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COMBINATORICS OF THE TROPICAL TORELLI MAP

MELODY CHAN

Abstract. This paper is a combinatorial and computational study
of the moduli space M tr

g
of tropical curves of genus g, the mod-

uli space Atr
g
of principally polarized tropical abelian varieties, and

the tropical Torelli map. These objects were introduced recently by
Brannetti, Melo, and Viviani. Here, we give a new definition of the
category of stacky fans, of which M tr

g
and Atr

g
are objects and the

Torelli map is a morphism. We compute the poset of cells of M tr
g

and of the tropical Schottky locus for genus at most 5. We show
that Atr

g
is Hausdorff, and we also construct a finite-index cover for

the space Atr
3 which satisfies a tropical-type balancing condition.

Many different combinatorial objects, including regular matroids,
positive semidefinite forms, and metric graphs, play a role.
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1. Introduction

This paper is a combinatorial and computational study of the trop-
ical moduli spaces M tr

g and Atr
g and the tropical Torelli map.

There is, of course, a vast (to say the least) literature on the sub-
jects of algebraic curves and moduli spaces in algebraic geometry. For
example, two well-studied objects are the moduli space Mg of smooth
projective complex curves of genus g and the moduli space Ag of g-
dimensional principally polarized abelian varieties. The Torelli map

tg : Mg → Ag

then sends a genus g algebraic curve to its Jacobian, which is a certain
g-dimensional complex torus. The image of tg is called the Torelli locus
or the Schottky locus. The problem of how to characterize the Schottky
locus inside Ag is already very deep: see, for example, the survey of
Grushevsky [11].
The perspective we take in this paper is the perspective of tropical

geometry [12]. From this viewpoint, one replaces algebraic varieties
with piecewise-linear or polyhedral objects. These latter objects are
amenable to combinatorial techniques, but they still carry information
about the former ones. Roughly speaking, the information they carry
has to do with what is happening “at the boundary” or “at the missing
points” of the algebraic object.
For example, the tropical analogue ofMg, denotedM tr

g , parametrizes
certain weighted metric graphs, and it has a poset of cells correspond-
ing to the boundary strata of the Deligne-Mumford compactification
Mg of Mg. Under this correspondence, a stable curve C in Mg is sent
to its so-called dual graph. The irreducible components of C, weighted
by their geometric genus, are the vertices of this graph, and each node
in the intersection of two components is recorded with an edge. The
correspondence in genus 2 is shown in Figure 4. A rigorous proof of
this correspondence was given by Caporaso in [6, Section 5.3].
We remark that the correspondence above yields dual graphs that

are just graphs, not metric graphs. There is not yet in the literature a
sensible way to equip these graphs with edge lengths and thus produce
an actual tropicalization map Mg → M tr

g . So for now, the correspon-

dence between Mg and M tr
g is not as tight as it ultimately should be.

However, we anticipate that forthcoming work on Berkovich spaces by
Baker, Payne, and Rabinoff will address this interesting point.
The starting point of this paper is the recent foundational paper by

Brannetti, Melo, and Viviani [5]. In that paper, the authors rigorously
define a plausible category for tropical moduli spaces called stacky fans.
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(The term “stacky fan” is due to the authors of [5], and is unrelated,
as far as we know, to the construction of Borisov-Chen-Smith in [3]).
They further define the tropical versions M tr

g and Atr
g of Mg and Ag

and a tropical Torelli map between them, and prove many foundational
results, some of which we will review here.
We should also mention the work of Caporaso [6], who proves geo-

metric results on Atr
g considered just as a topological space, and Capo-

raso and Viviani [7], who prove a tropical Torelli theorem stating that
the tropical Torelli map is “mostly” injective. Preceding that work is
the paper of Mikhalkin and Zharkov [14] in which tropical curves and
Jacobians are defined, albeit slightly differently, and studied in detail.
In laying the groundwork for the results we will present here, we ran

into some inconsistencies in [5]. It seems that the definition of a stacky
fan there is inadvertently restrictive. In fact, it excludes M tr

g and Atr
g

themselves from being stacky fans. Also, there is a topological subtlety
in defining Atr

g , which we will address in §4.4. Thus, we find ourself
doing some foundational work here too.
We begin in Section 2 by recalling the definition in [5] of the tropical

moduli space M tr
g and presenting computations, summarized in Theo-

rem 2.12, for g ≤ 5. With M tr
g as a motivating example, we attempt

a better definition of stacky fans in Section 3. In Section 4, we define
the space Atr

g , recalling the necessary but beautiful combinatorics of
Voronoi decompositions along the way, and prove that it is Hausdorff.
Note that our definition of this space, Definition 4.8, is a modification
of the one in [5, Section 4.2], and it corrects a minor error there. In Sec-
tion 5, we study the combinatorics of the zonotopal subfan. We review
the tropical Torelli map in Section 6; Theorem 6.4 presents computa-
tions on the tropical Schottky locus for g ≤ 5. Tables 1 and 2 compare
the number of cells in the stacky fans M tr

g , the Schottky locus, and Atr
g

for g ≤ 5. In Section 7, we partially answer a question suggested by
Diane Maclagan: we give finite-index covers of Atr

2 and Atr
3 that satisfy

a tropical-type balancing condition.

Acknowledgments. The author thanks B. Sturmfels, F. Vallentin,
and D. Maclagan for helpful discussions, F. Vallentin for many use-
ful references and K. Vogtmann for the reference to [4], F. Shokrieh
for insight on Delone subdivisions, and R. Masuda for much help with
typesetting. The author is supported by a Graduate Research Fellow-
ship from the National Science Foundation.
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Figure 1. Poset of cells of M tr
3 , color-coded according

to their images in Atr
3 via the tropical Torelli map.

2. The moduli space of tropical curves

In this section, we review the construction in [5] of the moduli space
of tropical curves of a fixed genus g. This space is denoted M tr

g . Then,
we present explicit computations of these spaces in genus up to 5.

§2.1. Definition of tropical curves. Before constructing the moduli
space of tropical curves, let us review the definition of a tropical curve.
First, recall that a metric graph is a pair (G, l), where G is a finite

connected graph, loops and parallel edges allowed, and l is a function

l : E(G) → R>0
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on the edges of G. We view l as recording lengths of the edges of G.
The genus of a graph G is the rank of its first homology group:

g(G) = |E| − |V |+ 1.

Definition 2.1. A tropical curve C is a triple (G, l, w), where (G, l)
is a metric graph, and w is a weight function

w : V (G) → Z≥0

on the vertices of G, with the property that only vertices with positive
weight may have degree less than 3.

Definition 2.2. Two tropical curves (G, l, w) and (G′, l′, w′) are iso-

morphic if there is an isomorphism of graphs G
∼=
−→ G′ that preserves

edge lengths and preserves vertex weights.

We are interested in tropical curves only up to isomorphism. When
we speak of a tropical curve, we will really mean its isomorphism class.

Definition 2.3. Given a tropical curve C = (G, l, w), write

|w| :=
∑

v∈V (G)

w(v).

Then the genus of C is defined to be

g(C) = g(G) + |w|.

The combinatorial type of C is the pair (G,w), in other words, all
of the data of C except for the edge lengths.

Remark 2.4. Informally, we view a weight of k at a vertex v as k loops,
based at v, of infinitesimally small length. Each infinitesimal loop
contributes once to the genus of C. Furthermore, the property that
only vertices with positive weight may have degree 1 or 2 amounts to
requiring that, were the infinitesimal loops really to exist, every vertex
would have degree at least 3.
Permitting vertex weights will ensure that the moduli space M tr

g ,
once it is constructed, is complete. That is, a sequence of genus g
tropical curves obtained by sending the length of a loop to zero will
still converge to a genus g curve.
Of course, the real reason to permit vertex weights is so that the

combinatorial types of genus g tropical curves correspond precisely to
dual graphs of stable curves in Mg, as discussed in the introduction
and in [6, Section 5.3]. See Figure 4.
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Figure 2. A tropical curve of genus 3. Here, a, b, c are
fixed positive real numbers.

Figure 2 shows an example of a tropical curve C of genus 3. Note that
if we allow the edge lengths l to vary over all positive real numbers,
we obtain all tropical curves of the same combinatorial type as C.
This motivates our construction of the moduli space of tropical curves
below. We will first group together curves of the same combinatorial
type, obtaining one cell for each combinatorial type. Then, we will glue
our cells appropriately to obtain the moduli space.

§2.2. Definition of the moduli space of tropical curves. Fix g ≥
2. Our goal now is to construct a moduli space for genus g tropical
curves, that is, a space whose points correspond to tropical curves of
genus g and whose geometry reflects the geometry of the tropical curves
in a sensible way. The following construction is due to the authors of [5].
First, fix a combinatorial type (G,w) of genus g. What is a parameter

space for all tropical curves of this type? Our first guess might be a

positive orthant R|E(G)|
>0 , that is, a choice of positive length for each

edge ofG. But we have overcounted by symmetries of the combinatorial
type (G,w). For example, in Figure 2, (a, b, c) = (1, 2, 3) and (a, b, c) =
(1, 3, 2) give the same tropical curve.
Furthermore, with foresight, we will allow lengths of zero on our

edges as well, with the understanding that a curve with some zero-
length edges will soon be identified with the curve obtained by con-
tracting those edges. This suggests the following definition:

Definition 2.5. Given a combinatorial type (G,w), let the automor-

phism group Aut(G,w) be the set of all permutations ϕ : E(G) →
E(G) that arise from weight-preserving automorphisms of G. That is,
Aut(G,w) is the set of permutations ϕ : E(G) → E(G) that admit a
permutation π : V (G) → V (G) which preserves the weight function w,
and such that if an edge e ∈ E(G) has endpoints v and w, then ϕ(e)
has endpoints π(v) and π(w).
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Now, the group Aut(G,w) acts naturally on the set E(G), and hence

on the orthant RE(G)
≥0 , with the latter action given by permuting coor-

dinates. We define C(G,w) to be the topological quotient space

C(G,w) =
RE(G)

≥0

Aut(G,w)
.

Next, we define an equivalence relation on the points in the union
∐

C(G,w),

as (G,w) ranges over all combinatorial types of genus g. Regard a point

x ∈ C(G,w) as an assignment of lengths to the edges of G. Now, given

two points x ∈ C(G,w) and x′ ∈ C(G′, w′), identify x and x′ if one of
them is obtained from the other by contracting all edges of length zero.
Note that contracting a loop, say at vertex v, means deleting that loop
and adding 1 to the weight of v. Contracting a nonloop edge, say with
endpoints v1 and v2, means deleting that edge and identifying v1 and
v2 to obtain a new vertex whose weight is w(v1) + w(v2).
Finally, let ∼ be the smallest equivalence relation containing the

identification we have just defined. Now we glue the cells C(G,w)
along ∼ to obtain our moduli space:

Definition 2.6. The moduli space M tr
g is the topological space

M tr
g :=

∐
C(G,w)/∼,

where the disjoint union ranges over all combinatorial types of genus
g, and ∼ is the equivalence relation defined above.

In fact, the space M tr
g carries additional structure: it is an example

of a stacky fan. We will define the category of stacky fans in Section 3.

Example 2.7. Figure 3 is a picture of M tr
2 . Its cells are quotients

of polyhedral cones; the dotted lines represent symmetries, and faces
labeled by the same combinatorial type are in fact identified. The
poset of cells, which we will investigate next for higher g, is shown in
Figure 4. It has two vertices, two edges and two 2-cells.

§2.3. Explicit computations of M tr

g . Our next goal will be to com-
pute the space M tr

g for g at most 5. The computations were done in
Mathematica, and the code is available at

http://math.berkeley.edu/~mtchan/torelli/
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Figure 3. The stacky fan M tr
2 .

What we compute, to be precise, is the partially ordered set Pg on
the cells ofM tr

g . This poset is defined in Lemma 2.9 below. Our results,
summarized in Theorem 2.12 below, provide independent verification
of the first six terms of the sequence A174224 in [16]:

0, 0, 7, 42, 379, 4555, 69808, 1281678, ...

This sequence, along with much more data along these lines, was first
obtained by Maggiolo and Pagani by an algorithm described in [13].

Definition 2.8. Given two combinatorial types (G,w) and (G′, w′)
of genus g, we say that (G′, w′) is a specialization, or contraction,
of (G,w), if it can be obtained from (G,w) by a sequence of edge
contractions. Here, contracting a loop means deleting it and adding 1
to the weight of its base vertex; contracting a nonloop edge, say with
endpoints v1 and v2, means deleting the edge and identifying v1 and v2
to obtain a new vertex whose weight we set to w(v1) + w(v2).

Lemma 2.9. The relation of specialization on genus g combinatorial

types yields a graded partially ordered set Pg on the cells of M tr
g . The

rank of a combinatorial type (G,w) is |E(G)|.

Proof. It is clear that we obtain a poset; furthermore, (G′, w′) is covered
by (G,w) precisely if (G′, w′) is obtained from (G,w) by contracting a
single edge. The formula for rank then follows. �
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Figure 4. Posets of cells of M tr
2 (left) and of Mg (right).

For example, P2 is shown in Figure 4; it also appeared in [5, Figure1].
The poset P3 is shown in Figure 1. It is color-coded according to the
Torelli map, as explained in Section 6.
Our goal is to compute Pg. We do so by first listing its maximal

elements, and then computing all possible specializations of those com-
binatorial types. For the first step, we use Proposition 3.2.4(i) in [5],
which characterizes the maximal cells ofM tr

g : they correspond precisely

to combinatorial types (G, 0), where G is a connected 3-regular graph
of genus g, and 0 is the zero weight function on V (G). Connected, 3-
regular graphs of genus g are equivalently characterized as connected,
3-regular graphs on 2g − 2 vertices. These have been enumerated:

Proposition 2.10. The number of maximal cells of M tr
g is equal to the

(g − 1) term in the sequence

2, 5, 17, 71, 388, 2592, 21096, 204638, 2317172, 30024276, 437469859, . . .

Proof. This is sequence A005967 in [16], the number of connected 3-
regular graphs on 2g vertices. �

In fact, the connected, 3-regular graphs of genus g have been con-
veniently written down for g at most 6. This work was done in the
1970s by Balaban, a chemist whose interests along these lines were in
molecular applications of graph theory. The graphs for g ≤ 5 appear
in his article [1], and the 388 genus 6 graphs appear in [2].
Given the maximal cells of M tr

g , we can compute the rest of them:
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Algorithm 2.11.

Input: Maximal cells of M tr
g

Output: Poset of all cells of M tr
g

1. Initialize Pg to be the set of all maximal cells of M tr
g , with no

relations. Let L be a list of elements of Pg.
2. While L is nonempty:

Let (G,w) be the first element of L. Remove (G,w) from
L. Compute all 1-edge contractions of (G,w).
For each such contraction (G′, w′):

If (G′, w′) is isomorphic to an element (G′′, w′′) al-
ready in the poset Pg, add a cover relation (G′′, w′′) ≤
(G,w).
Else, add (G′, w′) to Pg and add a cover relation
(G′, w′) ≤ (G,w). Add (G′, w′) to the list L.

3. Return Pg.

We implemented this algorithm in Mathematica. The most costly
step is computing graph isomorphisms in Step 2. Our results are sum-
marized in the following theorem. By an f -vector of a poset, we mean
the vector whose i-th entry is the number of elements of rank i− 1.

Theorem 2.12. We obtained the following computational results:

(i) The moduli space M tr
3 has 42 cells and f -vector

(1, 2, 5, 9, 12, 8, 5).

Its face poset P3 is shown in Figure 1.

(ii) The moduli space M tr
4 has 379 cells and f -vector

(1, 3, 7, 21, 43, 75, 89, 81, 42, 17).

(iii) The moduli space M tr
5 has 4555 cells and f -vector

(1, 3, 11, 34, 100, 239, 492, 784, 1002, 926, 632, 260, 71).

The posets P4 and P5 are much too large to display here, but are
available at the website above.

Remark 2.13. The data of P3, illustrated in Figure 1, is related, but
not identical, to the data obtained by T. Brady in [4, Appendix A]. In
that paper, the author enumerates the cells of a certain deformation
retract, called K3, of Culler-Vogtmann Outer Space, modulo the action
of the group Out(F3). In that setting, one only needs to consider
bridgeless graphs with all vertices of weight 0, thus throwing out all
but 8 cells of the poset P3. In turn, the cells ofK3/Out(Fn) correspond
to chains in the poset on those eight cells, and it is these chains that
are listed in Appendix A of [4]. We believe that further exploration of
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the connection between Outer Space and M tr
g would be interesting to

researchers in both tropical geometry and geometric group theory.

3. Stacky fans

In Section 2, we defined the space M tr
g . In Sections 4 and 6, we will

define the space Atr
g and the Torelli map ttrg : M tr

g → Atr
g . For now,

however, let us pause and define the category of stacky fans, of which
M tr

g and Atr
g are objects and ttrg is a morphism. The reader is invited

to keep M tr
g in mind as a running example of a stacky fan.

The purpose of this section is to offer a new definition of stacky fan,
Definition 3.2, which we hope fixes an inconsistency in the definition
by Brannetti, Melo, and Viviani, in Section 2.1 of [5]. We believe that
their condition for integral-linear gluing maps is too restrictive and fails
for M tr

g and Atr
g . However, we do think that their definition of a stacky

fan morphism is correct, so we repeat it in Definition 3.5. We also
prove that M tr

g is a stacky fan according to our new definition. The
proof for Atr

g is deferred to §4.3.

Definition 3.1. A rational open polyhedral cone in Rn is a subset of
Rn of the form {a1x1 + · · · + atxt : ai ∈ R>0}, for some fix vectors
x1, . . . , xt ∈ Zn. By convention, we also allow the trivial cone {0}.

Definition 3.2. Let X1 ⊆ Rm1 , . . . , Xk ⊆ Rmk be full-dimensional
rational open polyhedral cones. For each i = 1, . . . , n, let Gi be a
subgroup of GLmi

(Z) which fixes the cone Xi setwise, and let Xi/Gi

denote the topological quotient thus obtained. The action of Gi on Xi

extends naturally to an action of Gi on the Euclidean closure Xi, and
we let Xi/Gi denote the quotient.
Suppose that we have, for each i = 1, . . . , n, a continuous map

αi :
Xi

Gi

→ X,

and write Ci = αi

(
Xi

Gi

)
and Ci = αi

(
Xi

Gi

)
for each i. Suppose that the

following properties hold for each index i:

(i) The restriction of αi to
Xi

Gi
is a homeomorphism onto Ci,

(ii) We have an equality of sets X =
∐

Ci,
(iii) For each cone Xi and for each face Fi of Xi, αi(Fi) = Ck for

some k. Furthermore, dimFi = dimXk = mk, and there is an
invertible linear map L : span〈Fi〉 ∼= Rmk → Rmk such that

• L(Fi) = Xk,
• L(Zmi ∩ span(Fi)) = Zmk , and
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• the following diagram commutes:

Fi

L

��

&&
MMMMMMMMMMMMMM

Ck

Xk

88qqqqqqqqqqqqq

We say that Ck is a stacky face of Ci in this situation.
(iv) For each pair i, j,

Ci ∩ Cj = Ck1 ∪ · · · ∪ Ckt

for some Ck1, . . . , Ckt, where the Ckl’s range over the common
stacky faces of Ci and Cj .

Then we say that X is a stacky fan, with cells
{

Xi

Gi

}
.

Remark 3.3. Condition (iii) in the definition above essentially says that
Xi has a face Fi that looks “exactly like” Xk, even taking into account
where the lattice points are. It plays the role of the usual condition
on polyhedral fans that the set of cones is closed under taking faces.
Condition (iv) replaces the usual condition on polyhedral fans that the
intersection of two cones is a face of each; here, we instead allow unions
of common faces.

Theorem 3.4. The moduli space M tr
g is a stacky fan with cells

C(G,w) =
RE(G)

>0

Aut(G,w)

as (G,w) ranges over genus g combinatorial types. Its points are in

bijection with tropical curves of genus g.

Proof. Recall that

M tr
g =

∐
C(G,w)

∼
,

where ∼ is the relation generated by contracting zero-length edges.
Thus, each equivalence class has a unique representative (G0, w, l) cor-
responding to an honest metric graph: one with all edge lengths posi-
tive. This gives the desired bijection.
Now we prove that M tr

g is a stacky fan. For each (G,w), let

αG,w : C(G,w) →

∐
C(G′, w′)

∼
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be the natural map. Now we check each of the requirements to be a
stacky fan, in the order (ii), (iii), (iv), (i).
For (ii), the fact that

M tr
g =

∐
C(G,w)

follows immediately from the observation above.
Let us prove (iii). Given a combinatorial type (G,w), the correspond-

ing closed cone is RE(G)
≥0 . A face F of RE(G)

≥0 corresponds to setting edge
lengths of some subset S of the edges to zero. Let (G′, w′) be the result-
ing combinatorial type, and let π : E(G) \ S → E(G′) be the natural
bijection (it is well-defined up to (G′, w′)-automorphisms, but this is
enough). Then π induces an invertible linear map

Lπ : RE(G)\S −→ RE(G′)

with the desired properties. Note also that the stacky faces of C(G,w)

are thus all possible specializations C(G′, w′).
For (iv), given two combinatorial types (G,w) and (G′, w′), then

C(G,w) ∩ C(G′, w′)

consists of the union of all cells corresponding to common specializa-
tions of (G,w) and (G′, w′). As noted above, these are precisely the

common stacky faces of C(G,w) and C(G′, w′).

For (i), we show that αG,w restricted to C(G,w) = RE(G)
>0 /Aut(G,w)

is a homeomorphism onto its image. It is continuous by definition of
αG,w and injective by definition of ∼. Let V be closed in C(G,w), say

V = W ∩C(G,w) where W is closed in C(G,w). To show that αG,w(V )
is closed in αG,w(C(G,w)), it suffices to show that αG,w(W ) is closed
in M tr

g . Indeed, the fact that the cells C(G,w) are pairwise disjoint in
M tr

g implies that

αG,w(V ) = αG,w(V
′) ∩ αG,w(C(G,w)).

Now, note that M tr
g can equivalently be given as the quotient of the

space ∐

(G,w)

RE(G)
≥0

by all possible linear maps Lπ arising as in the proof of (iii). All of the

maps Lπ identify faces of cones with other cones. Now let W̃ denote

the lift of W to RE(G)
≥0 ; then for any other type (G′, w′), we see that

the set of points in RE(G′)
≥0 that are identified with some point in W̃
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is both closed and Aut(G′, w′)-invariant, and passing to the quotient

RE(G′)
≥0 /Aut(G′, w′) gives the claim. �

We close this section with the definition of a morphism of stacky
fans. The tropical Torelli map, which we will define in Section 6, will
be an example.

Definition 3.5. [5, Definition 2.1.2] Let

X1 ⊆ Rm1 , . . . , Xk ⊆ Rmk , Y1 ⊆ Rn1, . . . , Yl ⊆ Rnl

be full-dimensional rational open polyhedral cones. LetG1 ⊆ GLm1(Z),
. . . , Gk ⊆ GLmk

(Z), H1 ⊆ GLn1(Z), . . . , Hl ⊆ GLnl
(Z) be groups sta-

bilizing X1, . . . , Xk, Y1, . . . , Yl respectively. Let X and Y be stacky
fans with cells {

Xi

Gi

}k

i=1

,

{
Yj

Hj

}l

j=1

,

Denote by αi and βj the maps Xi

Gi
→ X and

Yj

Hj
→ Y that are part of

the stacky fan data of X and Y .
Then a morphism of stacky fans from X to Y is a continuous

map π : X → Y such that for each cell Xi/Gi there exists a cell Yj/Hj

such that

(i) π
(
αi

(
Xi

Gi

))
⊆ βj

(
Yj

Hj

)
, and

(ii) there exists an integral-linear map

L : Rmi → Rnj ,

restricting to a map

L : Xi → Yj,

such that the diagram below commutes:

Xi
//

L

��

αi(Xi/Gi)

π

��

Yj
// βj(Yj/Hj)

4. Principally polarized tropical abelian varieties

The purpose of this section is to construct the moduli space of princi-
pally polarized tropical abelian varieties, denoted Atr

g . Our construction
is different from the one in [5], though it is still very much inspired by
the ideas in that paper. The reason for presenting a new construction
here is that a topological subtlety in the construction there prevents
their space from being a stacky fan as claimed in [5, Thm. 4.2.4].
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We begin in §4.1 by recalling the definition of a principally polarized
tropical abelian variety. In §4.2, we review the theory of Delone subdi-
visions and the main theorem of Voroni reduction theory. We construct
Atr

g in §4.3 and prove that it is a stacky fan and that it is Hausdorff;
we remark on the difference between our construction and the one in
[5] in §4.4.

§4.1. Definition of principally polarized tropical abelian vari-

ety. Fix g ≥ 1. Following [5], we define a principally polarized

tropical abelian variety, or pptav for short, to be a pair

(Rg/Λ, Q),

where Λ is a lattice of rank g in Rg (i.e. a discrete subgroup of Rg that
is isomorphic to Zg), and Q is a positive semidefinite quadratic form
on Rg whose nullspace is rational with respect to Λ. By this, we mean
that the subspace ker(Q) ⊆ Rg has a vector space basis whose elements
are each of the form

a1λ1 + · · ·+ akλk, ai ∈ Q, λi ∈ Λ.

We say that Q has rational nullspace if its nullspace is rational with
respect to Zg.
We say that two pptavs (Rg/Λ, Q) and (Rg/Λ′, Q′) are isomorphic if

there exists a matrix X ∈ GLg(R) such that

• left multiplication by X−1 sends Λ isomorphically to Λ′, that
is, the map X−1 : Rg → Rg sending a column vector v to X−1v
restricts to an isomorphism of lattices Λ and Λ′; and

• Q′ = XTQX .

Note that any pptav (Rg/Λ, Q) is isomorphic to one of the form
(Rg/Zg, Q′), namely by taking X to be any matrix sending Zg to Λ
and setting Q′ = XTQX . Furthermore, (Rg/Zg, Q) and (Rg/Zg, Q′) are
isomorphic if and only if there exists X ∈ GLg(Z) with XTQX = Q′.
We are interested in pptavs only up to isomorphism. Therefore,

we might be tempted to define the moduli space of pptavs to be the

quotient of the topological space S̃g
≥0, the space of positive semidefinite

matrices with rational nullspace, by the action of GLg(Z). But, as we
will see in Section 4.4., this quotient space is unexpectedly thorny: for
g ≥ 2, it is not even Hausdorff!
It turns out that we can solve this problem by first grouping matrices

together into cells according to their Delone subdivisions, and then
gluing the cells together to obtain the full moduli space. We review
the theory of Delone subdivisions next.
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§4.2. Voronoi reduction theory. Recall that a matrix has rational
nullspace if its kernel has a basis defined over Q.

Definition 4.1. Let S̃g
≥0 denote the set of g × g positive semidefinite

matrices with rational nullspace. By regarding a g × g symmetric real

matrix as a vector in R(
g+1
2 ), with one coordinate for each diagonal and

above-diagonal entry of the matrix, we view S̃g
≥0 as a subset of R(

g+1
2 ).

The group GLg(Z) acts on S̃g
≥0 on the right by conjugation:

Q ·X = XTQX, for all X ∈ GLg(Z), Q ∈ S̃g
≥0.

Definition 4.2. Given Q ∈ S̃g
≥0, define Del(Q) as follows. Consider

the map l : Zg → Zg ×R sending x ∈ Zg to (x, xTQx). View the image
of l as an infinite set of points in Rg+1, one above each point in Zg, and
consider the convex hull of these points. The lower faces of the convex
hull (the faces that are visible from (0,−∞)) can now be projected to
Rg by the map π : Rg+1 → Rg that forgets the last coordinate. This
produces an infinite periodic polyhedral subdivision of Rg, called the
Delone subdivision of Q and denoted Del(Q).

Now, we group together matrices in S̃g
≥0 according to the Delone

subdivisions to which they correspond.

Definition 4.3. Given a Delone subdivision D, let

σD = {Q ∈ S̃g
≥0 : Del(Q) = D}.

Proposition 4.4. [18, Section 2.2] The set σD is an open rational

polyhedral cone in S̃g
≥0.

Let σD denote the Euclidean closure of σD in R(
g+1
2 ), so σD is a closed

rational polyhedral cone. We call it the secondary cone of D. Figure

5 shows the decomposition of S̃2
≥0 into secondary cones. Since S̃2

≥0 is
actually a cone in R3, we only draw a hyperplane slice of it.

Now, the action of the group GLg(Z) on S̃g
≥0 extends naturally to an

action on subsets of S̃g
≥0, and one may check that, given X ∈ GLg(Z)

and D a Delone subdivision,

σD ·X = σX−1D and σD ·X = σX−1D.

So GLg(Z) acts on the set

{σD : D is a Delone subdivision of Rg}.

Furthermore, GLg(Z) acts on the set of Delone subdivisions, with ac-
tion induced by the action of GLg(Z) on Rg. Here, two cones σD and
σD′ are GLg(Z)-equivalent iff D and D′ are.
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1 -1

-1 1

0 0

0 1

1 1

1 1

1 0

0 0

Figure 5. Infinite decomposition of S̃2
≥0 into secondary cones.

Theorem 4.5 (Main theorem of Voronoi reduction theory [6, 19]). The
set of secondary cones

{σD : D is a Delone subdivision of Rg}

yields an infinite polyhedral fan whose support is S̃g
≥0. There are only

finitely many GLg(Z)-orbits of this set.

§4.3. Construction of Atr

g . Equipped with Theorem 4.5, we will now
construct our tropical moduli space Atr

g . We will show that its points

are in bijection with the points of S̃g
≥0/GLg(Z), and that it is a stacky

fan whose cells correspond to GLg(Z)-equivalence classes of Delone
subdivisions of Rg.

Definition 4.6. Given a Delone subdivision D of Rg, let

Stab(σD) = {X ∈ GLg(Z) : σD ·X = σD}

be the setwise stabilizer of σD.

Now, the subgroup Stab(σD) ⊆ GLg(Z) acts on the open cone σD,
and we may extend this action to an action on its closure σD.

Definition 4.7. Given a Delone subdivision D of Rg, let

C(D) = σD/ Stab(σD).

Thus, C(D) is the topological space obtained as a quotient of the ra-
tional polyhedral cone σD by a group action.
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Now, by Theorem 4.5, there are only finitely many GLg(Z)-orbits
of secondary cones σD. Thus, we may choose D1, . . . , Dk Delone sub-
divisions of Rg such that σD1 , . . . , σDk

are representatives for GLg(Z)-
equivalence classes of secondary cones. (Note that we do not need any-
thing like the Axiom of Choice to select these representatives. Rather,
we can use Algorithm 1 in [18]. We start with a particular Delone tri-
angulation and then walk across codimension 1 faces to all of the other
ones; then we compute the faces of these maximal cones to obtain the
nonmaximal ones. The key idea that allows the algorithm to terminate
is that all maximal cones are related to each other by finite sequences
of “bistellar flips” as described in Section 2.4 of [18]).

Definition 4.8. Let D1, . . . , Dk be Delone subdivisions such that σD1 ,
. . . , σDk

are representatives forGLg(Z)-equivalence classes of secondary
cones in Rg. Consider the disjoint union

C(D1)
∐

· · ·
∐

C(Dk),

and define an equivalence relation ∼ on it as follows. Given Qi ∈ σ(Di)

and Qj ∈ σ(Dj), let [Qi] and [Qj ] be the corresponding elements in
C(Di) and C(Dj), respectively. Now let

[Qi] ∼ [Qj ]

if and only if Qi and Qj are GLg(Z)-equivalent matrices in S̃g
≥0. Since

Stab(σDi
), Stab(σDj

) are subgroups ofGLg(Z), the relation∼ is defined
independently of choice of representatives Qi and Qj , and is clearly an
equivalence relation.
We now define the moduli space of principally polarized trop-

ical abelian varieties, denoted Atr
g , to be the topological space

Atr
g =

k∐

i=1

C(Dk)/ ∼ .

Example 4.9. Let us compute Atr
2 . Combining the taxonomies in Sec-

tions 4.1 and 4.2 of [18], we may choose four representatives D1, D2, D3, D4

for orbits of secondary cones as in Figure 6.

D 1 D 2 D 3 D 4

Figure 6. Cells of Atr
2 .
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D 1

D 2

D 2

D 2

D 3

D 3

D 3

D 4

Figure 7. The stacky fan Atr
2 . The shaded area repre-

sents a choice of fundamental domain.

We can describe the corresponding secondary cones as follows: let

R12 =

(
1 −1
−1 1

)
, R13 =

(
1 0
0 0

)
, R23 =

(
0 0
0 1

)
. Then

σD1 = R≥0〈R12, R13, R23〉,

σD2 = R≥0〈R13, R23〉,

σD3 = R≥0〈R13〉, and

σD4 = {0}.

Note that each closed cone σD2 , σD3 , σD4 is just a face of σD1 . One
may check – and we will, in Section 5 – that for each j = 2, 3, 4,
two matrices Q,Q′ in σDj

are Stab(σDj
)-equivalent if and only if they

are Stab(σD1)-equivalent. Thus, gluing the cones C(D2), C(D3), and
C(D4) to C(D1) does not change C(D1). We will see in Theorem 5.10
that the action of Stab(σD1) on σD1 is an S3-action that permutes the
three rays of σD1 . So we may pick a fundamental domain, say the
closed cone

C = R≥0

〈(
0 0
0 1

)
,

(
1 0
0 1

)
,

(
2 −1
−1 2

)〉
,

and conclude that C(D1), and hence Atr
2 , is homeomorphic to C. See

Figure 7 for a picture of Atr
2 . Of course, Atr

2 has further structure, as
the next theorem shows.
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Theorem 4.10. The space Atr
g constructed in Definition 4.8 is a stacky

fan with cells σDi
/ Stab(σDi

) for i = 1, . . . , k.

Proof. For each i = 1, . . . , k, let αi be the composition

σDi

Stab(σDi
)

γi
−֒→

k∐

j=1

C(Dj)
q

−→

(
k∐

j=1

C(Dj)

)
/∼,

where γi is the inclusion of C(Di) =
σDi

Stab(σDi
)
into

∐k
j=1C(Dj) and q is

the quotient map. Now we check the four conditions listed in Definition
3.2 for Atr

g to be a stacky fan.

First, we prove that the restriction of αi to
σDi

Stab(σDi
)
is a homeomor-

phism onto its image. Now, αi is continuous since both γi and π are.
To show that αi| σDi

Stab(σDi
)

is one-to-one onto its image, let Q,Q′ ∈ σDi

such that αi([Q]) = αi([Q
′]). Then [Q] ∼ [Q′], so there exists A ∈

GLg(Z) such that Q′ = ATQA. Hence Q′ ∈ ATσDi
A = σA−1Di

. Thus
σA−1Di

and σDi
intersect, hence σA−1Di

= σDi
and A ∈ Stab(σDi

). So
[Q] = [Q′].
Thus, αi| σDi

Stab(σDi
)

has a well-defined inverse map, and we wish to show

that this inverse map is continuous. Let X ⊆
σDi

StabσDi

be closed; we wish

to show that αi(X) is closed in αi

(
σDi

Stab σDi

)
. Write X = Y ∩

σDi

Stab σDi

where Y ⊆
σDi

Stab σDi

is closed; then since αi is bijective, we have

αi(X) = αi(Y ) ∩ αi

(
σDi

Stab σDi

)
.

So we need only show that αi(Y ) is closed in Atr
g . To be clear: we want

to show that given any closed Y ⊆
σDi

Stab σDi

, the image αi(Y ) ⊆ Atr
g is

closed.
Let Ỹ ⊆ σDi

be the preimage of Y under the quotient map

σDi
−։

σDi

StabσDi

.

Then, for each j = 1, . . . , k, let

Ỹj = {Q ∈ σDj
: Q ≡GLg(Z) Q

′ for some Q′ ∈ Ỹ } ⊆ σDj
.

We claim each Ỹj is closed in σDj
. Indeed, given any A ∈ GLg(Z),

the cone ATσDi
A intersects σDj

in a (closed) face of σDj
(after all,

the cones form a polyhedral subdivision). Furthermore, Ỹ is invariant
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under the action of StabσDi
. Thus there exist finitely many matrices

A1, . . . , As ∈ GLg(Z) such that

Ỹj =
s⋃

l=1

(
AT

l Ỹ Al ∩ σDj

)
.

Now each Al acts homeomorphically, so each AT
l Ỹ Al is closed inAT

l σDi
Al,

hence AT
l Ỹ Al ∩ σDj

is closed in σDj
, so Ỹj is closed.

Finally, let Yj be the image of Ỹj ⊆ σDj
under the quotient map

σDj

πi

−։
σDj

StabσDj

.

Since π−1
j (Yj) = Ỹj, we have that Yj is closed.

Then the inverse image of αi(Y ) under the quotient map

k∐

j=1

C(Dj) −→

(
k∐

j=1

C(Dj)

)
/∼

is precisely Y1

∐
· · ·
∐

Yk, which is closed. Hence αi(Y ) is closed. This
finishes the proof that αi| σDi

Stab(σDi
)

is a homeomorphism onto its image.

Property (ii) of being a stacky fan follows from the fact that any

matrix Q ∈ S̃g
≥0 is GLg(Z)-equivalent only to some matrices in a sin-

gle open cone σDi
and no others. Here, Del(Q) and Di are GLg(Z)-

equivalent. Thus, given a point in Atr
g represented by Q ∈ S̃g

≥0, Q lies

in αi

(
σDi

Stab σDi

)
and no other αj

(
σDj

Stab σDj

)
, and is the image of a single

point in
σDi

Stab σDi

since αi was shown to be bijective on
σDi

StabσDi

. This

shows that Atr
g =

∐k

i=1 αi

(
σDi

Stab σDi

)
as a set.

Third, a face F of some cone σDi
is σD(F ), where D(F ) is a Delone

subdivision that is a coarsening of Di [18, Proposition 2.6.1]. Then
there exists Dj and A ∈ GLg(Z) with σD(F ) · A = σDj

(recall that A

acts on a point p ∈ S̃g
≥0 by p 7→ AT pA). Restricting A to the linear

span of σD(F ) gives an integral-linear map

L : span(σD(F )) −→ span(σDj
)

with the desired properties. Note, therefore, that σDk
is a stacky face

of σDi
precisely if Dk is GLg(Z)-equivalent to a coarsening of Di.

The fourth property then follows: the intersection

αi(σDi
) ∩ αj(σDj

) =
⋃

αk(σDk
)

where σDk
ranges over all common stacky faces. �
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Proposition 4.11. The construction of Atr
g in Definition 4.8 does not

depend on our choice of D1, . . . , Dk. More precisely, supposeD′
1, . . . , D

′
k

are another choice of representatives such that D′
i and Di are GLg(Z)-

equivalent for each i. Let Atr ′

g be the corresponding stacky fan. Then

there is an isomorphism of stacky fans between Atr
g and Atr ′

g .

Proof. For each i, choose Ai ∈ GLg(Z) with

σDi
· Ai = σD′

i
.

Then we obtain a map

C(D1)
∐

· · ·
∐

C(Dk)
(A1,...,Ak)
−−−−−−→ C(D′

1)
∐

· · ·
∐

C(D′
k)

descending to a map

Atr
g −→ Atr′

g ,

and this map is an isomorphism of stacky fans, as evidenced by the
inverse map Atr′

g → Atr
g constructed from the matrices A−1

1 , . . . , A−1
k .
�

Theorem 4.12. The moduli space Atr
g is Hausdorff.

Remark 4.13. Theorem 4.12 complements the theorem of Caporaso
that M tr

g is Hausdorff [6, Theorem 5.2].

Proof. Let σD1 , . . . , σDk
be representatives for GLg(Z)-classes of sec-

ondary cones. Let us regard Atr
g as a quotient of the cones themselves,

rather than the cones modulo their stabilizers, thus

Atr
g =

(
k∐

i=1

σDk

)
/ ∼

where ∼ denotes GLg(Z)-equivalence as usual. Denote by βi the nat-
ural maps

βi : σDi
−→ Atr

g .

Now suppose p 6= q ∈ Atr
g . For each i = 1, . . . , k, pick disjoint open sets

Ui and Vi in σDi
such that β−1

i (p) ⊆ Ui and β−1
i (q) ⊆ Vi. Let

U := {x ∈ Atr
g : β−1

i (x) ⊆ Ui for all i},

V := {x ∈ Atr
g : β−1

i (x) ⊆ Vi for all i}.

By construction, we have p ∈ U and q ∈ V . We claim that U and V
are disjoint open sets in Atr

g .

Suppose x ∈ U ∩ V . Now β−1
i (x) is nonempty for some i, hence

Ui ∩ Vi is nonempty, contradiction. Hence U and V are disjoint. So we
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just need to prove that U is open (similarly, V is open). It suffices to
show that for each j = 1, . . . , k, the set β−1

j (U) is open. Now,

β−1
j (U) = {y ∈ σDj

: β−1
i βj(y) ⊆ Ui for all i},

=
⋂

i

{y ∈ σDj
: β−1

i βj(y) ⊆ Ui}.

Write Uij for the sets in the intersection above, so that β−1
j (U) =⋂

i Uij , and let Zi = σDi
\ Ui. Then, just as in the proof of Theorem

4.10, there exist finitely many matrices A1, . . . , As ∈ GLg(Z) such that

σDj
\ Uij = {y ∈ σDj

: y ∼ z for some z ∈ Zi}

=

s⋃

l=1

(
AT

l ZiAl ∩ σDj

)
,

which shows that σDj
\ Uij is closed. Thus the Uij ’s are open and

so β−1
j (U) is open for each j. Hence U is open, and similarly, V is

open. �

§4.4. The quotient space S̃g
≥0/GLg(Z). We briefly remark on the

construction of Atr
g originally proposed in [5]. There, the strategy is

to start with the quotient space S̃g
≥0/GLg(Z) and then hope to equip

it directly with a stacky fan structure. But S̃g
≥0/GLg(Z) is not even

Hausdorff, as the following example shows.

Example 4.14. Let {Xn}n≥1 and {Yn}n≥1 be the sequences of matrices

Xn =

(
1 1

n
1
n

1
n2

)
, Yn =

(
1
n2 0
0 0

)

in S̃2
≥0. Then we have

{Xn} →

(
1 0
0 0

)
, {Yn} →

(
0 0
0 0

)
.

On the other hand, for each n, Xn ≡GL2(Z) Yn even while ( 1 0
0 0 ) 6≡GL2(Z)

( 0 0
0 0 ). This example then descends to non-Hausdorffness in the topo-

logical quotient. It can easily be generalized to g > 2.

In particular, we disagree with the claim in the proof of Theorem
4.2.4 of [5] that the open cones σD, modulo their stabilizers, map home-

omorphically onto their image in S̃g
≥0/GLg(Z). Example 4.14 is a coun-

terexample. However, we emphasize that our construction in Section
4.3 is just a minor modification of the ideas already extant in [5].
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5. Regular matroids and the zonotopal subfan

In the previous section, we defined the moduli space Atr
g of princi-

pally polarized tropical abelian varieties. In this section, we describe
a particular stacky subfan of Atr

g whose cells are in correspondence
with simple regular matroids of rank at most g. This subfan is called
the zonotopal subfan and denoted Azon

g because its cells correspond to
those classes of Delone triangulations which are dual to zonotopes; see
[5, Section 4.4]. The zonotopal subfan Azon

g is important because, as
we shall see in Section 6, it contains the image of the Torelli map.
For g ≥ 4, this containment is proper. Our main contribution in this
section is to characterize the stabilizing subgroups of all zonotopal cells.
We begin by recalling some basic facts about matroids. A good

reference is [15]. The connection between matroids and the Torelli map
seems to have been first observed by Gerritzen [10], and our approach
here can be seen as an continuation of his work in the late 1970s.

Definition 5.1. A matroid is said to be simple if it has no loops and
no parallel elements.

Definition 5.2. A matroid M is regular if it is representable over
every field; equivalently, M is regular if it is representable over R by a
totally unimodular matrix. (A totally unimodular matrix is a matrix
such that every square submatrix has determinant in {0, 1,−1}.)

Next, we review the correspondence between simple regular matroids
and zonotopal cells.

Construction 5.3. Let M be a simple regular matroid of rank at most

g, and let A be a g × n totally unimodular matrix that represents M .

Let v1, . . . , vn be the columns of A. Then let σA ⊆ R(
g+1
2 ) be the rational

open polyhedral cone

R>0〈v1v
T
1 , . . . , vnv

T
n 〉.

Proposition 5.4. [5, Lemma 4.4.3, Theorem 4.4.4] The cone σA is a

secondary cone in S̃g
≥0. Choosing a different totally unimodular matrix

A′ to represent M produces a cone σA′ that is GLg(Z)-equivalent to σA.

Thus, we may associate to M a unique cell of Atr
g , denoted C(M).

Example 5.5. Here is an example of Construction 5.3 at work. Let
M be the uniform matroid U2,3; equivalently M is the graphic matroid
M(K3). Then the 2× 3 matrix

A =

(
1 0 1
0 1 −1

)
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represents M , and σA is the open cone generated by amtrices
(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 −1
−1 1

)
.

It is the cone σD1 in Example 4.9, and is shaded in Figure 7.

Definition 5.6. The zonotopal subfan Azon
g is the union of cells

{C(M) : M a simple regular matroid of rank ≤ g} in Atr
g .

We briefly recall the definition of the Voronoi polytope of a quadratic
form in S̃g

≥0, just in order to explain the relationship with zonotopes.

Definition 5.7. Let Q ∈ S̃g
≥0, and let H = (kerQ)⊥ ⊆ Rg. Then

Vor(Q) = {x ∈ H : xTQx ≤ (x− λ)TQ(x− λ) ∀λ ∈ Zg}

is a polytope in H ⊆ Rg, called the Voronoi polytope of Q.

Theorem 5.8. [5, Theorem 4.4.4, Definition 4.4.5] The zonotopal sub-

fan Azon
g is a stacky subfan of Atr

g . It consists of those points of the

tropical moduli space Atr
g whose Voronoi polytope is a zonotope.

Remark 5.9. Suppose σ is an open rational polyhedral cone in Rn of
full dimension. Then any A ∈ GLn(Z) such that Aσ = σ must permute
the rays of σ, since the action of A on σ is linear. Furthermore, it sends
a first lattice point on a ray to another first lattice point; that is, it
preserves lattice lengths. Finally, the action of GLn(Z) on σ is faithful.
Thus, the subgroup Stab(σ) ⊆ GLn(Z) can be identified with some
subgroup of the permutation group on the rays of σ.

Now, given a simple regular matroid M of rank ≤ g, we have almost
computed the cell of Atr

g to which it corresponds. Specifically, we have
computed the cone σA for A a matrix representing M , in Construction
5.3. The remaining task is to compute the stabilizer Stab(σA).
Note that σA has rays corresponding to the columns of A: a column

vector vi corresponds to the ray generated by the symmetric rank 1
matrix viv

T
i . In light of Remark 5.9, we might conjecture that the

permutations of rays of σA coming from the stabilizer are the ones that
respect the matroid M , i.e. come from matroid automorphisms. That
is precisely the case and furnishes valuable local information about Atr

g .

Theorem 5.10. Let A be a g × n totally unimodular matrix repre-

senting the simple regular matroid M . Then, viewing both the group

Stab(σA) ⊆ GLg(Z) and Aut(M) as permutation groups on the ele-

ments of M , we have

Stab(σA) = Aut(M).
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Remark 5.11. This statement seems to have been known to Gerritzen
in [10], but we present a new proof here, one which might be easier to
read. Our main tool is the combinatorics of unimodular matrices.

Here is a nice fact about totally unimodular matrices: they are es-
sentially determined by the placement of their zeroes.

Lemma 5.12. [17, Lemma 9.2.6] Suppose A and B are g × n totally

unimodular matrices with the same support, i.e. aij 6= 0 if and only if

bij 6= 0 for all i, j. Then A can be transformed into B by negating rows

and negating columns.

Lemma 5.13. Let A and B be g×n totally unimodular matrices, with

column vectors v1, . . . , vn and w1, . . . , wn respectively. Suppose that the

map vi 7→ wi induces an isomorphism of matroids M [A]
∼=

−→ M [B],
i.e. takes independent sets to independent sets and dependent sets to

dependent sets. Then there exists X ∈ GLg(Z) such that

Xvi = ±wi, for each i = 1, . . . , n.

Proof. First, let r = rank(A) = rank(B), noting that the ranks are
equal since the matroids are isomorphic. Since the statement of Lemma
5.13 does not depend on the ordering of the columns, we may simulta-
neously reorder the columns of A and the columns of B and so assume
that the first r rows of A (respectively B) form a basis of M [A] (re-
spectively M [B]). Furthermore, we may replace A by ΣA and B by
Σ′B, where Σ,Σ′ ∈ GLg(Z) are appropriate permutation matrices, and
assume that the upper-left-most r×r submatrix of both A and B have
nonzero determinant, in fact determinant ±1. Then, we can act further
on A and B by elements of GLg(Z) so that, without loss of generality,
both A and B have the form[

Idr×r ∗
0 0

]

Note that after these operations, A and B are still totally unimod-
ular; this follows from the fact that totally unimodular matrices are
closed under multiplication and taking inverses. But then A and B
are totally unimodular matrices with the same support. Indeed, the
support of a column vi of A, for each i = r+1, . . . , n, is determined by
the fundamental circuit of vi with respect to the basis {v1, . . . , vr} in
M [A], and since M [A] ∼= M [B], each vi and wi have the same support.
Thus, by Lemma 5.12, there exists a diagonal matrix X ∈ GLg(Z),

whose diagonal entries are ±1, such that XA can be transformed into
B by a sequence of column negations. This is what we claimed. �
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Proof of Theorem 5.10. Let v1, . . . , vn be the columns of A. Let X ∈
StabσA. Then X acts on the rays of σA via

(viv
T
i ) ·X = XTviv

T
i X = vjv

T
j for some column vj .

So vj = ±XTvi. But X
T is invertible, so a set of vectors {vi1 , . . . , vik} is

linearly independent if and only if {XTvi1 , . . . , X
Tvik} is, so X induces

a permutation that is in Aut(M).
Conversely, suppose we are given π ∈ Aut(M). Let B be the matrix

B =




| |
vπ(1) · · · vπ(n)
| |


 .

Then M [A] = M [B], so by Lemma 5.13, there exists X ∈ GLg(Z)
such that XT · vi = ±vπ(i) for each i. Then

XTviv
T
i X = (±vπ(i))(±vπ(i)

T ) = vπ(i)vπ(i)
T

so X realizes π as a permutation of the rays of σA. �

6. The tropical Torelli map

The classical Torelli map tg : Mg → Ag sends a curve to its Jacobian.
We now define the tropical Torelli map as given in [5], and recall the
characterization of its image, the so-called Schottky locus, in terms of
cographic matroids. We then present a comparison of the number of
cells in M tr

g , in the Schottky locus, and in Atr
g , for small g.

Definition 6.1. The tropical Torelli map

ttrg : M tr
g → Atr

g

is defined as follows. Consider the first homology groupH1(G,R) of the
graph G, whose elements are formal sums of edges with coefficients in R
lying in the kernel of the boundary map. Given a genus g tropical curve
C = (G, l, w), we define a positive semidefinite form QC on H1(G,R)⊕
R|w|, where |w| :=

∑
w(v). The form is 0 on the second summand R|w|,

and on H1(G,R) it is

QC(
∑

e∈E(G)

αe · e) =
∑

e∈E(G)

α2
e · l(e).

Here, the edges of G are oriented for reference, and the αe are real
numbers such that

∑
αe · e ∈ H1(G,R).

Now, pick a basis of H1(G,Z); this identifies H1(G,Z) ⊕ Z|w| with
the lattice Zg, and hence H1(G,R) ⊕ R|w| with Rg = Zg ⊗Z R. Thus

QC is identified with an element of S̃g
≥0. Choosing a different basis
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gives another element of S̃g
≥0 only up to a GLg(Z)-action, so we have

produced a well-defined element of Atr
g .

Theorem 6.2. [5, Theorem 5.1.5] The map

ttrg : M tr
g → Atr

g

is a morphism of stacky fans.

Note that the proof by Brannetti, Melo, and Viviani of Theorem 6.2
is correct under the new definitions. In particular, the definition of a
morphism of stacky fans has not changed.
The following theorem tells us how the tropical Torelli map behaves,

at least on the level of stacky cells. Given a graph G, its cographic

matroid is denoted M∗(G), and M̃∗(G) is then the matroid obtained by
removing loops and replacing each parallel class with a single element.
See [5, Definition 2.3.8].

Theorem 6.3. [5, Theorem 5.1.5] The map ttrg sends the cell C(G,w)

of M tr
g surjectively to the cell C(M̃∗(G)).

We denote by Acogr
g the stacky subfan of Atr

g consisting of those cells

{C(M) : M a simple cographic matroid of rank ≤ g}.

The cell C(M) was defined in Construction 5.3. Note that Acogr
g sits

inside the zonotopal subfan of Section 5:

Acogr
g ⊆ Azon

g ⊆ Atr
g .

Also, Acogr
g = Atr

g when g ≤ 3, but not when g ≥ 4 ([5, Remark 5.2.5]).
The previous theorem says that the image of ttrg is precisely Acogr

g ⊆ Atr
g .

So, in analogy with the classical situation, we call Acogr
g the tropical

Schottky locus.
Figures 1 and 8 illustrate the tropical Torelli map in genus 3. The

cells of M tr
3 in Figure 1 are color-coded according to the color of the

cells of Atr
3 in Figure 8 to which they are sent. These figures serve to

illustrate the correspondence in Theorem 6.3.
Our contribution in this section is to compute the poset of cells of

the Acogr
g , for g ≤ 5, using Mathematica. First, we computed the

cographic matroid of each graph of genus ≤ g, and discarded the ones
that were not simple. Then we checked whether any two matroids
obtained in this way were in fact isomorphic. Part of this computation
was done by hand in the genus 5 case, because it became intractable
to check whether two 12-element matroids were isomorphic. Instead,
we used some heuristic tests and then checked by hand that, for the
few pairs of matroids passing the tests, the original pair of graphs
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.
Figure 8. Poset of cells of Atr

3 = Acogr
3 . Each cell cor-

responds to a cographic matroid, and for convenience,
we draw a graph G in order to represent its cographic
matroid M∗(G).

were related by a sequence of vertex-cleavings and Whitney flips. This
condition ensures that they have the same cographic matroid; see [15].

Theorem 6.4. We obtained the following computational results:

(i) The tropical Schottky locus Acogr

3 has nine cells and f -vector

(1, 1, 1, 2, 2, 1, 1).

Its poset of cells is shown in Figure 8.
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(ii) The tropical Schottky locus Acogr

4 has 25 cells and f -vector

(1, 1, 1, 2, 3, 4, 5, 4, 2, 2).

(iii) The tropical Schottky locus Acogr

5 has 92 cells and f -vector

(1, 1, 1, 2, 3, 5, 9, 12, 15, 17, 15, 7, 4).

Remark 6.5. Actually, since Acogr
3 = Atr

3 , the results of part (i) of The-
orem 6.4 were already known, say in [18].

Tables 1 and 2 show a comparison of the number of maximal cells
and the number of total cells, respectively, of M tr

g , A
cogr
g , and Atr

g . The
numbers in the first column of Table 2 were obtained in [13] and in
Theorem 2.12. The first column of Table 1 is the work of Balaban [1].
The results in the second column are our contribution in Theorem 6.4.
The third columns are due to [8] and [9]; computations for g > 5 were
done by Vallentin [18].

g M tr
g Acogr

g Atr
g

2 2 1 1
3 5 1 1
4 17 2 3
5 71 4 222

Table 1. Number of maximal cells in the stacky fans
M tr

g , A
cogr
g , and Atr

g .

g M tr
g Acogr

g Atr
g

2 7 4 4
3 42 9 9
4 379 25 61
5 4555 92 179433

Table 2. Total number of cells in the stacky fans M tr
g ,

Acogr
g , and Atr

g .

It would be desirable to extend our computations of Acogr
g to g ≥ 6,

but this would require some new ideas on effectively testing matroid
isomorphisms.
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7. Tropical curves via level structure

One problem with the spaces M tr
g and Atr

g is that although they are
tropical moduli spaces, they do not “look” very tropical: they do not
satisfy a tropical balancing condition (see [12]). In other words: stacky
fans, so far, are not tropical varieties. But what if we allow ourselves
to consider finite-index covers of our spaces – can we then produce a
more tropical object? In what follows, we answer this question for the
spaces Atr

2 and Atr
3 . The uniform matroid U2

4 and the Fano matroid
F7 play a role. We are grateful to Diane Maclagan for suggesting this
question and the approach presented here.
Given n ≥ 1, let FPn denote the complete polyhedral fan in Rn asso-

ciated to projective space Pn, regarded as a toric variety. Concretely,
we fix the rays of FPn to be generated by

e1, . . . , en, en+1 := −e1 − · · · − en,

and each subset of at most n rays spans a cone in FPn. So FPn has n+1
top-dimensional cones. Given S ⊆ {1, . . . , n+1}, let cone(S) denote the
open cone R>0{ei : i ∈ S} in FPn, let cone(̂ı) := cone({1, . . . , ı̂, . . . , n+

1}), and let cone(S) be the closed cone corresponding to S. Note that
the polyhedral fan FPn is also a stacky fan: each open cone can be
equipped with trivial symmetries.

§7.1. A tropical cover for Atr

3 . By the classification in Sections 4.1–
4.3 of [18], we note that

Atr
3 =

(
∐

M⊆MK4

C(M)

)
/ ∼ .

In the disjoint union above, the symbol MK4 denotes the graphic
(equivalently, in this case, cographic) matroid of the graph K4, and
M ⊆ M ′ means that M is a submatroid of M ′, i.e. obtained by delet-
ing elements. The cell C(M) of a regular matroid M was defined in
Construction 5.3. There is a single maximal cell C(MK4) in Atr

3 , and
the other cells are stacky faces of it. The cells are also listed in Figure 8.
Now define a continuous map

π : FP6 → Atr
3

as follows. Let A be a 3× 6 unimodular matrix representing MK4, for
example

A =



1 0 0 1 1 0
0 1 0 −1 0 1
0 0 1 0 −1 −1


 ,
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and let σA be the cone in S̃3
≥0 with rays {viv

T
i }, where the vi’s are the

columns of A, as in Construction 5.3. Fix, once and for all, a Fano
matroid structure on the set {1, . . . , 7}. For example, we could take F7

to have circuits {124, 235, 346, 457, 156, 267, 137}.
Now, for each i = 1, . . . , 7, the deletion F7 \ {i} is isomorphic to

MK4, so let

πı̂ : [7] \ {i} → E(MK4)

be any bijection inducing such an isomorphism. Now define

αı̂ : cone(̂ı) → Atr
3

as the composition

cone(̂ı)
Lı̂−−→ σA −։

σA

StabσA

= C(MK4) −→ Atr
3

where Lı̂ is the integral-linear map arising from πı̂.
Now, each αı̂ is clearly continuous, and to paste them together into

a map on all of FP6, we need to show that they agree on intersections.
Thus, fix i 6= j and let S ⊆ {1, . . . , 7} \ {i, j}. We want to show that

αı̂ = α̂ on cone(S).

Indeed, the map Lı̂ sends cone(S) isomorphically to σA|πı̂(S)
, where

A|πı̂(S) denotes the submatrix of A gotten by taking the columns in-
dexed by πı̂(S). Furthermore, the bijection on the rays of the cones
agrees with the isomorphism of matroids

F7|S
∼=

−−−→ MK4|πı̂(S).

Similarly, L̂ sends cone(S) isomorphically to σA|π̂(S)
, and the map on

rays agrees with the matroid isomorphism

F7|S
∼=

−−−→ MK4|π̂(S).

Hence MK4|πı̂(S)
∼= MK4|π̂(S) and by Theorem 5.10, there exists X ∈

GL3(Z) such that the diagram commutes:

σA|πı̂(S)

X

��

cone(S)

Lı̂

66mmmmmmmmmmmmm

L̂

((PPPPPPPPPPPPP

σA|π̂(S)
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We conclude that αı̂ and α̂ agree on cone(S), since Lı̂ and L̂ differ
only by a GL3(Z)-action.
Therefore, we can glue the seven maps αı̂ together to obtain a con-

tinuous map α : FP6 → Atr
3 .

Theorem 7.1. The map α : FP6 → Atr
3 is a surjective morphism

of stacky fans. Each of the seven maximal cells of FP6 is mapped

surjectively onto the maximal cell of Atr
3 .

Proof. By construction, α sends each cell cone(S) of FP6 surjectively
onto the cell of Atr

3 corresponding to the matroid F7|S, and each of these
maps is induced by some integral-linear map Lı̂. That α is surjective
then follows from the fact that every submatroid of MK4 is a proper
submatroid of F7. Also, by construction, α maps each maximal cell
cone(̂ı) of FP6 surjectively to the cell C(MK4) of A

tr
3 . �

§7.2. A tropical cover for Atr

2 . Our strategy in Theorem 7.1 for
constructing a covering map FP6 → Atr

3 was to use the combinatorics
of the Fano matroid to paste together seven copies ofMK4 in a coherent
way. In fact, an analogous, and easier, argument yields a covering map
FP3 → Atr

2 . We will use U2
4 to paste together four copies of U2

3 . Here,
Ud
n denotes the uniform rank d matroid on n elements.
The space Atr

2 can be given by

Atr
2 =



∐

M⊆U2
3

C(M)


 / ∼ .

It has a single maximal cell C(U2
3 ), and the three other cells are stacky

faces of it of dimensions 0, 1, and 2. See Figure 7.
Analogously to Section 7.1, let

A =

(
1 0 1
0 1 −1

)
,

say, and for each i = 1, . . . , 4, define

βı̂ : cone(̂ı) → Atr
2

by sending cone(̂ı) to σA by a bijective linear map preserving lattice
points. Here, any of the 3! possible maps will do, because the matroid
U2
3 has full automorphisms.
Just as in Section 7.1, we may check that the four maps αı̂ agree on

their overlaps, so we obtain a continuous map

β : FP3 → Atr
2 .
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Proposition 7.2. The map β : FP3 → Atr
2 is a surjective morphism of

stacky fans. Each of the four maximal cells of FP3 maps surjectively

onto the maximal cell of Atr
2 .

Proof. The proof is exactly analogous to the proof of Theorem 7.1.
Instead of noting that every one-element deletion of F7 is isomorphic
to MK4, we make the easy observation that every one-element deletion
of U2

4 is isomorphic to U2
3 . �

Remark 7.3. We do not know a more general construction for g ≥ 4.
We seem to be relying on the fact that all cells of Atr

g are cographic
when g = 2, 3, but this is not true when g ≥ 4: the Schottky locus is
proper.

Remark 7.4. Although our constructions look purely matroidal, they
come from level structures on Atr

2 and Atr
3 with respect to the primes

p = 3 and p = 2, respectively. More precisely, in the genus 2 case,

consider the decomposition of S̃2
≥0 into secondary cones as in Theorem

4.5, and identify rays vvT and wwT if v ≡ ±w (mod 3). Then we
obtain P 3. The analogous statement holds, replacing the prime 3 with
2, in genus 3.
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