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Abstract:  A study of the arithmetic function , called the Dedekind psi function, 

concludes that its extreme values are supported on the subset of primorial integers , where pi 
is the kth prime, and vi ≥ 1. In particular, the inequality  holds for all large integers 
N  = 2⋅3⋅5⋅⋅⋅pk, unconditionally. A discussion of the subsets of local minima and local maxima is also included.  
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1 Introduction  
The psi function  and its normalized counterpart 

€ 

ψ(N) /N = (1+1/ p)
p | N∏  arise in 

various mathematic, and physic problems, see [SL]. Moreover, this function is entangled with other arithmetic 
functions. The values of the psi function coincide with the values of the sum of divisor function  
on the subset of square-free integers. The product of the complex-valued psi function 

€ 

ψs(N) /N = (1+1/ ps)
p | N∏  and the complex-valued totient function 

€ 

ϕs(N) /N = (1−1/ ps)
p | N∏  satisfies the 

important relation 
 

,                                                                   (1) 

 
where s ∈ ℂ. The limit of this product as the integer Nk = 2⋅3⋅5⋅⋅⋅pk tends to infinity, where pk is the kth prime, is 
the zeta function . This establishes a clear-cut link to the Riemann hypothesis. This hypothesis 
claims that the nontrivial zeros of ζ(s) are located on the critical line { ℜe(s) = 1/2 }, see [ES]. A survey of  
various strikingly different reformulations of the Riemann hypothesis appears in [AM].  
 
The lower estimate given below appears to be new. A recent work [SP] claims that this estimate is equivalent to 
the Riemann hypothesis. 
 
Theorem 1.  Let N ∈ ℕ be a primorial integer, then  holds unconditionally for all 
sufficiently large N  = 2⋅3⋅5⋅⋅⋅pk. 
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This lower estimate is quite similar to the lower estimate of the totient function, namely, 
 

                                                                    (2) 
 
for all large integers Nk, see [NS], and [CL]. The reformulation of the Riemann hypothesis in terms of the psi 
function can be derived from (1) and (2), or by other means.  
 
Two proofs of Theorem 1 are given in the last Section. The first proof, in Section 3.1, is obtained by an 
amalgam of elementary methods, but it is long. The second proof, in Section 3.2, relies on slightly more 
advanced results on the Prime Number Theorem, but it is significantly shorter. The next Section discussed 
background information. 
 
 
2 Elementary Materials 
The basic concepts and results employed throughout this work are stated in this Section.  
 
2.1. Density of Squarefree Integers. Let  ∈ ℕ be an integer, vi ≥ 1, 1 ≤ i ≤ t. Let , 
and   

€ 

Ω(n) = v1 ++ vt  be the prime divisors counting functions respectively. The Mobius function µ : ℝ → ℤ is 
defined by the relation 

                                                             (3) 

 
This function is identically zero on the set of nonsquarefree integers, so µ2(n)  = | µ(n) | is the characteristic 
function of squarefree numbers. The Dirichlet average of the Mobius function over the divisor of an integer has 
the simple expression 

                                                                      (4) 

 
Theorem 2.   The number of squarefree integers in the interval [1, x] is . 
 
Proof: Every integer n ∈ ℕ has a unique representation as n = ab2, where a is a squarefree integer. This means 
that the characteristic function of the squarefree integer can be rewritten as  
 

,                                                                        (5) 

 
and the number of squarefree integers up to x is . So the total 
number of squarefree integers n ≤ x is given by 
 

,                                                            (6) 

 
where the bracket [ x ] denotes the largest integer function, and [x/d2] tallies the number of integers n ≤ x, and 
divisible by d2. Now remove the bracket in the previous expression to obtain 
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.                                                     (7) 

 
The last step follows from the identity .                    ■ 
 
Since it is known that , see [TN, p. 128], the best error term possible seems to be 
at least . Trivially, the short interval (x, x + y] contains  squarefree 
integers for all y ≥ cx1/2, c > 0 constant. A better and sharper estimate is available in the literature. 
 
An interesting application of the squarefree counting measure  is in estimating the squarefree 
harmonic sum. 
 
Theorem 3.    Let x ≥ x0 be a large real number. Then 

€ 

µ2(n)n−1
n≤x∑ = 6π−2 log x + O(x−1/ 2).  

 
Proof: Put f(x) = 1/x. Then, integral representation of the harmonic sum over the squarefree integers is given by 
 

 ,                                                            (8) 

 
where c = . Integrating by parts yields the assertion.                                                                                    ■                                                    
 
Similarly, exponential sums, and other finite sums over the squarefree integer can be approximated via the 
integral representations. For example, 
 

 ,                                            (9) 

 
where χ is a character modulo q ≥ 2. 
 
2.2 Sums and Product Over the Primes. The most basic finite sum over the prime numbers is the prime 
harmonic sum . The standard evaluation of this sum is stated below.  
 
Theorem 4.    (Mertens)  Let x ≥ 2. Then 

(i) ,              (ii) ,                 

 
where  B1 = .2614972128…, and Ba, q is Mertens constant for the arithmetic progression qn + a. 
 
The proofs of these results, and the simpler and elementary estimate 
 

                                                               (10) 

 
where c > 0 is a constant are widely available in the literature, see [TN]. There are various versions of the error 
term R(x) in . Currently, the best explicit estimates of the error term are  



Squarefree Integers And Arithmetic Functions 
 

 4 

      or                                                  (11) 

 
unconditionally, see [DU], or modulo the Riemann hypothesis respectively, see [RS], [VL. p. 26]. There are 
various analytical formulas for the constant B1, and Euler constant , confer the 
literature. The one given below will be used later on. 
  
Lemma 5.    The constant . 
 
Proof: The Mertens constant is defined by , see  [HW, p. 466]. Using the 

power series , 0 ≤ x < 1, and simplifying, return the required expression.              ■ 
 
As an application of the penultimate result, there are the following interesting products. 
 
Theorem 6.   Let x ∈ ℝ be a large real number, then  
 

.                                                           (12) 
 
Proof: This follows from Theorem 4.                                                                                                                     ■ 
 
Theorem 7.   Let x ≥ x0 be a real number, then 
 

.                                              (13) 
 
Proof:  For a large real number x ∈ ℝ, rewrite the product as 
 

.                                           (14) 

 
Replacing  in the first product on the right side, yields 
 

                                            (15) 

 
where z  = O(xc), c > 1 constant. Lastly, applying Theorem 6, to the last product above, yields the claim.          ■ 
 
This result immediately gives the maximal value of the sum of divisors function at the squarefree numbers, viz,  
 

€ 

σ(N)
N

≤
6eγ

π 2 loglogN + O(
1

(loglogN)2
)                                                    (16) 

 
for any squarefree integer N ≥ 1.  
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2.3. Squarefree Integers And Prime Numbers Link. The asymptotic density of squarefree integers in the 
interval [1, x] is denser than the density of prime numbers by a factor of . Nevertheless, some 
results on sums over squarefree integers are closely linked to products over the primes. Some of these results 
are asymptotically related by a factor of e±γ. The factor e±γ has been a topic of contention for quite sometime, see 
[WG, p. 107] for a discussion of its link to the Sieve of Eratosthenes, [MI] for its link to the density of primes in 
short intervals, [WF] for its link to Gillies conjecture, et cetera. For example, asymptotically, the squarefree 
harmonic sum and the prime harmonic product are equivalent up to the constant factor e±γ. A comparison of 
these two expressions, shown below side by side, reveals the strikingly different error terms: 
 

   and   .            (17) 
 
Let , and let κ = eγ. It is quite easy to see that  
 

,                                                              (18) 

 
where 

€ 

1/d
d |Px

∑ = (1+1/ p)
p≤x∏ . But it seems to be difficult to show that  

 

€ 

µ2(n)
nn≤xκ

∑ +
1
dx<d | Px

∑ ≥
1
dd | Px

∑ .                                                                 (19) 

 
Specifically, confirming the upper estimate  
 

                                                        (20) 

 
is a difficult problem. An affirmative answer will immediately leads to the optimum error term bound in the 
product , as specified by the Riemann hypothesis, see [RS]. 
 
 
3 Squarefree Integers And The Extreme Values of Arithmetic Functions 
The first proof of Theorem 1, presented below, is completely elementary, but longer. In comparison, the second 
proof relies on slightly more advanced methods, but it is significantly shorter. 
 
Let N ∈ ℕ be an integer. The sum of divisors function  restricted to the subset of 
squarefree integers is called the Dedekind psi function and denoted by . The psi 
function is an oscillatory function on the interval [1, x], its values fall in the range 
 

,                                                   (21) 

 
where , and  are the largest prime, and the largest primorial integers in the interval [1, x] 
respectively. The restriction  to primorial integers Nk is strictly monotonically increasing as Nk → ∞. 
The jump-discontinuity Δk at the point Nk+1 has the magnitude  
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,                                                          (22) 

 

where , 0 < α < .526, see [BK]. The quantity Δk encodes important information on the 

distribution of prime numbers. For example, a pair of twin primes pk and pk+1 produces the largest jump-
discontinuity   possible. 
 
3.1 First Proof. From the inequality 
 

,                                            (23) 

 
and Theorem 6, it is plausible to expect that 

€ 

p | N∏ (1+1/ p) > 6eγπ −2 loglogN  infinitely often as N → ∞. This 
fact is proven below by elementary methods. 
 
Theorem 1  Let pk be the kth prime, and let Nk = 2⋅3⋅5⋅⋅⋅pk, k ≥ 1. Then  for all 
sufficiently large integer Nk.  
 
Proof: Assume the claim is false, that is,  for Nk ≥ N0. Then 

 
.                                                       (24) 

 
Expanding the left side into power series and separating into linear and nonlinear sums yield  
 

,                                                (25) 

 
since pk | Nk is equivalent to p ≤ pk. Applying Theorem 4, to the previous expression transforms it into 
 

                                     (26)                                     

 
where B1 is a constant. Next replace , see Lemma 5, in the previous equation to obtain 
 

.                           (27) 

 
 
Now, inequality (24) becomes 
 

.            (28) 
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This is equivalent to the inequality 
 

.                     (29) 

 
A routine exercise using , , and 

€ 

pk ≤ c0 logNk , c0 > 1 
constant, see [CL, Proposition 6], demonstrates that the logarithmic difference  
 

                                                      (30) 

 
where B > 0 is  an arbitrary real number. Combining (29) and (30) yield 
 

.                         (31) 

 
 
The right side of the previous inequality can be simplified as 
 

€ 

log(6 /π 2) +
(−1)n

npn
n= 2

∞

∑
p≤ pk

∑ +
1
npn

n= 2

∞

∑
p≥2,

∑ = −
1

np2n
n=1

∞

∑
p≥2

∑ +
(−1)n

npn
n= 2

∞

∑
p≤ pk

∑ +
1
npn

n= 2

∞

∑
p≥2,

∑

= −
1

2np2n
n=1

∞

∑
p> pk

∑ +
1

(2n +1)p2n+1
n=1

∞

∑
p> pk

∑

< 0 .

                                (32) 

 
This last regrouping stems from the expansion . Replacing 
the previous one into the penultimate one returns 
 

€ 

O(
1

(loglogNk )
B +1 ) + O(

1
(loglogNk )

2 ) < 0  ,                                              (33) 

 
where B > 1, see [SH, p. 451]. Now, observe that for any primorial integer Nk = 2⋅3⋅5⋅⋅⋅pk, the error term of the 
prime harmonic sum 
 

,                                                       (34) 

 
where 

€ 

pk ≤ c0 logNk , c0 > 1 constant, is nonnegative, so the left side of (33) is a nonnegative quantity that 
approaches 0 from the right. But the right side of (33) is a negative quantity that approaches 0 from the left as 
Nk → ∞. Clearly, this is a contradiction for all sufficiently large integers Nk > 1 as claimed.                               ■ 
 
This analysis also agrees with the well known asymptotic limit of the product of the reciprocal of the primes, 
viz, 
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.                                                               (35) 

 
3.2 Second Proof. Another more advanced and compact approach to the proof of the inequality 

 for all large integer Nk, is to note that the prime harmonic product 
 

€ 

(1+1/ p)
p≤x

∏ =
6eγ

π 2 log x + O(
1

log2 x
)                                                         (36) 

 
oscillates infinitely often symmetrically about the line 

€ 

6eγπ −2 log x  as x → ∞, see [DP]. From the relations  
 

,    and    ,                             (37) 
 
it follows that 

€ 

pk ≤ x = c0 logNk , c0 > 1 constant. Therefore  
 

€ 

(1+1/ p)
p≤x

∏ >
6eγ

π 2 loglogNk                                                                    (38) 

 
as the primorial integer Nk = 2⋅3⋅5⋅⋅⋅pk tends to infinity. Furthermore, it is clear that the inequality (38) achieves 
its local maxima infinitely often. The local maxima occur at the subset of primorial integers.  In fact,  
 

€ 

(1+1/ p)
p≤x

∏ −
6eγ

π 2 loglogNk =Ω+(logloglogNk / logNk ) .                                      (39) 

 
3.3 The Local Minima and Maxima. Define the subsets of integers 
 

   and   .                  (40) 
 
The densities of the integers in these subsets are asymptotically the same as the density of prime numbers. More 
precisely, 
  

€ 

Mψ (x) = # n ≤ x :ψ(n) /n > 6eγπ −2 loglogn{ } =
x

log x
1+ O(

1
(loglog x)2

)
 

 
 

 

 
 ,                           (41) 

 
the same estimate holds for mψ(x). These densities results are derived from the distribution function 
 

  

€ 

Dα (t) = exp −ee −γζ (2)t 1+ O(t−2( )( ) =
# n ≤ x :ψ(n) > t{ }

x
,                                             (42) 

 
where x ≥ x0, of the psi function, see [WN].  
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