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ON THE SEMIGROUP OF PARTIAL ISOMETRIES OF A
FINITE CHAIN

R. Kehinde and A. Umar

Abstract

Let In be the symmetric inverse semigroup on Xn = {1, 2, · · · , n}
and let DPn and ODPn be its subsemigroups of partial isometries
and of order-preserving partial isometries of Xn, respectively. In this
paper we investigate the cycle structure of a partial isometry and
characterize the Green’s relations on DPn and ODPn. We show that
ODPn is a 0 − E − unitary inverse semigroup. We also investigate
the cardinalities of some equivalences on DPn and ODPn which lead
naturally to obtaining the order of the semigroups.1 2

MSC2010 : 20M18, 20M20, 05A10, 05A15.

1 Introduction and Preliminaries

Let Xn = {1, 2, · · · , n} and In be the partial one-to-one transformation
semigroup on Xn under composition of mappings. Then In is an inverse
semigroup (that is, for all α ∈ In there exists a unique α′ ∈ In such that α =
αα′α and α′ = α′αα′). The importance of In (more commonly known as the
symmetric inverse semigroup or monoid) to inverse semigroup theory may
be likened to that of the symmetric group Sn to group theory. Every finite
inverse semigroup S is embeddable in In, the analogue of Cayley’s theorem
for finite groups, and to the regular representation of finite semigroups.
Thus, just as the study of symmetric, alternating and dihedral groups has
made a significant contribution to group theory, so has the study of various
subsemigroups of In, see for example [1, 3, 4, 6, 17].
A transformation α ∈ In is said to be order-preserving (order-reversing) if
(∀x, y ∈ Domα) x ≤ y =⇒ xα ≤ yα (xα ≥ yα) and, is said to be an
isometry (or distance-preserving) if (∀x, y ∈ Domα) | x− y |=| xα− yα |.
Semigroups of partial isometries on more restrictive but richer mathematical
structures have been studied [2, 19]. This paper investigates the algebraic
and combinatorial properties of DPn and ODPn, the semigroups of partial
isometries and of partial order-preserving isometries of an n−chain, respec-
tively.

In this section we introduce basic terminologies and some preliminary
results concerning the cycle structure of a partial isometry of Xn. In the

1Key Words : partial one-one transformation, partial isometries, height, right (left)
waist, right (left) shoulder and fix of a transformation, idempotents and nilpotents.

2This work was carried out when the first named author was visiting Sultan Qaboos
University for a 3-month research visit in Fall 2010.
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next section, (Section 2) we characterize the classical Green’s relations and
show that ODPn is a 0-E-unitary inverse semigroup. We also show that
certain Rees factor semigroups of ODPn are 0-E-unitary and categorical
inverse semigroups. In Section 3 we obtain the cardinalities of two equiva-
lences defined on DPn and ODPn. These equivalences lead to formulae for
the order of DPn and ODPn as well as new triangles of numbers not yet
recorded in [15].

For standard concepts in semigroup and symmetric inverse semigroup
theory, see for example [9, 13, 11]. Let

DPn = {α ∈ In : (∀x, y ∈ Xn) | x− y |=| xα− yα |}(1)

be the subsemigroup of In consisting of all partial isometries of Xn. Also
let

ODPn = {α ∈ DPn : (∀x, y ∈ Xn) x ≤ y =⇒ xα ≤ yα}(2)

be the subsemigroup of DPn consisting of all order-preserving partial isome-
tries of Xn. It is clear that if α ∈ DPn (α ∈ ODPn) then α−1 ∈ DPn

(α−1 ∈ ODPn) also. Thus we have the following result.

Lemma 1.1 DPn and ODPn are inverse subsemigroups of In.

Next we prove a sequence of lemmas that help us understand the cycle
structure of partial isometries. These lemmas also seem to be useful in
investigating the combinatorial questions in Section 3. First, let α be in
In. Then the height of α is h(α) =| Imα |, the right [left] waist of α is
w+(α) = max(Imα) [w−(α) = min(Imα)], the right [left] shoulder of α is
̟+(α) = max(Domα) [̟−(α) = min(Domα)], and fix of α is denoted by
f(α), and defined by f(α) = |F (α)|, where

F (α) = {x ∈ Xn : xα = x}.

Lemma 1.2 Let α ∈ DPn be such that h(α) = p. Then f(α) = 0 or 1 or p.

Proof. Suppose x, y ∈ F (α). Then x = xα and y = yα. Let z ∈ Domα
where we may without loss of generality assume that x < y < z. Essentially,
we consider two cases: y < zα and x < zα < y. In the former, we see that

z − y =| zα− yα |=| zα − y |= zα − y =⇒ z = zα.

In the latter, we see that

z − x =| zα − xα |=| zα − x |= zα− x =⇒ z = zα.

However, note that

α =
(

2 3 . . . p+ 1
1 2 . . . p

)

and β =
(

. . . i− 1 i i+ 1 . . .

. . . i+ 1 i i− 1 . . .

)

are nonidempotent partial isometries with f(α) = 0 and f(β) = 1. 2
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Corollary 1.3 Let α ∈ DPn. If f(α) = p > 1 then f(α) = h(α). Equiva-
lently, if f(α) > 1 then α is an idempotent.

Lemma 1.4 Let α ∈ DPn. If 1 ∈ F (α) or n ∈ F (α) then for all x ∈
Domα, we have xα = x. Equivalently, if 1 ∈ F (α) or n ∈ F (α) then α is
a partial identity.

Proof. Suppose 1 ∈ F (α). Then for all x ∈ Domα, x − 1 = xα − 1α =
xα − 1 =⇒ x = xα. Similarly, if n ∈ F (α), then for all x ∈ Domα,
n− x = nα− xα = n− xα =⇒ x = xα. 2

Lemma 1.5 Let α ∈ ODPn and n ∈ Domα ∩ Imα. Then nα = n.

Proof. Since n = max(Domα) and n = max(Imα), and α is order-

preserving then nα = n. However, note that in DPn we have α =
(

1 n
n 1

)

,

where n ∈ Domα ∩ Imα but nα 6= n. 2

Lemma 1.6 Let α ∈ ODPn and f(α) ≥ 1. Then α is an idempotent.

Proof. Let x be a fixed point of α and suppose y ∈ Domα. If x < y then by
the order-preserving and isometry properties we see that y−x = yα−xα =
yα− x =⇒ y = yα. The case y < x is similar. However, note that in DPn

we have α =
(

1 2
3 2

)

, where f(α) = 1 but α2 6= α. 2

2 Green’s relations

For the definitions of Green’s relations we refer the reader to Howie [9,
Chapter 2]. It is now customary that when one encounters a new class of
semigroups, one of the questions that is often asked concerns the character-
ization of Green’s relations. By Lemma 1.1 and [9, Proposition 2.4.2 & Ex.
5.11.2] we deduce the following lemma.

Lemma 2.1 Let α, β ∈ DPn. Then

(1) α ≤R β if and only if Domα ⊆ Domβ;

(2) α ≤L β if and only if Imα ⊆ Imβ;

(3) α ≤H β if and only if Domα ⊆ Domβ and Imα ⊆ Imβ.

Theorem 2.2 Let S = DPn be as defined in (1). Then α ≤D β if and only
if there exists an isometry θ : Domα → Domβ.
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Proof. Let α ≤D β, then there exists δ in DPn such that α ≤R δ ⇐⇒
α = δη1 and δ ≤L β ⇐⇒ δ = η2β. Thus α = δη1 = η2βη1 and so
Domα ⊆ Domη2. It is clear that η2|Domα is an isometry from Domα into
Domβ.

Conversely, suppose θ is an isometry from Domα into Domβ. Define
η1 by xη1 = xθ−1α (x ∈ Domβ). Then η1 ∈ DPn and θη1 = θ(θ−1α) = α.
Hence α ≤R θ. Similarly, define η2 by xη2 = xθβ−1 (x ∈ Domα). Then
η2 ∈ DPn and η2β = (θβ−1)β = θ. Hence θ ≤L β, as required. 2

The corresponding result for ODPn can be proved similarly.

Theorem 2.3 Let S = ODPn be as defined in (2). Then α ≤D β if and
only if there exists an order-preserving isometry θ : Domα → Domβ.

Let E ′ = E \ 0. A semigroup S is said to be 0 − E − unitary if (∀e ∈
E ′)(∀s ∈ S) es ∈ E ′ =⇒ s ∈ E ′. The structure theorem for 0-E-unitary
inverse semigroup was given by Lawson [12], see also Szendrei [16] and
Gomes and Howie [7]. The next result came as a pleasant surprise to us in
the sense that we get a natural class of 0-E-unitary inverse semigroups.

Theorem 2.4 ODPn is a 0− E − unitary inverse subsemigroup of In.

Proof. Let ǫ ∈ E(ODPn) \ {0}. Then Domǫ 6= ∅ and for β ∈ ODPn such
that ǫβ is a nonzero idempotent we see that Domǫβ = {x, · · ·} 6= ∅. Now,
since Domǫβ ⊆ Domǫ it follows that xǫ = x =⇒ xβ = xǫβ = x. Thus, for
any y ∈ Domβ, (i) if x < y, we see that y − x = yβ − xβ = yβ − x. Hence
y = yβ, showing that β is idempotent, as required. The case (ii) y < x is
similar. 2

Remark 2.5 Note that DPn is not 0-E-unitary:
(

1 2
1 2

)(

2 3
2 1

)

=
(

2
2

)

∈ E(DPn) but
(

2 3
2 1

)

/∈ E(DPn).

For natural numbers n, p with n ≥ p ≥ 0, let

L(n, p) = {α ∈ ODPn : h(α) ≤ p}(3)

be a two-sided ideal of ODPn, and for p > 0, let

Q(n, p) = L(n, p)/L(n, p− 1)(4)

be its Rees quotient semigroup. Then Q(n, p) is a 0-E-unitary inverse semi-
group whose nonzero elements may be thought of as the elements of ODPn

of height p. The product of two elements of Q(n, p) is 0 whenever their
product in ODPn is of height less than p.
A semigroup S is said to be categorical if

(∀a, b, c ∈ S), abc = 0 =⇒ ab = 0 or bc = 0.

The structure theorem for 0-E-unitary categorical inverse semigroup was
given by Gomes and Howie [7]. Now we have
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Theorem 2.6 Let Q(n, p) be as defined in (4). Then Q(n, p) is a 0−E −
unitary categorical inverse semigroup.

Proof. Let α, β and γ ∈ Q(n, p). Note that it suffices to prove that if
αβ 6= 0 and βγ 6= 0 then αβγ 6= 0. Now suppose αβ 6= 0 and βγ 6= 0. Then
Imαβ = Imβ = Domγ. Hence αβγ 6= 0, as required. 2

Remark 2.7 Note that ODPn is not categorical:

(

1 2
1 2

)(

2 3
2 3

)(

1 3
1 3

)

= 0

but

(

1 2
1 2

)(

2 3
2 3

)

=
(

2
2

)

6= 0 and
(

2 3
2 3

)(

1 3
1 3

)

=
(

3
3

)

6= 0.

3 Combinatorial results

Enumerative problems of an essentially combinatorial nature arise naturally
in the study of semigroups of transformations. Many numbers and triangle
of numbers regarded as combinatorial gems like the Stirling numbers [9, pp.
42 & 96], the factorial [14, 17], the binomial [6], the Fibonacci number [8],
Catalan numbers [5], Lah numbers [5, 10], etc., have all featured in these
enumeration problems. For a nice survey article concerning combinatorial
problems in the symmetric inverse semigroup and some of its subsemigroups
we refer the reader to Umar [18]. These enumeration problems lead to many
numbers in Sloane’s encyclopaedia of integer sequences [15] but there are
also others that are not yet or have just been recorded in [15].
Now recall the definitions of height and fix of α ∈ In from the paragraph
after Lemma 1.1. As in Umar [18], for natural numbers n ≥ p ≥ m ≥ 0 we
define

F (n; p) =| {α ∈ S : h(α) =| Imα |= p} |,(5)

F (n;m) =| {α ∈ S : f(α) = m} |(6)

where S is any subsemigroup of In. Also, let i = ai = a, for all a ∈ {p,m},
and 0 ≤ i ≤ n.

Lemma 3.1 Let S = ODPn. Then F (n; p1) = F (n; 1) = n2 and F (n; pn) =
F (n;n) = 1, for all n ≥ 2.
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Proof. Since all partial injections of height 1 are vacuously partial isome-
tries, the first statement of the lemma follows immediately. For the second
statement, it is not difficult to see that there is exactly one partial isometry

of height n:
(

1 2 . . . n
1 2 . . . n

)

(the identity). 2

Lemma 3.2 Let S = ODPn. Then F (n; p2) = F (n; 2) = 1
6
n(n−1)(2n−1),

for all n ≥ 2.

Proof. First, we say that 2-subsets of Xn (that is, subsets of size 2) say,
A = {a1, a2} and B = {b1, b2} are of the same type if | a1 − a2 |=| b1 − b2 |.
Now observe that if | a1 − a2 |= i (1 ≤ i ≤ n − 1) then there are n − i
subsets of this type. However, for partial order-preserving isometries once
we choose a 2-subset as a domain then the possible image sets must be
of the same type and there is only one possible order-preserving bijection
between any two 2-subsets of the same type. It is now clear that F (n; p2) =
F (n; 2) =

∑n−1
i=1 (n− i)2 = 1

6
n(n− 1)(2n− 1), as required. 2

Lemma 3.3 Let S = ODPn. Then F (n; p) = F (n−1; p−1)+F (n−1; p),
for all n ≥ p ≥ 3.

Proof. Let α ∈ ODPn and h(α) = p. Then it is clear that F (n; p) =
| A | + | B |, where A = {α ∈ ODPn : h(α) = p and n /∈ Domα ∪ Imα}
and B = {α ∈ ODPn : h(α) = p and n ∈ Domα ∪ Imα}. Define a map
θ : {α ∈ ODPn−1 : h(α) = p} → A by (α)θ = α′ where xα′ = xα (x ∈
Domα. This is clearly a bijection since n /∈ Domα ∪ Imα. Next, recall
the definitions of ̟+(α) and w+(α) from the paragraph after Lemma 1.1.
Now, define a map Φ : {α ∈ ODPn−1 : h(α) = p − 1} → B by (α)Φ = α′

where
(i) xα′ = xα (x ∈ Domα) andnα′ = n (if ̟+(α) = w+(α) );

(ii) xα′ = xα (x ∈ Domα) andnα′ = n−̟+(α)+w+(α) < n (if ̟+(α) >
w+(α));

(iii) x(α′)−1 = xα−1 (x ∈ Imα) andn(α′)−1 = n−̟+(α)−1+w+(α−1) < n
(if ̟+(α) < w+(α)).

In all cases h(α′) = p, and case (i) coincides with n ∈ Domα′ ∩ Imα′;
case (ii) coincides with n ∈ Domα′ \ Imα′; case (iii) coincides with n ∈
Imα′ \ Domα′. Thus Φ is onto. Moreover, it is not difficult to see that
Φ is one-to-one. Hence Φ is a bijection, as required. This establishes the
statement of the lemma. 2

Proposition 3.4 Let S = ODPn and F (n; p) be as defined in (2) and (5),

respectively. Then F (n; p) = (2n−p+1)
p+1

(

n

p

)

, where n ≥ p ≥ 2.
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Proof. (The proof is by induction).
Basis step: First, note that F (n; 1), F (n;n) and F (n; 2) are true by Lemmas
3.1 and 3.2.
Inductive step: Suppose F (n − 1; p) is true for all n − 1 ≥ p. (This is the
induction hypothesis.) Now using Lemma 3.3, we see that

F (n; p) = F (n− 1; p− 1) + F (n− 1; p)

=
(2n− p)

p

(

n− 1

p− 1

)

+
(2n− p− 1)

p+ 1

(

n− 1

p

)

(by ind. hyp.)

=
(2n− p)

p

p

n

(

n

p

)

+
(2n− p− 1)

p + 1

(n− p)

n

(

n

p

)

=
(2n− p)(p+ 1) + (2n− p− 1)(n− p)

n(p+ 1)

(

n

p

)

=
(2n2 − np+ n)

n(p+ 1)

(

n

p

)

=
(2n− p+ 1)

p+ 1

(

n

p

)

,

as required. 2

Lemma 3.5 For integers n, p such that n ≥ p ≥ 2, we have
∑n

p=2
2n−p+1

p+1

(

n

p

)

=

3 · 2n − n2 − 2n− 3.

Proof. It is enough to observe that 2n− p+ 1 = (2n− 2p) + (p+ 1). 2

Theorem 3.6 Let ODPn be as defined in (2). Then

| ODPn |= 3 · 2n − 2(n + 1).

Proof. It follows from Proposition 3.4 and Lemma 3.5, and some algebraic
manipulation. 2

Lemma 3.7 Let S = ODPn. Then F (n;m) =
(

n

m

)

, for all n ≥ m ≥ 1.

Proof. It follows directly from Lemma 1.6. 2

Proposition 3.8 Let S = ODPn and F (n;m) be as defined in (2) and (6),
respectively. Then F (n; 0) = 2n+1 − (2n+ 1).

Proof. It follows from Theorem 3.6, Lemma 3.7 and the fact that | ODPn |=
∑n

m=0 F (n;m). 2

Remark 3.9 The triangles of numbers F (n; p) and F (n;m), the sequence
F (n;m0) are as at the time of submitting this paper not in Sloane [15].
However, | ODPn | is [15, A097813]. For some computed values of F (n; p)
and F (n;m) in ODPn, see Tables 3.1 and 3.2.
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n\p 0 1 2 3 4 5 6 7
∑

F (n; p) =| ODPn |
0 1 1
1 1 1 2
2 1 4 1 6
3 1 9 5 1 16
4 1 16 14 6 1 38
5 1 25 30 20 7 1 84
6 1 36 55 50 27 8 1 178
7 1 49 91 105 77 35 9 1 368

Table 3.1

n\m 0 1 2 3 4 5 6 7
∑

F (n;m) =| ODPn |
0 1 1
1 1 1 2
2 3 2 1 6
3 9 3 3 1 16
4 23 4 6 4 1 38
5 53 5 10 10 5 1 84
6 115 6 15 20 15 6 1 178
7 241 7 21 35 35 21 7 1 368

Table 3.2

Remark 3.10 For p = 0, 1 the concepts of order-preserving and order-
reversing coincide but distinct otherwise. However, there is a bijection be-
tween the two sets for p ≥ 2, see [4, page 2, last paragraph].

Lemma 3.11 Let α ∈ DPn. Then α is either order-preserving or order-
reversing.

Proof. If h(α) = 2 then the result is obvious. However, if h(α) > 2 we
must consider cases. First suppose that {a1, a2, a3} ⊆ Domα, where aiα =
bi (i = 1, 2, 3) and 1 ≤ a1 < a2 < a3 ≤ n. There are four cases to consider if
α is neither order-preserving or order-reversing: b1 < b3 < b2, b2 < b1 < b3,
b2 < b3 < b1 and b3 < b1 < b2. In the first case, note that b2 − b1 =
(b2−b3)+(b3−b1). But a3−a1 = (a3−a2)+(a2−a1) =| a3−a2 | + | a2−a1 |
=| b3 − b2 | + | b2 − b1 |=| b3 − b2 | + | b2 − b3 | + | b3 − b1 |= 2 | b3 − b2 |
+ | b3α

−1 − b1α
−1 |= 2 | b3 − b2 | + | a3 − a1 |= 2 | b3 − b2 | +a3 − a1, which

implies that | b3 − b2 |= 0 ⇔ b3 = b2. This is a contradiction. The other
three cases are similar. 2

We now use Remark 3.10 and Lemma 3.11 to deduce corresponding results
for DPn from those of ODPn above.
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Lemma 3.12 Let S = DPn. Then F (n; p1) = F (n; 1) = n2 and F (n; pn) =
F (n;n) = 2, for all n ≥ 2.

Lemma 3.13 Let S = DPn. Then F (n; p2) = F (n; 2) = 1
3
n(n−1)(2n−1),

for all n ≥ 2.

Lemma 3.14 Let S = DPn. Then F (n; p) = F (n− 1; p− 1)+F (n− 1; p),
for all n ≥ p ≥ 3.

Proposition 3.15 Let S = DPn and F (n; p) be as defined in (1) and (5),

respectively. Then F (n; p) = 2(2n−p+1)
p+1

(

n

p

)

, where n ≥ p ≥ 2.

Theorem 3.16 Let DPn be as defined in (1). Then

| DPn |= 3 · 2n+1 − (n+ 2)2 − 1.

Proof. It follows from Proposition 3.15, Lemma 3.5 and some algebraic
manipulation. 2

Lemma 3.17 Let α ∈ DPn. For 1 < i < n, if F (α) = {i} then for all
x ∈ Domα we have that x+ xα = 2i.

Proof. Let F (α) = {i} and suppose x ∈ Domα. Obviously, i+ iα = i+ i =
2i. If x < i then xα > i, for otherwise we would have i− x =| iα− xα |=
| i− xα |= i− xα =⇒ x = xα, which is a contradiction. Thus, i− x =
| iα − xα |=| i− xα |=| xα − i |= xα − i =⇒ x+ xα = 2i. The case x > i
is similar. 2

Lemma 3.18 Let S = DPn. Then F (n;m) =
(

n

m

)

, for all n ≥ m ≥ 2.

Proof. It follows from Corollary 1.3. 2

Proposition 3.19 Let S = DPn. Then F (2n;m1) = F (2n; 1) = 2(22n−1)
3

and F (2n− 1;m1) = F (2n− 1; 1) = 2(22n−2−1)
3

+ 22n−2, for all n ≥ 1.

Proof. Let F (α) = {i}. Then by Lemma 3.17, for any x ∈ Domα we have
x + xα = 2i. Thus there 2i − 2 possible elements for Domα : (x, xα) ∈
{(1, 2i−1), (2, 2i−2), · · · (2i−1, 1)}. However, (excluding (i, i)) we see that

there are
∑2i−2

j=0

(

2i−2
j

)

= 22i−2, possible partial isometries with F (α) = {i},

where 2i − 1 ≤ n ⇐⇒ i ≤ (n + 1)/2. Moreover, by symmetry we see that
F (α) = {i} and F (α) = {n − i + 1} give rise to equal number of partial
isometries. Note that if n is odd the equation i = n− i+1 has one solution.
Hence, if n = 2a− 1 we have

2
a−1
∑

i=1

22i−2 + 22a−2 =
2(22a−2 − 1)

3
+ 22a−2

9



partial isometries with exactly one fixed point; if n = 2a we have

2
a
∑

i=1

22i−2 =
2(22a − 1)

3

partial isometries with exactly one fixed point. 2

Proposition 3.20 Let S = DPn. Then F (n;m0) = F (n; 0) = 13·2n−(3n2+9n+10)
3

,

(n ≥ 0, if n is even) and F (n;m0) = F (n; 0) = 25·2n−1−(3n2+9n+10)
3

, (n ≥ 1,
if n is odd).

Proof. It follows from Theorem 3.16, Lemma 3.18, Proposition 3.19 and
the fact that | DPn |=

∑n
m=0 F (n;m). 2

Remark 3.21 The triangles of numbers F (n; p) and F (n;m) and, the se-
quences | DPn | and F (n;m0), are as at the time of submitting this paper not
in Sloane [15]. However, F (n;m1) is [15, A061547]. For some computed
values of F (n; p) and F (n;m) in DPn, see Tables 3.3 and 3.4.

n\p 0 1 2 3 4 5 6 7
∑

F (n; p) =| DPn |
0 1 1
1 1 1 2
2 1 4 2 7
3 1 9 10 2 22
4 1 16 28 12 2 59
5 1 25 60 40 14 2 142
6 1 36 110 100 54 16 2 319
7 1 49 182 210 154 70 18 2 686

Table 3.3

n\m 0 1 2 3 4 5 6 7
∑

F (n;m) =| DPn |
0 1 1
1 1 1 2
2 4 2 1 7
3 12 6 3 1 22
4 38 10 6 4 1 59
5 90 26 10 10 5 1 142
6 220 42 15 20 15 6 1 319
7 460 106 21 35 35 21 7 1 686

Table 3.4

Acknowledgements. The first named author would like to thank Bowen
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