cone is $\mathbb{R}_{\geq 0}^{E(G)}$. A face F of $\mathbb{R}_{\geq 0}^{E(G)}$ corresponds to setting edge lengths of some subset S of the edges to zero. Let $\left(G^{\prime}, w^{\prime}\right)$ be the resulting combinatorial type, and let $\pi: E(G) \backslash S \rightarrow E\left(G^{\prime}\right)$ be the natural bijection (it is well-defined up to $\left(G^{\prime}, w^{\prime}\right)$-automorphisms, but this is enough). Then π induces an invertible linear map

$$
L_{\pi}: \mathbb{R}^{E(G) \backslash S} \longrightarrow \mathbb{R}^{E\left(G^{\prime}\right)}
$$

with the desired properties. Note also that the stacky faces of $\overline{C(G, w)}$ are thus all possible specializations $\overline{C\left(G^{\prime}, w^{\prime}\right)}$.

For (iv), given two combinatorial types (G, w) and $\left(G^{\prime}, w^{\prime}\right)$, then

$$
\overline{C(G, w)} \cap \overline{C\left(G^{\prime}, w^{\prime}\right)}
$$

consists of the union of all cells corresponding to common specializations of (G, w) and $\left(G^{\prime}, w^{\prime}\right)$. As noted above, these are precisely the common stacky faces of $\overline{C(G, w)}$ and $\overline{C\left(G^{\prime}, w^{\prime}\right)}$.

For (i), we show that $\alpha_{G, w}$ restricted to $C(G, w)=\mathbb{R}_{>0}^{E(G)} / \operatorname{Aut}(G, w)$ is a homeomorphism onto its image. It is continuous by definition of $\alpha_{G, w}$ and injective by definition of \sim. Let V be closed in $C(G, w)$, say $V=W \cap C(G, w)$ where W is closed in $\overline{C(G, w)}$. To show that $\alpha_{G, w}(V)$ is closed in $\alpha_{G, w}(C(G, w))$, it suffices to show that $\alpha_{G, w}(W)$ is closed in M_{g}^{tr}. Indeed, the fact that the cells $C(G, w)$ are pairwise disjoint in $M_{g}^{\text {tr }}$ implies that

$$
\alpha_{G, w}(V)=\alpha_{G, w}\left(V^{\prime}\right) \cap \alpha_{G, w}(C(G, w))
$$

Now, note that $M_{g}^{\text {tr }}$ can equivalently be given as the quotient of the space

$$
\coprod_{(G, w)} \mathbb{R}_{\geq 0}^{E(G)}
$$

by all possible linear maps L_{π} arising as in the proof of (iii). All of the maps L_{π} identify faces of cones with other cones. Now let \tilde{W} denote the lift of W to $\mathbb{R}_{\geq 0}^{E(G)}$; then for any other type $\left(G^{\prime}, w^{\prime}\right)$, we see that the set of points in $\mathbb{R}_{\geq 0}^{E\left(G^{\prime}\right)}$ that are identified with some point in \tilde{W}
is both closed and $\operatorname{Aut}\left(G^{\prime}, w^{\prime}\right)$-invariant, and passing to the quotient $\mathbb{R}_{\geq 0}^{E\left(G^{\prime}\right)} / \operatorname{Aut}\left(G^{\prime}, w^{\prime}\right)$ gives the claim.

We close this section with the definition of a morphism of stacky fans. The tropical Torelli map, which we will define in Section 6, will be an example.

Definition 3.5. [5, Definition 2.1.2] Let

$$
X_{1} \subseteq \mathbb{R}^{m_{1}}, \ldots, X_{k} \subseteq \mathbb{R}^{m_{k}}, Y_{1} \subseteq \mathbb{R}^{n_{1}}, \ldots, Y_{l} \subseteq \mathbb{R}^{n_{l}}
$$

be full-dimensional rational open polyhedral cones. Let $G_{1} \subseteq G L_{m_{1}}(\mathbb{Z})$, $\ldots, G_{k} \subseteq G L_{m_{k}}(\mathbb{Z}), H_{1} \subseteq G L_{n_{1}}(\mathbb{Z}), \ldots, H_{l} \subseteq G L_{n_{l}}(\mathbb{Z})$ be groups stabilizing $X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{l}$ respectively. Let X and Y be stacky fans with cells

$$
\left\{\frac{X_{i}}{G_{i}}\right\}_{i=1}^{k},\left\{\frac{Y_{j}}{H_{j}}\right\}_{j=1}^{l}
$$

Denote by α_{i} and β_{j} the maps $\frac{\overline{X_{i}}}{G_{i}} \rightarrow X$ and $\frac{\overline{Y_{j}}}{H_{j}} \rightarrow Y$ that are part of the stacky fan data of X and Y.

Then a morphism of stacky fans from X to Y is a continuous map $\pi: X \rightarrow Y$ such that for each cell X_{i} / G_{i} there exists a cell Y_{j} / H_{j} such that
(i) $\pi\left(\alpha_{i}\left(\frac{X_{i}}{G_{i}}\right)\right) \subseteq \beta_{j}\left(\frac{Y_{j}}{H_{j}}\right)$, and
(ii) there exists an integral-linear map

$$
L: \mathbb{R}^{m_{i}} \rightarrow \mathbb{R}^{n_{j}}
$$

restricting to a map

$$
L: X_{i} \rightarrow Y_{j}
$$

such that the diagram below commutes:

4. Principally polarized tropical abelian varieties

The purpose of this section is to construct the moduli space of principally polarized tropical abelian varieties, denoted A_{g}^{tr}. Our construction is different from the one in [5], though it is still very much inspired by the ideas in that paper. The reason for presenting a new construction here is that a topological subtlety in the construction there prevents their space from being a stacky fan as claimed in [5, Thm. 4.2.4].

We begin in $\S 4.1$ by recalling the definition of a principally polarized tropical abelian variety. In $\S 4.2$, we review the theory of Delone subdivisions and the main theorem of Voroni reduction theory. We construct A_{g}^{tr} in $\S 4.3$ and prove that it is a stacky fan and that it is Hausdorff; we remark on the difference between our construction and the one in [5] in §4.4.

§4.1. Definition of principally polarized tropical abelian vari-

 ety. Fix $g \geq 1$. Following [5], we define a principally polarized tropical abelian variety, or pptav for short, to be a pair$$
\left(\mathbb{R}^{g} / \Lambda, Q\right)
$$

where Λ is a lattice of rank g in \mathbb{R}^{g} (i.e. a discrete subgroup of \mathbb{R}^{g} that is isomorphic to \mathbb{Z}^{g}), and Q is a positive semidefinite quadratic form on \mathbb{R}^{g} whose nullspace is rational with respect to Λ. By this, we mean that the subspace $\operatorname{ker}(Q) \subseteq \mathbb{R}^{g}$ has a vector space basis whose elements are each of the form

$$
a_{1} \lambda_{1}+\cdots+a_{k} \lambda_{k}, \quad a_{i} \in \mathbb{Q}, \lambda_{i} \in \Lambda .
$$

We say that Q has rational nullspace if its nullspace is rational with respect to \mathbb{Z}^{g}.

We say that two pptavs $\left(\mathbb{R}^{g} / \Lambda, Q\right)$ and $\left(\mathbb{R}^{g} / \Lambda^{\prime}, Q^{\prime}\right)$ are isomorphic if there exists a matrix $X \in G L_{g}(\mathbb{R})$ such that

- left multiplication by X^{-1} sends Λ isomorphically to Λ^{\prime}, that is, the map $X^{-1}: \mathbb{R}^{g} \rightarrow \mathbb{R}^{g}$ sending a column vector v to $X^{-1} v$ restricts to an isomorphism of lattices Λ and Λ^{\prime}; and
- $Q^{\prime}=X^{T} Q X$.

Note that any pptav ($\left.\mathbb{R}^{g} / \Lambda, Q\right)$ is isomorphic to one of the form $\left(\mathbb{R}^{g} / \mathbb{Z}^{g}, Q^{\prime}\right)$, namely by taking X to be any matrix sending \mathbb{Z}^{g} to Λ and setting $Q^{\prime}=X^{T} Q X$. Furthermore, $\left(\mathbb{R}^{g} / \mathbb{Z}^{g}, Q\right)$ and $\left(\mathbb{R}^{g} / \mathbb{Z}^{g}, Q^{\prime}\right)$ are isomorphic if and only if there exists $X \in G L_{g}(\mathbb{Z})$ with $X^{T} Q X=Q^{\prime}$.

We are interested in pptavs only up to isomorphism. Therefore, we might be tempted to define the moduli space of pptavs to be the quotient of the topological space $\widetilde{S}_{\geq 0}^{g}$, the space of positive semidefinite matrices with rational nullspace, by the action of $G L_{g}(\mathbb{Z})$. But, as we will see in Section 4.4., this quotient space is unexpectedly thorny: for $g \geq 2$, it is not even Hausdorff!

It turns out that we can solve this problem by first grouping matrices together into cells according to their Delone subdivisions, and then gluing the cells together to obtain the full moduli space. We review the theory of Delone subdivisions next.
§4.2. Voronoi reduction theory. Recall that a matrix has rational nullspace if its kernel has a basis defined over \mathbb{Q}.
Definition 4.1. Let $\widetilde{S}_{\geq 0}^{g}$ denote the set of $g \times g$ positive semidefinite matrices with rational nullspace. By regarding a $g \times g$ symmetric real matrix as a vector in $\mathbb{R}^{\binom{g+1}{2}}$, with one coordinate for each diagonal and above-diagonal entry of the matrix, we view $\widetilde{S}_{\geq 0}^{g}$ as a subset of $\mathbb{R}^{\binom{g+1}{2}}$.

The group $G L_{g}(\mathbb{Z})$ acts on $\widetilde{S}_{\geq 0}^{g}$ on the right by conjugation:

$$
Q \cdot X=X^{T} Q X, \text { for all } X \in G L_{g}(\mathbb{Z}), Q \in \widetilde{S}_{\geq 0}^{g}
$$

Definition 4.2. Given $Q \in \widetilde{S}_{\geq 0}^{g}$, define $\operatorname{Del}(Q)$ as follows. Consider the map $l: \mathbb{Z}^{g} \rightarrow \mathbb{Z}^{g} \times \mathbb{R}$ sending $x \in \mathbb{Z}^{g}$ to $\left(x, x^{T} Q x\right)$. View the image of l as an infinite set of points in \mathbb{R}^{g+1}, one above each point in \mathbb{Z}^{g}, and consider the convex hull of these points. The lower faces of the convex hull (the faces that are visible from $(0,-\infty)$) can now be projected to \mathbb{R}^{g} by the map $\pi: \mathbb{R}^{g+1} \rightarrow \mathbb{R}^{g}$ that forgets the last coordinate. This produces an infinite periodic polyhedral subdivision of \mathbb{R}^{g}, called the Delone subdivision of Q and denoted $\operatorname{Del}(Q)$.

Now, we group together matrices in $\widetilde{S}_{\geq 0}^{g}$ according to the Delone subdivisions to which they correspond.
Definition 4.3. Given a Delone subdivision D, let

$$
\sigma_{D}=\left\{Q \in \widetilde{S}_{\geq 0}^{g}: \operatorname{Del}(Q)=D\right\}
$$

Proposition 4.4. [18, Section 2.2] The set σ_{D} is an open rational polyhedral cone in $\widetilde{S}_{\geq 0}^{g}$.

Let $\overline{\sigma_{D}}$ denote the Euclidean closure of σ_{D} in $\mathbb{R}^{\left(\frac{g+1}{2}\right)}$, so $\overline{\sigma_{D}}$ is a closed rational polyhedral cone. We call it the secondary cone of D. Figure 5 shows the decomposition of $\widetilde{S}_{\geq 0}^{2}$ into secondary cones. Since $\widetilde{S}_{\geq 0}^{2}$ is actually a cone in \mathbb{R}^{3}, we only draw a hyperplane slice of it.

Now, the action of the group $G L_{g}(\mathbb{Z})$ on $\widetilde{S}_{\geq 0}^{g}$ extends naturally to an action on subsets of $\widetilde{S}_{\geq 0}^{g}$, and one may check that, given $X \in G L_{g}(\mathbb{Z})$ and D a Delone subdivision,

$$
\sigma_{D} \cdot X=\sigma_{X^{-1} D} \quad \text { and } \quad \overline{\sigma_{D}} \cdot X=\overline{\sigma_{X^{-1} D}}
$$

So $G L_{g}(\mathbb{Z})$ acts on the set

$$
\left\{\overline{\sigma_{D}}: D \text { is a Delone subdivision of } \mathbb{R}^{g}\right\} .
$$

Furthermore, $G L_{g}(\mathbb{Z})$ acts on the set of Delone subdivisions, with action induced by the action of $G L_{g}(\mathbb{Z})$ on \mathbb{R}^{g}. Here, two cones σ_{D} and $\sigma_{D^{\prime}}$ are $G L_{g}(\mathbb{Z})$-equivalent iff D and D^{\prime} are.

Figure 5. Infinite decomposition of $\widetilde{S}_{\geq 0}^{2}$ into secondary cones.
Theorem 4.5 (Main theorem of Voronoi reduction theory [6, 19]). The set of secondary cones

$$
\left\{\overline{\sigma_{D}}: D \text { is a Delone subdivision of } \mathbb{R}^{g}\right\}
$$

yields an infinite polyhedral fan whose support is $\widetilde{S}_{\geq 0}^{g}$. There are only finitely many $G L_{g}(\mathbb{Z})$-orbits of this set.
§4.3. Construction of A_{g}^{tr}. Equipped with Theorem4.5, we will now construct our tropical moduli space A_{g}^{tr}. We will show that its points are in bijection with the points of $\widetilde{S}_{\geq 0}^{g} / G L_{g}(\mathbb{Z})$, and that it is a stacky fan whose cells correspond to $G L_{g}(\mathbb{Z})$-equivalence classes of Delone subdivisions of \mathbb{R}^{g}.

Definition 4.6. Given a Delone subdivision D of \mathbb{R}^{g}, let

$$
\operatorname{Stab}\left(\sigma_{D}\right)=\left\{X \in G L_{g}(\mathbb{Z}): \sigma_{D} \cdot X=\sigma_{D}\right\}
$$

be the setwise stabilizer of σ_{D}.
Now, the subgroup $\operatorname{Stab}\left(\sigma_{D}\right) \subseteq G L_{g}(\mathbb{Z})$ acts on the open cone σ_{D}, and we may extend this action to an action on its closure $\overline{\sigma_{D}}$.

Definition 4.7. Given a Delone subdivision D of \mathbb{R}^{g}, let

$$
C(D)=\overline{\sigma_{D}} / \operatorname{Stab}\left(\sigma_{D}\right)
$$

Thus, $C(D)$ is the topological space obtained as a quotient of the rational polyhedral cone $\overline{\sigma_{D}}$ by a group action.

Now, by Theorem 4.5, there are only finitely many $G L_{g}(\mathbb{Z})$-orbits of secondary cones $\overline{\sigma_{D}}$. Thus, we may choose D_{1}, \ldots, D_{k} Delone subdivisions of \mathbb{R}^{g} such that $\overline{\sigma_{D_{1}}}, \ldots, \overline{\sigma_{D_{k}}}$ are representatives for $G L_{g}(\mathbb{Z})$ equivalence classes of secondary cones. (Note that we do not need anything like the Axiom of Choice to select these representatives. Rather, we can use Algorithm 1 in [18]. We start with a particular Delone triangulation and then walk across codimension 1 faces to all of the other ones; then we compute the faces of these maximal cones to obtain the nonmaximal ones. The key idea that allows the algorithm to terminate is that all maximal cones are related to each other by finite sequences of "bistellar flips" as described in Section 2.4 of [18]).

Definition 4.8. Let D_{1}, \ldots, D_{k} be Delone subdivisions such that $\overline{\sigma_{D_{1}}}$, $\ldots, \overline{\sigma_{D_{k}}}$ are representatives for $G L_{g}(\mathbb{Z})$-equivalence classes of secondary cones in \mathbb{R}^{g}. Consider the disjoint union

$$
C\left(D_{1}\right) \coprod \cdots \coprod C\left(D_{k}\right),
$$

and define an equivalence relation \sim on it as follows. Given $Q_{i} \in \overline{\sigma\left(D_{i}\right)}$ and $Q_{j} \in \overline{\sigma\left(D_{j}\right)}$, let $\left[Q_{i}\right]$ and $\left[Q_{j}\right]$ be the corresponding elements in $C\left(D_{i}\right)$ and $C\left(D_{j}\right)$, respectively. Now let

$$
\left[Q_{i}\right] \sim\left[Q_{j}\right]
$$

if and only if Q_{i} and Q_{j} are $G L_{g}(\mathbb{Z})$-equivalent matrices in $\widetilde{S}_{\geq 0}^{g}$. Since $\operatorname{Stab}\left(\sigma_{D_{i}}\right), \operatorname{Stab}\left(\sigma_{D_{j}}\right)$ are subgroups of $G L_{g}(\mathbb{Z})$, the relation \sim is defined independently of choice of representatives Q_{i} and Q_{j}, and is clearly an equivalence relation.

We now define the moduli space of principally polarized tropical abelian varieties, denoted A_{g}^{tr}, to be the topological space

$$
A_{g}^{\operatorname{tr}}=\coprod_{i=1}^{k} C\left(D_{k}\right) / \sim
$$

Example 4.9. Let us compute A_{2}^{tr}. Combining the taxonomies in Sections 4.1 and 4.2 of [18], we may choose four representatives $D_{1}, D_{2}, D_{3}, D_{4}$ for orbits of secondary cones as in Figure 6.

Figure 6. Cells of A_{2}^{tr}.

Figure 7. The stacky fan A_{2}^{tr}. The shaded area represents a choice of fundamental domain.

We can describe the corresponding secondary cones as follows: let

$$
\begin{aligned}
R_{12}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right), R_{13} & =\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right), R_{23}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) . \text { Then } \\
\overline{\sigma_{D_{1}}} & =\mathbb{R}_{\geq 0}\left\langle R_{12}, R_{13}, R_{23}\right\rangle, \\
\overline{\sigma_{D_{2}}} & =\mathbb{R}_{\geq 0}\left\langle R_{13}, R_{23}\right\rangle, \\
\overline{\sigma_{D_{3}}} & =\mathbb{R}_{\geq 0}\left\langle R_{13}\right\rangle, \text { and } \\
\overline{\sigma_{D_{4}}} & =\{0\} .
\end{aligned}
$$

Note that each closed cone $\overline{\sigma_{D_{2}}}, \overline{\sigma_{D_{3}}}, \overline{\sigma_{D_{4}}}$ is just a face of $\overline{\sigma_{D_{1}}}$. One may check - and we will, in Section 5 - that for each $j=2,3,4$, two matrices Q, Q^{\prime} in $\overline{\sigma_{D_{j}}}$ are $\operatorname{Stab}\left(\sigma_{D_{j}}\right)$-equivalent if and only if they are $\operatorname{Stab}\left(\sigma_{D_{1}}\right)$-equivalent. Thus, gluing the cones $C\left(D_{2}\right), C\left(D_{3}\right)$, and $C\left(D_{4}\right)$ to $C\left(D_{1}\right)$ does not change $C\left(D_{1}\right)$. We will see in Theorem 5.10 that the action of $\operatorname{Stab}\left(\sigma_{D_{1}}\right)$ on $\overline{\sigma_{D_{1}}}$ is an S_{3}-action that permutes the three rays of $\overline{\sigma_{D_{1}}}$. So we may pick a fundamental domain, say the closed cone

$$
C=\mathbb{R}_{\geq 0}\left\langle\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)\right\rangle,
$$

and conclude that $C\left(D_{1}\right)$, and hence $A_{2}^{\text {tr }}$, is homeomorphic to C. See Figure 7 for a picture of $A_{2}^{\text {tr }}$. Of course, $A_{2}^{\text {tr }}$ has further structure, as the next theorem shows.

Theorem 4.10. The space $A_{g}^{\text {tr }}$ constructed in Definition 4.8 is a stacky fan with cells $\sigma_{D_{i}} / \operatorname{Stab}\left(\sigma_{D_{i}}\right)$ for $i=1, \ldots, k$.

Proof. For each $i=1, \ldots, k$, let α_{i} be the composition

$$
\frac{\overline{\sigma_{D_{i}}}}{\operatorname{Stab}\left(\sigma_{D_{i}}\right)} \stackrel{\gamma_{i}}{\longrightarrow} \coprod_{j=1}^{k} C\left(D_{j}\right) \xrightarrow{q}\left(\coprod_{j=1}^{k} C\left(D_{j}\right)\right) / \sim,
$$

where γ_{i} is the inclusion of $C\left(D_{i}\right)=\frac{\overline{D_{i}}}{\operatorname{Stab}\left(\sigma_{D_{i}}\right)}$ into $\coprod_{j=1}^{k} C\left(D_{j}\right)$ and q is the quotient map. Now we check the four conditions listed in Definition 3.2 for $A_{g}^{\text {tr }}$ to be a stacky fan.

First, we prove that the restriction of α_{i} to $\frac{\sigma_{D_{i}}}{\operatorname{Stab}\left(\sigma_{D_{i}}\right)}$ is a homeomorphism onto its image. Now, α_{i} is continuous since both γ_{i} and π are. To show that $\left.\alpha_{i}\right|_{\frac{\sigma_{D_{i}}}{\operatorname{Stab(\sigma _{D_{i}})}}}$ is one-to-one onto its image, let $Q, Q^{\prime} \in \sigma_{D_{i}}$ such that $\alpha_{i}([Q])=\alpha_{i}\left(\left[Q^{\prime}\right]\right)$. Then $[Q] \sim\left[Q^{\prime}\right]$, so there exists $A \in$ $G L_{g}(\mathbb{Z})$ such that $Q^{\prime}=A^{T} Q A$. Hence $Q^{\prime} \in A^{T} \sigma_{D_{i}} A=\sigma_{A^{-1} D_{i}}$. Thus $\sigma_{A^{-1} D_{i}}$ and $\sigma_{D_{i}}$ intersect, hence $\sigma_{A^{-1} D_{i}}=\sigma_{D_{i}}$ and $A \in \operatorname{Stab}\left(\sigma_{D_{i}}\right)$. So $[Q]=\left[Q^{\prime}\right]$.

Thus, $\left.\alpha_{i}\right|_{\frac{\sigma_{D_{i}}}{\operatorname{Stab}\left(\sigma_{D_{i}}\right)}}$ has a well-defined inverse map, and we wish to show that this inverse map is continuous. Let $X \subseteq \frac{\sigma_{D_{i}}}{\text { Stab } \sigma_{D_{i}}}$ be closed; we wish to show that $\alpha_{i}(X)$ is closed in $\alpha_{i}\left(\frac{\sigma_{D_{i}}}{\operatorname{Stab} \sigma_{D_{i}}}\right)$. Write $X=Y \cap \frac{\sigma_{D_{i}}}{\operatorname{Stab} \sigma_{D_{i}}}$ where $Y \subseteq \frac{\overline{\sigma_{D_{i}}}}{\operatorname{Stab}{\sigma_{i}}_{i}}$ is closed; then since α_{i} is bijective, we have

$$
\alpha_{i}(X)=\alpha_{i}(Y) \cap \alpha_{i}\left(\frac{\sigma_{D_{i}}}{\operatorname{Stab} \sigma_{D_{i}}}\right) .
$$

So we need only show that $\alpha_{i}(Y)$ is closed in A_{g}^{tr}. To be clear: we want to show that given any closed $Y \subseteq \frac{\overline{D_{i}}}{\text { Stab } \sigma_{D_{i}}}$, the image $\alpha_{i}(Y) \subseteq A_{g}^{\text {tr }}$ is closed.

Let $\tilde{Y} \subseteq \overline{\sigma_{D_{i}}}$ be the preimage of Y under the quotient map

$$
\overline{\sigma_{D_{i}}} \longrightarrow \frac{\overline{\sigma_{D_{i}}}}{\operatorname{Stab} \sigma_{D_{i}}} .
$$

Then, for each $j=1, \ldots, k$, let

$$
\tilde{Y}_{j}=\left\{Q \in \overline{\sigma_{D_{j}}}: Q \equiv_{G L_{g}(\mathbb{Z})} Q^{\prime} \text { for some } Q^{\prime} \in \tilde{Y}\right\} \subseteq \overline{\sigma_{D_{j}}} .
$$

We claim each \tilde{Y}_{j} is closed in $\overline{\sigma_{D_{j}}}$. Indeed, given any $A \in G L_{g}(\mathbb{Z})$, the cone $A^{T} \overline{\sigma_{D_{i}}} A$ intersects $\overline{\sigma_{D_{j}}}$ in a (closed) face of $\overline{\sigma_{D_{j}}}$ (after all, the cones form a polyhedral subdivision). Furthermore, \tilde{Y} is invariant
under the action of $\operatorname{Stab} \sigma_{D_{i}}$. Thus there exist finitely many matrices $A_{1}, \ldots, A_{s} \in G L_{g}(\mathbb{Z})$ such that

$$
\tilde{Y}_{j}=\bigcup_{l=1}^{s}\left(A_{l}^{T} \tilde{Y} A_{l} \cap \overline{\sigma_{D_{j}}}\right) .
$$

Now each A_{l} acts homeomorphically, so each $A_{l}^{T} \tilde{Y} A_{l}$ is closed in $A_{l}^{T} \overline{\sigma_{D_{i}}} A_{l}$, hence $A_{l}^{T} \tilde{Y} A_{l} \cap \overline{\sigma_{D_{j}}}$ is closed in $\overline{\sigma_{D_{j}}}$, so \tilde{Y}_{j} is closed.

Finally, let Y_{j} be the image of $\tilde{Y}_{j} \subseteq \overline{\sigma_{D_{j}}}$ under the quotient map

$$
\overline{\sigma_{D_{j}}} \xrightarrow{\pi_{i}} \frac{\overline{\sigma_{D_{j}}}}{\operatorname{Stab} \sigma_{D_{j}}}
$$

Since $\pi_{j}^{-1}\left(Y_{j}\right)=\tilde{Y}_{j}$, we have that Y_{j} is closed.
Then the inverse image of $\alpha_{i}(Y)$ under the quotient map

$$
\coprod_{j=1}^{k} C\left(D_{j}\right) \longrightarrow\left(\coprod_{j=1}^{k} C\left(D_{j}\right)\right) / \sim
$$

is precisely $Y_{1} \coprod \cdots \coprod Y_{k}$, which is closed. Hence $\alpha_{i}(Y)$ is closed. This finishes the proof that $\left.\alpha_{i}\right|_{\frac{\sigma_{D_{i}}}{\operatorname{Stab}\left(\sigma_{D_{i}}\right)}}$ is a homeomorphism onto its image.

Property (ii) of being a stacky fan follows from the fact that any $\operatorname{matrix} Q \in \widetilde{S}_{\geq 0}^{g}$ is $G L_{g}(\mathbb{Z})$-equivalent only to some matrices in a single open cone $\sigma_{D_{i}}$ and no others. Here, $\operatorname{Del}(Q)$ and D_{i} are $G L_{g}(\mathbb{Z})$ equivalent. Thus, given a point in A_{g}^{tr} represented by $Q \in \widetilde{S}_{\geq 0}^{g}, Q$ lies in $\alpha_{i}\left(\frac{\sigma_{D_{i}}}{\operatorname{Stab} \sigma_{D_{i}}}\right)$ and no other $\alpha_{j}\left(\frac{\sigma_{D_{j}}}{\operatorname{Stab} \sigma_{D_{j}}}\right)$, and is the image of a single point in $\frac{\sigma_{D_{i}}}{\operatorname{Stab} \sigma_{D_{i}}}$ since α_{i} was shown to be bijective on $\frac{\sigma_{D_{i}}}{\operatorname{Stab} \sigma_{D_{i}}}$. This shows that $A_{g}^{\operatorname{tr}}=\coprod_{i=1}^{k} \alpha_{i}\left(\frac{\sigma_{D_{i}}}{\operatorname{Stab} \sigma_{D_{i}}}\right)$ as a set.

Third, a face F of some cone $\overline{\sigma_{D_{i}}}$ is $\overline{\sigma_{D(F)}}$, where $D(F)$ is a Delone subdivision that is a coarsening of D_{i} [18, Proposition 2.6.1]. Then there exists D_{j} and $A \in G L_{g}(\mathbb{Z})$ with $\overline{\sigma_{D(F)}} \cdot A=\overline{\sigma_{D_{j}}}$ (recall that A acts on a point $p \in \widetilde{S}_{\geq 0}^{g}$ by $p \mapsto A^{T} p A$). Restricting A to the linear span of $\overline{\sigma_{D(F)}}$ gives an integral-linear map

$$
L: \operatorname{span}\left(\overline{\sigma_{D(F)}}\right) \longrightarrow \operatorname{span}\left(\overline{\sigma_{D_{j}}}\right)
$$

with the desired properties. Note, therefore, that $\overline{\sigma_{D_{k}}}$ is a stacky face of $\overline{\sigma_{D_{i}}}$ precisely if D_{k} is $G L_{g}(\mathbb{Z})$-equivalent to a coarsening of D_{i}.

The fourth property then follows: the intersection

$$
\alpha_{i}\left(\overline{\sigma_{D_{i}}}\right) \cap \alpha_{j}\left(\overline{\sigma_{D_{j}}}\right)=\bigcup \alpha_{k}\left(\sigma_{D_{k}}\right)
$$

where $\sigma_{D_{k}}$ ranges over all common stacky faces.

Proposition 4.11. The construction of $A_{g}^{t r}$ in Definition 4.8 does not depend on our choice of D_{1}, \ldots, D_{k}. More precisely, suppose $D_{1}^{\prime}, \ldots, D_{k}^{\prime}$ are another choice of representatives such that D_{i}^{\prime} and D_{i} are $G L_{g}(\mathbb{Z})$ equivalent for each i. Let $A_{g}^{t r^{\prime}}$ be the corresponding stacky fan. Then there is an isomorphism of stacky fans between $A_{g}^{t r}$ and $A_{g}^{t r^{\prime}}$.
Proof. For each i, choose $A_{i} \in G L_{g}(\mathbb{Z})$ with

$$
\sigma_{D_{i}} \cdot A_{i}=\sigma_{D_{i}^{\prime}} .
$$

Then we obtain a map

$$
C\left(D_{1}\right) \coprod \cdots \coprod C\left(D_{k}\right) \xrightarrow{\left(A_{1}, \ldots, A_{k}\right)} C\left(D_{1}^{\prime}\right) \coprod \cdots \coprod C\left(D_{k}^{\prime}\right)
$$

descending to a map

$$
A_{g}^{\mathrm{tr}} \longrightarrow A_{g}^{\mathrm{tr}^{\prime}}
$$

and this map is an isomorphism of stacky fans, as evidenced by the inverse map $A_{g}^{\operatorname{tr}^{\prime}} \rightarrow A_{g}^{\text {tr }}$ constructed from the matrices $A_{1}^{-1}, \ldots, A_{k}^{-1}$.

Theorem 4.12. The moduli space $A_{g}^{t r}$ is Hausdorff.
Remark 4.13. Theorem 4.12 complements the theorem of Caporaso that M_{g}^{tr} is Hausdorff [6, Theorem 5.2].
Proof. Let $\overline{\sigma_{D_{1}}}, \ldots, \overline{\sigma_{D_{k}}}$ be representatives for $G L_{g}(\mathbb{Z})$-classes of secondary cones. Let us regard $A_{g}^{\text {tr }}$ as a quotient of the cones themselves, rather than the cones modulo their stabilizers, thus

$$
A_{g}^{\operatorname{tr}}=\left(\coprod_{i=1}^{k} \overline{\sigma_{D_{k}}}\right) / \sim
$$

where $\sim \operatorname{denotes} G L_{g}(\mathbb{Z})$-equivalence as usual. Denote by β_{i} the natural maps

$$
\beta_{i}: \overline{\sigma_{D_{i}}} \longrightarrow A_{g}^{\mathrm{tr}}
$$

Now suppose $p \neq q \in A_{g}^{\mathrm{tr}}$. For each $i=1, \ldots, k$, pick disjoint open sets U_{i} and V_{i} in $\overline{\sigma_{D_{i}}}$ such that $\beta_{i}^{-1}(p) \subseteq U_{i}$ and $\beta_{i}^{-1}(q) \subseteq V_{i}$. Let

$$
\begin{aligned}
U & :=\left\{x \in A_{g}^{\operatorname{tr}}: \beta_{i}^{-1}(x) \subseteq U_{i} \text { for all } i\right\}, \\
V & :=\left\{x \in A_{g}^{\operatorname{tr}}: \beta_{i}^{-1}(x) \subseteq V_{i} \text { for all } i\right\} .
\end{aligned}
$$

By construction, we have $p \in U$ and $q \in V$. We claim that U and V are disjoint open sets in A_{g}^{tr}.

Suppose $x \in U \cap V$. Now $\beta_{i}^{-1}(x)$ is nonempty for some i, hence $U_{i} \cap V_{i}$ is nonempty, contradiction. Hence U and V are disjoint. So we
just need to prove that U is open (similarly, V is open). It suffices to show that for each $j=1, \ldots, k$, the set $\beta_{j}^{-1}(U)$ is open. Now,

$$
\begin{aligned}
\beta_{j}^{-1}(U) & =\left\{y \in \overline{\sigma_{D_{j}}}: \beta_{i}^{-1} \beta_{j}(y) \subseteq U_{i} \text { for all } i\right\} \\
& =\bigcap_{i}\left\{y \in \overline{\sigma_{D_{j}}}: \beta_{i}^{-1} \beta_{j}(y) \subseteq U_{i}\right\}
\end{aligned}
$$

Write $U_{i j}$ for the sets in the intersection above, so that $\beta_{j}^{-1}(U)=$ $\bigcap_{i} U_{i j}$, and let $Z_{i}=\overline{\sigma_{D_{i}}} \backslash U_{i}$. Then, just as in the proof of Theorem 4.10, there exist finitely many matrices $A_{1}, \ldots, A_{s} \in G L_{g}(\mathbb{Z})$ such that

$$
\begin{aligned}
\overline{\sigma_{D_{j}}} \backslash U_{i j} & =\left\{y \in \overline{\sigma_{D_{j}}}: y \sim z \text { for some } z \in Z_{i}\right\} \\
& =\bigcup_{l=1}^{s}\left(A_{l}^{T} Z_{i} A_{l} \cap \overline{\sigma_{D_{j}}}\right),
\end{aligned}
$$

which shows that $\overline{\sigma_{D_{j}}} \backslash U_{i j}$ is closed. Thus the $U_{i j}$'s are open and so $\beta_{j}^{-1}(U)$ is open for each j. Hence U is open, and similarly, V is open.
$\S 4.4$. The quotient space $\widetilde{S}_{\geq 0}^{g} / G L_{g}(\mathbb{Z})$. We briefly remark on the construction of $A_{g}^{\text {tr }}$ originally proposed in [5]. There, the strategy is to start with the quotient space $\widetilde{S}_{\geq 0}^{g} / G L_{g}(\mathbb{Z})$ and then hope to equip it directly with a stacky fan structure. But $\widetilde{S}_{\geq 0}^{g} / G L_{g}(\mathbb{Z})$ is not even Hausdorff, as the following example shows.
Example 4.14. Let $\left\{X_{n}\right\}_{n \geq 1}$ and $\left\{Y_{n}\right\}_{n \geq 1}$ be the sequences of matrices

$$
X_{n}=\left(\begin{array}{cc}
1 & \frac{1}{n} \\
\frac{1}{n} & \frac{1}{n^{2}}
\end{array}\right), Y_{n}=\left(\begin{array}{cc}
\frac{1}{n^{2}} & 0 \\
0 & 0
\end{array}\right)
$$

in $\widetilde{S}_{\geq 0}^{2}$. Then we have

$$
\left\{X_{n}\right\} \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left\{Y_{n}\right\} \rightarrow\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

On the other hand, for each $n, X_{n} \equiv_{G L_{2}(\mathbb{Z})} Y_{n}$ even while $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \not \equiv \equiv_{G L_{2}(\mathbb{Z})}$ $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. This example then descends to non-Hausdorffness in the topological quotient. It can easily be generalized to $g>2$.

In particular, we disagree with the claim in the proof of Theorem 4.2.4 of [5] that the open cones σ_{D}, modulo their stabilizers, map homeomorphically onto their image in $\widetilde{S}_{\geq 0}^{g} / G L_{g}(\mathbb{Z})$. Example 4.14 is a counterexample. However, we emphasize that our construction in Section 4.3 is just a minor modification of the ideas already extant in [5].

5. Regular matroids and the zonotopal subfan

In the previous section, we defined the moduli space A_{g}^{tr} of principally polarized tropical abelian varieties. In this section, we describe a particular stacky subfan of $A_{g}^{\text {tr }}$ whose cells are in correspondence with simple regular matroids of rank at most g. This subfan is called the zonotopal subfan and denoted $A_{g}^{\text {zon }}$ because its cells correspond to those classes of Delone triangulations which are dual to zonotopes; see [5, Section 4.4]. The zonotopal subfan $A_{g}^{z o n}$ is important because, as we shall see in Section 6, it contains the image of the Torelli map. For $g \geq 4$, this containment is proper. Our main contribution in this section is to characterize the stabilizing subgroups of all zonotopal cells.

We begin by recalling some basic facts about matroids. A good reference is [15]. The connection between matroids and the Torelli map seems to have been first observed by Gerritzen [10], and our approach here can be seen as an continuation of his work in the late 1970s.

Definition 5.1. A matroid is said to be simple if it has no loops and no parallel elements.

Definition 5.2. A matroid M is regular if it is representable over every field; equivalently, M is regular if it is representable over \mathbb{R} by a totally unimodular matrix. (A totally unimodular matrix is a matrix such that every square submatrix has determinant in $\{0,1,-1\}$.)

Next, we review the correspondence between simple regular matroids and zonotopal cells.

Construction 5.3. Let M be a simple regular matroid of rank at most g, and let A be a $g \times n$ totally unimodular matrix that represents M. Let v_{1}, \ldots, v_{n} be the columns of A. Then let $\sigma_{A} \subseteq \mathbb{R}^{\binom{g+1}{2}}$ be the rational open polyhedral cone

$$
\mathbb{R}_{>0}\left\langle v_{1} v_{1}^{T}, \ldots, v_{n} v_{n}^{T}\right\rangle
$$

Proposition 5.4. [5, Lemma 4.4.3, Theorem 4.4.4] The cone σ_{A} is a secondary cone in $\widetilde{S}_{\geq 0}^{g}$. Choosing a different totally unimodular matrix A^{\prime} to represent M produces a cone $\sigma_{A^{\prime}}$ that is $G L_{g}(\mathbb{Z})$-equivalent to σ_{A}. Thus, we may associate to M a unique cell of $A_{g}^{t r}$, denoted $C(M)$.

Example 5.5. Here is an example of Construction 5.3 at work. Let M be the uniform matroid $U_{2,3}$; equivalently M is the graphic matroid $M\left(K_{3}\right)$. Then the 2×3 matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

represents M, and σ_{A} is the open cone generated by amtrices

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) .
$$

It is the cone $\sigma_{D_{1}}$ in Example 4.9, and is shaded in Figure 7 ,
Definition 5.6. The zonotopal subfan $A_{g}^{\text {zon }}$ is the union of cells

$$
\{C(M): M \text { a simple regular matroid of rank } \leq g\} \quad \text { in } A_{g}^{\mathrm{tr}} .
$$

We briefly recall the definition of the Voronoi polytope of a quadratic form in $\widetilde{S}_{\geq 0}^{g}$, just in order to explain the relationship with zonotopes.

Definition 5.7. Let $Q \in \widetilde{S}_{\geq 0}^{g}$, and let $H=(\operatorname{ker} Q)^{\perp} \subseteq \mathbb{R}^{g}$. Then

$$
\operatorname{Vor}(Q)=\left\{x \in H: x^{T} Q x \leq(x-\lambda)^{T} Q(x-\lambda) \forall \lambda \in \mathbb{Z}^{g}\right\}
$$

is a polytope in $H \subseteq \mathbb{R}^{g}$, called the Voronoi polytope of Q.
Theorem 5.8. [5, Theorem 4.4.4, Definition 4.4.5] The zonotopal subfan $A_{g}^{z o n}$ is a stacky subfan of $A_{g}^{t r}$. It consists of those points of the tropical moduli space $A_{g}^{t r}$ whose Voronoi polytope is a zonotope.

Remark 5.9. Suppose σ is an open rational polyhedral cone in \mathbb{R}^{n} of full dimension. Then any $A \in G L_{n}(\mathbb{Z})$ such that $A \sigma=\sigma$ must permute the rays of $\bar{\sigma}$, since the action of A on $\bar{\sigma}$ is linear. Furthermore, it sends a first lattice point on a ray to another first lattice point; that is, it preserves lattice lengths. Finally, the action of $G L_{n}(\mathbb{Z})$ on $\bar{\sigma}$ is faithful. Thus, the subgroup $\operatorname{Stab}(\sigma) \subseteq G L_{n}(\mathbb{Z})$ can be identified with some subgroup of the permutation group on the rays of $\bar{\sigma}$.

Now, given a simple regular matroid M of rank $\leq g$, we have almost computed the cell of $A_{g}^{\text {tr }}$ to which it corresponds. Specifically, we have computed the cone $\overline{\sigma_{A}}$ for A a matrix representing M, in Construction 5.3. The remaining task is to compute the stabilizer $\operatorname{Stab}\left(\sigma_{A}\right)$.

Note that $\overline{\sigma_{A}}$ has rays corresponding to the columns of A : a column vector v_{i} corresponds to the ray generated by the symmetric rank 1 matrix $v_{i} v_{i}^{T}$. In light of Remark 5.9, we might conjecture that the permutations of rays of $\overline{\sigma_{A}}$ coming from the stabilizer are the ones that respect the matroid M, i.e. come from matroid automorphisms. That is precisely the case and furnishes valuable local information about A_{g}^{tr}.
Theorem 5.10. Let A be a $g \times n$ totally unimodular matrix representing the simple regular matroid M. Then, viewing both the group $\operatorname{Stab}\left(\sigma_{A}\right) \subseteq G L_{g}(\mathbb{Z})$ and $\operatorname{Aut}(M)$ as permutation groups on the elements of M, we have

$$
\operatorname{Stab}\left(\sigma_{A}\right)=\operatorname{Aut}(M)
$$

Remark 5.11. This statement seems to have been known to Gerritzen in [10], but we present a new proof here, one which might be easier to read. Our main tool is the combinatorics of unimodular matrices.

Here is a nice fact about totally unimodular matrices: they are essentially determined by the placement of their zeroes.

Lemma 5.12. [17, Lemma 9.2.6] Suppose A and B are $g \times n$ totally unimodular matrices with the same support, i.e. $a_{i j} \neq 0$ if and only if $b_{i j} \neq 0$ for all i, j. Then A can be transformed into B by negating rows and negating columns.

Lemma 5.13. Let A and B be $g \times n$ totally unimodular matrices, with column vectors v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{n} respectively. Suppose that the map $v_{i} \mapsto w_{i}$ induces an isomorphism of matroids $M[A] \xrightarrow{\cong} M[B]$, i.e. takes independent sets to independent sets and dependent sets to dependent sets. Then there exists $X \in G L_{g}(\mathbb{Z})$ such that

$$
X v_{i}= \pm w_{i}, \text { for each } i=1, \ldots, n .
$$

Proof. First, let $r=\operatorname{rank}(A)=\operatorname{rank}(B)$, noting that the ranks are equal since the matroids are isomorphic. Since the statement of Lemma 5.13 does not depend on the ordering of the columns, we may simultaneously reorder the columns of A and the columns of B and so assume that the first r rows of A (respectively B) form a basis of $M[A]$ (respectively $M[B]$). Furthermore, we may replace A by ΣA and B by $\Sigma^{\prime} B$, where $\Sigma, \Sigma^{\prime} \in G L_{g}(\mathbb{Z})$ are appropriate permutation matrices, and assume that the upper-left-most $r \times r$ submatrix of both A and B have nonzero determinant, in fact determinant ± 1. Then, we can act further on A and B by elements of $G L_{g}(\mathbb{Z})$ so that, without loss of generality, both A and B have the form

$$
\left[\begin{array}{c|c}
\mathrm{Id}_{r \times r} & * \\
\hline 0 & 0
\end{array}\right]
$$

Note that after these operations, A and B are still totally unimodular; this follows from the fact that totally unimodular matrices are closed under multiplication and taking inverses. But then A and B are totally unimodular matrices with the same support. Indeed, the support of a column v_{i} of A, for each $i=r+1, \ldots, n$, is determined by the fundamental circuit of v_{i} with respect to the basis $\left\{v_{1}, \ldots, v_{r}\right\}$ in $M[A]$, and since $M[A] \cong M[B]$, each v_{i} and w_{i} have the same support.

Thus, by Lemma 5.12, there exists a diagonal matrix $X \in G L_{g}(\mathbb{Z})$, whose diagonal entries are ± 1, such that $X A$ can be transformed into B by a sequence of column negations. This is what we claimed.

Proof of Theorem 5.10. Let v_{1}, \ldots, v_{n} be the columns of A. Let $X \in$ $\operatorname{Stab} \sigma_{A}$. Then X acts on the rays of $\overline{\sigma_{A}}$ via

$$
\left(v_{i} v_{i}^{T}\right) \cdot X=X^{T} v_{i} v_{i}^{T} X=v_{j} v_{j}^{T} \text { for some column } v_{j} .
$$

So $v_{j}= \pm X^{T} v_{i}$. But X^{T} is invertible, so a set of vectors $\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}$ is linearly independent if and only if $\left\{X^{T} v_{i_{1}}, \ldots, X^{T} v_{i_{k}}\right\}$ is, so X induces a permutation that is in $\operatorname{Aut}(M)$.

Conversely, suppose we are given $\pi \in \operatorname{Aut}(M)$. Let B be the matrix

$$
B=\left[\begin{array}{ccc}
\mid & & \mid \\
v_{\pi(1)} & \cdots & v_{\pi(n)} \\
\mid & & \mid
\end{array}\right] .
$$

Then $M[A]=M[B]$, so by Lemma 5.13, there exists $X \in G L_{g}(\mathbb{Z})$ such that $X^{T} \cdot v_{i}= \pm v_{\pi(i)}$ for each i. Then

$$
X^{T} v_{i} v_{i}^{T} X=\left(\pm v_{\pi(i)}\right)\left(\pm v_{\pi(i)}^{T}\right)=v_{\pi(i)} v_{\pi(i)}^{T}
$$

so X realizes π as a permutation of the rays of $\overline{\sigma_{A}}$.

6. The tropical Torelli map

The classical Torelli map $t_{g}: \mathcal{M}_{g} \rightarrow \mathcal{A}_{g}$ sends a curve to its Jacobian. We now define the tropical Torelli map as given in (5], and recall the characterization of its image, the so-called Schottky locus, in terms of cographic matroids. We then present a comparison of the number of cells in M_{g}^{tr}, in the Schottky locus, and in A_{g}^{tr}, for small g.

Definition 6.1. The tropical Torelli map

$$
t_{g}^{\mathrm{tr}}: M_{g}^{\operatorname{tr}} \rightarrow A_{g}^{\mathrm{tr}}
$$

is defined as follows. Consider the first homology group $H_{1}(G, \mathbb{R})$ of the graph G, whose elements are formal sums of edges with coefficients in \mathbb{R} lying in the kernel of the boundary map. Given a genus g tropical curve $C=(G, l, w)$, we define a positive semidefinite form Q_{C} on $H_{1}(G, \mathbb{R}) \oplus$ $\mathbb{R}^{|w|}$, where $|w|:=\sum w(v)$. The form is 0 on the second summand $\mathbb{R}^{|w|}$, and on $H_{1}(G, \mathbb{R})$ it is

$$
Q_{C}\left(\sum_{e \in E(G)} \alpha_{e} \cdot e\right)=\sum_{e \in E(G)} \alpha_{e}^{2} \cdot l(e) .
$$

Here, the edges of G are oriented for reference, and the α_{e} are real numbers such that $\sum \alpha_{e} \cdot e \in H_{1}(G, \mathbb{R})$.

Now, pick a basis of $H_{1}(G, \mathbb{Z})$; this identifies $H_{1}(G, \mathbb{Z}) \oplus \mathbb{Z}^{|w|}$ with the lattice \mathbb{Z}^{g}, and hence $H_{1}(G, \mathbb{R}) \oplus \mathbb{R}^{|w|}$ with $\mathbb{R}^{g}=\mathbb{Z}^{g} \otimes_{\mathbb{Z}} \mathbb{R}$. Thus Q_{C} is identified with an element of $\widetilde{S}_{\geq 0}^{g}$. Choosing a different basis
gives another element of $\widetilde{S}_{\geq 0}^{g}$ only up to a $G L_{g}(\mathbb{Z})$-action, so we have produced a well-defined element of A_{g}^{tr}.

Theorem 6.2. [5, Theorem 5.1.5] The map

$$
t_{g}^{t r}: M_{g}^{t r} \rightarrow A_{g}^{t r}
$$

is a morphism of stacky fans.
Note that the proof by Brannetti, Melo, and Viviani of Theorem 6.2 is correct under the new definitions. In particular, the definition of a morphism of stacky fans has not changed.

The following theorem tells us how the tropical Torelli map behaves, at least on the level of stacky cells. Given a graph G, its cographic matroid is denoted $M^{*}(G)$, and $\widetilde{M^{*}(G)}$ is then the matroid obtained by removing loops and replacing each parallel class with a single element. See [5, Definition 2.3.8].
Theorem 6.3. [5, Theorem 5.1.5] The map $t_{g}^{t r}$ sends the cell $C(G, w)$ of $M_{g}^{t r}$ surjectively to the cell $C\left(\widetilde{M^{*}(G)}\right)$.

We denote by $A_{g}^{\text {cogr }}$ the stacky subfan of A_{g}^{tr} consisting of those cells

$$
\{C(M): M \text { a simple cographic matroid of rank } \leq g\}
$$

The cell $C(M)$ was defined in Construction 5.3. Note that $A_{g}^{\text {cogr }}$ sits inside the zonotopal subfan of Section 5:

$$
A_{g}^{\mathrm{cogr}} \subseteq A_{g}^{\mathrm{zon}} \subseteq A_{g}^{\mathrm{tr}}
$$

Also, $A_{g}^{\text {cogr }}=A_{g}^{\operatorname{tr}}$ when $g \leq 3$, but not when $g \geq 4$ ([5, Remark 5.2.5]). The previous theorem says that the image of t_{g}^{tr} is precisely $A_{g}^{\mathrm{cogr}} \subseteq A_{g}^{\mathrm{tr}}$. So, in analogy with the classical situation, we call $A_{g}^{\text {cogr }}$ the tropical Schottky locus.

Figures 1 and 8 illustrate the tropical Torelli map in genus 3. The cells of $M_{3}^{\text {tr }}$ in Figure 1 are color-coded according to the color of the cells of $A_{3}^{\text {tr }}$ in Figure 8 to which they are sent. These figures serve to illustrate the correspondence in Theorem 6.3.

Our contribution in this section is to compute the poset of cells of the $A_{g}^{\text {cogr }}$, for $g \leq 5$, using Mathematica. First, we computed the cographic matroid of each graph of genus $\leq g$, and discarded the ones that were not simple. Then we checked whether any two matroids obtained in this way were in fact isomorphic. Part of this computation was done by hand in the genus 5 case, because it became intractable to check whether two 12 -element matroids were isomorphic. Instead, we used some heuristic tests and then checked by hand that, for the few pairs of matroids passing the tests, the original pair of graphs

-
Figure 8. Poset of cells of $A_{3}^{\operatorname{tr}}=A_{3}^{\mathrm{cogr}}$. Each cell corresponds to a cographic matroid, and for convenience, we draw a graph G in order to represent its cographic matroid $M^{*}(G)$.
were related by a sequence of vertex-cleavings and Whitney flips. This condition ensures that they have the same cographic matroid; see [15].

Theorem 6.4. We obtained the following computational results:
(i) The tropical Schottky locus $A_{3}^{\text {cogr }}$ has nine cells and f-vector

$$
(1,1,1,2,2,1,1) .
$$

Its poset of cells is shown in Figure 8 .
(ii) The tropical Schottky locus $A_{4}^{\text {cogr }}$ has 25 cells and f-vector

$$
(1,1,1,2,3,4,5,4,2,2)
$$

(iii) The tropical Schottky locus $A_{5}^{\text {cogr }}$ has 92 cells and f-vector

$$
(1,1,1,2,3,5,9,12,15,17,15,7,4) .
$$

Remark 6.5. Actually, since $A_{3}^{\mathrm{cogr}}=A_{3}^{\mathrm{tr}}$, the results of part (i) of Theorem 6.4 were already known, say in [18].

Tables 1 and 2 show a comparison of the number of maximal cells and the number of total cells, respectively, of $M_{g}^{\mathrm{tr}}, A_{g}^{\mathrm{cogr}}$, and A_{g}^{tr}. The numbers in the first column of Table 2 were obtained in [13] and in Theorem 2.12. The first column of Table 1 is the work of Balaban [1]. The results in the second column are our contribution in Theorem 6.4. The third columns are due to [8] and [9]; computations for $g>5$ were done by Vallentin [18].

g	M_{g}^{tr}	A_{g}^{cogr}	A_{g}^{tr}
2	2	1	1
3	5	1	1
4	17	2	3
5	71	4	222

Table 1. Number of maximal cells in the stacky fans $M_{g}^{\mathrm{tr}}, A_{g}^{\mathrm{cogr}}$, and A_{g}^{tr}.

g	$M_{g}^{\text {tr }}$	$A_{g}^{\text {cogr }}$	$A_{g}^{\text {tr }}$
2	7	4	4
3	42	9	9
4	379	25	61
5	4555	92	179433

Table 2. Total number of cells in the stacky fans M_{g}^{tr}, A_{g}^{cogr}, and A_{g}^{tr}.

It would be desirable to extend our computations of $A_{g}^{\text {cogr }}$ to $g \geq 6$, but this would require some new ideas on effectively testing matroid isomorphisms.

7. Tropical Curves via Level structure

One problem with the spaces M_{g}^{tr} and A_{g}^{tr} is that although they are tropical moduli spaces, they do not "look" very tropical: they do not satisfy a tropical balancing condition (see [12]). In other words: stacky fans, so far, are not tropical varieties. But what if we allow ourselves to consider finite-index covers of our spaces - can we then produce a more tropical object? In what follows, we answer this question for the spaces A_{2}^{tr} and A_{3}^{tr}. The uniform matroid U_{4}^{2} and the Fano matroid F_{7} play a role. We are grateful to Diane Maclagan for suggesting this question and the approach presented here.

Given $n \geq 1$, let $\mathbb{F P}^{n}$ denote the complete polyhedral fan in \mathbb{R}^{n} associated to projective space \mathbb{P}^{n}, regarded as a toric variety. Concretely, we fix the rays of $\mathbb{F P}^{n}$ to be generated by

$$
e_{1}, \ldots, e_{n}, \quad e_{n+1}:=-e_{1}-\cdots-e_{n},
$$

and each subset of at most n rays spans a cone in $\mathbb{F P}^{n}$. So $\mathbb{F P}^{n}$ has $n+1$ top-dimensional cones. Given $S \subseteq\{1, \ldots, n+1\}$, let cone (S) denote the open cone $\mathbb{R}_{>0}\left\{e_{i}: i \in S\right\}$ in $\mathbb{F P}^{n}$, let cone $(\hat{\imath}):=\operatorname{cone}(\{1, \ldots, \hat{\imath}, \ldots, n+$ $1\}$), and let cone (S) be the closed cone corresponding to S. Note that the polyhedral fan $\mathbb{F P}^{n}$ is also a stacky fan: each open cone can be equipped with trivial symmetries.
§7.1. A tropical cover for A_{3}^{tr}. By the classification in Sections 4.14.3 of [18], we note that

$$
A_{3}^{\operatorname{tr}}=\left(\coprod_{M \subseteq M K_{4}} C(M)\right) / \sim .
$$

In the disjoint union above, the symbol $M K_{4}$ denotes the graphic (equivalently, in this case, cographic) matroid of the graph K_{4}, and $M \subseteq M^{\prime}$ means that M is a submatroid of M^{\prime}, i.e. obtained by deleting elements. The cell $C(M)$ of a regular matroid M was defined in Construction 5.3. There is a single maximal cell $C\left(M K_{4}\right)$ in A_{3}^{tr}, and the other cells are stacky faces of it. The cells are also listed in Figure 8 ,

Now define a continuous map

$$
\pi: \mathbb{F P}^{6} \rightarrow A_{3}^{\operatorname{tr}}
$$

as follows. Let A be a 3×6 unimodular matrix representing $M K_{4}$, for example

$$
A=\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 & -1 & -1
\end{array}\right)
$$

and let $\overline{\sigma_{A}}$ be the cone in $\widetilde{S}_{\geq 0}^{3}$ with rays $\left\{v_{i} v_{i}^{T}\right\}$, where the v_{i} 's are the columns of A, as in Construction 5.3. Fix, once and for all, a Fano matroid structure on the set $\{1, \ldots, 7\}$. For example, we could take F_{7} to have circuits $\{124,235,346,457,156,267,137\}$.

Now, for each $i=1, \ldots, 7$, the deletion $F_{7} \backslash\{i\}$ is isomorphic to $M K_{4}$, so let

$$
\pi_{\hat{\imath}}:[7] \backslash\{i\} \rightarrow E\left(M K_{4}\right)
$$

be any bijection inducing such an isomorphism. Now define

$$
\alpha_{\hat{\imath}}: \overline{\operatorname{cone}(\hat{\imath})} \rightarrow A_{3}^{\operatorname{tr}}
$$

as the composition

$$
\overline{\operatorname{cone}(\hat{\imath})} \xrightarrow{L_{\hat{\imath}}} \overline{\sigma_{A}} \longrightarrow \frac{\overline{\sigma_{A}}}{\operatorname{Stab} \sigma_{A}}=C\left(M K_{4}\right) \longrightarrow A_{3}^{\operatorname{tr}}
$$

where $L_{\hat{\imath}}$ is the integral-linear map arising from $\pi_{\hat{\imath}}$.
Now, each $\alpha_{\hat{\imath}}$ is clearly continuous, and to paste them together into a map on all of $\mathbb{F P}^{6}$, we need to show that they agree on intersections. Thus, fix $i \neq j$ and let $S \subseteq\{1, \ldots, 7\} \backslash\{i, j\}$. We want to show that

$$
\alpha_{\hat{\imath}}=\alpha_{\hat{\jmath}} \text { on } \overline{\operatorname{cone}(S)} .
$$

Indeed, the map $L_{\hat{\imath}}$ sends $\overline{\operatorname{cone}(S)}$ isomorphically to $\overline{\sigma_{\left.A\right|_{\pi_{\hat{\imath}}(S)}}}$, where $\left.A\right|_{\pi_{\hat{\imath}}(S)}$ denotes the submatrix of A gotten by taking the columns indexed by $\pi_{\hat{\imath}}(S)$. Furthermore, the bijection on the rays of the cones agrees with the isomorphism of matroids

$$
\left.\left.F_{7}\right|_{S} \xrightarrow{\cong} M K_{4}\right|_{\pi_{\hat{\imath}}(S)} .
$$

Similarly, $L_{\hat{\jmath}}$ sends $\overline{\operatorname{cone}(S)}$ isomorphically to $\overline{\sigma_{\left.A\right|_{\pi_{\hat{\jmath}}(S)}}}$, and the map on rays agrees with the matroid isomorphism

$$
\left.\left.F_{7}\right|_{S} \xrightarrow{\cong} M K_{4}\right|_{\pi_{\hat{j}}(S)} .
$$

Hence $\left.\left.M K_{4}\right|_{\pi_{\hat{\imath}}(S)} \cong M K_{4}\right|_{\pi_{\hat{\jmath}}(S)}$ and by Theorem 5.10, there exists $X \in$ $G L_{3}(\mathbb{Z})$ such that the diagram commutes:

We conclude that $\alpha_{\hat{\imath}}$ and $\alpha_{\hat{\jmath}}$ agree on $\overline{\operatorname{cone}(S)}$, since $L_{\hat{\imath}}$ and $L_{\hat{\jmath}}$ differ only by a $G L_{3}(\mathbb{Z})$-action.

Therefore, we can glue the seven maps $\alpha_{\hat{\imath}}$ together to obtain a continuous map $\alpha: \mathbb{F P}^{6} \rightarrow A_{3}^{\text {tr }}$.

Theorem 7.1. The map $\alpha: \mathbb{F P}^{6} \rightarrow A_{3}^{\text {tr }}$ is a surjective morphism of stacky fans. Each of the seven maximal cells of $\mathbb{F P}^{6}$ is mapped surjectively onto the maximal cell of $A_{3}^{\text {tr }}$.

Proof. By construction, α sends each cell cone (S) of $\mathbb{F P}^{6}$ surjectively onto the cell of A_{3}^{tr} corresponding to the matroid $\left.F_{7}\right|_{S}$, and each of these maps is induced by some integral-linear map $L_{\hat{\imath}}$. That α is surjective then follows from the fact that every submatroid of $M K_{4}$ is a proper submatroid of F_{7}. Also, by construction, α maps each maximal cell cone $(\hat{\imath})$ of $\mathbb{F P}^{6}$ surjectively to the cell $C\left(M K_{4}\right)$ of A_{3}^{tr}.
$\S 7.2$. A tropical cover for $A_{2}^{\text {tr }}$. Our strategy in Theorem 7.1 for constructing a covering map $\mathbb{F P}^{6} \rightarrow A_{3}^{\text {tr }}$ was to use the combinatorics of the Fano matroid to paste together seven copies of $M K_{4}$ in a coherent way. In fact, an analogous, and easier, argument yields a covering map $\mathbb{F P}^{3} \rightarrow A_{2}^{\mathrm{tr}}$. We will use U_{4}^{2} to paste together four copies of U_{3}^{2}. Here, U_{n}^{d} denotes the uniform rank d matroid on n elements.

The space $A_{2}^{\text {tr }}$ can be given by

$$
A_{2}^{\operatorname{tr}}=\left(\coprod_{M \subseteq U_{3}^{2}} C(M)\right) / \sim .
$$

It has a single maximal cell $C\left(U_{3}^{2}\right)$, and the three other cells are stacky faces of it of dimensions 0,1 , and 2. See Figure 7 .

Analogously to Section 7.1, let

$$
A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

say, and for each $i=1, \ldots, 4$, define

$$
\beta_{\hat{\imath}}: \overline{\operatorname{cone}(\hat{\imath})} \rightarrow A_{2}^{\operatorname{tr}}
$$

by sending $\overline{\text { cone }(\hat{\imath})}$ to $\overline{\sigma_{A}}$ by a bijective linear map preserving lattice points. Here, any of the 3 ! possible maps will do, because the matroid U_{3}^{2} has full automorphisms.

Just as in Section 7.1, we may check that the four maps $\alpha_{\hat{\imath}}$ agree on their overlaps, so we obtain a continuous map

$$
\beta: \mathbb{F P}^{3} \rightarrow A_{2}^{\operatorname{tr}} .
$$

Proposition 7.2. The map $\beta: \mathbb{F P}^{3} \rightarrow A_{2}^{t r}$ is a surjective morphism of stacky fans. Each of the four maximal cells of $\mathbb{F P}^{3}$ maps surjectively onto the maximal cell of $A_{2}^{t r}$.
Proof. The proof is exactly analogous to the proof of Theorem 7.1, Instead of noting that every one-element deletion of F_{7} is isomorphic to $M K_{4}$, we make the easy observation that every one-element deletion of U_{4}^{2} is isomorphic to U_{3}^{2}.
Remark 7.3. We do not know a more general construction for $g \geq 4$. We seem to be relying on the fact that all cells of A_{g}^{tr} are cographic when $g=2$, 3, but this is not true when $g \geq 4$: the Schottky locus is proper.
Remark 7.4. Although our constructions look purely matroidal, they come from level structures on $A_{2}^{\operatorname{tr}}$ and A_{3}^{tr} with respect to the primes $p=3$ and $p=2$, respectively. More precisely, in the genus 2 case, consider the decomposition of $\widetilde{S}_{\geq 0}^{2}$ into secondary cones as in Theorem 4.5, and identify rays $v v^{T}$ and $w w^{T}$ if $v \equiv \pm w(\bmod 3)$. Then we obtain P^{3}. The analogous statement holds, replacing the prime 3 with 2 , in genus 3 .

References

[1] A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976.
[2] A. T. Balaban, Rev. Roumaine Chim. 15 (1970), 463. Also 19 (1974), 1611.
[3] L. Borisov, L. Chen, G. Smith. The orbifold Chow ring of toric DeligneMumford stacks, J. Amer. Math. Soc. 18 (2005), no. 1, 193-215.
[4] T. Brady, The integral cohomology of $\mathrm{Out}_{+}\left(F_{3}\right)$, J. Pure and Applied Algebra 87 (1993) 123-167.
[5] S. Brannetti, M. Melo, F. Viviani, On the tropical Torelli map, Advances in Mathematics 226 (2011) 2546-2586.
[6] L. Caporaso, Geometry of tropical moduli spaces and linkage of graphs, arXiv:1001. 2815.
[7] L. Caporaso, F. Viviani, Torelli theorem for graphs and tropical curves, Duke Math. Journal 153 (2010) 129-171.
[8] P. Engel, The contraction types of parallelohedra in E^{5}, Acta Cryst. A 56 (2002), 491-496.
[9] P. Engel, V. Grishukhin, There are exactly 222 L-types of primitive fivedimensional lattices, European Journal of Combinatorics 23 (2002), 275-279.
[10] L. Gerritzen, Die Jacobi-Abbildung über dem Raum der Mumfordkurven, Math. Ann. 261 (1982), no. 1, 81-100.
[11] S. Grushevsky, The Schottky problem, Proceedings of "Classical algebraic geometry today" workshop (MSRI, January 2009), to appear.
[12] D. Maclagan, B. Sturmfels, Introduction to Tropical Geometry, book manuscript, 2010, available at
http://www.warwick.ac.uk/staff/D.Maclagan/papers/TropicalBook.pdf.
[13] S. Maggiolo, N. Pagani, Generating stable modular graphs, preprint, 2010.
[14] G. Mikhalkin and I. Zharkov, Tropical curves, their Jacobians and theta functions, Contemporary Mathematics 465, Proceedings of the International Conference on Curves and Abelian Varieties in honor of Roy Smith's 65 th birthday (2007), 203-231.
[15] J. Oxley, Matroid Theory, Oxford Univ. Press, New York, 1992.
[16] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.
[17] K. Truemper, Matroid decomposition, Academic Press, Boston, MA, 1992.
[18] F. Vallentin, Sphere coverings, Lattices, and Tilings (in low dimensions). PhD Thesis, Technische Universität München, 2003.
[19] G. F. Voronoï, Nouvelles applications des paramètres continus à la théorie des formes quadratiques, Deuxième Mémoire, Recherches sur les parallélloedres primitifs. Journal für die reine und angewandte Mathematik 134 (1908), 198287 and 136 (1909), 67-181.

E-mail address: mtchan@math.berkeley.edu
Department of Mathematics, University of California, Berkeley

[^0]: Date: December 22, 2010.

