Cones of Weighted and Partial Metrics

Michel Deza* Elena Deza ${ }^{\dagger}$ and Janoš Vidali ${ }^{\ddagger}$

Abstract

A partial semimetric on $V_{n}=\{1, \ldots, n\}$ is a function $f=\left(\left(f_{i j}\right)\right)$: $V_{n}^{2} \longrightarrow \mathbb{R}_{\geq 0}$ satisfying $f_{i j}=f_{j i} \geq f_{i i}$ and $f_{i j}+f_{i k}-f_{j k}-f_{i i} \geq 0$ for all $i, j, k \in V_{n}$. The function f is a weak partial semimetric if $f_{i j} \geq f_{i i}$ is dropped, and it is a strong partial semimetric if $f_{i j} \geq f_{i i}$ is complemented by $f_{i j} \leq f_{i i}+f_{j j}$.

We describe the cones of weak and strong partial semimetrics via corresponding weighted semimetrics and list their 0,1 -valued elements, identifying when they belong to extreme rays. We consider also related cones, including those of partial hypermetrics, weighted hypermetrics, ℓ_{1}-quasi semimetrics and weighted/partial cuts.

Key Words and Phrases: weighted metrics; partial metrics; hypermetrics; cuts; convex cones; computational experiments.

1 Convex cones under consideration

There are following two main motivations for this study. One is to extend the rich theory of metric, cut and hypermetric cones on weighted, partial and non-symmetric generalizations of metrics. Another is a new appoach to partial semimetrics (having important applications in Computer Science) via cones formed by them.

[^0]A convex cone in \mathbb{R}^{m} (see, for example, $\left.\mathbf{S c 8 6}\right]$) is defined either by generators v_{1}, \ldots, v_{N}, as $\left\{\sum \lambda_{i} v_{i}: \lambda_{i} \geq 0\right\}$, or by linear inequalities f^{1}, \ldots, f^{M}, as $\cap_{j=1}^{M}\left\{x \in \mathbb{R}^{m}: f^{j}(x)=\sum_{i=1}^{m} f_{i}^{j} x_{i} \geq 0\right\}$.

Let C be an m^{\prime}-dimensional convex cone in \mathbb{R}^{m}. Given $f \in \mathbb{R}^{m}$, the linear inequality $f(x)=\sum_{i=1}^{m} f_{i} x_{i}=\langle f, x\rangle \geq 0$ is said to be valid for C if it holds for all $x \in C$. Then the set $\{x \in C:\langle f, x\rangle=0\}$ is called the face of C, induced by F. A face of dimension $m^{\prime}-1, m^{\prime}-2,1$ is called a facet, ridge, extreme ray of C, respectively (a ray is a set $\mathbb{R}_{\geq 0} x$ with $x \in C$). Denote by $F(C)$ the set of facets of C and by $R(C)$ the set of its extreme rays. We consider only polyhedral (i.e., $R(C)$ and, alternatively, $F(C)$ is finite) pointed (i.e., $(0) \in C$) convex cones. Each ray $r \subset C$ below contains a unique good representative, i.e., an integer-valued vector $v(r)$ with g.c.d. 1 of its entries; so, by abuse of language, we will identify r with $v(r)$.

For a ray $r \subset C$ denote by $F(r)$ the set $\{f \in F(C): r \subset f\}$. For a face $f \subset C$ denote by $R(f)$ the set $\{r \in R(C): r \subset f\}$. The incidence number $\operatorname{Inc}(f)$ of a face f (or $\operatorname{Inc}(r)$ of a ray r) is the number $|\{r \in R(C): r \subset f\}|$ (or, respectively, $|\{f \in F(C): r \subset f\}|$). The $\operatorname{rank}(f)$ of a face f (or $\operatorname{rank}(r)$ of a ray r) is the dimension of $\{r \in R(C): r \subset f\}$ (or of $\{f \in F(C): r \subset f\}$).

Two extreme rays (or facets) of C are adjacent on C if they span a 2dimensional face (or, respectively, their intersection has dimension $m^{\prime}-2$). The skeleton $\operatorname{Sk}(C)$ is the graph whose vertices are the extreme rays of C and with an edge between two vertices if the corresponding rays are adjacent on C. The ridge graph $\operatorname{Ri}(C)$ is the graph whose vertices are facets of C and with an edge between two vertices if the corresponding facets are adjacent on C. Let $D(G)$ denote the diameter of the graph G

Given a cone C_{n} of some functions, say, $d=\left(\left(d_{i j}\right)\right): V_{n}^{2} \longrightarrow \mathbb{R}_{\geq 0}$ the 0 -extension of the inequality $\sum_{1 \leq i \neq j \leq n-1} F_{i j} d_{i j} \geq 0$ is the inequality

$$
\sum_{1 \leq i \neq j \leq n} F_{i j}^{\prime} d_{i j} \geq 0 \text { with } F_{n i}^{\prime}=F_{i n}^{\prime}=0 \text { and } F_{i j}^{\prime}=F_{i j}, \text { otherwise. }
$$

Clearly, the 0 -extension of any facet-defining inequality of a cone C_{n} is a valid inequality (usually, facet-defining) of C_{n+1}. The 0-extension of an extreme ray is defined similarly. For any cone C denote by $0,1-C$ the cone generated by all extreme rays of C containing a non-zero 0,1 -valued point.

The cones C considered here will be symmetric under permutations and usually $\operatorname{Aut}(C)=\operatorname{Sym}(n)$. All orbits below are under $\operatorname{Sym}(n)$.

Set $V_{n}=\{1, \ldots, n\}$. The function $f=\left(\left(f_{i j}\right)\right): V_{n}^{2} \longrightarrow \mathbb{R}$ is called weak partial semimetric if the following holds:
(1) $f_{i j}=f_{j i}$ (symmetry) for all $i, j \in V_{n}$,
(2) $L_{i j}: f_{i j} \geq 0$ (non-negativity) for all $i, j \in V_{n}$, and
(3) $T r_{i j, k}: f_{i k}+f_{k j}-f_{i j}-f_{k k} \geq 0$ (triangle inequality) for all $i, j, k \in V_{n}$.

Weak partial semimetrics were introduced in He99 as a generalization of partial semimetrics introduced in Ma92]. Clearly, all $T r_{i j, i}=0$ and $T r_{i i, k}=$ $2 f_{i k}-f_{i i}-f_{k k}=T r_{i j, k}+T r_{k j, i}$. So, it is sufficient to require (2) only for $i=j$ and (3) only for different i, j, k. The weak partial semimetrics on V_{n} form a $\binom{n+1}{2}$-dimensional convex cone with n facets $L_{i i}$ and $3\binom{n}{3}$ facets $\operatorname{Tr}_{i j, k}$. Denote this cone by wPMET T_{n}.

A weak partial semimetric f is called partial semimetric if it holds that
(4) $M_{i j}: f_{i j}-f_{i i} \geq 0$ (small self-distances) for all different $i, j \in V_{n}$.

The partial semimetrics on V_{n} form a $\binom{n+1}{2}$-dimensional subcone, denote it by PMET_{n}, of $w P M E T_{n}$. This cone has n facets $L_{i i}, 2\binom{n}{2}$ facets $M_{i j, i}$ and $3\binom{n}{3}$ facets $T r_{i j, k}$. Partial metrics were introduced by Matthews in Ma92 for treatment of partially defined objects in Computer Science; see also [Ma08, Hi01, Se97. The cone $P M E T_{n}$ was considered in DeDe10.

A partial semimetric f is called strong partial semimetric if it holds that
(5) $N_{i j}: f_{i i}+f_{j j}-f_{i j} \geq 0$ (large self-distances) for all $i, j \in V_{n}$.

So, $f_{i i}=N_{i j}+M_{j i} \geq 0$, i.e., (5) and (4) imply $L_{i i}$ for all. i. The strong partial semimetrics on V_{n} form a $\binom{n+1}{2}$-dimensional subcone, denote it by $s P M E T_{n}$, of PMET_{n}. This cone has $3\binom{n+1}{3}$ facets: $2\binom{n}{2}$ facets $M_{i j},\binom{n}{2}$ facets $N_{i j}$ and $3\binom{n}{3}$ facets $T r_{i j, k}$.

A partial semimetric f is called semimetric if it holds that
(6) $f_{i i}=0$ (reflexivity) for all $i \in V_{n}$.

The semimetrics on V_{n} form a $\binom{n}{2}$-dimensional convex cone, denoted by $M E T_{n}$, which has $3\binom{n}{3}$ facets $T r_{i j, k}$ (clearly, $f_{i j}=\frac{T r_{i j, k}+T r_{j k, i}}{2} \geq 0$). This cone is well-known; see, for example, DeLa97] and references there.

The function f is quasi-semimetric if only (2), (3), (6) are required. The quasi-semimetrics on V_{n} form a $n(n-1)$-dimensional convex cone, denoted by $Q M E T_{n}$, which has $2\binom{n}{2}$ facets $L_{i j}$ and $6\binom{n}{3}$ facets $O T r_{i j, k}: f_{i k}+f_{k j}-f_{i j} \geq$ 0 (oriented triangle inequality). But other oriented versions of $T r_{i j, k}$ (for example, $\left.f_{i k}+f_{k j}-f_{j i}\right)$ are not valid on $Q M E T_{n}$.

A quasi-semimetric f is weightable if there exist a (weight) function $w=$ $\left(w_{i}\right): V_{n} \longrightarrow \mathbb{R}_{\geq 0}$ such that $f_{i j}+w_{i}=f_{j i}+w_{j}$ for all $i, j \in V_{n}$. Such quasisemimetrics f (or, equivalently, pairs (f, w)) on V_{n} form a $\binom{n+1}{2}$-dimensional
cone, denote it by $W_{Q M E T}^{n}$, with $2\binom{n}{2}$ facets $L_{i j}$ and $3\binom{n}{3}$ facets $O T r_{i j, k}$ since, for a quasi-semimetric, $O T r_{i j, k}=O T r_{j i, k}$ if it is weightable.

A weightable quasi-semimetric (f, w) with all $f_{i j} \leq w_{j}$ is a weightable strong quasi-semimetric. But if, on the contrary, (2) is weakened to $f_{i j}+$ $f_{j i} \geq 0$ (so, $f_{i j}<0$ is allowed), (f, w) is a weightable weak quasi-semimetric. Denote by $s W Q M E T_{n}$ and $w W Q M E T_{n}$ the corresponding cones.

Let us denote the function f by p, d, or q if it is a weak partial semimetric, semimetric, or weightable weak quasi-semimetric, respectively.

A weighted semimetric $(d ; w)$ is a semimetric d with a weight function $w: V_{n} \rightarrow \mathbb{R}_{\geq 0}$ on its points. Denote by $(d ; w)$ the matrix $\left(\left(d_{i j}^{\prime}\right)\right), 0 \leq i, j \leq n$, with $d_{00}^{\prime}=0, d_{0 i}^{\prime}=d_{i 0}^{\prime}=w_{i}$ for $i \in V_{n}$ and $d_{i j}^{\prime}=d_{i j}$ for $i, j \in V_{n}$. The weighted semimetrics $(d ; w)$ on V_{n} form a $\binom{n+1}{2}$-dimensional convex cone with n facets $w_{i} \geq 0$ and $3\binom{n}{3}$ facets $\operatorname{Tr}_{i j, k}$. Denote this cone by $W M E T_{n}$. So, $M E T_{n} \simeq\left\{(d ;(k, \ldots, k)): d \in W M E T_{n}\right\}$. Also, $M E T_{n}=Q M E T_{n} \cap P M E T_{n}$.

Call a weighted semimetric ($d ; w$) down- or up-weighted if
(4') $d_{i j} \geq w_{i}-w_{j}$, or
(5') $d_{i j} \leq w_{i}+w_{j}$
holds (for all distinct $i, j \in V_{n}$), respectively. Denote by $d W M E T_{n}$ the cone of down-weighted semimetrics on V_{n} and by $s W M E T_{n}$ the cone of strongly, i.e., both, down- and up-, weighted semimetrics. So, $s W M E T_{n}=M E T_{n+1}$.

2 Maps P, Q and semimetrics

Given a weighted semimetric $(d ; w)$, define the map P by the function $p=$ $P(d ; w)$ with $p_{i j}=\frac{d_{i j}+w_{i}+w_{j}}{2}$. Clearly, P is an automorphism (invertible linear operator) of the vector space $\mathbb{R}^{\binom{n+1}{2}}$, and $(d ; w)=P^{-1}(p)$, where the inverse map P^{-1} is defined by $d_{i j}=2 p_{i j}-p_{i i}-p_{j j}, w_{i}=p_{i i}$.

Define the map Q by the function $(q, w)=Q(d ; w)$ with $q_{i j}=\frac{d_{i j}-w_{i}+w_{j}}{2}$. So, $Q(d ; w)=P(d ; w)-((1)) w$ (i.e., $\left.q_{i j}=p_{i j}-p_{i i}\right)$ and $d_{i j}=q_{i j}+q_{j i}$, is the symmetrization semimetric of q.

Example. Below are given: the semimetric $d=2 \delta(\{56\},\{1\},\{23\},\{4\})$ $-\delta(\{56\}) \in \mathrm{MET}_{6}$, and, taking weight $w=\left(1_{i \in\{56\}}\right)=(0,0,0,0,1,1)$, the partial semimetric $P(d ; w)=J(\{56\})+\delta(\{56\},\{1\},\{23\},\{4\})$ (its ray is extreme in $\left.\mathrm{PMET}_{6}\right)$ and the weightable quasi-semimetric $Q(d ; w)=\delta^{\prime}(\{1\})+$ $\delta^{\prime}(\{23\})+\delta^{\prime}(\{4\})$ (its ray is not extreme in $\left.W Q M E T_{6}\right)$.

022211	011111	011111
200211	100111	100111
200211	100111	100111
222011	111011	111011
111100	111111	000000
111100	111111	000000

Clearly, $d_{i j}+d_{i k}-d_{j k}=p_{i j}+p_{i k}-p_{j k}-p_{i i}=q_{j i}+q_{i k}-q_{j k}$, i.e., the triangle inequalities are equivalent on all three levels: d - of semimetrics, p of would-be partial semimetrics and q - of would-be quasi-semimetrics.

Now, $p_{i j} \geq p_{i i}$ iff $d_{i j} \geq w_{i}-w_{j}$ iff $q_{i j} \geq 0$; so, (4) is equivalent to (4'), $p_{i j} \leq p_{i i}+p_{j j}$ iff $d_{i j} \leq w_{i}+w_{j}$ iff $q_{i j} \leq w_{j}$; so, (5) is equivalent to (5^{\prime}), and $2 p_{i j} \geq p_{i i}+p_{j j}$ iff $d_{i j} \geq 0$ iff $q_{i j}+q_{j i} \geq 0$. This implies

Lemma 1 The following statements hold.
(i) ${ }_{W P M E T}^{n}=P\left(W M E T T_{n}\right)$, PMET $_{n}=P\left(d W M E T_{n}\right)$ and ${ }_{s P M E T}^{n}=P\left(s W M E T_{n}\right)$,
(ii) $w W Q M E T_{n}=Q\left(W M E T_{n}\right), W Q M E T_{n}=Q\left(d W M E T_{n}\right)$ and $s W Q M E T_{n}=Q\left(s W M E T_{n}\right)$.

The metric cone $M E T_{n} \in \mathbb{R}^{\binom{n}{2}}$ has a unique orbit of $3\binom{n}{3}$ facets $T r_{i j, k}$. Its symmetry group $\operatorname{Aut}\left(M E T_{n}\right)$ is $\operatorname{Sym}(n) n \neq 4$. The number of extreme rays (orbits) of $M E T_{n}$ is 3 (1), 7 (2), 25 (3), 296 (7), 55226 (46) for $3 \leq$ $n \leq 7$. $D\left(\operatorname{Ri}\left(M E T_{n}\right)\right)=2$ for $n>3$, while $\operatorname{Ri}\left(M E T_{3}\right)=\operatorname{Sk}\left(M E T_{3}\right)=K_{3}$. $D\left(\operatorname{Sk}\left(M E T_{n}\right)\right)$ is 1 for $n=4,2$ for $5 \leq n \leq 6$ and 3 for $n=7$.

For a partition $\mathcal{S}=\left\{S_{1}, \ldots, S_{t}\right\}$ of V_{n}, the multicut $\delta(\mathcal{S}) \in M E T_{n}$ has $\delta_{i j}(\mathcal{S})=1$ if $|\{i, j\}|=2>\left|\{i, j\} \cap S_{h}\right|, 1 \leq h \leq t$ and $\delta_{i j}(\mathcal{S})=0$, otherwise. Call $\delta(\mathcal{S})$ a t-cut if $S_{h} \neq \emptyset$ for $1 \leq h \leq t$. Clearly,

$$
\delta\left(S_{1}, \ldots, S_{t}\right)=\frac{1}{2} \sum_{h=1}^{t} \delta\left(S_{h}, \overline{S_{h}}\right)
$$

Denote by $C U T_{n}$ the cone generated by all $2^{n-1}-12$-cuts $\delta(S, \bar{S})=\delta(S)$. $C U T_{n}=M E T_{n}$ holds for $n \leq 4$ and $\operatorname{Aut}\left(C U T_{n}\right)=\operatorname{Aut}\left(M E T_{n}\right)$. The number of facets (orbits) of $C U T_{n}$ is 3 (1), 12 (1), 40 (2), 210 (4), 38780 (36) for $3 \leq n \leq 7 . D\left(\operatorname{Sk}\left(C U T_{n}\right)\right)=1$ and $D\left(\operatorname{Ri}\left(C U T_{n}\right)\right)=2,3,3$ for $n=5,6,7$. See, for example, DeLa97, DDF96, Du08 for details on $M E T_{n}$ and $C U T_{n}$.

The number of t-cuts of V_{n} is the number of ways to partition a set of n objects into t groups, i.e., the Stirling number of the second kind $S(n, t)=$ $\frac{1}{t!} \sum_{j=0}^{t}(-1)^{j}\binom{t}{j}(t-j)^{n}$. So, $S(n, 2)=2^{n-1}-1$ and $S(n, n-1)=\binom{n}{2}$. The number of multicuts of V_{n} is the Bell number $B(n)=\sum_{t=0}^{n} S(n, t)=$ $\sum_{t=0}^{n-1}(t+1) S(n, t)=\sum_{t=0}^{n-1}\binom{n-1}{t} B(t)$ (the sequence $\mathrm{A} 000110=1,1,2,5$, $15,52,203,877, \ldots$ in [Sl10]). The number of ways to write i as a sum of positive integers is i-th partition number Q_{i} (the sequence $A 000041$ in [Sl10]).

The 0,1 -valued elements $d \in M E T_{n}$ are all $B(n)$ multicuts $\delta\left(\left\{S_{1}, \ldots, S_{t}\right\}\right)$ of V_{n}. It follows by induction using that $d_{1 i}=d_{1 j}=0$ implies $d_{i j}=0$ and $d_{1 i} \neq d_{1 j}$ implies $d_{i j}=1$. In fact, S_{1}, \ldots, S_{t} are the equivalence classes of the equivalence \sim on V_{n}, defined by $i \sim j$ if $d_{i j}=0$.
$R\left(0,1-M E T_{n}\right)$ consists of all $S(n, 2) 2$-cuts; so, $0,1-M E T_{n}=C U T_{n}$.

3 Description of $w P M E T_{n}$ and $s P M E T_{n}$

Denote $\operatorname{MET}_{n ; 0}=\left\{(d ;(0)): d \in \operatorname{MET}_{n}\right\}$ and $\operatorname{CUT}_{n ; 0}=\{(d ;(0)): d \in$ $\left.C U T_{n}\right\}$. So, $M E T_{n} \simeq M E T_{n ; 0} \simeq P\left(M E T_{n ; 0}\right) \simeq Q\left(M E T_{n ; 0}\right)$ and $C U T_{n} \simeq$ $C U T_{n ; 0} \simeq P\left(C U T_{n ; 0}\right) \simeq Q\left(C U T_{n ; 0}\right)$. Denote by $W C U T_{n}$ the cone $\{d ; w) \in$ $\left.W M E T_{n}: d \in C U T_{n}\right\}$ of weighted ℓ_{1}-semimetrics on V_{n}.

Denote $e_{j}=\left(((0)) ; w=\left(w_{i}=1_{i=j}\right)\right) \in W M E T_{n}$. So, $2 P\left(e_{j}\right)=2$ on the position $(j j), 1$ on $(i j),(j i)$ with $i \neq j$ and 0 , else; $2 Q\left(e_{j}\right)=-1$ on the positions ($j i$), 1 on ($i j$) (with $i \neq j$ again) and 0 , else.

Theorem 1 The following statements hold.
(i) $R\left(W_{M E T}^{n}\right)=\left\{e_{j}: j \in V_{n}\right\} \cup R\left(\mathrm{MET}_{n ; 0}\right)$,
$R\left({ }_{w P M E T}^{n}\right)=\left\{2 P\left(e_{j}\right): j \in V_{n}\right\} \cup P\left(R\left(M E T_{n ; 0}\right)\right)$,
$R\left({ }_{W} W Q M E T_{n}\right)=\left\{2 Q\left(e_{j}\right): j \in V_{n}\right\} \cup Q\left(R\left(M E T_{n ; 0}\right)\right)$.
(ii) $F\left(W M E T_{n}\right)=\left\{w_{j} \geq 0: j \in V_{n}\right\} \cup F\left(\right.$ MET $\left._{n ; 0}\right)$,
$F\left({ }_{W P M E T}^{n}\right)=\left\{L_{j j}=p_{j j} \geq 0: j \in V_{n}\right\} \cup F\left(P\left(M E T_{n ; 0}\right)\right)$,
$F\left({ }_{w W Q M E T}^{n}\right)=\left\{w_{j} \geq 0: j \in V_{n}\right\} \cup F\left(Q\left(\right.\right.$ MET $\left.\left._{n ; 0}\right)\right)$.
(iii) $\operatorname{Inc}\left(2 P\left(e_{j}\right)\right)=\left|F\left(w P M E T_{n}\right)\right|-1$ and $\operatorname{Inc}\left(L_{j j}\right)=\left|R\left({ }_{w P M E T}^{n}\right)\right|-1$.
(iv) $\operatorname{Ri}\left(W M E T_{n}\right)=\operatorname{Ri}\left({ }_{w P M E T}^{n}\right)=\operatorname{Ri}\left(w W Q M E T_{n}\right)=K_{n} \times \operatorname{Ri}\left(M E T_{n}\right)$,
$\operatorname{Sk}\left(W M E T_{n}\right)=\operatorname{Sk}\left(w P M E T_{n}\right)=\operatorname{Sk}\left(w W Q M E T_{n}\right)=K_{n} \times \operatorname{Sk}\left(M E T_{n}\right)$.
(v) wPMET ${ }_{n}$ has Aut, $D(\mathrm{Sk}), D(\mathrm{Ri})$ and edge-connectivity of MET_{n}.
(vi) The 0,1-valued elements of ${ }_{\mathrm{wPMET}}^{n}$ are the $B(n+1) 0,1$-valued elements of PMET_{n} and $0,1-w P M E T_{n}=C U T_{n ; 0}$.
(vii) The 0,1 -valued elements of $W_{M E T}^{n}$ are $2^{n} B(n) 0,1$-weighted multicuts of V_{n} and $0,1-W M E T_{n}=W C U T_{n}$.
$R\left(W C U T_{n}\right)=\left\{e_{j}: j \in V_{n}\right\} \cup R\left(C U T_{n ; 0}\right)$ and $\operatorname{Sk}\left(W C U T_{n}\right)=K_{n+S(n, 2)}$.
$F\left(W C U T_{n}\right)=\left\{w_{j} \geq 0: j \in V_{n}\right\} \cup F\left(C U T_{n ; 0}\right)$ and $\operatorname{Ri}\left(W C U T_{n}\right)=$ $K_{n} \times \operatorname{Ri}\left(C U T_{n}\right)$ has diameter 2.

Proof.

(i). Let $p \in{ }_{w P M E T}^{n}$. We will show that $p^{\prime}=p-\frac{1}{2} \sum_{t=1}^{n} p_{t t} 2 P\left(e_{t}\right) \in$ $M E T_{n ; 0}$. (For example, a well-known weak partial semimetric $i+j$ is the sum of $\sum_{t} t 2 P\left(e_{t}\right)$ and the all-zero semimetric ((0)).)

In fact, $p_{i i}^{\prime}=p_{i i}-\frac{1}{2} p_{i i} 2 P\left(e_{i}\right)_{i i}=0$. Also, p^{\prime} satisfies to all triangle inequalities (3), since for different $i, j, k \in V_{n}$, we have $T r_{i j, k}=p_{i j}^{\prime}+p_{i k}^{\prime}-p_{j k}^{\prime}=$

$$
\begin{gathered}
=\left(p_{i j}-\frac{p_{i i}+p_{j j}}{2}\right)+\left(p_{i k}-\frac{p_{i i}+p_{k k}}{2}\right)-\left(p_{j k}-\frac{p_{j j}+p_{k k}}{2}\right)= \\
=p_{i j}+p_{i k}-p_{j k}-p_{i i} \geq 0 .
\end{gathered}
$$

So, $2 P\left(e_{i}\right), 1 \leq i \leq n$, and the generators of $P\left(M E T_{n ; 0}\right) \simeq M E T_{n ; 0}$ (i.e., the 0 -extensions of the generators of $M E T_{n}$) generate $w P M E T_{n}$. They are, moreover, the generators of wPMET_{n} since they belongs to all n (linearly independent) facets $L_{i i}$; so, their rank in $\mathbb{R}\binom{n+1}{2}$ is $\left.\binom{n}{2}-1\right)+n=\binom{n+1}{2}-1$.

Clearly, any $2 P\left(e_{i}\right)$ belongs to all facets of $w P M E T_{n}$ except $L_{i i}$, i.e., its incidence is $(n-1)+3\binom{n}{3}$. So, its rank in $\mathbb{R}\binom{n+1}{2}$ is $\binom{n+1}{2}-1$. For $W M E T_{n}$ and $w W Q M E T_{n}$, (i) follows similarly, as well as (ii).
(iii), (iv). The ray of $2 P\left(e_{i}\right)$ is adjacent to any other extreme ray r, as the set of facets that contain r (with rank $\binom{n+1}{2}-1$) only loses one element if we intersect it with the set of facets that contain $2 P\left(e_{i}\right)$.
(v). The diameters of $\operatorname{Ri}\left(w P M E T_{n}\right)$ and $\operatorname{Sk}\left(w P M E T_{n}\right)$ being 2, their edge-connectivity is equal to their minimal degrees Pl75. But this degree is the same as of $\operatorname{Ri}\left(M E T_{n}\right)$ (which is regular of degree $\frac{(n-3)\left(n^{2}-6\right)}{2}$ if $n>3$) and of $\operatorname{Sk}\left(M E T_{n}\right)$, respectively. Aut $\left(w P M E T_{n}\right)$ for $n \geq 5$ is $\operatorname{Sym}(n)$, because it contains $\operatorname{Sym}(n)$ but cannot be larger than $\operatorname{Aut}\left(M E T_{n}\right)=\operatorname{Sym}(n)$.
(vi). If $p \in w P M E T_{n}$ is 0,1 -valued, then $p_{i j}=0<p_{i i}=1$ is impossible because $2 p_{i j} \geq p_{i i}+p_{j j}$; so, $p \in P M E T_{n}$. (vii) is implied by (i), (ii).

Any partial semimetric $p \in P M E T_{n}$ induces the partial order on V_{n} by defining $i \preceq j$ if $p_{i i}=p_{i j}$. This specialization order is important in Computer Science applications, where the partial metrics act on certain posets called

Scott domains. In particular, $i_{0} \in V_{n}$ is a p-maximal element in V_{n} if $p_{i i}=p_{i i_{0}}$ for all $i \neq i_{0}$. It is a p-minimal element in V_{n} if $p_{i_{0} i_{0}}=p_{i i_{0}}$ for all $i \neq i_{0}$. The lifting of $p \in P M E T_{n}$ is the function $p^{+}=\left(\left(p_{i j}^{+}\right)\right), i, j \in V_{n}$, with $p_{00}^{+}=0$, $p_{0 i}^{+}=p_{i 0}^{+}=p_{i i}^{+}$for $i \in V_{n}$ and $p_{i j}^{+}=p_{i j}$ for $i, j \in V_{n}$. Clearly, 0 is a p^{+}-maximal element in the specialization order, induced on $\{0\} \cup V_{n}=\{0,1, \ldots, n\}$ by p^{+}, since $p_{i i}^{+}=p_{i i}$ as well as $p_{i 0}^{+}=p_{i i}$ for all $i \in V_{n}$.

Theorem 2 The following statements hold.
(i) $\left.\mathrm{PPMET}_{n}\right)=\left\{p \in \mathrm{PMET}_{n}: p^{+} \in \mathrm{PMET}_{n}\right\}$.
(ii) $s W M E T_{n}=$ MET $_{n+1} \simeq P\left(\right.$ MET $\left._{n+1}\right)=s$ PMET $_{n}$.
(iii) The 0,1-valued elements of $s P M E T_{n}$ are ((0)) and $2^{n}-1$ partial 2-cuts $\gamma(S \neq \emptyset ; \bar{S})$ generating 0,1 -sPMET $T_{n}=C U T_{n+1}$,
$C U T_{n+1} \simeq P\left(C U T_{n+1}\right)=0,1-s P M E T_{n}$ and $Q\left(C U T_{n+1}\right)=O C U T_{n}$.
Proof. We should check for p^{+}only inequalities (2), (3), (4) involving the new point $0.2 n+1$ of the required inequalities hold as equalities: $p_{00}^{+}=0$ and $p_{0 i}^{+}=p_{i 0}^{+}=p_{i i}^{+}=p_{i i}$ for $i \in V_{n}$. All $T r_{0 j, i}=p_{i j}-p_{i j} \geq 0$ hold since (4) is satisfied. All $T r_{i j, 0}=p_{i i}+p_{j j}-p_{i j} \geq 0$ hold whenever p satisfies (5), i.e, $p \in \mathrm{PMET}_{n}$.

Given $p \in \operatorname{sPMET}_{n}$, the semimetric $P^{-1}\left(p^{+}\right) \in \operatorname{MET}_{n+2}$ is $P^{-1}(p) \in$ $M E T_{n+1}$ with the first point split in two coinciding points. The cone sPMET is nothing but the linear image $P\left(s W P M E T_{n}=M E T_{n+1}\right)$. So, for $n \geq 4$, $\operatorname{Aut}\left(s W P M E T_{n}\right)=\operatorname{Sym}(n+1)$ on $\{0,1, \ldots, n\}$ acting as $p^{\prime}=P\left(\tau\left(P^{-1}(p)\right)\right)$ on SPMET_{n} for any $\tau \in \operatorname{Sym}(n+1)$. If τ fixes 0 , then $p^{\prime}=\tau(p)$.

40,1 -valued elements of $P M E T_{n}$ and $d W M E T_{n}$

For a partition $\mathcal{S}=\left\{S_{1}, \ldots, S_{t}\right\}$ of V_{n} and $A \subseteq\{1, \ldots, t\}$, let us denote $\hat{A}=\bigcup_{h \in A} S_{h}$ and $w(\hat{A})=\left(w_{i}=1_{i \in \hat{A}}\right)$. So, weight is constant on each S_{h}.

For any $S \subset V_{n}$, denote by $J(S)$ the 0,1 -valued function with $J(S)_{i j}=1$ exactly when $i, j \in S_{0}$. So, $J\left(V_{n}\right)$ and $J(\emptyset)$ are all-ones and all-zeros partial semimetrics, respectively.

For any $S_{0} \subset V_{n}$ and partition $\mathcal{S}=\left\{S_{1}, \ldots, S_{t}\right\}$ of $\overline{S_{0}}$, denote $J\left(S_{0}\right)+$ $\delta\left(S_{0}, S_{1}, \ldots, S_{t}\right)$ by $\gamma\left(S_{0} ; S_{1}, \ldots, S_{t}\right)$ and call it a partial multicut or, specifically, a partial t-cut. Clearly, $\gamma\left(S_{0} ; S_{1}, \ldots, S_{t}\right) \in P M E T_{n}$ and it is $P(d ; w)$, where $d=2 \delta\left(S_{0}, S_{1}, \ldots, S_{t}\right)-\delta\left(S_{0}\right)=\sum_{i=1} \delta\left(S_{i}\right)$ and $w=\left(w_{i}=1_{i \in S_{0}}\right)$.

Theorem 3 The following statements hold.
(i) The 0,1-valued elements of $d W M E T_{n}$ are $\sum_{t=1}^{n} 2^{t} S(n, t)(\delta(\mathcal{S}) ; w(\hat{A}))$.
$R\left(0,1-d W M E T_{n}\right)$ consists of all such elements with $(|A|, t-|A|)=(1,0)$, $(0,2)$ or $(1,1)$, i.e., $(((0)) ;(1))$ and 2 -cuts $(\delta(S) ; w)$ with weight $(0), w^{\prime}=$ $\left(1_{i \in S}\right)$ or $w^{\prime \prime}=\left(1_{i \notin S}\right)$. There are $1+3\left(2^{n-1}-1\right)$ of them, in $\left\lfloor\frac{3 n}{2}\right\rfloor$ orbits.
(ii) The 0,1-valued elements of $W_{Q M E T}^{n}$ are $Q(2 \delta(\mathcal{S})-\delta(\hat{A} ; w(A))=$ $\delta(\mathcal{S})-\delta^{\prime}(\hat{A})$.
$R\left(0,1-d W M E T_{n}\right)$ consists of all such elements with either $|A|=t-|A|=$ 1 (o-2-cuts), or $2 \leq|A|, t-|A| \leq n-2$.
(iii) The 0,1-valued elements of PMET_{n} are the partial multicuts
$P((2 \delta(\mathcal{S})-\delta(\hat{A}) ; w(A))=\delta(\mathcal{S})+J(\hat{A})$ with $|A| \leq 1$.
There are $B(n+1)=\sum_{i=0}^{n}\binom{n}{i} B(i)$ of them, in $\sum_{i=0}^{n} Q(i)$ orbits.
$R\left(0,1-P M E T_{n}\right)$ consists of all such elements except $B(n)-\left(2^{n-1}-1\right)$, in $Q(n)-\left\lfloor\frac{n}{2}\right\rfloor$ orbits, those (partial t-cuts) with $|A|=0, t \neq 2$.

Proof.
(i). The 0,1 -valued elements of $W M E T_{n}$ are 0,1 -weighted multicuts. Now, the inequality (4') $d_{i j} \geq w_{i}-w_{j}$, valid on $d W M E T_{n}$, implies that w is constant on each S_{h}. $(((0)) ;(1))$ belongs to $R\left(0,1-d W M E T_{n}\right)$ since its rank is $\binom{n}{2}$ plus $n-1$, the rank of the set of equalities $d_{i j}=w_{i}-w_{j}$. The same holds for $(\delta(S) ; w)$ with weight $(0), w^{\prime}=\left(1_{i \in S}\right)$ or $w^{\prime \prime}=\left(1_{i \notin S}\right)$, since their rank is $\binom{n}{2}-1$ plus $k \geq 1$ equalities $w_{i}=0$ plus, if $k<n, n-k$ equalities $d_{i j}=w_{j}-w_{i^{\prime}}=1$, where $w_{i^{\prime}}=0$ and $w_{j}=1$. But the all-ones-weighted 2cut δ is equal to $\frac{1}{2}\left(\left(\delta ; w^{\prime}\right)+\left(\delta ; w^{\prime \prime}\right)+(((0))) ;(1)\right)$. No other $\left(\delta\left(S_{1}, \ldots, S_{t}\right) ; w\right)$ belongs to $R\left(0,1-d W M E T_{n}\right)$ since t should be 2 (otherwise, the rank will be $\left.<\binom{n}{2}-1+n\right)$ and the weight should be constant on each $S_{h}, 1 \leq h \leq t$.
(ii). Let $q \in W Q M E T$ be 0,1 -valued. Without loss of generality, let $\min _{i=1}^{n}\left(w_{i}\right)=w_{1}=0$. But $q_{1 i}+w_{1}=q_{i 1}+w_{i}$ for any $i>1$. So, $w_{i}=1$ if and only if $q_{1 i} \neq q_{i 1}$. The quasi-semimetrics q, restricted on the sets $\left\{i: w_{i}=0\right\}$ and $\left\{i: w_{i}=1\right\}$, should be 0,1 -valued semimetrics, i.e., multicuts.
(iii) is proven in [DeDe10]. For example, there are $52=1 \times 1+4 \times 1+6 \times$ $2+4 \times 5+1 \times 15\left(1+1+2+3+5\right.$ orbits) 0,1 -valued elements of $P M E T_{4}$. Among them, only $\delta\left(S_{1}, \ldots, S_{t}\right)$ with $t=1,3,4$, i.e., $((0)), \delta(\{1\},\{2\},\{3\},\{4\})$ and 6 elements of the orbit with $t=3$ are not representatives of extreme rays.

5 Two generalized hypermetric cones

For a sequence $b=\left(b_{1}, \ldots, b_{n}\right)$ of integers, where Σ_{b} denotes $\sum_{i=1}^{n} b_{i}$, and a symmetric $n \times n$ matrix $\left(\left(a_{i j}\right)\right)$, denote by $H_{b}(a)$ the sum $-\sum_{1 \leq i, j \leq n} b_{i} b_{j} a_{i j}$ of the entries of the matrix $-b^{T} a b$.

The cone $H Y P_{n}$ of all hypermetrics, i.e., semimetrics $d \in M E T_{n}$ with $H_{b}(d) \geq 0$, whenever $\Sigma_{b}=1$, was introduced in De60.

This cone is polyhedral DGL93; $H Y P_{n} \subseteq M E T_{n}$ with equality for $n \leq 4$ and $C U T_{n} \subseteq H Y P_{n}$ with equality for $n \leq 6 . H Y P_{7}$ was described in DeDu04.

The hypermetrics have deep connections with Geometry of Numbers and Analysis; see, for example, DeTe87, DeGr93, DGL95 and Chapters 13-17, 28 in [DeLa97. So, generalizations of $H Y P_{n}$ can put those connections in a more general setting.

For a weighted semimetric $(d ; w) \in W M E T_{n}$, we will use the notation:
$\operatorname{Hyp}_{b}(d ; w)=\frac{1}{2} H_{b}(d)+\left(1-\Sigma_{b}\right)\langle b, w\rangle \geq 0$ and
$\operatorname{Hyp}_{b}^{\prime}(d ; w)=\frac{1}{2} H_{b}(d)+\left(1+\Sigma_{b}\right)\langle b, w\rangle \geq 0$.
Denote by $W H Y P_{n}$ the cone of all weighted hypermetrics, i.e., $(d ; w) \in$ $W M E T_{n}$ with $\operatorname{Hyp}_{b}(d ; w) \geq 0$ and $\operatorname{Hyp}_{b}^{\prime}(d ; w) \geq 0$ for all b with $\Sigma_{b}=1$ or 0 . Denote by $P H Y P_{n}$ the cone of all partial hypermetrics, i.e., $p \in w P M E T_{n}$ with $\operatorname{Hyp}_{b}\left(P^{-1}(p)\right) \geq 0$ for all b with $\Sigma_{b}=1$ or 0 . For $p=P(d ; w)$ and $(q, w)=Q(d ; w)$, we have

$$
\operatorname{Hyp}_{b}(d ; w)=H_{b}(p)+\sum_{i=1}^{n} b_{i} p_{i i}=H_{b}(q)+\left(1-\Sigma_{b}\right)\langle b, w\rangle .
$$

$W H Y P_{n} \subset d W M E T_{n}$ and PMET $_{n} \supset$ PHYP $_{n}$ hold since the needed inequalities $w_{i} \geq 0,\left(4^{\prime}\right)$ (and (4)) are provided by permutations of $\operatorname{Hyp}_{(1,0, \ldots, 0)}^{\prime}(d ; w) \geq$ 0 and $\operatorname{Hyp}_{(1,-1,0, \ldots, 0)}(d ; w) \geq 0$.

Lemma 2 Besides the cases $\mathrm{PMET}_{3}=\mathrm{PHYP}_{3}=0,1-\mathrm{PMET}_{3}$ and 0,1$d W M E T_{n}=W H Y P_{n}$ for $n=3,4,0,1-d W M E T_{n} \subset W H Y P_{n} \subset d W M E T_{n}$ $\simeq \mathrm{PMET}_{n} \supset \mathrm{PHYP}_{n} \supset 0,1-\mathrm{PMET}_{n}$ holds.

Proof.
Denoting $\left\langle b,\left(1_{i \in S_{h}}\right)\right\rangle$ by r_{h}, we have $r_{0}=\Sigma_{b}-\sum_{h=1}^{t} r_{h}$ and

$$
H_{b}\left(\delta\left(S_{0}, S_{1}, \ldots, S_{t}\right)\right)=\frac{1}{2} \sum_{h=0}^{t} H_{b}\left(\delta\left(S_{h}, \overline{S_{h}}\right)\right)=\sum_{h=0}^{t} r_{h}\left(r_{h}-\Sigma_{b}\right)
$$

Let $\left(d=2 \delta\left(S_{0}, S_{1}, \ldots, S_{t}\right)-\delta\left(S_{0}\right) ; w=\left(1_{i \in S_{0}}\right)\right)$ be a generic $P^{-1}(p)$, where p is 0,1 -valued element of PMET belonging to its extreme ray. Then $\frac{1}{2} H_{b}(d)=\frac{1}{2}\left(2 \sum_{h=0}^{t} r_{h}\left(r_{h}-\Sigma_{b}\right)-2 r_{0}\left(r_{0}-\Sigma_{b}\right)=\sum_{h=1}^{t} r_{h}\left(r_{h}-\Sigma_{b}\right)\right.$ implies
$\operatorname{Hyp}_{b}(d ; w)=\sum_{h=1}^{t} r_{h}\left(r_{h}-1\right)-\Sigma_{b}\left(\Sigma_{b}-1\right) \geq 0$ for our $\Sigma=0,1$.
All 0,1 -valued elements $(d ; w)$ of $d W M E T_{n}$ belonging to its extreme rays are $(((0)) ;(1)),(\delta(S) ;(0)),\left(\delta(S,) ; w^{\prime}=\left(1_{i \in S}\right)\right)$ and $\left(\delta(S) ; w^{\prime \prime}=\left(1_{i \notin S}\right)\right)$. For them, $\operatorname{Hyp}_{b}^{\prime}(d ; w)=\left(\Sigma_{b}+1\right) \Sigma_{b}, r_{S}\left(r_{S}-\Sigma\right), r_{S}\left(r_{S}+1\right)$ and $\left(\Sigma_{b}-r_{S}\right)\left(\Sigma_{b}-r_{S}+1\right)$ hold, respectively, and so, $\operatorname{Hyp}_{b}^{\prime}(d ; w) \geq 0$ for our $\Sigma=0,1$.

Assuming polyhedrality of $W H Y P_{n}$, the cases $n=3,4$ were checked by computation; see Lemma below.

Lemma 3 The following statements hold.
(i) All facets of $\mathrm{WHYP}_{n}, n \leq 4$, up to $\operatorname{Sym}(n)$ and 0 -extensions, are Hyp_{b} with $b=(1,-1),(1,1,-1),(1,1,-1,-1)$ and $\operatorname{Hyp}_{b}^{\prime}$ with $b=(1),(1,1,-1)$, $(1,1,1,-2),(2,1,-1,-1)$.
(ii) Besides $w_{i} \geq 0$, among the facets of $P^{-1}\left(\right.$ PHYP $\left._{n}\right)$, $n \leq 5$, up to $\operatorname{Sym}(n)$ and 0 -extensions, are: Hyp_{b} with $b=(1,-1),(1,1,-1),(1,1,-1,-1)$, $(1,1,1,-1,-1),(1,1,1,-1,-2),(2,1,1,-1,-1)$.

Proof.

It was obtained by direct computation. The equality $W H Y P_{n}=0,1$ $W M E T_{n}$ for $n=3,4$ holds, because only inequalities which are requested in $W H Y P_{n}$ appeared among those of $0,1-W M E T_{n}$.

The facets of PHYP_{4} were deduced by computation using the tightness of the inclusions $0,1-\mathrm{PMET}_{4} \subset \mathrm{PHYP}_{4} \subset \mathrm{PMET}_{4}$ (see Table 1): $0,1-\mathrm{PMET}_{4}$ contained exactly one facet (orbit F_{5}) different from Hyp_{b} and $p_{i i} \geq 0$, and PMET_{4} contained exactly two (orbits R_{10} and R_{11}) non- 0,1 -valued extreme ray representatives. The 6 rays from R_{10} are removed by 6 respective Hyp_{b} with $b=(1,1,-1,-1)$, while the 12 rays from R_{11} are removed by $12 F_{5}$.

6 Oriented multicuts and quasi-semimetrics

For an ordered partition $\left(S_{1}, \ldots, S_{t}\right)$ of V_{n} into non-empty subsets, the oriented multicut (or o-multicut, o-t-cut) $\delta^{\prime}\left(S_{1}, \ldots, S_{t}\right)$ on V_{n} is defined by:

$$
\delta_{i j}^{\prime}\left(S_{1}, \ldots, S_{t}\right)=\left\{\begin{array}{lc}
1, & \text { if } \\
0, & i \in S_{h}, j \in S_{m}, m>h \\
\text { otherwise }
\end{array}\right.
$$

R_{i}	Representative p	11	21	22	31	32	33	41	42	43	44	Inc.	Adj.	$\left\|O_{i}\right\|$
R_{1}	$\gamma(\{1,2,3,4\} ;)$	1	1	1	1	1	1	1	1	1	1	24	20	1
R_{2}	$\gamma(\{2\} ;\{2\})$	0	1	1	0	1	0	0	1	0	0	21	38	4
R_{3}	$\gamma(\{3\} ;\{3\})$	1	1	1	1	1	0	1	1	1	1	19	17	4
R_{4}	$\gamma(\emptyset ;\{3\},\{3\})$	0	0	0	1	1	0	0	0	1	0	19	32	4
R_{5}	$\gamma(\{1,2\} ;\{1,2\})$	1	1	1	1	1	0	1	1	0	0	18	31	6
R_{6}	$\gamma(\emptyset ;\{1,2\},\{1,2\})$	0	0	0	1	1	0	1	1	0	0	16	32	3
R_{7}	$\gamma(\{1,4\} ;\{2\},\{3\})$	1	1	0	1	1	0	1	1	1	1	14	14	6
R_{8}	$\gamma(\{1\} ;\{2\},\{3,4\})$	1	1	0	1	1	0	1	1	0	0	14	20	12
R_{9}	$\gamma(\{4\} ;\{1\},\{2\},\{3\})$	0	1	0	1	1	0	1	1	1	1	9	9	4
R_{10}		1	1	0	1	1	0	2	1	1	1	10	18	6
R_{11}		0	2	0	1	1	0	2	2	3	2	9	9	12
F_{1}	$L_{11}: p_{11} \geq 0$	1	0	0	0	0	0	0	0	0	0	29	36	4
F_{2}	$\operatorname{Hyp}_{(-1,1,1,0)} \geq 0$	-1	1	0	1	-1	0	0	0	0	0	26	24	12
F_{3}	$M_{12}=\operatorname{Hyp}_{(-1,1,0,0)} \geq 0$	-1	1	0	0	0	0	0	0	0	0	23	23	12
F_{4}	$\operatorname{Hyp}_{(1,1,-1,-1)} \geq 0$	0	-1	0	1	1	-1	1	1	-1	-1	16	12	6
F_{5}	$H_{(2,1,-1,-1)}-2 p_{11} \geq 0$	-2	-2	0	2	1	0	2	1	-1	0	9	9	12

Table 1: The orbits of extreme rays in PMET_{4} and facets in $0,1-\mathrm{PMET}_{4}$

The o-2-multicuts $\delta^{\prime}(S, \bar{S})$ are called o-cuts and denoted by $\delta^{\prime}(S)$. Clearly,

$$
\delta\left(S_{1}, \ldots, S_{t}\right)=\sum_{i=1}^{t} \delta^{\prime}\left(S_{i}\right)=\sum_{i=1}^{t} \delta^{\prime}\left(\overline{S_{i}}\right)=\frac{1}{2} \sum_{i=1}^{t} \delta\left(S_{i}\right)
$$

Denote by $O C U T_{n}$ and $O M C U T_{n}$ the cones generated by $2^{n}-2$ non-zero o-cuts and $B o(n)-1$ non-zero o-multicuts, respectively. (Here, $B o(n)$ are the ordered Bell numbers given by the sequence $A 000670$ in [S110].) So, $C U T_{n}=\left\{q+q^{T}: q \in\right.$ OMCUT $\left._{n}\right\}$. In general, $Z_{2} \times \operatorname{Sym}(n)$ is a symmetry group of QMET $_{n}, \mathrm{OMCUT}_{n}, W Q M E T_{n}$, OCUT $_{n}$; Dutour, 2002, proved that it is the full group of those cones. The cones $Q M E T_{n}$ and $O M C U T_{n}$ were studied in DDD03. Clearly, $\delta_{i j}^{\prime}\left(S_{1}, \ldots, S_{t}\right) \in W Q M E T_{n}$ if and only if $t=2$ and then $w=\left(1_{i \notin S_{1}}\right)$. So, $O C U T_{n}=O M C U T_{n} \cap W Q M E T_{n}$.

Theorem 4 The following statement holds.
$O C U T_{n}=Q\left(C U T_{n+1}=0,1-s W M E T_{n}\right)=Q\left(0,1-d W M E T_{n}\right)=0,1-$ $Q\left(d W M E T_{n}\right)$.

Proof. Given a representative $(d ; w)=\left(\delta(S) ; w^{\prime}\right),\left(\delta(S) ; w^{\prime \prime}\right),(\delta(S) ;(0))$, $(\delta(\emptyset) ;(1))$ of an extreme ray of $0,1-d W M E T_{n}$, we have $Q(q ; w)=\left(\delta^{\prime}(S), w^{\prime}\right)$, $\left(\delta^{\prime}(\bar{S}), w^{\prime \prime}\right),(\delta(S),(0)),(\delta(\emptyset),(1))$, respectively. But $\delta(S)=\delta^{\prime}(S)+\delta^{\prime}(\bar{S})$ and $(((0)), t(1))$ are not extreme rays.

The above equality $O C U T_{n}=Q\left(0,1-s W M E T_{n}\right)$ means that $q \in O C U T_{n}$ are $Q(d ; w)$, where (d, w) is a semimetric $d^{\prime} \in C U T_{n+1}$ on $V_{n} \cup\{0\}$. So,
$q_{i j}=\frac{1}{2}\left(d_{i j}^{\prime}-d_{0 i}^{\prime}+d_{0 j}^{\prime}\right)$. But CUT $_{n}$ is the set of ℓ_{1}-semimetrics on V_{n}, see [DeLa97]. So, $q \in O C U T_{n}$ can be seen as ℓ_{1}-quasi-semimetrics; it was realized in DDD03, CMM06. In fact, $O C U T$ in the set of quasi-semimetrics q on V_{n}, for which there is some $x_{1}, \ldots, x_{m} \in \mathbb{R}^{m}$ with all $q_{i j}=\left\|x_{i}-x_{j}\right\|_{1 . o r}$, where the oriented ℓ_{1}-norm is defined as $\|x-y\|_{1 . o r}=\sum_{k=1}^{m} \max \left(x_{k}-y_{k}, 0\right)$; the proof is the same as in Proposition 4.2.2 of [DeLa97].

Let C be any cone closed under reversal, i.e., $q \in C$ implies $q^{T} \in C$. If the linear inequality $\sum_{1 \leq i, j \leq n} f_{i j} q_{i j}=\langle F, q\rangle \geq 0$ is valid on C, then F also defines a face of $\left\{q+q^{T}: q \in C\right\}$. Given a valid inequality $G: \sum_{1 \leq i<j \leq n} g_{i j} d_{i j}$ of $\left\{q+q^{T}: q \in C\right\}$ and an oriented K_{n} (i.e., exactly one arc connects any i and $j) O$, let $G^{O}=\left(\left(g_{i j}^{O}\right)\right)$ where $g_{i j}^{O}=g_{i j}$ if the $\operatorname{arc}(i j)$ belongs to O and $=0$, otherwise. Call G^{O} standard if there exists $\tau \in \operatorname{Sym}(n)$ with $(i j) \in O$ if and only if $\tau(i)<\tau(j)$, and reversal-stable (rs for short) if $\left\langle G^{O}, q\right\rangle=\left\langle G^{O}, q^{T}\right\rangle$. In general, G^{O} is not valid on C and does not preserve the rank of G.

For example, the standard $\operatorname{Tr}_{12,3}: q_{13}+q_{23}-q_{12} \geq 0$ is not valid on $O C U T_{n}$, and the standard $L_{i j}: q_{i j} \geq 0$ defines a facet in $O C U T_{n}$, while $G: d_{i j} \geq 0$ only defines a face in $M E T_{n}$. If $F=G^{O}$ is rs, then $\langle F, q\rangle=$ $\frac{1}{2}\left\langle G, q+q^{T}\right\rangle$, i.e., F is valid on C if G is valid on $\left\{q+q^{T}: q \in C\right\}$.

Let E be an equality that holds on C, i.e., $\sum_{1 \leq i, j \leq n} e_{i j} q_{i j}=\langle E, q\rangle=0$ holds for any $q \in C$. If the dimension of the subspace \mathcal{E}, spanned by all such equalities, is greater than zero, and $F \geq 0$ is a facet-defining inequality, then for any $E \in \mathcal{E}, F+E \geq 0$ defines the same facet. We call a facet standard or rs if one of its defining inequalities is standard or rs. Of all the defining inequalities we can choose one of them (up to a positive factor) to be the canonical representative - let it be such a $G=F+E, E \in \mathcal{E}$ that $\langle G, E\rangle=0$ holds for all $E \in \mathcal{E}$, i.e., G is orthogonal to \mathcal{E}.

Lemma 4 Let C be a cone closed under reversal, and \mathcal{E} the subspace of its equalities. Then, the following statements hold.
(i) If $C \subseteq W_{Q M E T}^{n}$ is of the same dimension as $W Q M E T_{n}$, then \mathcal{E} is spanned by the equalities $q_{i j}+q_{j k}+q_{k i}=q_{j i}+q_{k j}+q_{i k}$ for $i, j, k \in V_{n}$ and its dimension is $\binom{n-1}{2}$.
(ii) For each $E \in \mathcal{E}, E$ is rs.
(iii) If a facet of C is rs, then all of its defining inequalities are rs.
(iv) A facet is rs iff its canonical representative G is symmetric, e.g. $G=G^{T}$ holds.

Proof.
(i). The equalities $E_{i j k}=q_{i j}+q_{j k}+q_{k i}-q_{j i}-q_{k j}-q_{i k}=0$ for $i, j, k \in V_{n}$ follow directly from the weightability condition $q_{i j}+w_{i}=q_{j i}+w_{j}$. Since $E_{i j k}=E_{j k i}=-E_{k j i}$ and $E_{j k \ell}=E_{i j k}-E_{i j \ell}+E_{i k \ell}$ hold, we can choose a basis of \mathcal{E} such that the indices $(i j k)$ of the basis elements $E_{i j k}$ are ordered triples that all contain a fixed element of $V_{n}($ say, $n)$. There are $\binom{n-1}{2}$ such triples, and since all such $E_{i j k}$ are linearly independent, the subspace \mathcal{E} has dimension $\binom{n-1}{2}$.
(ii). As C is closed under reversal, each equality $E \in \mathcal{E}$ holds for both $q, q^{T} \in C$. Therefore, $0=\langle E, q\rangle=\left\langle E, q^{T}\right\rangle$, so E is rs.
(iii). If F is a defining inequality of a facet and is rs, then for each $E \in \mathcal{E}$ and $q \in C,\left\langle F+E, q^{T}\right\rangle=\langle F+E, q\rangle$, so $F+E$, and by extension any defining inequality, is also rs.
(iv). Clearly, if G is symmetric, it is also rs and so is the facet it defines. If a facet is rs, then by (iii), so is its canonical representative G, for which $\langle G, q\rangle=\left\langle G, q^{T}\right\rangle=\left\langle G^{T}, q\right\rangle$ holds for all $q \in C$. Therefore, $G-G^{T} \in \mathcal{E}$, but as $G-G^{T}$ is also orthogonal to $\mathcal{E}, G=G^{T}$ follows.

The facets $O T r_{i j, k}$ and $L_{i j}$ (only 1st is rs) of $W Q M E T_{n}$ are standard and of the form Hyp_{b} where b is a permutation of $(1,1,-1,0, \ldots, 0)$ or $(1,-1,0, \ldots, 0) . \mathrm{OCUT}_{4}$ has one more orbit: six standard, non-rs facets of the form Hyp_{b} where b is a permutation of $(1,1,-1,-1)$, or $q_{13}+q_{14}+$ $q_{23}+q_{24}-\left(q_{12}+q_{34}\right) \geq 0$.
$O_{5 C U T}^{5}$ has, up to $\operatorname{Sym}(n), 3$ new (i.e., in addition to 0 -extensions of the facets of $\left.O C U T_{4}\right)$ such orbits: one standard rs $(1,1,1,-1,-1)$ and two non-standard, non-rs orbits. $O C U T_{6}$ has, among its 56 new orbits, two nonstandard rs orbits for $b=(2,1,1,-1,-1,-1)$ and $(1,1,1,1,-1,-2)$.

The adjacencies of cuts in $C U T_{n}$ are defined only by the facets $T r_{i j, k}$, and adjacencies of those facets are defined only by cuts. It gives at once $\binom{n}{2}-1$ linearly independent facets $O T r_{i j, k}$ containing any given pair ($\delta^{\prime}\left(S_{1}\right), \delta^{\prime}\left(S_{2}\right)$), using that $O T r_{i j, k}$ are rs facets. So, only n more facets are needed to get the adjacencies of o-cuts. It is a way to prove Conjecture 1 (i) below.

Call a tournament (K_{n} with unique arc between any i, j) admissible if its arcs can be partitioned into arc-disjoint directed cycles. It does not exists for even n, because then the number of arcs involving each vertex is odd, while each cycle provides 0 or 2 such arcs. But for odd n, there are at least $2^{\frac{n-3}{2}}$ admissible tournaments: take the decomposition of K_{n} into $\frac{n-1}{2}$ disjoint Hamiltonian cycles and, fixing the order on one them, all possible
orders on remaining cycles. For odd n, denote by $O c$ the canonic admissible tournament consiting of all $(i, i+k)$ with $1 \leq i \leq n-1,1 \leq k \leq\left\lceil\frac{n}{2}\right\rceil+1-i$ and $(i+k, i)$ with $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil \leq k \leq n-i$, i.e., $0=C_{1,2,3,4,5,6,7, \ldots}+C_{1,3,5,7, \ldots}+$ $C_{1,4,7, \ldots}+\ldots$ The Kelly conjecture state that the arcs of every regular (i.e., the vertices have the same outdegree) tournament can be partitioned into arc-disjoint directed Hamiltonian cycles.

0 -extensions of $q_{i j} \geq 0$ and $q_{13}+q_{14}+q_{23}+q_{24}-\left(q_{12}+q_{34}\right) \geq 0$ can be seen, as the first instances (for $b=(1,-1,0, \ldots, 0),(1,1,-1,-1,0, \ldots, 0)$) of the oriented negative type inequality $\mathrm{ONeg}_{b, O}(q)=-\sum_{1 \leq i<j \leq n} b_{i} b_{j} q_{a(i j)} \geq 0$, where for a given $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{Z}^{n}, \Sigma_{b}=0$, and the arcs $a(i j)$ on the edges $(i j)$ by some rule defined by a given tournament O.

Denote by $O W H Y P_{n}$ the cone consisting of all $q \in W Q M E T_{n}$, satisfying the two above orbits and all oriented hypermetric inequalities

$$
\operatorname{OHyp}_{b, O}(q)=-\sum_{1 \leq i<j \leq n} b_{i} b_{j} q_{a(i j)} \geq 0
$$

where $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{Z}^{n}, \Sigma_{b}=1, O$ is an admissible tournament, and the $\operatorname{arc} a(i j)$ on the edge $(i j)$ is the same as in O if $b_{i} b_{j} \geq 0$, or the opposite one otherwise. So, $O W H Y P_{n}=O C U T_{n}$ for $n=3,4$.

Theorem 5 OCUT $_{n} \subset O W H Y P_{n} \subset W Q M E T_{n}$ holds for $n \geq 5$.
Proof.
Without loss of generality, let $b_{i}=1$ for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$ and $b_{i}=-1$, otherwise. The general case means only that we have sets of $\left|b_{i}\right|$ coinciding points. $\mathrm{OHyp}_{b, O}$ is rs, because Lemma 4 in DeDe10 implies that any inequality on a $q \in W Q M E T_{n}$ is preserved by the reversal of q. So, $\operatorname{OHyp}_{b, O}(q)=$ $\frac{1}{2} \operatorname{Hyp}_{b}\left(q+q^{T}\right)$. On an o-cut $\delta^{\prime}(S)$ it gives, putting $r=\left\langle b,\left(1_{i \in S}\right)\right\rangle$,

$$
\frac{1}{2} \operatorname{Hyp}_{b}\left(\delta^{\prime}(S)+\delta^{\prime}(\bar{S})\right)=\operatorname{Hyp}_{b}(\delta(S))=r\left(r-\Sigma_{b}\right) \geq 0
$$

OWHYP_{5} has, besides o-cuts, 40 extreme rays in two orbits: $F_{a b}, F_{a b}^{\prime}$, having 2 on the position $(a b), 1$ on $b a, 0$ on three other $(k a)$ for $k \neq b$ in $F_{a b}$, or on three other $(b k)$ for $k \neq a$ in $F_{a b}^{\prime}$, and ones on other non-diagonal positions. Also, $D\left(\operatorname{Sk}\left(O W H Y P_{5}\right)\right)=D\left(\operatorname{Ri}\left(O W H Y P_{5}\right)\right)=2$.

The cone $Q H Y P_{n}=\left\{q \in Q M E T_{n}:\left(\left(q_{i j}+q_{j i}\right)\right) \in H Y P_{n}\right\}$ was considered in DDD03. Clearly, it is polyhedral and coincides with $Q M E T_{n}$
for $n=3,4 ; Q H Y P_{5}$ has 90 facets $\left(20+60\right.$ from $Q M E T_{5}$ and those with $b=(1,1,1,-1,-1))$ and 78810 extreme rays; $D\left(\operatorname{Ri}\left(Q H Y P_{5}\right)\right)=2$.

Besides $\mathrm{OCUT}_{3}=0,1-W Q M E T_{3}=W Q M E T_{3}$ and $0,1-W Q M E T_{4}=$ $W_{Q M E T}^{4}$, OCUT $_{n} \subset 0,1-W Q M E T_{n} \subset W Q M E T_{n}$ holds. We conjecture $\operatorname{Sk}\left(O C U T_{n}\right) \subset \operatorname{Sk}\left(0,1-W Q M E T_{n}\right) \subset \operatorname{Sk}\left(W Q M E T_{n}\right)$ and $\operatorname{Ri}\left(0,1-W Q M E T_{n}\right)$ $\supset \operatorname{Ri}\left(W Q M E T_{n}\right) \supset \operatorname{Ri}\left(M E T_{n}\right) .0,1-W Q M E T_{5}$ has $O T r_{i j, k}, L_{i j}$ and 3 other, all standard, orbits. Those facets give, for permutations of $b=(1,-1,1,-1,1)$, the non-negativity of $-\sum_{1 \leq i<j \leq 5} b_{i} b_{j} q_{i j}$ plus q_{24}, q_{23} or $q_{12}+q_{45}$.

The cone $\left\{q+q^{T}: q \in 0,1-W Q M E T_{n}\right\}$ coincides with $M E T_{n}$ for $n \leq 5$, but for $n=6$ it has 7 orbits of extreme rays (all those of $M E T_{6}$ except the one, good representatives of which are not $0,1,2$-valued as required); its skeleton, excluding another orbit of 90 rays, is an induced subgraph of $\operatorname{Sk}\left(M E T_{6}\right)$. It has 3 orbits of facets including $\operatorname{Tr}_{i j, k}$ (forming $\operatorname{Ri}\left(M E T_{6}\right)$ in its ridge graph) and the orbit of $\sum_{(i j) \in C_{123456}} d_{i j}+d_{14}+d_{35}-d_{13}-d_{46}-2 d_{25} \geq 0$.

If $q \in$ QMET $_{n}$ is 0,1 -valued with $S=\left\{i: q_{i 1}=1\right\}, S^{\prime}=\left\{i: q_{1 i}=1\right\}$, then $q_{i j}=0$ for $i, j \in \bar{S} \cap \overline{S^{\prime}}$ (since $q_{i 1}+q_{1 j} \geq q_{i j}$) and $q_{i j}=q_{j i}=1$ for $i \in S, j \in \overline{S^{\prime}}$ (since $\left.q_{i j}+q_{j 1} \geq q_{i 1}\right)$; so, $\left|\bar{S} \cap \overline{S^{\prime}}\right|\left(\left|\bar{S} \cap \overline{S^{\prime}}\right|-1\right)+|S|(|\bar{S}|-1)+$ $\left|S^{\prime}\right|\left(\left|\overline{S^{\prime}}\right|-1\right)-\left|S \cap \overline{S^{\prime}}\right|\left|\bar{S} \cap S^{\prime}\right|$ elements $q_{i j}$ with $2 \leq i \neq j \leq n$ are defined.

7 The cases of 3,4,5,6 points

In Table 2 we summarize the most important numeric information on cones under consideration for $n \leq 6$. The column 2 indicates the dimension of the cone, the columns 3 and 4 give the number of extreme rays and facets, respectively; in parentheses are given the numbers of their orbits. The columns 5 and 6 give the diameters of the skeleton and the ridge graph. The expanded version of the data can be found on the third author's homepage Vi10.

In the simplest case $n=3$ the numbers of extreme rays and facets are:
$0,1-W M E T_{3}=W H Y P_{3}=W M E T_{3} \simeq{ }_{w P M E T}^{3}$: $(6,6$, simplicial) and $0,1-w$ PMET $_{3}:(3,3$, simplicial);
$0,1-s W M E T_{3}=s W M E T T_{3}=C U T_{4}=H Y P_{4}=$ MET $_{4} \simeq 0,1-s P M E T_{3}=$ ${ }_{\text {sPMET }}^{3}$: $(7,12)$;
$0,1-$ PMET $_{3}=$ PHYP $_{3}=$ PMET $_{3}(13,12)$ and $0,1-$ dWMET $_{3}:(10,15) ;$
$0,1-Q_{M E T}^{3}=Q H Y P_{3}=$ QMET $_{3}:\left(12,12\right.$, simplicial) and $O C U T_{3}=$ $0,1-W Q M E T_{3}=W Q M E T_{3}:(6,9)$.

cone	dim.	Nr. ext. rays (orbits)	Nr. facets (orbits)	diam.	diam. dual
${ }_{W} \mathrm{PMET}_{3}$	6	6 (2)	6 (2)	1	1
${ }_{W} \mathrm{PMET}_{4}$	10	11 (3)	16 (2)	1	2
${ }_{W}$ PMET $_{5}$	15	30 (4)	35 (2)	2	2
${ }_{W} \mathrm{PMET}_{6}$	21	302 (8)	66 (2)	2	2
$\mathrm{sPMET}_{3}=0,1-\mathrm{sPMET} 3$	6	7 (2)	12 (1)	1	2
${ }_{s P M E T}^{4}$	10	25 (3)	30 (1)	2	2
${ }_{\text {sPMET }}{ }_{5}$	15	296 (7)	60 (1)	2	2
${ }_{\text {sPMET }}{ }_{6}$	21	55226 (46)	105 (1)	3	2
0,1-sPMET ${ }_{4}$	10	15 (2)	40 (2)	1	2
0,1-sPMET ${ }_{5}$	15	31 (3)	210 (4)	1	3
0,1-sPMET ${ }_{6}$	21	63 (3)	38780 (36)	1	3
$\mathrm{PMET}_{3}=0,1-\mathrm{PMET}_{3}$	6	13 (5)	12 (3)	3	2
PMET_{4}	10	62 (11)	28 (3)	3	2
PMET_{5}	15	1696 (44)	55 (3)	3	2
PMET_{6}	21	337092 (734)	96 (3)	3	2
PHYP_{4}	10	56 (10)	34 (4)	3	2
0, 1-PMET ${ }_{4}$	10	44 (9)	46 (5)	3	2
0, 1-PMET ${ }_{5}$	15	166 (14)	585 (15)	3	3
0, 1-PMET ${ }_{6}$	21	705 (23)		3	
0,1-dWMET ${ }_{3}$	6	10 (4)	15 (4)	2	2
0,1-dWMET ${ }_{4}$	10	22 (6)	62 (7)	2	3
$0,1-d W M E T_{5}$	15	46 (7)	1165 (27)	2	3
0, 1-dWMET ${ }_{6}$	21	94 (9)	369401 (806)	2	
$W Q M E T_{3}=\mathrm{OCUT}_{3}$	5	6 (2)	9 (2)	1	2
$W Q M E T_{4}=0,1-W Q M E T_{4}$	9	20 (4)	24 (2)	2	2
	14	190 (11)	50 (2)	2	2
$W^{\text {WQMET }}$	20	18502 (77)	90 (2)		2
$0,1-W Q M E T_{5}$	14	110 (8)	250 (5)	2	2
0,1-WQMET ${ }_{6}$	20	802 (17)			
$\left\{q+q^{T}: q \in 0,1-W^{\prime} \mathrm{WMET}_{6}\right\}$	15	206 (7)	510 (3)	2	3
OWHYP_{5}	14	70 (6)	90 (4)	2	2
OCUT_{4}	9	14 (3)	30 (3)	1	2
$O^{\prime} \mathrm{OUT}_{5}$	14	30 (4)	130 (6)	1	3
$O_{C U T}$	20	62 (5)	16460 (62)	1	

Table 2: Main parameters of cones with $n \leq 6$
$R\left(d W M E T_{3}\right) \backslash R\left(0,1-d W M E T_{3}\right)$ and $F\left(0,1-d W M E T_{3}\right) \backslash F\left(d W M E T_{3}\right)$ consist of 3 simplicial elements forming $\overline{K_{3}}$ in the graph. But only $\operatorname{Ri}(0,1-$ $\left.d W M E T_{3}\right)$ is an induced subgraph of $\operatorname{Ri}\left(d W M E T_{3}\right)$.

Recall that $2^{n-1}-1$ is the Stirling number $S(n, 2), \operatorname{Sk}\left(C U T_{n}\right)=K_{S(n, 2)}$, and [DeDe94] $\operatorname{Ri}\left(M E T_{n}\right), n \geq 4$, has diameter 2 with $T r_{i j, k} \nsim T r_{i^{\prime} j^{\prime}, k^{\prime}}$ whenever they are conflicting, i.e., have values of different sign on a position (p, q), $p, q \in\{i, j, k\} \cap\left\{i^{\prime}, j^{\prime}, k^{\prime}\right\}$. Clearly, $\left|\{i, j, k\} \cap\left\{i^{\prime}, j^{\prime}, k^{\prime}\right\}\right|$ should be 3 or 2 , and $T r_{i j, k}$ conflicts with 2 and $4(n-3) T r_{i^{\prime} j^{\prime}, k^{\prime}}$'s, respectively. The proofs of the conjectures below should be tedious but easy.

R_{i}	Representative	11	21	22	31	32	33	Inc.	Adj.	$\left\|R_{i}\right\|$
$R_{1} \mathbf{\Delta}$	$\gamma(\{1,2,3\} ;)$	1	1	1	1	1	1	9	6	1
$R_{2} \circ$	$\gamma(\{1\} ;\{2,3\})$	1	1	0	1	0	0	8	9	3
$R_{3} \bullet$	$\gamma(\{2,3\} ;\{1\})$	0	1	1	1	1	1	7	6	3
$R_{4} \square$	$\gamma(\emptyset ;\{1\},\{2,3\})$	0	1	0	1	0	0	7	8	3
$R_{5} ■$	$\gamma(\{3\} ;\{1\},\{2\})$	0	1	0	1	1	1	5	5	3
$F_{1} \circ$	$L_{11}: p_{11} \geq 0$	1	0	0	0	0	0	8	9	3
$F_{2} \mathbf{\Delta}$	$\operatorname{Tr}_{12,3}: p_{13}+p_{23}-p_{12}-p_{33} \geq 0$	0	-1	0	1	1	-1	8	7	3
$F_{3} \bullet$	$M_{12}: p_{12}-p_{11} \geq 0$	-1	1	0	0	0	0	7	6	6

Table 3: The orbits of extreme rays and facets in $\mathrm{PMET}_{3}=0,1-\mathrm{PMET}_{3}$

Figure 1: The skeleton and ridge graph of $\mathrm{PMET}_{3}=0,1-P M E T_{3}$

Conjecture 1 (i) $\operatorname{Sk}\left(O C U T_{n}\right)=K_{2 S(n, 2)}$ and belongs to $\operatorname{Sk}\left(W Q M E T_{n}\right)$.
(ii) $\overline{\operatorname{Sk}\left(0,1-d W M E T_{n}\right)}=K_{1, S(n, 2)}+S(n, 2) K_{2}$;
$\operatorname{Sk}\left(0,1-d W M E T_{n}\right)$ has diameter 2 , all non-adjacencies are of the form: $(((0)) ;(1)) \nsim\left(\delta^{\prime}(S) ;(0)\right)$ and $\left(\delta^{\prime}(S) ; w^{\prime}\right) \nsim\left(\delta^{\prime}(S) ; w^{\prime}\right)$.

Conjecture 2 (i) $\operatorname{Ri}\left(\mathrm{PMET}_{n}\right)$ has diameter 2, all non-adjacencies are:
$L_{i i} \nsim M_{i k} ; M_{i j} \nsim M_{j i}, M_{k i}, M_{j k}, \operatorname{Tr}_{i j, k} ; \operatorname{Tr}_{i j, k} \nsim \operatorname{Tr}_{i^{\prime} j^{\prime}, k^{\prime}}$ if they conflict.
(ii) $\operatorname{Ri}\left(W Q M E T_{n}\right)$ has diameter 2 ; it is $\operatorname{Ri}\left(P M E T_{n}\right)$ without vertices $L_{i i}$.

| R_{i} | Representative | 1 | 21 | 2 | 31 | 32 | 3 | Inc. | Adj. | $\left\|R_{i}\right\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $R_{1} \Delta$ | $(\delta(\emptyset) ;(1))$ | 1 | 0 | 1 | 0 | 0 | 1 | 9 | 6 | 1 |
| $R_{2} \circ$ | $\left(\delta\left(\{1\} ; w^{\prime \prime}\right)\right.$ | 0 | 1 | 1 | 1 | 0 | 1 | 9 | 8 | 3 |
| $R_{3} \bullet$ | $\left(\delta\left(\{1\} ; w^{\prime}\right)\right.$ | 1 | 1 | 0 | 1 | 0 | 0 | 9 | 8 | 3 |
| $R_{4} \square$ | $(\delta(\{1\} ;(0))$ | 0 | 1 | 0 | 1 | 0 | 0 | 9 | 8 | 3 |
| $F_{1} \circ$ | $L_{1}: w_{1} \geq 0$ | 1 | 0 | 0 | 0 | 0 | 0 | 6 | 9 | 3 |
| $F_{2} \Delta$ | $T r_{12,3}: d_{13}+d_{23}-d_{12} \geq 0$ | 0 | -1 | 0 | 1 | 1 | 0 | 7 | 8 | 3 |
| $F_{3} \bullet$ | $M_{12}^{\prime}: d_{12}+\left(w_{2}-w_{1}\right) \geq 0$ | -1 | 1 | 1 | 0 | 0 | 0 | 6 | 6 | 6 |
| $F_{4} \triangle$ | $T r_{12,3}^{\prime}:\left(d_{13}+d_{23}-d_{12}\right)+2\left(w_{1}+w_{2}-w_{3}\right) \geq 0$ | 2 | -1 | 2 | 1 | 1 | -2 | 5 | 5 | 3 |

Table 4: The orbits of extreme rays and facets in $0,1-d W M E T_{3}$

Figure 2: The skeleton and ridge graph of $0,1-d W M E T_{3}$

References

[CMM06] M. Charikar, K. Makarychev and Y. Makarychev, Directed Metrics and Directed Graph Partitioning Problems, Proc. of 17th ACM-SIAM Symposium on Discrete Algorithms (2006) 51-60.
[DeDe94] A. Deza and M. Deza, The ridge graph of the metric polytope and some relatives, in T. Bisztriczky, P. McMullen, R. Schneider and A. Ivic Weiss eds. Polytopes: Abstract, Convex and Computational (1994) 359-372.
[DDF96] A. Deza, M. Deza and K. Fukuda, On Skeletons, Diameters and Volumes of Metric Polyhedra, in Combinatorics and Computer Science, Lecture Notes in Computer Science 1120, Springer (1996) 112-127.
[De60] M. Tylkin (=M. Deza), Hamming geometry of unitary cubes, Doklady Akademii Nauk SSSR 134-5 (1960) 1037-1040. (English translation in Cybernetics and Control Theory 134-5 (1961) 940-943.
[DeDe10] M. Deza and E. Deza, Cones of Partial Metrics, Contributions in Discrete Mathematics, 2010.
[DDD03] M. Deza, M. Dutour and E. Deza, Small cones of oriented semimetrics, American Journal of Mathematics and Management Science 22-3,4 (2003) 199-225.
[DeDu04] M. Deza and M. Dutour, The hypermetric cone on seven vertices, Experimental Mathematics 12 (2004) 433-440.
[DGL93] M. Deza, V. P. Grishukhin and M. Laurent, The hypermetric cone is polyhedral, Combinatorica 13 (1993) 397-411.
[DeGr93] M. Deza and V. P. Grishukhin, Hypermetric graphs, The Quarterly Journal of Mathematics Oxford, 2 (1993) 399-433.
[DGL95] M. Deza, V. P. Grishukhin and M. Laurent, Hypermetrics in geometry of numbers. In W. Cook, L. Lovász and P. Seymour, editors, Combinatorial Optimization, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 20 AMS (1995) 1-109.
[DeLa97] M. Deza and M. Laurent, Geometry of cuts and metrics, SpringerVerlag, Berlin, 1997.
[DeTe87] M. Deza and P. Terwilliger, The classification of finite connected hypermetric spaces, Graphs and Combinatorics 3 (1987) 293-298.
[Du08] M. Dutour Sikirić, Cut and Metric Cones, http://www.liga.ens.fr/~dutour/Metric/CUT_MET/index.html.
[Du10] M. Dutour Sikirić, Polyhedral, http://www.liga.ens.fr/~dutour/polyhedral.
[Fu95] K. Fukuda, The cdd program, http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html.
[Gr92] V. P. Grishukhin, Computing extreme rays of the metric cone for seven points, European Journal of Combinatorics 13 (1992) 153-165.
[He99] R. Heckmann, Approximation of Metric Spaces by Partial Metric Spaces, Applied Categorical Structures 7 (1999) 7-83.
[Hi01] P. Hitzler, Generalized Metrics and Topology in Logic Programming Semantics, PhD Thesis, Dept. Mathematics, National University of Ireland, University College Cork, 2001.
[Ma92] S. G. Matthews, Partial metric topology, Research Report 212, Dept. of Computer Science, University of Warwick, 1992.
[Ma08] S. G. Matthews, A collection of resources on partial metric spaces, available at http://partialmetric.org, 2008.
[P175] J. Plesník, Critical graphs of given diameter, Acta Math. Univ. Comenian 30 (1975) 71-93.
[Sc86] A. Schrijver, Theory of Linear and Integer Programming, Wiley, 1986.
[Se97] A. K. Seda, Quasi-metrics and the semantic of logic programs, Fundamenta Informaticae 29 (1997) 97-117.
[Sl10] N. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.
[Vi10] J. Vidali, Cones of Weighted and Partial Metrics, http://lkrv.fri.uni-lj.si/~janos/cones/.

[^0]: *michel.deza@ens.fr, Ecole Normale Supérieure, Paris
 ${ }^{\dagger}$ elena.deza@gmail.com, Moscow State Pedagogical University, Moscow
 \#janos.vidali@fri.uni-lj.si, University of Ljubljana, Slovenia

