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THE INCIDENCE HOPF ALGEBRA OF GRAPHS

BRANDON HUMPERT AND JEREMY L. MARTIN

Abstract. The graph algebra is a commutative, cocommutative, graded,
connected incidence Hopf algebra, whose basis elements correspond to
finite graphs and whose Hopf product and coproduct admit simple com-
binatorial descriptions. We give a new formula for the antipode in the
graph algebra in terms of acyclic orientations; our formula contains many
fewer terms than Takeuchi’s and Schmitt’s more general formulas for the
antipode in an incidence Hopf algebra. Applications include several for-
mulas (some old and some new) for evaluations of the Tutte polynomial.

1. Introduction

The graph algebra G is a commutative, cocommutative, graded, connected
Hopf algebra, whose basis elements correspond to finite graphs, and whose
Hopf product and coproduct admit simple combinatorial descriptions. The
graph algebra was first considered by Schmitt in the context of incidence
Hopf algebras [Sch94, §12] and furnishes an important example in the work
of Aguiar, Bergeron and Sottile [ABS06, Example 4.5].

In this paper, we derive a nonrecursive formula (Theorem 3.1) for the
Hopf antipode in G. Our formula is specific to the graph algebra in that it
involves acyclic orientations. Therefore, it is not merely a specialization of
the antipode formulas of Takeuchi [Tak71] or Schmitt [Sch94] (in the more
general settings of, respectively, connected bialgebras and incidence Hopf
algebras). Aguiar and Ardila [AA] have independently discovered a more
general antipode formula than ours, in the context of Hopf monoids; their
work will appear in a forthcoming paper.

Our formula turns out to be well suited for studying polynomial graph
invariants, including the Tutte polynomial TG(x, y) (see [BO92]) and various
specializations of it. Specifically, to every graph G and character ζ on the
graph algebra, we associate the function Pζ,G(k) whose value at an integer

k is ζk(G), where the superscript denotes convolution power. For example,
if ζ is the characteristic function of edgeless graphs, then Pζ,G(k) is the
chromatic polynomial of G. In fact, it turns out that Pζ,G(k) is a polynomial
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function of k for all characters ζ, so we may regard Pζ as a map G → C[k]
sending G to Pζ,G(k). This map is in fact a morphism of Hopf algebras; it
is not graded (so it is not quite a morphism of combinatorial Hopf algebras
in the sense of Aguiar, Bergeron and Sottile [ABS06]) but does preserve
the canonical filtration by degree. Together with the antipode formula, this
observation leads to combinatorial interpretations of the convolution inverses
of several natural characters, as we discuss in Section 3.1.

The Tutte polynomial TG(x, y) can itself be viewed as a character on
the graph algebra. We prove that its k-th convolution power itself is a
Tutte evaluation at rational functions in x, y, k (Theorem 4.1). This result
implies several well-known formulas such as Stanley’s formula for acyclic
orientations in terms of the chromatic polynomial [Sta73], as well as some
interpretations of less familiar specializations of the Tutte polynomial, and
an unusual-looking reciprocity relation between complete graphs of different
sizes (Proposition 5.1 and Corollary 5.2).

The authors thank Marcelo Aguiar, Federico Ardila, Diego Cifuentes,
Aaron Lauve, and Vic Reiner for numerous helpful conversations, and two
anonymous referees for valuable assistance in improving the exposition.

2. Hopf algebras

2.1. Basic definitions. We briefly review the basic facts about Hopf alge-
bras, omitting most of the proofs. Good sources for the full details include
Sweedler [Swe69] and (for combinatorial Hopf algebras) Aguiar, Bergeron
and Sottile [ABS06]. For the more general setting of Hopf monoids, see
Aguiar and Mahajan [AM10]. We do not know of specific references for
Lemma 2.1 and Proposition 2.2, but they are well known as part of the
general folklore of (combinatorial) Hopf algebras.

Fix a field F of characteristic 0 (typically F = C). A bialgebra H is a
vector space over F equipped with linear maps

m : H⊗H → H, u : F → H, ∆ : H → H⊗H, ǫ : H → F,

respectively the multiplication, unit, comultiplication, and counit, such that
the following properties are satisfied:

(1) m ◦ (m⊗ I) = m ◦ (I ⊗m) (associativity);
(2) m ◦ (u⊗ I) = m ◦ (I ⊗ u) = I (where I is the identity map on H);
(3) (∆ ⊗ I) ◦∆ = (I ⊗∆) ◦∆ (coassociativity);
(4) (ǫ⊗ I) ◦∆ = (I ⊗ ǫ) ◦∆ = I; and
(5) ∆ and ǫ are multiplicative (equivalently, m and u are comultiplica-

tive).

If there exists a bialgebra automorphism S : H → H such that m ◦ (S ⊗ I) ◦
∆ = m ◦ (I ⊗ S) ◦∆ = u ◦ ǫ, then H is a Hopf algebra and S is its antipode.
It can be shown that S is the unique automorphism of H with this property.
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It is often convenient to write expressions such as coproducts in Sweedler

notation, where the index of summation is suppressed: for instance, ∆(h) =∑
h1 ⊗ h2 rather than ∆(h) =

∑
i h

(i)
1 ⊗ h

(i)
2 .

A Hopf algebra H is graded if H =
⊕

n≥0Hn as vector spaces, and mul-
tiplication and comultiplication respect this decomposition, i.e.,

m(Hi ⊗Hj) ⊆ Hi+j and ∆(Hn) ⊆
∑

i+j=n

Hi ⊗Hj .

If h ∈ Hi, we say that h is homogeneous of degree i. The algebra H is
connected if dim(H0) = 1. Most Hopf algebras arising naturally in combi-
natorics are graded and connected, and every algebra we consider henceforth
will be assumed to have these properties.

Let H be a graded and connected bialgebra. There is a unique Hopf
antipode on H, defined inductively by the formulas

S(h) = h for h ∈ H0, (1a)

(m ◦ (I ⊗ S) ◦∆)(h) = 0 for h ∈ Hi, i > 0. (1b)

Formula (1b) can be rewritten more explicitly using Sweedler notation. If
∆(h) =

∑
h1 ⊗ h2, then

∑
h1S(h2) = 0, so solving for S(h) gives

S(h) = −
∑

h1S(h2), (2)

the sum over all summands in which the degree of h2 is strictly less than
that of h.

A character of a Hopf algebra H is a multiplicative linear map φ : H → F.
The convolution product of two characters is φ ∗ ψ = (φ ⊗ ψ) ◦∆. That is,
if ∆h =

∑
h1 ⊗ h2, then

(φ ∗ ψ)(h) =
∑

φ(h1)ψ(h2)

with both sums in Sweedler notation. We write φk for the k-th convolution
power of φ; if k < 0 then φk = (φ−1)−k. Convolution makes the set of
characters X(H) into a group, with identity ǫ and inverse given by

φ−1 = φ ◦ S. (3)

There is a natural involutive automorphism φ 7→ φ of X(H), given by φ(h) =
(−1)nφ(h) for h ∈ Hn. If H is a graded connected Hopf algebra and ζ ∈
X(H), then the pair (H, ζ) is called a combinatorial Hopf algebra, or CHA for
short. A morphism of CHAs Φ : (H, ζ) → (H′, ζ ′) is a linear transformation
H → H′ that is a morphism of Hopf algebras (i.e., a linear transformation
that preserves the operations of a bialgebra) such that ζ ◦Φ = ζ ′.

2.2. The binomial Hopf algebra. The binomial Hopf algebra is the ring
of polynomials F[k] in one variable k, with the usual multiplicative structure;
comultiplication defined by ∆(f(k)) = f(k ⊗ 1 + 1 ⊗ k) and ∆(1) = 1 ⊗ 1;
counit ǫ(f(k)) = ǫ0(f(k)) = f(0); and character ǫ1(f(k)) = f(1). A theme
of this article, that polynomial invariants of elements of a Hopf algebra H



4 BRANDON HUMPERT AND JEREMY L. MARTIN

can be viewed as the values of a morphism H → F[k]. The main result
in this vein, Proposition 2.2, can be proved with elementary methods, but
we instead give a longer proof that illustrates the connection to the work
of Aguiar, Bergeron, and Sottile [ABS06]. In order to do so, we begin by
reviewing some facts about compositions and quasisymmetric functions; for
more details, see, e.g., [Sta99, §7.19].

Let n be a nonnegative integer. A composition of n is an ordered sequence
α = (α1, . . . , αℓ) of positive integers such that α1+ · · ·+αℓ = n; in this case
we write α � n. The number ℓ = ℓ(α) is the length of α. The corresponding
monomial quasisymmetric function is the formal power series

Mα =
∑

0<i1<···<iℓ

xα1

i1
· · · xαℓ

iℓ
(4)

in countably infinitely many commuting variables {x1, x2, . . . }. The F-vector
space spanned by the Mα is denoted QSym. This is in fact a Hopf algebra,
with the natural addition, multiplication, and unit; counit

ǫ(Mα) =

{
1 if ℓ(α) = 0,

0 if ℓ(α) > 0;

and comultiplication

∆(M(α1,...,αℓ)) =
ℓ∑

i=0

M(α1,...,αi)M(αi+1,...,αℓ).

For F (x1, x2, . . . ) ∈ QSym, let ζQ(F ) be the number obtained by substitut-
ing x1 = 1 and x2 = x3 = · · · = 0. The map ζQ is a character on QSym.
Aguiar, Bergeron, and Sottile [ABS06, Thm. 4.1] proved that (QSym, ζQ)
is a terminal object in the category of CHAs, i.e., that every CHA (H, ζ)
has a unique morphism

Ψ : (H, ζ) → (QSym, ζQ),

given explicitly on h ∈ Hn by

Ψ(h) =
∑

α�n

ζα(h)Mα ;

here ζα : H → F is the composite function

H
∆ℓ−1

−−−→ H⊗ℓ πα−→ Hα1
⊗ · · · ⊗ Hαℓ

ζ⊗ℓ

−−→ F

where ℓ = ℓ(α) is the number of parts of α, and πα is the tensor product of
the canonical projections of H onto the graded pieces Hαi

.
For F (x1, x2, . . . ) ∈ QSym, let ps1k(F ) be the number obtained by substi-

tuting x1 = · · · = xk = 1 and xk+1 = · · · = 0. In particular, ps11 = ζQ. The
map ps1k is a specialization of a map called the principal specialization [Sta99,
pp. 302–303]. By (4), we have

ps1k(Mα) =
k(k − 1) · · · (k − ℓ(α) + 1)

ℓ(α)!
=

(
k

ℓ(α)

)
.
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Accordingly, we can regard ps1k as a map

Π : QSym→ F[k]

sendingMα to ps1k(Mα). (The reason for the apparently redundant notation
is that when we write ps1k, we are regarding k as an integer, while when we
write Π, we are regarding k as the indeterminate in the polynomial ring
F[k].)

Lemma 2.1. The map Π : QSym → F[k] is a morphism of Hopf algebras.

Moreover, ζQ = ǫ1 ◦ Π.

We remark that Π is not a morphism of combinatorial Hopf algebras
because it is not graded (i.e., Π(Mα) is not homogeneous), merely filtered
by degree.

Proof. The definition of ps1k implies that Π is a homomorphism of F-algebras.
To see that it is in fact a Hopf morphism, we must show that (Π⊗Π) ◦∆ =
∆ ◦ Π. It suffices to check this for the basis {Mα}. Let x = k ⊗ 1 and
y = 1⊗ k; then

(Π⊗Π)(∆Mα) = (Π⊗Π)




ℓ∑

j=0

M(α1,...,αj) ⊗M(αj+1,...,αℓ)




=

ℓ∑

j=0

(
x

j

)(
y

ℓ− j

)
=

(
x+ y

ℓ

)
= ∆

(
k

ℓ

)
= ∆(Π(Mα)).

(The third equality is a standard identity of binomial coefficients [Sta97,
Ex. 1.1.17] that holds for all nonnegative integers x, y; therefore, it is an
identity of polynomials.)

For the second assertion of the lemma, we have

ζQ(Mα) =

{
1 if ℓ(α) ≤ 1

0 if ℓ(α) > 1
=

k(k − 1) · · · (k − ℓ+ 1)

ℓ!

∣∣∣
k=1

= ǫ1(Π(Mα)).

�

We now come to the main result of this section. Again, this fact is not
new, but is part of the folklore of (combinatorial) Hopf algebras.

Proposition 2.2 (Polynomiality). For every combinatorial Hopf algebra

(H, ζ), there is a CHA morphism

Pζ : (H, ζ) → (F[k], ǫ1)

mapping h to the unique polynomial Pζ,h(k) such that

Pζ,h(k) = ζk(h) ∀k ∈ Z.

Moreover, if h ∈ Hn, then Pζ,h(k) is a polynomial in k of degree at most n.
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Proof. We will show that Pζ,h(k) = Π(Ψ(h)) for all h ∈ H. It is not hard to
see that Pζ is a vector space homomorphism, so it is sufficient to consider
the case that h is homogeneous of degree n. The desired equality follows
from the calculation

Pζ,h(k) = ζk(h) =
∑

ζ(h1) · · · ζ(hk) (5a)

=
∑

α�n

(
k

ℓ(α)

)
ζα(h) (5b)

= Π
∑

α�n

ζα(h)Mα = Π(Ψ(h)).

The sum in (5a) is Sweedler notation. The only tricky equality is (5b); for
this, note that each summand ζ(h1) · · · ζ(hk) in (5a) arises from an ordered
list (h1, . . . , hk) of homogeneous elements of H whose degrees sum to n. De-
fine the essence of a summand ζ(h1) · · · ζ(hk) to be the sublist of (h1, . . . , hk)
consisting of elements of strictly positive degree. Each equivalence class of
summands with the same essence (hi1 , . . . , hiℓ) contains precisely

(k
ℓ

)
sum-

mands (since by the counit property, the positive-degree factors may occur

in any positions) and thus contributes
(k
ℓ

)
ζ(hi1) · · · ζ(hiℓ) to the sum. Col-

lecting together all equivalence classes whose essences have the same degree
sequence α contributes

( k
ℓ(α)

)
ζα(h).

Finally, observe that
(k
ℓ

)
= k(k−1)···(k−ℓ+1)

ℓ(ℓ−1)···1 is a polynomial in k of degree ℓ,

and that every composition α � n has at most n parts, so Pζ,h(k) is a
polynomial in k of degree at most n. �

One can also prove Proposition 2.2 by direct calculation, for instance, by
showing that Dn+1Pζ,h(k) = 0, where D is the difference operator DP (k) =
P (k)− P (k − 1).

Proposition 2.2 provides a way of translating characters on a Hopf alge-
bra into polynomial invariants of its elements, just as the Aguiar–Bergeron–
Sottile theorem translates characters into quasisymmetric-function invari-
ants. Passing from quasisymmetric functions to polynomials may lose infor-
mation, but may also lead to more explicit formulas.

2.3. Graphs and the graph Hopf algebra. We now describe the Hopf al-
gebra that is the subject of this article. (The literature contains many other
instances of Hopf algebras of graphs; for example, this is not the same Hopf
structure as the algebra studied by Novelli, Thibon and Thiéry [NTT04].)

First, we set up graph-theoretic notation and terminology. The notation
G = (V,E) means that G is a finite, undirected graph with vertex set V and
edge set E; we may then write GV ′,E′ for the subgraph with vertex set V ′

and edge set E′. (We could also write simply (V ′, E′), but we often wish to
emphasize that this graph is a subgraph of G.) Loops and multiple edges are
allowed. The sets of vertices and edges of a graph G will be denoted V (G)
and E(G) respectively; no confusion should arise from this apparent abuse
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of notation. The numbers of vertices, edges and connected components are
denoted n(G), e(G), c(G) respectively (or sometimes n, e, c). The induced
subgraph on a vertex set T ⊆ V will be denoted G|T . The complement of
T will be denoted T . If S and T are vertex sets, then [S, T ] denotes the set
of all edges with one endpoint in S and one endpoint in T . The complete
graph on n vertices is written Kn; note that we permit the possibility n = 0.

The rank rk(F ) of a subset F ⊆ E(G) is the size of any maximal acyclic
subset of F . Meanwhile, the set F is called a flat if, whenever the endpoints
of an edge e are connected by a path in F , then e ∈ F . (These are precisely
the flats of the graphic matroid of G.) Equivalently, F is a flat iff rk(F ′) >
rk(F ) for every F ′ ) F .

For an edge e ∈ E, the contraction G/e is obtained by identifying the two
endpoints of e (which is a trivial step if e is a loop) and then removing e.
For an edge set F ⊆ E, the symbol G/F denotes the graph obtained by suc-
cessively contracting every edge of F (the order does not matter). Observe
that if F is a flat, then G/F contains no loops.

An acyclic orientation of G is a choice of orientation of all the edges that
admits no directed cycles. Let

F(G) = {flats of G},

A(G) = {acyclic orientations of G},

a(G) = |A(G)|.

Note that if G has one or more loops, then a(G) = 0; otherwise, the number
of acyclic orientations is unchanged upon replacing G with its underlying
simple graph.

Now we can define our central object of study. The graph algebra is the
F-vector space G =

⊕
n≥0 Gn, where Gn is the linear span of isomorphism

classes of graphs on n vertices. This is a graded connected Hopf algebra,
with multiplication m(G⊗H) = G ·H = G ⊎H (where ⊎ denotes disjoint
union); unit u(1) = K0; comultiplication

∆(G) =
∑

T⊆V (G)

G|T ⊗G|T ,

and counit

ǫ(G) =

{
1 if n(G) = 0,

0 if n(G) > 0.

The graph algebra is commutative and cocommutative; in particular, its
character group X(G) is abelian. As proved by Schmitt [Sch94, eq. (12.1)],
the antipode in G is given combinatorially by

S(G) =
∑

π

(−1)|π||π|!Gπ

where the sum runs over all ordered partitions π of V (G) into nonempty
sets (or “blocks”), and Gπ is the disjoint union of the induced subgraphs
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on the blocks. This is a consequence of Takeuchi’s more general formula
for connected Hopf algebras [Tak71, Lemma 14]; see also [AM10, §2.3.3 and
§8.4], [AS05, §5], [Mon93].

The graph algebra admits two canonical involutions on characters:

φ(G) = (−1)n(G)φ(G), φ̃(G) = (−1)rk(G)φ(G),

where rk(G) denotes the graph rank of G (that is, the number of edges in
a spanning tree). As always, φ 7→ φ is an automorphism of X(G); on the

other hand, φ 7→ φ̃ is not. The graph algebra was studied by Schmitt [Sch94]
and appears as the chromatic algebra in the work of Aguiar, Bergeron and
Sottile [ABS06], where it is equipped with the character

ζ(G) =

{
1 if G has no edges,

0 if G has at least one edge.
(6)

We will study several characters on G other than ζ.

3. A combinatorial antipode formula

In this section, we prove a new combinatorial formula for the Hopf an-
tipode in G. Unlike Takeuchi’s and Schmitt’s formulas, our formula applies
only to G and and does not generalize to other incidence algebras. On the
other hand, our formula involves many fewer summands, which makes it
useful for enumerative formulas involving characters. As noted in the intro-
duction, Aguiar and Ardila have independently discovered a more general
antipode formula in the context of Hopf monoids.

Theorem 3.1. Let G = (V,E) be a graph with n = |V |. Then

S(G) =
∑

F∈F(G)

(−1)n−rk(F )a(G/F )GV,F .

Proof. We proceed by induction on n. If G has no vertices, i.e., G = K0,
then S(K0) = K0 by (1a). Indeed, F(K0) = {∅}, so the desired formula
reduces to S(K0) = K0.

On the other hand, if G has at least one vertex, then by (2) we have

S(G) = −
∑

∅6=T⊆V

G|T · S(G|T )

= −
∑

∅6=T⊆V

G|T
∑

F∈F(G|
T
)

(−1)n−|T |−rk(F )a(G|T /F )GT ,F

= −
∑

∅6=T⊆V

G|T
∑

F∈F(G|
T
)

∑

O∈A(G|
T
/F )

(−1)n−|T |−rk(F )GT ,F . (7)

Now we establish a bijection which will allow us to interchange the order
of summation.

First, suppose we are given a nonempty vertex set T ⊆ V , a flat F
of G|T , and an acyclic orientation O of G|T /F . Let F ′ = E(G|T ) ∪ F ; this
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is a flat of G. Moreover, we can construct an acyclic orientation O′ of G/F ′

by orienting all edges in [T , T ] as in O, and orienting all edges in [T, T ]
towards T . Let SO′ be the set of sources of O′ (that is, vertices with no
in-edges); then the image T ′ of T under the contraction of F ′ is a nonempty
subset of SO′ .

Second, suppose we are given a flat F ′ of G, an acyclic orientation O′

of G/F ′, and a set T ′ such that ∅ 6= T ′ ⊆ SO′ . Let T be the inverse image
of T ′ under contraction of F ′. Then F = F ′ \ E(G|T ) is a flat of G|T , and
we can construct an acyclic orientation O of G|T /F by orienting all edges
as in O′.

It is straightforward to check that these constructions are inverses. There-
fore, we have a bijection



(T, F,O)

∣∣∣
∅ 6= T ⊆ V (G)
F ∈ F(G|T )
O ∈ A(G|T /F )



 →



(F ′,O′, T ′)

∣∣∣
F ′ ∈ F(G)
O′ ∈ A(G/F ′)
∅ 6= T ′ ⊆ SO′





with the following properties:

• |T ′| is the number of components of G|T ;
• |T |− |T ′| = rk(G|T ) = rk(F ′)− rk(F ), so |T |+rk(F ) = |T ′|+rk(F ′);
• G|T ·GT ,F = GV,F ′ in the graph algebra G.

Therefore, (7) gives

S(G) = −
∑

F ′∈F(G)

∑

O′∈A(G/F ′)

∑

∅6=T ′⊆SO′

(−1)n−|T ′|−rk(F ′)GV,F ′

= −
∑

F ′∈F(G)

(−1)n−rk(F ′)GV,F ′

∑

O′∈A(G/F ′)

∑

∅6=T ′⊆SO′

(−1)|T
′|

=
∑

F ′∈F(G)

(−1)n−rk(F ′)a(G/F ′)GV,F ′ . �

3.1. Inversion of characters. We now apply the antipode formula to give
combinatorial interpretations of several instances of inversion in the group
of characters.

Proposition 3.2. Let Ω be any family of graphs such that G ⊎ H ∈ Ω if

and only if G ∈ Ω and H ∈ Ω; equivalently, such that the function

ψΩ(G) =

{
1 if G ∈ Ω,

0 if G 6∈ Ω

is a character. Then

ψ−1
Ω (G) =

∑

F∈F(G): GV,F∈Ω

(−1)n−rk(F )a(G/F ).
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Proof. From equation (3) and Theorem 3.1, we have

ψ−1
Ω (G) = ψ(SG) =

∑

F

(−1)n−rk(F )a(G/F )ψ(GV,F )

=
∑

F∈Ω

(−1)n−rk(F )a(G/F ). �

Example 3.3. Let Ω be the family of graphs with no edges. Then ψΩ is just
the character ζ of (6), and Pζ,G(k) is the chromatic polynomial χ(G; k) of G.

Therefore, Proposition 3.2 implies that ψ−1
Ω (G) = χ(G;−1) = (−1)na(G), a

classic theorem of Stanley [Sta73].

Example 3.4. Let Ω be the family of acyclic graphs, and let α = ψΩ. Then

α−1(G) =
∑

acyclic flats F

(−1)n−rk(F )a(G/F ).

We examine two special cases. First, suppose that G = Cn, the cycle of
length n. The acyclic flats of G are just the sets of n− 2 or fewer edges, so
an elementary calculation (which we omit) gives α−1(Cn) = (−1)n + 1, the
Euler characteristic of an n-sphere.

For many other families Ω, the Ω-free flats of Cn are just its flats, i.e., the
edge sets of cardinality 6= n−1. In such cases, the same omitted calculation
gives ψ−1

Ω (Cn) = (−1)n.
Second, suppose that G = Kn. Now the acyclic flats of G are matchings,

i.e., sets of edges that cover no vertex more than once. For 0 ≤ m ≤ ⌊n/2⌋,
the number of m-edge matchings is n!/(2m(n − 2m)!m!), and contracting
each such matching yields a graph whose underlying simple graph is Kn−m.
Therefore

α−1(Kn) =

⌊n/2⌋∑

m=0

(−1)n−m n!

2m(n− 2m)!m!
(n−m)!.

Starting at n = 1, these numbers are as follows:

−1, 1, 0, −6, 30, −90, 0, 2520, −22680, 113400, 0, −7484400, . . . .

This is sequence A009775 in [Slo10], for which the exponential generating
function is − tanh(ln(1 + x)).

Example 3.5. Fix any connected graph H. Say that G is H-free if it has
no subgraph isomorphic to H. (This is a stronger condition than saying that
G has no induced subgraph isomorphic to H.) The corresponding avoidance

character ηH is defined by

ηH(G) =

{
1 if G is H-free,

0 otherwise.

Avoidance characters are special cases of the characters described by Propo-
sition 3.2; specifically, ηH = ψΩ, where Ω is the family of graphs with no

http://oeis.org/A009775
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subgraph isomorphic to H. For instance, ηK1
= ǫ and ηK2

= ζ; more gener-
ally, if H = Km,1 is the complete bipartite graph with partite sets of sizes
m and 1, then the corresponding avoidance character ηH detects whether or
not G has maximum degree strictly less than m. In general, for an avoid-
ance character ηH , the summands in Proposition 3.2 include only the H-free
flats.

In the case that T is a tree, every subset F ⊆ E(T ) is a flat, and every

contraction T/F is acyclic, so all 2e(T/F ) orientations of T/F are acyclic.
Therefore, Proposition 3.2 simplifies to

η−1
H (T ) =

∑

F

(−1)r+1−|F |2r−|F | = −
∑

F

(−2)r−|F |

where r = r(T ) = n(T )−1, and both sums run over all H-free forests F ⊆ T .

Example 3.6. For every avoidance character ηH , the polynomial PηH (G; k)
counts the number of k-colorings of G such that every color-induced sub-
graph is H-free. As an extreme example, if G = H, then PηG(G; k) =

kn(G) − k, because the non-G-free colorings are precisely those using only
one color.

If H = Km,1, then Pm(G; k) = PηH (G; k) counts the k-colorings such
that no vertex belongs to m or more monochromatic edges, or equivalently
such that no color-induced subgraph has a vertex of degree ≥ m. We call
this the degree-chromatic polynomial ; if m = 1, then P1(G; k) is just the
usual chromatic polynomial. In general, two trees with the same number
of vertices need not have the same degree-chromatic polynomials for all m
(though they do share the same chromatic polynomial). For example, if Z
is the three-edge path on four vertices and Y = K3,1 is the three-edge star,
then P2(Z; k) = k4 − 2k2 + k and P2(Y; k) = k4 − 3k2 + 2k.

In an earlier version of this article, we had conjectured, based on experi-
mental evidence, that if T is any tree on n vertices and m < n, then

Pm(T ; k) = kn −
∑

v∈V (T )

(
dT (v)

m

)
kn−m + (lower order terms)

where dT (v) denotes the degree of vertex v. This conjecture has since been
proven combinatorially by Diego Cifuentes [Cif11].

4. Tutte characters

The Tutte polynomial TG(x, y) is a powerful graph invariant with many
important properties (for a comprehensive survey, see [BO92]). It is defined
in closed form by the formula

TG(x, y) =
∑

A⊆E(G)

(x− 1)rk(G)−rk(A)(y − 1)null(A)

where rk(A) is the graph rank of A, and null(A) = |A| − rk(A) (the nullity

of A). The Tutte polynomial is a universal deletion-contraction invariant in
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the sense that every graph invariant satisfying a deletion-contraction recur-
rence can be obtained from TG(x, y) via a standard “recipe” [Bol98, p. 340].
In particular, TG(x, y) is multiplicative on connected components, so we can
regard it as a character on the graph algebra:

τx,y(G) = TG(x, y).

We may regard x, y either as indeterminates or as (typically integer-valued)
parameters. It is often more convenient to work with the rank-nullity poly-

nomial

RG(x, y) =
∑

A⊆E

(x− 1)rk(A)(y− 1)null(A) = (x− 1)rk(G)TG(x/(x− 1), y) (8)

which carries the same information as TG(x, y), and is also multiplicative on
connected components, hence is a character on G. Note that RG(1, y) = 1,
and that

TG(x, y) = (x− 1)rk(G)RG(x/(x− 1), y). (9)

Let ρx,y denote the function G 7→ RG(x, y), viewed as a character of the
graph algebra G.

For later use, we record the relationship between ρ and τ :

τx,y = (x− 1)rk(G)ρx/(x−1),y, ρx,y = (x− 1)rk(G)τx/(x−1),y. (10)

In particular,

τ2,y = ρ2,y and τ0,y = ρ̃0,y. (11)

4.1. The main theorem on Tutte characters. Let

Px,y(G; k) = ρkx,y(G)

be the image of G under the CHA morphism (G, ρx,y) → F(x, y)[k] of Propo-
sition 2.2. Thus Px,y(G; k) ∈ C(x, y)[k]. The main theorem of this section
is that Px,y(G; k) is itself essentially an evaluation of the Tutte polynomial.

Theorem 4.1. We have

Px,y(G; k) = kc(G)(x− 1)rk(G)TG

(
k + x− 1

x− 1
, y

)
.

Proof. Since Px,y(G; k) is a polynomial in k, it suffices to prove that the
identity holds for all positive integer values of k.
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We have

Px,y(G; k) = ρkx,y(G) =
∑

V1⊎···⊎Vk=V (G)

k∏

i=1

ρx,y(G|Vi
) (12a)

=
∑

V1⊎···⊎Vk=V (G)

k∏

i=1

∑

Ai⊆E(G|Vi)

(x− 1)rk(Ai)(y − 1)null(Ai)

(12b)

=
∑

f :V→[k]

k∏

i=1

∑

Ai⊆f−1(i)

(x− 1)rk(Ai)(y − 1)null(Ai) (12c)

=
∑

f :V→[k]

∑

A⊆M(f,G)

(x− 1)rk(A)(y − 1)null(A) (12d)

where M(f,G) denotes the set of f -monochromatic edges, that is, edges
e = uv ∈ E(G) such that f(u) = f(v) (including, in particular, all loops).
Here the sum is over all ordered partitions of V (G) into pairwise disjoint
subsets (possibly empty). In order to find a recipe for Px,y(G; k) as a Tutte
specialization, we need to know its value on edgeless graphs, and how it
behaves with respect to deleting a loop, deleting a cut-edge, or deletion and
contraction of an “ordinary” edge.

Step 1: Edgeless graphs. If E(G) = ∅, then RH(x, y) = 1 for every
subgraph H ⊆ G. Therefore, every summand in (12a) is 1, so Px,y(G; k) is
just the number of ordered partitions with n = |V (G)| parts, that is:

Px,y(Kn; k) = kn. (13)

Step 2: Loops. Suppose G has a loop ℓ. For every ordered partition
V (G) = V1 ⊎ · · · ⊎ Vk, let Vi be the part that contains the endpoint of ℓ.
Then ρx,y(G|Vi

) = yρx,y((G− ℓ)|Vi
), and we conclude that

Px,y(G; k) = y · Px,y(G− ℓ; k). (14)

Step 3: Nonloop edges. Suppose G has a nonloop edge e (possibly a
cut-edge) with endpoints u, v. For a function f : V → [k], if f(u) 6= f(v)
then M(f,G − e) = M(f,G), while if f(u) = f(v) then M(f,G − e) =
M(f,G) \ {e}. For every edge set A ⊆ M(f,G) containing e, the edge set
B = A\{e} ⊆M(f,G/e) satisfies null(B) = null(A) and rk(B) = rk(A)−1;
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moreover, the correspondence between A and B is a bijection. Therefore,

Px,y(G; k) =
∑

f :V→[k]

∑

A⊆M(f,G)

(x− 1)rk(A)(y − 1)null(A),

Px,y(G− e; k) =
∑

f :V→[k]

∑

A⊆M(f,G−e)

(x− 1)rk(A)(y − 1)null(A),

Px,y(G; k) − Px,y(G− e; k) =
∑

f :V→[k]:
e∈M(f,G)

∑

A⊆M(f,G):
e∈A

(x− 1)rk(A)(y − 1)null(A)

=
∑

f :V→[k]:
f(u)=f(v)

∑

B⊆M(f,G/e)

(x− 1)rk(B)+1(y − 1)null(B)

= (x− 1)Px,y(G/e; k).

To put this recurrence in a more familiar form,

Px,y(G; k) = Px,y(G− e; k) + (x− 1)Px,y(G/e; k). (15)

Step 4: Cut-edges. Now suppose that e = uv is a cut-edge. We have

Px,y(G− e; k) =
∑

f :V→[k]

∑

A⊆M(f,G−e)

(x− 1)rk(A)(y − 1)null(A)

and

Px,y(G/e; k) =
∑

f :V→[k]

∑

A⊆M(f,G/e)

(x− 1)rk(A)(y − 1)null(A).

LetH be the connected component ofG−e containing u, and letH ′ = G−H.
Then E(G − e) = E(H) ∪ E(H ′). Let the cyclic group Zk act on colorings
f by cycling the colors of vertices in H modulo k and fixing the colors of
vertices in H ′; i.e., if we fix a generator γ of Zk, then (γjf)(w) = f(w) + j
(mod k) for w ∈ V (H), while (γf)(w) = f(w) for w ∈ V (H ′). Then the
set M(f,G − e) is invariant under the action of Zk; moreover, each orbit
has size k and has exactly one coloring for which f(u) = f(v). In that
case, contracting the edge e does not change the nullity or rank. Therefore,
Px,y(G/e; k) = k−1Px,y(G− e; k), which when combined with (15) yields

Px,y(G; k) = Px,y(G− e; k) + (x− 1)Px,y(G− e; k)/k

=

(
k + x− 1

k

)
Px,y(G− e; k). (16)

Now combining (13), (14), (15), and (16) with the “recipe theorem”
[Bol98, p. 340] (replacing Bollobás’ x, y, α, σ, τ with (k + x − 1)/k, y, k,
1, x− 1 respectively) gives the desired result. �

4.2. Applications to Tutte polynomial evaluations. Theorem 4.1 has
many enumerative consequences, some familiar and some less so. Many of
the formulas we obtain resemble those in the work of Ardila [Ard07]; the
precise connections remain to be investigated.
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First, observe that setting x = y = t in Theorem 4.1 yields

ρkt,t(G) = Pt,t(G; k) = kc(G)(t− 1)rk(G)TG

(
k + t− 1

t− 1
, t

)

= kc(G)χG(k; t) (17)

where χ denotes Crapo’s coboundary polynomial; see [MR05, p. 236] and
[BO92, §6.3.F]. (As a note, the bar in the notation χ has no relation to the
bar involution on X(G).)

Corollary 4.2. For k ∈ Z and y arbitrary, the Tutte characters τ2,y and

τ0,y satisfy the identities

(τ2,y)
k (G) = kc(G)TG(k + 1, y), (18)

(τ̃0,y)
k (G) = kc(G)(−1)rk(G)TG(1− k, y). (19)

In particular, (τ̃0,y)
−1 = τ2,y.

Proof. Setting x = 2 or x = 0 in Theorem 4.1 and applying (11), we obtain
respectively

(τ2,y)
k (G) = (ρ2,y)

k (G) = P2,y(G; k) = kc(G)TG(k + 1, y),

(τ̃0,y)
k (G) = (ρ0,y)

k (G) = P0,y(G; k) = kc(G)(−1)rk(G)TG(1− k, y).

establishing (18) and (19). In particular, setting k = −1 in (19) gives

(τ̃0,y)
−1(G) = (−1)c(G)(−1)rk(G)TG(2, y) = (−1)n(G)τ2,y(G) = τ2,y(G). �

Similarly, we can find combinatorial interpretations of convolution powers
of the characters τ2,2, τ2,0, τ̃0,2, and τ̃0,0. In the last case, we recover the
standard formula for the chromatic polynomial as a specialization of the
Tutte polynomial (note that τ̃0,0 = τ0,0 = ζ).

One can deduce combinatorial interpretations of other evaluations of the
Tutte polynomial. If G is connected, then substituting y = 2 and k = 2 into
(18) yields (τ2,2)

2(G) = 2TG(3, 2), or

T (G; 3, 2) =
(τ2,2 ∗ τ2,2)(G)

2
=

∑

U⊆V (G)

2e(G|U )+e(G|
U
)−1. (20)

That is, 2T (G; 3, 2) counts the pairs (f,A), where f is a 2-coloring of G and
A is a set of f -monochromatic edges.
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In order to interpret more general powers of Tutte characters, we use (10)
to expand the convolution power ρkx,y(G) in Theorem 4.1:

kc(G)(x− 1)rk(G)TG

(
k + x− 1

x− 1
, y

)
= ρkx,y(G)

=
∑

V1⊎···⊎Vk=V (G)

k∏

i=1

ρx,y(Gi)

=
∑

V1⊎···⊎Vk=V (G)

k∏

i=1

(x− 1)rk(Gi)τx/(x−1),y(Gi)

where Gi = G|Vi
. Note that in the special case G = Kn, we have Gi

∼= K|Vi|

and rk(Gi) = |Vi| − 1 for all i, so the equation simplifies to

k(x− 1)n−1TKn

(
k + x− 1

x− 1
, y

)
= (x− 1)n−kτx/(x−1),y(Kn)

or

(x− 1)k−1TKn

(
k + x− 1

x− 1
, y

)
= k−1(τx/(x−1),y)

k(Kn). (21)

This equation has further enumerative consequences: setting x = 2 gives

TKn(k + 1, y) =
1

k

∑

a1+···+ak=n

n!

a1!a2! . . . ak!
τ2,y(Ka1) . . . τ2,y(Kak). (22)

Setting y = 0 in (22) and observing that τ2,0(Ka) = a! (the number of acyclic
orientations of Ka), we get TKn(k+1, 0) = (n+k−1)!/k!. This is not a new
formula; it follows from the standard specialization of the Tutte polynomial
to the chromatic polynomial [BO92, Prop. 6.3.1], together with the well-
known formula k(k − 1) · · · (k − n+ 1) for the chromatic polynomial of Kn.
On the other hand, setting y = 2 in (22), and recalling that τ2,2(Ka) =

2|E(Ka)| = 2(
a
2), gives

TKn(k + 1, 2) = k−1
∑

a1+···+ak=n

n!

a1!a2! . . . ak!
2
(a12 )+···+(ak

2
)
. (23)

This formula may be obtainable from the generating function for the Crapo
coboundary polynomials of complete graphs, as computed by Ardila [Ard07,
Thm. 4.1]; see also sequence A143543 in [Slo10]. Notice that setting k = 2
in (23) recovers (20).

It is natural to ask what happens when we set x = 1, since this specializa-
tion of the Tutte polynomial has well-known combinatorial interpretations
in terms of, e.g., the chip-firing game [ML97] and parking functions [GS96].
The equations (8) and (9) degenerate upon direct substitution, but we can
instead take the limit of both sides of Theorem 4.1 as x → 1, obtaining
(after some calculation, which we omit)

ρk1,y(G) = kn(G).

http://oeis.org/A143543
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What can be said about Tutte characters in light of Proposition 2.2?
Replacing x with (k + x− 1)/(x − 1) in Theorem 4.1, we get

P(k+x−1)/(x−1),y(G; k) = kc(G)(k/(x− 1))rk(G)T (G;x, y)

= kn(G)(x− 1)− rk(G)T (G;x, y).
(24)

One consequence is a formula for the Tutte polynomial in terms of P :

T (G;x, y) = k−n(G)(x− 1)rk(G)P(k+x−1)/(x−1),y(G; k). (25)

In addition, the left-hand-side of (24) — which is an element of F(x, y)[k] —
is actually just kn(G) times a rational function in x and y. Setting k = x− 1
or k = 1− x, we can write down simpler formulas for the Tutte polynomial
in terms of P :

T (G;x, y) = (x− 1)−c(G)P2,y(G;x− 1),

T (G;x, y) = (−1)n(G)(x− 1)c(G)P0,y(G; 1 − x).

5. A reciprocity relation between Kn and Km

For each nonzero scalar c ∈ F, there is a character ξc on G defined by
ξc(G) = cn(G). In this concluding section, we list some basic identities
involving convolution powers of these characters and their interactions with
the character ζ. The main result, Proposition 5.1, is a “reciprocity” relation
between the complete graphs Kn and Km.

First, let c, d ∈ F be arbitrary nonzero scalars, and let k be an integer.
The definition of convolution, together with a straightforward application of
the binomial theorem, yields the identities

ξc ∗ ξd = ξc+d, ξkc = ξck, ξ−1
c = ξ−c = ξc.

In particular, the characters ξc form a subgroup of X(G) isomorphic to the
additive group F. Another easily obtained fact is the following: for every
graph G,

(ζ ∗ ξc)(G) =
∑

cocliques Q

c|V (G)|−|Q|.

Proposition 5.1. For all n,m ∈ Z≥0, we have

(ζn ∗ ξ1)(Km) = (ζm ∗ ξ1)(Kn).

Proof. Consider the action of the character ζn ∗ ξ1 on the graph Km:

(ζn ∗ ξ1)(Km) =
∑

V⊆[m]

ζn(Km|V )ξ1(Km − V )

=
∑

j∈Z

(
m

j

)
ζn(Kj)ξ1(Km−j)

=
∑

j∈Z

(
m

j

)(
n

j

)
j!. (26)
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Here the summand j corresponds to m − |V |; note that ζn(Kj) =
(
n
j

)
j! is

the number of n-colorings of Kj. (We are using the convention that
(
n
j

)

vanishes when j < 0 or j > n.) The expression (26) is symmetric in m and
n, implying the desired result. �

Corollary 5.2. Let m,n be nonnegative integers. Then

(ζn ∗ ξ−1)(Km) = (−1)n+m(ζm ∗ ξ−1)(Kn).

Proof. The desired identity can be obtained by applying the bar involution
to both sides of Proposition 5.1 (or, equivalently, redoing the calculation,
replacing ξ1 with ξ−1 throughout). �

Experimental evidence indicates that

(ζ−1 ∗ ξ1)(Kn) = (−1)nDn, (ζ−1 ∗ ξ−1)(Kn) = (−1)nAn,

where Dn is the number of derangements of {1, 2, . . . , n} and An is the
number of arrangements (sequences A000166 and A000522 of [Slo10], re-
spectively). More generally, we have conjectured that for every scalar c and
integer k, the exponential generating function for (ζk ∗ ξc)(Kn) is

∑

n≥0

(ζk ∗ ξc)(Kn)
xn

n!
= ecx(1 + x)k (27)

(see [Sta97, Example 2.2.1], [Sta99, Example 5.1.2]). In fact, formula (27)
follows from independent, unpublished work of Aguiar and Ardila [AA].
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