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Abstract

We prove that the automorphism group of the dihedral quandle with n elements is isomorphic

to the affine group of the integers mod n, and also obtain the inner automorphism group of this

quandle. In [9], automorphism groups of quandles (up to isomorphisms) of order less than

or equal to 5 were given. With the help of the software Maple, we compute the inner and

automorphism groups of all seventy three quandles of order six listed in the appendix of [4].

Since computations of automorphisms of quandles relates to the problem of classification of

quandles, we also describe an algorithm implemented in C for computing all quandles (up to

isomorphism) of order less than or equal to nine.
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1 Introduction

Quandles and racks are algebraic structures whose axiomatization comes from Reidemeister moves

in knot theory. The earliest known work on racks is contained within 1959 correspondence between

John Conway and Gavin Wraith who studied racks in the context of the conjugation operation in

a group. Around 1982, the notion of a quandle was introduced independently by Joyce [10] and

Matveev [11]. They used it to construct representations of the braid groups. Joyce and Matveev

associated to each knot a quandle that determines the knot up to isotopy and mirror image. Since

then quandles and racks have been investigated by topologists in order to construct knot and link

invariants and their higher analogues (see for example [4] and references therein).

In this paper, we prove that the automorphism group of the dihedral quandle with n elements

is isomorphic to the affine group of the integers mod n. In [9], Ho and Nelson gave the list of quan-

dles (up to isomorphism) of orders n = 3, n = 4 and n = 5 and determined their automorphism

groups. In this paper, with the help of the software Maple, we extend their results by computing
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the inner and automorphism groups of all seventy three quandles of order six listed in the appendix

of [4]. Since computations of automorphisms of quandles relates to the problem of classification

of quandles, we also describe an algorithm implemented in C for computing all quandles (up to

isomorphism) of order up to nine.

In Section 2, we review the basics of quandles, give examples and describes the automorphisms

and inner automorphisms of dihedral quandles . The Inner and automorphism groups of all all

seventy three quandles of order 6 are computed in section 3. A description of an algorithm which

generates all quandles of order up to 9 (up to isomorphisms) is contained in section 4.

Notations Through the paper, the symbol Zn will denote the set of integers modulo n and Zn
×

will stand for the group of its units. The dihedral group of order 2m will be denoted by Dm. The

symbol Σn will stand for the symmetric group on the set {1, 2, ..., n} and An will be its alternating

subgroup (even permutations).

2 Automorphism groups of quandles

We start this section by reviewing the basics of quandles and give examples.

A quandle, X, is a set with a binary operation (a, b) 7→ a ∗ b such that

(1) For any a ∈ X, a ∗ a = a.

(2) For any a, b ∈ X, there is a unique x ∈ X such that a = x ∗ b.

(3) For any a, b, c ∈ X, we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

Axiom (2) states that for each u ∈ X, the map Su : X → X with Su(x) := x ∗ u is a bijection. Its

inverse will be denoted by the mapping Su : X → X with Su(x) = x∗u, so that (x ∗ u)∗u = x =

(x∗u) ∗ u.

A rack is a set with a binary operation that satisfies (2) and (3).

Racks and quandles have been studied in, for example, [7, 10, 11].

The axioms for a quandle correspond respectively to the Reidemeister moves of type I, II, and III

(see [7], for example).

Here are some typical examples of quandles.

– Any set X with the operation x ∗ y = x for any x, y ∈ X is a quandle called the trivial

quandle. The trivial quandle of n elements is denoted by Tn.

– A group X = G with n-fold conjugation as the quandle operation: a ∗ b = b−nabn.

– Let n be a positive integer. For elements i, j ∈ Zn (integers modulo n), define i ∗ j ≡ 2j − i

(mod n). Then ∗ defines a quandle structure called the dihedral quandle, Rn. This set can

be identified with the set of reflections of a regular n-gon with conjugation as the quandle

operation.

– Any Λ(= Z[T, T−1])-module M is a quandle with a ∗ b = Ta + (1 − T )b, a, b ∈ M , called

an Alexander quandle. Furthermore for a positive integer n, a mod-n Alexander quandle

Zn[T, T
−1]/(h(T )) is a quandle for a Laurent polynomial h(T ). The mod-n Alexander quandle

is finite if the coefficients of the highest and lowest degree terms of h are units in Zn.
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A function f : (X, ∗) → (Y,⊲) between quandles X and Y is a homomorphism if f(a ∗ b) = f(a) ⊲

f(b) for any a, b ∈ X. We will denote the group of automorphisms of the quandle X by Aut(X).

Axioms (2) and (3) respectively state that for each u ∈ X, the map Su : X → X is respectively

a bijection and a quandle homomorphism. Lets call the subgroup of Aut(X), generated by the

symmetries Sx, the inner automorphism group of X denoted by Inn(X). By axiom (3), the map

S : X → Inn(X) sending u to Su satisfies the equation Sz Sy = Sy∗z Sz, ∀y, z ∈ X, which

can be written as Sz Sy Sz
−1 = Sy∗z. Thus, if the group Inn(X) is considered as a quandle with

conjugation then the map S becomes a quandle homomorphism. As noted in [1] p 184, the map S

is not injective in general. The quandle (X, ∗) is called faithful when the map S is injective. If

(X, ∗) is faithful then the center of Inn(X) is trivial.

2.1 Automorphism groups and Inner Automorphism groups of dihedral quan-

dles

Now we characterize the automorphisms of the dihedral quandles. For any non-zero element a

in Zn and any b ∈ Zn, consider the mapping fa,b : Zn → Zn sending x to ax + b, called affine

transformation over Zn.

Theorem 2.1 Let Rn = Zn be the dihedral quandle with the operation i∗j = 2j− i (mod n). Then

the automorphism group Aut(Rn) is isomorphic to the affine group Aff(Zn).

Proof. It is clear that for a 6= 0, the mapping fa,b (with fa,b(x) = ax + b) is a quandle ho-

momorphism. It is a bijective mapping if and only if a ∈ Zn
×. Now we show that any quandle

automorphism of Zn (with the operation x ∗ y = 2y − x) is an affine transformation fa,b for some

a ∈ Zn
× and b ∈ Zn. Let f ∈ Aut(Zn), then ∀x, y ∈ Zn, f(2y − x) = 2f(y) − f(x). Now

consider the mapping g : Zn → Zn given by g(x) = f(x) − f(0). The mapping g also satisfies

g(2y − x) = 2g(y) − g(x). We have g(0) = 0 and thus g(−a) = −g(a). We now prove linearity of

g, that is g(λx) = λg(x) for any λ ∈ Zn. We have g(2b− a) = 2g(b)− g(a), thus g(2b) = 2g(b) and

by induction on even integers g(2ka) = 2kg(a), for all k. Now we do induction on odd integers:

g[(2k+1)a] = g[2ka− (−a)] = 2kg(a)− g(−a) = 2kg(a)+ g(a) = (2k+1)g(a). Now g is a bijection

if and only if λ ∈ Zn
× which ends the proof

Since the affine group Aff(Zn) is semi-direct product group Zn ⋊ Zn
×, we have

Corollary 2.2 The cardinal of Aut(Zn) is n φ(n), where φ denotes the Euler function.

For the dihedral quandle Rn = Zn and for each i ∈ Zn the symmetry Si given by Si(j) = 2i −

j (mod n), can be though of as a reflection of a regular n-gon. If n is odd, the axis of symmetry of

Si connects the vertex i to the mid-point of the side opposite to i. If n = 2m is even, the axis of

symmetry of Si passes through the opposite vertices i and i+m (mod 2m). From these observations,

we have the easy characterization of the inner automorphism group of dihedral quandles given by

the following

Theorem 2.3 The inner automorphism group Inn(Rn) of the dihedral quandle Rn is isomorphic

to the dihedral group Dm

2

of order m where m is the least common multiple of n and 2.
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Theorem 2.4 Let G be a group and let the quandle X be the group G as a set with the conjuga-

tion x ∗ y = yxy−1 as operation. This quandle is usually denoted by Conj(G). Then the Inner

automorphism group of X is isomorphic (as a group) to the quotient of G by its center Z(G).

Proof. The proof is straightforward from the fact that in this case the surjective map S : X →

Inn(X) sending a ∈ X to Sa is a quandle homomorphism with kernel the center Z(G) of G.

Example The symetric group Σ3 is the smallest group with trivial center then Inn(Conj(Σ3)) ∼=

Σ3.

The converse of theorem 2.4 is also true, namely if (X, ∗) is a quandle for which the map S : X →

Inn(X) is one-to-one and onto then (X, ∗) ∼= Conj(Inn(X)) with Z(Inn(X)) being trivial group.

An interesting question would be to calculate the automorphism groups Aut(Conj(G)). Obviously

for the symmetric group Σ3, we have Aut(Conj(Σ3)) ∼= Inn(Conj(Σ3)) ∼= Σ3.

3 Automorphism and Inner Automorphism groups of quandles of

order 6

In this section, we compute the automorphism groups and the inner automorphism groups of all

seventy three quandles of order six. The computation is accomplished with the help of the software

Maple which also allows the computation of the inner and automorphism groups for quandles of

order 7 and 8. Since the numbers of isomorphism classes of quandles of order 7 and 8 are respectively

298 and 1581, we decided not to include these two cases in this paper.

We describe each quandle Qj of order 6 for 1 ≤ j ≤ 73 by explicitly giving each symmetry Sk for

1 ≤ k ≤ 6, in terms of products of disjoint cycles. The symmetries are the columns in the Cayley

table of the quandle. For example the quandle, denoted Q46 in table 2 below, with the Cayley table



















1 1 1 1 1 1

2 2 5 5 2 5

3 4 3 3 4 4

4 3 4 4 3 3

5 5 2 2 5 2

6 6 6 6 6 6



















is described by the permutations of the six elements set {1, 2, 3, 4, 5, 6}, S1 = (1), S2 = (34),

S3 = (25), S4 = (25), S5 = (34), S6 = (25)(34). Here and through the rest of the paper, every

permutation is written as a product of transpositions. For example, S1 = (1) means that S1 is the

identity permutation. The permutation S4 = (25) stands for the transposition sending 2 to 5 and

S6 = (25)(34) stands for the product of the two transpositions (25) and (34).

In this example Aut(Q46) = D4, the dihedral group of 8 elements and Inn(Q46) = Z2 × Z2 is the

direct product of two copies of Z2. Another example given in table 3 is Aut(Q49) = D5 the dihedral

group of order 10 and Inn(Q46) = Z5 ⋊ Z4, the semidirect product of the cyclic group Z5 by Z4.
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Quandle Disjoint Cycle Notation for the Columns of the Quandle

Q1 (1), (1), (1), (1), (1), (1)

Q2 (1), (1), (1), (1), (1), (12)

Q3 (1), (1), (1), (1), (1), (132)

Q4 (1), (1), (1), (1), (1), (1243)

Q5 (1), (1), (1), (1), (1), (12)(34)

Q6 (1), (1), (1), (1), (1), (15234)

Q7 (1), (1), (1), (1), (1), (134)(25)

Q8 (1), (1), (1), (1), (12), (12)

Q9 (1), (1), (1), (1), (12), (12)(34)

Q10 (1), (1), (1), (1), (12), (34)

Q11 (1), (1), (1), (1), (132), (132)

Q12 (1), (1), (1), (1), (132), (123)

Q13 (1), (1), (1), (1), (1243), (1243)

Q14 (1), (1), (1), (1), (1243), (1342)

Q15 (1), (1), (1), (1), (1243), (14)(23)

Q16 (1), (1), (1), (1), (12)(34), (12)(34)

Q17 (1), (1), (1), (1), (12)(34), (13)(24)

Q18 (1), (1), (1), (12), (12), (12)

Q19 (1), (1), (1), (12), (12), (12)(45)

Q20 (1), (1), (1), (12), (12), (45)

Q21 (1), (1), (1), (132), (132), (132)

Q22 (1), (1), (1), (132), (132), (123)

Q23 (1), (1), (1), (132), (132), (45)

Q24 (1), (1), (1), (132), (132), (123)(45)

Q25 (1), (1), (1), (132), (132), (132)(45)

Q26 (1), (1), (1), (12)(56), (12)(46), (12)(45)

Q27 (1), (1), (1), (12)(56), (13)(46), (23)(45)

Q28 (1), (1), (1), (56), (46), (45)

Q29 (1), (1), (1), (123)(56), (123)(46), (123)(45)

Q30 (1), (1), (12), (12), (12), (12)

Q31 (1), (1), (12), (12), (12), (12)(34)

Q32 (1), (1), (12), (12), (12), (34)

Q33 (1), (1), (12), (12), (12), (345)

Q34 (1), (1), (12), (12), (12), (12)(345)

Q35 (1), (1), (12), (12), (12)(34), (12)(34)

Q36 (1), (1), (12), (12), (12)(34), (34)

Q37 (1), (1), (12), (12), (34), (34)

Table 1: Quandles of order 6 in term of disjoint cycles of columns - part 1
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Quandle Disjoint Cycle Notation for the Columns of the Quandle

Q38 (1), (1), (12), (12)(56), (12)(46), (12)(45)

Q39 (1), (1), (12), (56), (46), (45)

Q40 (1), (1), (12)(45), (12)(36), (12)(36), (12)(45)

Q41 (1), (1), (12)(45), (36), (36), (12)(45)

Q42 (1), (1), (45), (36), (36), (45)

Q43 (1), (1), (456), (365), (346), (354)

Q44 (1), (1), (12)(456), (12)(365), (12)(346), (12)(354)

Q45 (1), (34), (25), (25), (34), (34)

Q46 (1), (34), (25), (25), (34), (25)(34)

Q47 (1), (34), (256), (256), (34), (34)

Q48 (1), (354), (26)(45), (26)(35), (26)(34), (345)

Q49 (1), (36)(45), (25)(46), (23)(56), (26)(34), (24)(35)

Q50 (1), (3546), (2456), (2365), (2643), (2534)

Q51 (1), (3546), (2564), (2653), (2436), (2345)

Q52 (23), (13), (12), (56), (46), (45)

Q53 (23), (14), (14), (23), (23), (23)

Q54 (23), (14), (14), (23), (23), (14)(23)

Q55 (23), (14), (14), (23), (23), (14)

Q56 (23), (14), (14), (23), (14)(23), (14)(23)

Q57 (23), (154), (154), (23), (23), (23)

Q58 (23), (154), (154), (23), (23), (154)(23)

Q59 (23), (154), (154), (23), (23), (154)

Q60 (23), (154), (154), (23), (23), (145)

Q61 (23), (154), (154), (23), (23), (145)(23)

Q62 (23), (45), (45), (16)(23), (16)(23), (23)

Q63 (23), (45), (45), (16), (16), (23)

Q64 (23), (1564), (1564), (23), (23), (23)

Q65 (23), (15)(46), (15)(46), (23), (23), (23)

Q66 (23), (15)(46), (15)(46), (15)(23), (23), (15)(23)

Q67 (243), (165), (165), (165), (243), (243)

Q68 (2354), (1463), (1265), (1562), (1364), (2453)

Q69 (2354), (16)(34), (16)(25), (16)(25), (16)(34), (2453)

Q70 (23)(45), (15)(36), (14)(26), (15)(36), (14)(26), (23)(45)

Q71 (23)(45), (15)(46), (14)(56), (16)(23), (16)(23), (23)(45)

Q72 (23)(45), (13)(46), (12)(56), (15)(26), (14)(36), (24)(35)

Q73 (23)(45), (16)(45), (16)(45), (16)(23), (16)(23), (23)(45)

Table 2: Quandles of order 6 in term of disjoint cycles of columns - part 2
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Quandle X Inn(X) Aut(X) Quandle X Inn(X) Aut(X)

Q1 {1} Σ6 Q38 D3 × Z2 D3 × Z2

Q2 Z2 D3 × Z2 Q39 D3 × Z2 D3 × Z2

Q3 Z3 Z6 Q40 Z2 × Z2 D4 × Z2

Q4 Z4 Z4 Q41 Z2 × Z2 Z2 × Z2 × Z2

Q5 Z2 D4 Q42 Z2 × Z2 D4 × Z2

Q6 Z5 Z5 Q43 A4 A4 × Z2

Q7 Z6 Z6 Q44 A4 × Z2 A4 × Z2

Q8 Z2 Z2 × Z2 × Z2 Q45 Z2 × Z2 Z2 × Z2

Q9 Z2 × Z2 Z2 × Z2 Q46 Z2 × Z2 D4

Q10 Z2 × Z2 D4 Q47 Z6 Z6

Q11 Z3 Z6 Q48 D3 D3

Q12 Z3 D3 Q49 D5 Z5 ⋊ Z4

Q13 Z4 Z4 × Z2 Q50 Z5 ⋊ Z4 Z5 ⋊ Z4

Q14 Z4 D4 Q51 Z5 ⋊ Z4 Z5 ⋊ Z4

Q15 Z4 Z4 Q52 D3 × D3 (D3 × D3)⋊ Z2

Q16 Z2 D4 × Z2 Q53 Z2 × Z2 Z2 × Z2 × Z2

Q17 Z2 × Z2 D4 Q54 Z2 × Z2 Z2 × Z2

Q18 Z2 D3 × Z2 Q55 Z2 × Z2 D4

Q19 Z2 × Z2 Z2 × Z2 Q56 Z2 × Z2 D4 × Z2

Q20 Z2 × Z2 Z2 × Z2 Q57 Z6 Z6

Q21 Z3 D3 × Z3 Q58 Z6 Z6

Q22 Z3 Z6 Q59 Z6 Z6

Q23 Z6 Z6 Q60 Z6 Z6

Q24 Z6 Z6 Q61 Z6 Z6

Q25 Z6 Z6 Q62 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q26 D3 D3 × Z2 Q63 Z2 × Z2 × Z2 A4 × Z2

Q27 D3 D3 Q64 Z4 × Z2 Z4 × Z2

Q28 D3 D3 × D3 Q65 Z2 × Z2 D4 × Z2

Q29 D3 × Z3 D3 × Z3 Q66 Z2 × Z2 × Z2 Z2 × Z2 × Z2

Q30 Z2 Σ4 × Z2 Q67 Z3 × Z3 D3 × Z3

Q31 Z2 × Z2 Z2 × Z2 Q68 Σ4 Σ4

Q32 Z2 × Z2 Z2 × Z2 Q69 D4 D4

Q33 Z6 Z6 Q70 D3 D3 × Z2

Q34 Z6 Z6 Q71 D4 D4

Q35 Z2 × Z2 Z2 × Z2 × Z2 Q72 Σ4 Σ4

Q36 Z2 × Z2 Z2 × Z2 Q73 Z2 × Z2 Σ4 × Z2

Q37 Z2 × Z2 Z2 × Z2 × Z2

Table 3: A table of the quandles of order 6 with their Inner and Automorphism groups
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4 Algorithm description

In the quest of finding computationally the quandles of certain order up to isomorphism, we are

cursed by the fact that any sort of naive algorithm will take an exponential time (in the order of the

quandle) to do such task. Therefore, we are required to exploit structural or logical aspects of the

quandle theory to reduce the running time at least by a proportional factor, making the algorithm

‘less-galactic’, in CS jargon.

4.1 Phase 1: List generation.

In initial versions of the quandles algorithm [8], the set of all matrices such that every row is a

permutation [n], is generated. After this, the matrices that do not correspond to the operation

table of a quandle (i.e., such that do not satisfy the quandle axiom), are ruled out. We call this

initial process the list generation, and its purpose is to list a set of quandles such that among

then, we are guaranteed to find representatives for all isomorphic classes of quandles

of order n. A further improvement in this process consists in verifying the quandles axiom on-

line, this means that, during the generation of the matrices, the axioms are immediately verified,

a process that was also carried out in [8]. We elaborate this improvement to a higer level: Besides

verifying the quandle axioms on-line, we also fill in online, entries that are implied by the quandle

axioms. To exemplify such process, suppose that at a certain step our algorithm has completed the

following partial table of a quandle














a a

c b b

b c c

d

e















then, by use of the property (a ∗ c) ∗ a = a ∗ (c ∗ a), we have that (a ∗ c) ∗ a = a. Therefore

(a ∗ c) = a∗̄a = a, so that the table completes as















a a a

c b b

b c c

d

e















.

A more interesting example is the following. Starting with the following partial quandle table















a a a b

c b b

b c c

d

c e















,

through the application of the quandle axioms several times, we complete some fewer entries,
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concluding at the end that such partial table cannot be extended to a valid quandle table:

(e∗a)∗d=(e∗d)∗(a∗d)
→















a a a b

c b b

b c c

d

e c e















(a∗e)∗d=(a∗d)∗(e∗d)
→















a a a b a

c b b

b c c

d

e c e















uniqueness
→















a a a b a

c b b

b c c

d d

e c e















and this last table contradicts the axiom (a ∗ d) ∗ a = a ∗ (d ∗ a).

In general, the rules that are used for this ‘completion’ process are the following:

Suppose that j ∗ i = k, then

Rule 1: k ∗ a = (j ∗ a) ∗ (i ∗ a)

1. If (j ∗ a) ∗ (i ∗ a) cannot be retrieved from the table and k ∗ a, i ∗ a and j ∗ a can be retrieved

from the table, then

(a) If (k ∗ a) ∗̄ (i ∗ a) can be retrieved from the table, the table is not valid.

(b) Otherwise, necesarily (j ∗ a) ∗ (i ∗ a) = k ∗ a.

2. Otherwise, if k ∗ a cannot be retrieved from the table and (j ∗ a) ∗ (i ∗ a) can be retrieved

from the table, then

(a) If ((j ∗ a) ∗ (i ∗ a)) ∗̄a can be retrieved from the table, the table is not valid.

(b) Otherwise, necesarily k ∗ a = (j ∗ a) ∗ (i ∗ a).

3. Otherwise, if (j ∗ a)∗(i ∗ a) and k∗a can be retrieved from the table and (j ∗ a)∗(i ∗ a) 6= k∗a,

the table is not valid.

Rule 2: (a ∗ j) ∗ i = (a ∗ i) ∗ k

1. If (a ∗ i) ∗ k cannot be retrieved from the table and (a ∗ j) ∗ i and a ∗ i can be retrieved from

the table, then

(a) If ((a ∗ j) ∗ i) ∗̄k can be retrieved from the table, the table is not valid.

(b) Otherwise, necesarily (a ∗ i) ∗ k = (a ∗ j) ∗ i.

2. Otherwise, if (a ∗ j) ∗ i cannot be retrieved from the table and (a ∗ j) and (a ∗ i) ∗ k can be

retrieved from the table, then
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(a) If ((a ∗ i) ∗ k) ∗̄i can be retrieved from the table, the table is not valid.

(b) Otherwise, necesarily (a ∗ j) ∗ i = (a ∗ i) ∗ k.

3. Otherwise, if (a ∗ j)∗i and (a ∗ i)∗k can be retrieved from the table and (a ∗ j)∗i 6= (a ∗ i)∗k,

the table is not valid.

Rule 3: (j ∗ a) ∗ i = k ∗ (a ∗ i)

1. If k ∗ (a ∗ i) cannot be retrieved from the table and (j ∗ a) ∗ i and a ∗ i can be retrieved from

the table, then

(a) If ((j ∗ a) ∗ i) ∗̄ (a ∗ i) can be retrieved from the table, the table is not valid.

(b) Otherwise, necesarily k ∗ (a ∗ i) = (j ∗ a) ∗ i.

2. Otherwise, if (j ∗ a) ∗ i cannot be retrieved from the table and (j ∗ a) and k ∗ (a ∗ i) can be

retrieved from the table, then

(a) If (k ∗ (a ∗ i)) ∗̄i can be retrieved from the table, the table is not valid.

(b) Otherwise, necesarily (j ∗ a) ∗ i = k ∗ (a ∗ i).

3. Otherwise, if (j ∗ a)∗i and k∗(a ∗ i) can be retrieved from the table and (j ∗ a)∗i 6= k∗(a ∗ i),

the table is not valid.

Rule 4: ((j∗̄a) ∗ (i∗̄a)) ∗ a = k

1. If ((j∗̄a) ∗ (i∗̄a)) ∗ a cannot be retrieved from the table and ((j∗̄a) ∗ (i∗̄a)) can be retrieved

from the table, then

(a) If k∗̄a can be retrieved from the table, the table is not valid.

(b) Otherwise, necesarily ((j∗̄a) ∗ (i∗̄a)) ∗ a = k.

2. Otherwise, if ((j∗̄a) ∗ (i∗̄a)) ∗ a can be retrieved from the table and ((j∗̄a) ∗ (i∗̄a)) ∗ a 6= k,

the table is not valid.

Rule 5: k = ((j∗̄a) ∗ i) ∗ (a ∗ i)

1. If ((j∗̄a) ∗ i) ∗ (a ∗ i) cannot be retrieved from the table and (a ∗ i) and ((j∗̄a) ∗ i) can be

retrieved from the table, then

(a) If k∗̄ (a ∗ i) can be retrieved from the table, the table is not valid.

(b) Otherwise, necesarily ((j∗̄a) ∗ i) ∗ (a ∗ i) = k.
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2. Otherwise, if ((j∗̄a) ∗ i) ∗ (a ∗ i) can be retrieved from the table and k 6= ((j∗̄a) ∗ i) ∗ (a ∗ i),

the table is not valid.

Another easy improvement, which certainly reduces considerably the size of the list of quandles

to output in this first step of the quandles algorithm, comes from elementary logic: When you are

trying to generate all the models of cardinality n of a theory (in our case the theory of quandles),

we can start introducing constants and the corresponding relations between these constants one

by one (in a valid way), until we get n constants (so, the possible ways to generate the relations

between constants will correspond to the models of the theory). This is exactly what any algorithm

will do, just in the language of logic, but the point to emphasize is that, when a new constant is

introduced, the name of such constant is irrelevant. This is a trivial logic fact, but one that was not

used in previous versions of this listing procedure. For example, if we aim to complete the entry

b ∗ a of the partial table














a

b

c

d

e















,

then among the options b ∗ a = c, b ∗ a = d and b ∗ a = e, the choice is irrelevant, because at such

step, the constants c, d, e are not in context.

The following are some benchmarks concerning this first step of the process:





























size quandles time (sec.)

2 1 0

3 5 0

4 27 0

5 190 0

6 1833 0

7 22104 1 to 2

8 359859 24 to 34





























4.2 Phase 2: Isomorphic comparison

After the previous listing procedure has been elaborated (or more precisely, while the listing

procedure is elaborated), we want to eliminate irrelevant quandles, that is, we want to leave only

one representative per isomorphism class. For such comparison process, instead of doing a brute

force algorithm that takes all possible bijections and checks for isomorphic equivalence, we can do

two things:

(1) Use simple invariant checks, like number of cycles in every row action, to discard rapidly

some nonisomorphic pairs of quandles.

(2) Use the quandle axioms to reduce the complexity of the isomorphic comparison process.

Regarding (2), we employ the quandle axioms to extend appropriately a partial isomorphism

among valid possibilities, using the following rules:

Suppose that φ (i) = j.

Rule 1: φ (b) ∗′ j = φ (b ∗ i)
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1. If φ (b) and φ (b ∗ i) are defined, and φ (b) ∗′ j 6= φ (b ∗ i), then the isomorphism is not valid.

2. If φ (b ∗ i) is not defined and φ (b) is defined, necessarily φ (b ∗ i) = φ (b) ∗′ j, and this may or

may not contradict the injectivity of φ.

3. If φ (b ∗ i) is defined and φ (b) is not defined, necessarily φ (b) = φ (b ∗ i) ∗̄′j, and this may or

may not contradict the injectivity of φ.

Rule 2: j ∗′ φ (b) = φ (i ∗ b)

1. If φ (b) and φ (i ∗ b) are defined, and j ∗′ φ (b) 6= φ (i ∗ b), then the isomorphism is not valid.

2. If φ (i ∗ b) is not defined and φ (b) is defined, necessarily φ (i ∗ b) = j ∗′ φ (b), and this may or

may not contradict the injectivity of φ.

Rule 3: φ (i∗̄b) ∗′ φ (b) = j

1. If φ (b) and φ (i∗̄b) are defined, and φ (i∗̄b) ∗′ φ (b) 6= j, then the isomorphism is not valid.

2. If φ (b) is defined and φ (i∗̄b) is not defined, necessarily, φ (i∗̄b) = j∗̄′φ (b), and this may or

may not contradict the injectivity of φ.

For the following benchmark, we do an exhaustive algorithm for isomorphism comparison.

Notice that is tractable up to n = 6.



















size quandles time (sec.)

2 1 0

3 3 0

4 7 0

5 22 0

6 73 29− 32



















For the following benchmark we apply the improved isomorphism comparison, by using the

rules described previously. This improves the running time by a factor of 10 approx.

























size quandles time (sec.)

2 1 0

3 3 0

4 7 0

5 22 0

6 73 3

7 298 330

























Checking invariants:

Certainly, it is not necessary to do an isomorphism comparison (improved or not), if we know

before hand that the quandles to be compared are ‘too different’. Therefore, a pre-comparison of
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some invariants fast to calculate, would boost the running time. For early versions of the algorithm,

we introduced invariants based on the permutation structure of the columns of the quandle table.

For example, for the following benchmark, we simply count the total number of cycles among all

columns of the quandle table. The comparison of such invariant improves the running time by

another factor of 10:

























size quandles time (sec.)

2 1 0

3 3 0

4 7 0

5 22 0

6 73 0

7 298 34

























For the following benchmark we go down one more level, now taking as invariant the superset

consisting of the number of cycles of every columns. This improves the running time by a factor of

4 approx.

























size quandles time (sec.)

2 1 0

3 3 0

4 7 0

5 22 0

6 73 0

7 298 9

























For the following benchmark we refine the previous invariant, by considering the superset of

supersets of cycle lengths of every column, At this level of improvement, the case n = 8 is compu-

tationally tractable.





























size quandles time (sec.)

2 1 0

3 3 0

4 7 0

5 22 0

6 73 0

7 298 6

8 1581 458





























Further improvements will be introduced in next versions of the algorithm, whose source is

available at the web address http://people.math.gatech.edu/˜restrepo/quandles.html.

Another invariants suggested by Professor Edwin Clark, which according to his experiments seem to

distinguish isomorphic classes effectively, take in account the structure of the rows of the quandle.

The number of isomorphism of quandles of order 3, 4, 5, 6, 7, 8 and 9 we obtain are respectively 3,

7, 22, 73, 298, 1581, 11079. These same numbers are obtained by James McCarron in [12].

Acknowledgments The authors would like to thank professor Edwin Clark for his help and

fruitful suggestions.
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