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Abstract

A partial semimetric on Vn = {1, . . . , n} is a function f = ((fij)) :
V 2
n −→ R≥0 satisfying fij = fji ≥ fii and fij + fik − fjk − fii ≥ 0

for all i, j, k ∈ Vn. The function f is a weak partial semimetric if
fij ≥ fii is dropped, and it is a strong partial semimetric if fij ≥ fii
is complemented by fij ≤ fii + fjj .

We describe the cones of weak and strong partial semimetrics via
corresponding weighted semimetrics and list their 0, 1-valued elements,
identifying when they belong to extreme rays. We consider also related
cones, including those of partial hypermetrics, weighted hypermetrics,
`1-quasi semimetrics and weighted/partial cuts.

Key Words and Phrases: weighted metrics; partial metrics; hypermetrics;
cuts; convex cones; computational experiments.

1 Convex cones under consideration

There are following two main motivations for this study. One is to extend
the rich theory of metric, cut and hypermetric cones on weighted, partial
and non-symmetric generalizations of metrics. Another is a new appoach to
partial semimetrics (having important applications in Computer Science) via
cones formed by them.
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A convex cone in Rm (see, for example, [Sc86]) is defined either by gener-
ators v1, . . . , vN , as {

∑
λivi : λi ≥ 0}, or by linear inequalities f 1, . . . , fM ,

as ∩Mj=1{x ∈ Rm : f j(x) =
∑m

i=1 f
j
i xi ≥ 0}.

Let C be an m′-dimensional convex cone in Rm. Given f ∈ Rm, the linear
inequality f(x) =

∑m
i=1 fixi = 〈f, x〉 ≥ 0 is said to be valid for C if it holds

for all x ∈ C. Then the set {x ∈ C : 〈f, x〉 = 0} is called the face of C,
induced by F . A face of dimension m′ − 1, m′ − 2, 1 is called a facet, ridge,
extreme ray of C, respectively (a ray is a set R≥0x with x ∈ C). Denote by
F (C) the set of facets of C and by R(C) the set of its extreme rays. We
consider only polyhedral (i.e., R(C) and, alternatively, F (C) is finite) pointed
(i.e., (0) ∈ C) convex cones. Each ray r ⊂ C below contains a unique good
representative, i.e., an integer-valued vector v(r) with g.c.d. 1 of its entries;
so, by abuse of language, we will identify r with v(r).

For a ray r ⊂ C denote by F (r) the set {f ∈ F (C) : r ⊂ f}. For a face
f ⊂ C denote by R(f) the set {r ∈ R(C) : r ⊂ f}. The incidence number
Inc(f) of a face f (or Inc(r) of a ray r) is the number |{r ∈ R(C) : r ⊂ f}|
(or, respectively, |{f ∈ F (C) : r ⊂ f}|). The rank(f) of a face f (or rank(r)
of a ray r) is the dimension of {r ∈ R(C) : r ⊂ f} (or of {f ∈ F (C) : r ⊂ f}).

Two extreme rays (or facets) of C are adjacent on C if they span a 2-
dimensional face (or, respectively, their intersection has dimension m′ − 2).
The skeleton Sk(C) is the graph whose vertices are the extreme rays of C
and with an edge between two vertices if the corresponding rays are adjacent
on C. The ridge graph Ri(C) is the graph whose vertices are facets of C and
with an edge between two vertices if the corresponding facets are adjacent
on C. Let D(G) denote the diameter of the graph G

Given a cone Cn of some functions, say, d = ((dij)) : V 2
n −→ R≥0 the

0-extension of the inequality
∑

1≤i 6=j≤n−1 Fijdij ≥ 0 is the inequality∑
1≤i 6=j≤n

F ′ijdij ≥ 0 with F ′ni = F ′in = 0 and F ′ij = Fij, otherwise.

Clearly, the 0-extension of any facet-defining inequality of a cone Cn is a valid
inequality (usually, facet-defining) of Cn+1. The 0-extension of an extreme
ray is defined similarly. For any cone C denote by 0, 1-C the cone generated
by all extreme rays of C containing a non-zero 0, 1-valued point.

The cones C considered here will be symmetric under permutations and
usually Aut(C) = Sym(n). All orbits below are under Sym(n).
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Set Vn = {1, . . . , n}. The function f = ((fij)) : V 2
n −→ R is called weak

partial semimetric if the following holds:
(1) fij = fji (symmetry) for all i, j ∈ Vn,
(2) Lij : fij ≥ 0 (non-negativity) for all i, j ∈ Vn, and
(3) Trij,k : fik + fkj − fij − fkk ≥ 0 (triangle inequality) for all i, j, k ∈ Vn.
Weak partial semimetrics were introduced in [He99] as a generalization of

partial semimetrics introduced in [Ma92]. Clearly, all Trij,i = 0 and Trii,k =
2fik − fii − fkk = Trij,k + Trkj,i. So, it is sufficient to require (2) only for
i = j and (3) only for different i, j, k. The weak partial semimetrics on Vn
form a

(
n+1
2

)
-dimensional convex cone with n facets Lii and 3

(
n
3

)
facets Trij,k.

Denote this cone by wPMETn.

A weak partial semimetric f is called partial semimetric if it holds that
(4) Mij : fij − fii ≥ 0 (small self-distances) for all different i, j ∈ Vn.
The partial semimetrics on Vn form a

(
n+1
2

)
-dimensional subcone, denote

it by PMETn, of wPMETn. This cone has n facets Lii, 2
(
n
2

)
facets Mij,i and

3
(
n
3

)
facets Trij,k. Partial metrics were introduced by Matthews in [Ma92] for

treatment of partially defined objects in Computer Science; see also [Ma08,
Hi01, Se97]. The cone PMETn was considered in [DeDe10].

A partial semimetric f is called strong partial semimetric if it holds that
(5) Nij : fii + fjj − fij ≥ 0 (large self-distances) for all i, j ∈ Vn.
So, fii = Nij + Mji ≥ 0, i.e., (5) and (4) imply Lii for all. i. The

strong partial semimetrics on Vn form a
(
n+1
2

)
-dimensional subcone, denote

it by sPMETn, of PMETn. This cone has 3
(
n+1
3

)
facets: 2

(
n
2

)
facets Mij,

(
n
2

)
facets Nij and 3

(
n
3

)
facets Trij,k.

A partial semimetric f is called semimetric if it holds that
(6) fii = 0 (reflexivity) for all i ∈ Vn.
The semimetrics on Vn form a

(
n
2

)
-dimensional convex cone, denoted by

METn, which has 3
(
n
3

)
facets Trij,k (clearly, fij =

Trij,k+Trjk,i
2

≥ 0). This
cone is well-known; see, for example, [DeLa97] and references there.

The function f is quasi-semimetric if only (2), (3), (6) are required. The
quasi-semimetrics on Vn form a n(n−1)-dimensional convex cone, denoted by
QMETn, which has 2

(
n
2

)
facets Lij and 6

(
n
3

)
facets OTrij,k : fik + fkj − fij ≥

0 (oriented triangle inequality). But other oriented versions of Trij,k (for
example, fik + fkj − fji) are not valid on QMETn.

A quasi-semimetric f is weightable if there exist a (weight) function w =
(wi) : Vn −→ R≥0 such that fij + wi = fji + wj for all i, j ∈ Vn. Such quasi-
semimetrics f (or, equivalently, pairs (f, w)) on Vn form a

(
n+1
2

)
-dimensional
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cone, denote it by WQMETn, with 2
(
n
2

)
facets Lij and 3

(
n
3

)
facets OTrij,k

since, for a quasi-semimetric, OTrij,k = OTrji,k if it is weightable.
A weightable quasi-semimetric (f, w) with all fij ≤ wj is a weightable

strong quasi-semimetric. But if, on the contrary, (2) is weakened to fij +
fji ≥ 0 (so, fij < 0 is allowed), (f, w) is a weightable weak quasi-semimetric.
Denote by sWQMETn and wWQMETn the corresponding cones.

Let us denote the function f by p, d, or q if it is a weak partial semimetric,
semimetric, or weightable weak quasi-semimetric, respectively.

A weighted semimetric (d;w) is a semimetric d with a weight function
w : Vn → R≥0 on its points. Denote by (d;w) the matrix ((d′ij)), 0 ≤ i, j ≤ n,
with d′00 = 0, d′0i = d′i0 = wi for i ∈ Vn and d′ij = dij for i, j ∈ Vn. The

weighted semimetrics (d;w) on Vn form a
(
n+1
2

)
-dimensional convex cone with

n facets wi ≥ 0 and 3
(
n
3

)
facets Trij,k. Denote this cone by WMETn. So,

METn ' {(d; (k, . . . , k)) : d ∈WMETn}. Also, METn = QMETn∩PMETn.
Call a weighted semimetric (d;w) down- or up-weighted if
(4’) dij ≥ wi − wj, or
(5’) dij ≤ wi + wj

holds (for all distinct i, j ∈ Vn), respectively. Denote by dWMETn the cone
of down-weighted semimetrics on Vn and by sWMETn the cone of strongly,
i.e., both, down- and up-, weighted semimetrics. So, sWMETn = METn+1.

2 Maps P,Q and semimetrics

Given a weighted semimetric (d;w), define the map P by the function p =

P (d;w) with pij =
dij+wi+wj

2
. Clearly, P is an automorphism (invertible linear

operator) of the vector space R(n+1
2 ), and (d;w) = P−1(p), where the inverse

map P−1 is defined by dij = 2pij − pii − pjj, wi = pii.

Define the map Q by the function (q, w) = Q(d;w) with qij =
dij−wi+wj

2
.

So, Q(d;w) = P (d;w)− ((1))w (i.e., qij = pij − pii) and dij = qij + qji, is the
symmetrization semimetric of q.

Example. Below are given: the semimetric d = 2δ({56}, {1}, {23}, {4})
−δ({56}) ∈ MET6, and, taking weight w = (1i∈{56}) = (0, 0, 0, 0, 1, 1), the
partial semimetric P (d;w) = J({56}) + δ({56}, {1}, {23}, {4}) (its ray is
extreme in PMET6) and the weightable quasi-semimetric Q(d;w) = δ′({1})+
δ′({23}) + δ′({4}) (its ray is not extreme in WQMET6).

4



0 2 2 2 1 1 0 1 1 1 1 1 0 1 1 1 1 1
2 0 0 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1
2 0 0 2 1 1 1 0 0 1 1 1 1 0 0 1 1 1
2 2 2 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1
1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0

Clearly, dij + dik − djk = pij + pik − pjk − pii = qji + qik − qjk, i.e., the
triangle inequalities are equivalent on all three levels: d - of semimetrics, p -
of would-be partial semimetrics and q - of would-be quasi-semimetrics.

Now, pij ≥ pii iff dij ≥ wi − wj iff qij ≥ 0; so, (4) is equivalent to (4’),
pij ≤ pii + pjj iff dij ≤ wi + wj iff qij ≤ wj; so, (5) is equivalent to (5’),
and 2pij ≥ pii + pjj iff dij ≥ 0 iff qij + qji ≥ 0. This implies

Lemma 1 The following statements hold.
(i) wPMETn = P (WMETn), PMETn = P (dWMETn) and
sPMETn = P (sWMETn),
(ii) wWQMETn = Q(WMETn), WQMETn = Q(dWMETn) and
sWQMETn = Q(sWMETn).

The metric cone METn ∈ R(n
2) has a unique orbit of 3

(
n
3

)
facets Trij,k.

Its symmetry group Aut(METn) is Sym(n) n 6= 4. The number of extreme
rays (orbits) of METn is 3 (1), 7 (2), 25 (3), 296 (7), 55226 (46) for 3 ≤
n ≤ 7. D(Ri(METn)) = 2 for n > 3, while Ri(MET3) = Sk(MET3) = K3.
D(Sk(METn)) is 1 for n = 4, 2 for 5 ≤ n ≤ 6 and 3 for n = 7.

For a partition S = {S1, . . . , St} of Vn, the multicut δ(S) ∈ METn has
δij(S) = 1 if |{i, j}| = 2 > |{i, j} ∩ Sh|, 1 ≤ h ≤ t and δij(S) = 0, otherwise.
Call δ(S) a t-cut if Sh 6= ∅ for 1 ≤ h ≤ t. Clearly,

δ(S1, . . . , St) =
1

2

t∑
h=1

δ(Sh, Sh).

Denote by CUTn the cone generated by all 2n−1−1 2-cuts δ(S, S) = δ(S).
CUTn = METn holds for n ≤ 4 and Aut(CUTn) = Aut(METn). The
number of facets (orbits) of CUTn is 3 (1), 12 (1), 40 (2), 210 (4), 38780 (36)
for 3 ≤ n ≤ 7. D(Sk(CUTn)) = 1 and D(Ri(CUTn)) = 2, 3, 3 for n = 5, 6, 7.
See, for example, [DeLa97, DDF96, Du08] for details on METn and CUTn.
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The number of t-cuts of Vn is the number of ways to partition a set of n
objects into t groups, i.e., the Stirling number of the second kind S(n, t) =
1
t!

∑t
j=0(−1)j

(
t
j

)
(t − j)n. So, S(n, 2) = 2n−1 − 1 and S(n, n − 1) =

(
n
2

)
.

The number of multicuts of Vn is the Bell number B(n) =
∑n

t=0 S(n, t) =∑n−1
t=0 (t + 1)S(n, t) =

∑n−1
t=0

(
n−1
t

)
B(t) (the sequence A000110 = 1, 1, 2, 5,

15, 52, 203, 877, . . . in [Sl10]). The number of ways to write i as a sum of
positive integers is i-th partition number Qi (the sequence A000041 in [Sl10]).

The 0, 1-valued elements d ∈ METn are all B(n) multicuts δ({S1, . . . , St})
of Vn. It follows by induction using that d1i = d1j = 0 implies dij = 0 and
d1i 6= d1j implies dij = 1. In fact, S1, . . . , St are the equivalence classes of the
equivalence ∼ on Vn, defined by i ∼ j if dij = 0.

R(0, 1-METn) consists of all S(n, 2) 2-cuts; so, 0, 1-METn = CUTn.

3 Description of wPMETn and sPMETn

Denote METn;0 = {(d; (0)) : d ∈ METn} and CUTn;0 = {(d; (0)) : d ∈
CUTn}. So, METn ' METn;0 ' P (METn;0) ' Q(METn;0) and CUTn '
CUTn;0 ' P (CUTn;0) ' Q(CUTn;0). Denote by WCUTn the cone {d;w) ∈
WMETn : d ∈ CUTn} of weighted `1-semimetrics on Vn.

Denote ej = (((0));w = (wi = 1i=j)) ∈ WMETn. So, 2P (ej) = 2 on
the position (jj), 1 on (ij), (ji) with i 6= j and 0, else; 2Q(ej) = −1 on the
positions (ji), 1 on (ij) (with i 6= j again) and 0, else.

Theorem 1 The following statements hold.
(i) R(WMETn) = {ej : j ∈ Vn} ∪R(METn;0),
R(wPMETn) = {2P (ej) : j ∈ Vn} ∪ P (R(METn;0)),
R(wWQMETn) = {2Q(ej) : j ∈ Vn} ∪Q(R(METn;0)).
(ii) F (WMETn) = {wj ≥ 0 : j ∈ Vn} ∪ F (METn;0),
F (wPMETn) = {Ljj = pjj ≥ 0 : j ∈ Vn} ∪ F (P (METn;0)),
F (wWQMETn) = {wj ≥ 0 : j ∈ Vn} ∪ F (Q(METn;0)).
(iii) Inc(2P (ej)) = |F (wPMETn)|− 1 and Inc(Ljj) = |R(wPMETn)|− 1.
(iv) Ri(WMETn) = Ri(wPMETn) = Ri(wWQMETn) = Kn×Ri(METn),
Sk(WMETn) = Sk(wPMETn) = Sk(wWQMETn) = Kn × Sk(METn).
(v) wPMETn has Aut, D(Sk), D(Ri) and edge-connectivity of METn.
(vi) The 0, 1-valued elements of wPMETn are the B(n + 1) 0, 1-valued

elements of PMETn and 0, 1-wPMETn = CUTn;0.
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(vii) The 0, 1-valued elements of WMETn are 2nB(n) 0, 1-weighted mul-
ticuts of Vn and 0, 1-WMETn = WCUTn.

R(WCUTn) = {ej : j ∈ Vn} ∪R(CUTn;0) and Sk(WCUTn) = Kn+S(n,2).
F (WCUTn) = {wj ≥ 0 : j ∈ Vn} ∪ F (CUTn;0) and Ri(WCUTn) =

Kn × Ri(CUTn) has diameter 2.

Proof.
(i). Let p ∈ wPMETn. We will show that p′ = p − 1

2

∑n
t=1 ptt2P (et) ∈

METn;0. (For example, a well-known weak partial semimetric i + j is the
sum of

∑
t t2P (et) and the all-zero semimetric ((0)).)

In fact, p′ii = pii − 1
2
pii2P (ei)ii = 0. Also, p′ satisfies to all triangle

inequalities (3), since for different i, j, k ∈ Vn, we have Trij,k = p′ij+p
′
ik−p′jk =

=

(
pij −

pii + pjj
2

)
+

(
pik −

pii + pkk
2

)
−
(
pjk −

pjj + pkk
2

)
=

= pij + pik − pjk − pii ≥ 0.

So, 2P (ei), 1 ≤ i ≤ n, and the generators of P (METn;0) ' METn;0 (i.e.,
the 0-extensions of the generators of METn) generate wPMETn. They are,
moreover, the generators of wPMETn since they belongs to all n (linearly

independent) facets Lii; so, their rank in R(n+1
2 )is (

(
n
2

)
− 1) + n =

(
n+1
2

)
− 1.

Clearly, any 2P (ei) belongs to all facets of wPMETn except Lii, i.e., its

incidence is (n− 1) + 3
(
n
3

)
. So, its rank in R(n+1

2 ) is
(
n+1
2

)
− 1. For WMETn

and wWQMETn, (i) follows similarly, as well as (ii).
(iii), (iv). The ray of 2P (ei) is adjacent to any other extreme ray r, as

the set of facets that contain r (with rank
(
n+1
2

)
− 1) only loses one element

if we intersect it with the set of facets that contain 2P (ei).
(v). The diameters of Ri(wPMETn) and Sk(wPMETn) being 2, their

edge-connectivity is equal to their minimal degrees [Pl75]. But this degree is

the same as of Ri(METn) (which is regular of degree (n−3)(n2−6)
2

if n > 3) and
of Sk(METn), respectively. Aut(wPMETn) for n ≥ 5 is Sym(n), because it
contains Sym(n) but cannot be larger than Aut(METn) = Sym(n).

(vi). If p ∈ wPMETn is 0, 1-valued, then pij = 0 < pii = 1 is impossible
because 2pij ≥ pii + pjj; so, p ∈ PMETn. (vii) is implied by (i), (ii). 2

Any partial semimetric p ∈ PMETn induces the partial order on Vn by
defining i � j if pii = pij. This specialization order is important in Computer
Science applications, where the partial metrics act on certain posets called

7



Scott domains. In particular, i0 ∈ Vn is a p-maximal element in Vn if pii = pii0
for all i 6= i0. It is a p-minimal element in Vn if pi0i0 = pii0 for all i 6= i0. The
lifting of p ∈ PMETn is the function p+ = ((p+ij)), i, j ∈ Vn, with p+00 = 0,
p+0i = p+i0 = p+ii for i ∈ Vn and p+ij = pij for i, j ∈ Vn. Clearly, 0 is a p+-maximal
element in the specialization order, induced on {0} ∪ Vn = {0, 1, . . . , n} by
p+, since p+ii = pii as well as p+i0 = pii for all i ∈ Vn.

Theorem 2 The following statements hold.
(i) sPMETn) = {p ∈ PMETn : p+ ∈ PMETn}.
(ii) sWMETn = METn+1 ' P (METn+1) = sPMETn.
(iii) The 0, 1-valued elements of sPMETn are ((0)) and 2n − 1 partial

2-cuts γ(S 6= ∅;S) generating 0, 1-sPMETn = CUTn+1,
CUTn+1 ' P (CUTn+1) = 0, 1-sPMETn and Q(CUTn+1) = OCUTn.

Proof. We should check for p+ only inequalities (2), (3), (4) involving the
new point 0. 2n + 1 of the required inequalities hold as equalities: p+00 = 0
and p+0i = p+i0 = p+ii = pii for i ∈ Vn. All Tr0j,i = pij − pij ≥ 0 hold since (4)
is satisfied. All Trij,0 = pii + pjj − pij ≥ 0 hold whenever p satisfies (5), i.e,
p ∈ PMETn. 2

Given p ∈ sPMETn, the semimetric P−1(p+) ∈ METn+2 is P−1(p) ∈
METn+1 with the first point split in two coinciding points. The cone sPMETn

is nothing but the linear image P (sWPMETn = METn+1). So, for n ≥ 4,
Aut(sWPMETn) = Sym(n+ 1) on {0, 1, . . . , n} acting as p′ = P (τ(P−1(p)))
on sPMETn for any τ ∈ Sym(n+ 1). If τ fixes 0, then p′ = τ(p).

4 0, 1-valued elements of PMETn and dWMETn

For a partition S = {S1, . . . , St} of Vn and A ⊆ {1, . . . , t}, let us denote
Â =

⋃
h∈A Sh and w(Â) = (wi = 1i∈Â). So, weight is constant on each Sh.

For any S ⊂ Vn, denote by J(S) the 0, 1-valued function with J(S)ij = 1
exactly when i, j ∈ S0. So, J(Vn) and J(∅) are all-ones and all-zeros partial
semimetrics, respectively.

For any S0 ⊂ Vn and partition S = {S1, . . . , St} of S0, denote J(S0) +
δ(S0, S1, . . . , St) by γ(S0;S1, . . . , St) and call it a partial multicut or, specif-
ically, a partial t-cut. Clearly, γ(S0;S1, . . . , St) ∈ PMETn and it is P (d;w),
where d = 2δ(S0, S1, . . . , St)− δ(S0) =

∑
i=1 δ(Si) and w = (wi = 1i∈S0).

8



Theorem 3 The following statements hold.
(i) The 0, 1-valued elements of dWMETn are

∑n
t=1 2tS(n, t) (δ(S);w(Â)).

R(0, 1-dWMETn) consists of all such elements with (|A|, t−|A|) = (1, 0),
(0, 2) or (1, 1), i.e., (((0)); (1)) and 2-cuts (δ(S);w) with weight (0), w′ =
(1i∈S) or w′′ = (1i/∈S). There are 1 + 3(2n−1 − 1) of them, in b3n

2
c orbits.

(ii) The 0, 1-valued elements of WQMETn are Q(2δ(S) − δ(Â;w(A)) =
δ(S)− δ′(Â).

R(0, 1-dWMETn) consists of all such elements with either |A| = t−|A| =
1 (o-2-cuts), or 2 ≤ |A|, t− |A| ≤ n− 2.

(iii) The 0, 1-valued elements of PMETn are the partial multicuts
P ((2δ(S)− δ(Â);w(A)) = δ(S) + J(Â) with |A| ≤ 1.
There are B(n+ 1) =

∑n
i=0

(
n
i

)
B(i) of them, in

∑n
i=0Q(i) orbits.

R(0, 1-PMETn) consists of all such elements except B(n)− (2n−1−1), in
Q(n)− bn

2
c orbits, those (partial t-cuts) with |A| = 0, t 6= 2.

Proof.
(i). The 0, 1-valued elements of WMETn are 0, 1-weighted multicuts.

Now, the inequality (4’) dij ≥ wi −wj, valid on dWMETn, implies that w is
constant on each Sh. (((0)); (1)) belongs to R(0, 1-dWMETn) since its rank
is
(
n
2

)
plus n − 1, the rank of the set of equalities dij = wi − wj. The same

holds for (δ(S);w) with weight (0), w′ = (1i∈S) or w′′ = (1i/∈S), since their
rank is

(
n
2

)
− 1 plus k ≥ 1 equalities wi = 0 plus, if k < n, n − k equalities

dij = wj − wi′ = 1, where wi′ = 0 and wj = 1. But the all-ones-weighted 2-
cut δ is equal to 1

2
((δ;w′) + (δ;w′′) + (((0))); (1)). No other (δ(S1, . . . , St);w)

belongs to R(0, 1-dWMETn) since t should be 2 (otherwise, the rank will be
<
(
n
2

)
− 1 + n) and the weight should be constant on each Sh, 1 ≤ h ≤ t.

(ii). Let q ∈ WQMET be 0, 1-valued. Without loss of generality, let
minni=1(wi) = w1 = 0. But q1i+w1 = qi1 +wi for any i > 1. So, wi = 1 if and
only if q1i 6= qi1. The quasi-semimetrics q, restricted on the sets {i : wi = 0}
and {i : wi = 1}, should be 0, 1-valued semimetrics, i.e., multicuts.

(iii) is proven in [DeDe10]. For example, there are 52 = 1×1+4×1+6×
2+4×5+1×15 (1+1+2+3+5 orbits) 0, 1-valued elements of PMET4. Among
them, only δ(S1, . . . , St) with t = 1, 3, 4, i.e., ((0)), δ({1}, {2}, {3}, {4}) and
6 elements of the orbit with t = 3 are not representatives of extreme rays. 2
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5 Two generalized hypermetric cones

For a sequence b = (b1, . . . , bn) of integers, where Σb denotes
∑n

i=1 bi, and a
symmetric n× n matrix ((aij)), denote by Hb(a) the sum −

∑
1≤i,j≤n bibjaij

of the entries of the matrix −bTab.
The cone HYPn of all hypermetrics, i.e., semimetrics d ∈ METn with

Hb(d) ≥ 0, whenever Σb = 1, was introduced in [De60].
This cone is polyhedral [DGL93]; HYPn ⊆ METn with equality for

n ≤ 4 and CUTn ⊆ HYPn with equality for n ≤ 6. HYP7 was described
in [DeDu04].

The hypermetrics have deep connections with Geometry of Numbers and
Analysis; see, for example, [DeTe87, DeGr93, DGL95] and Chapters 13-17,
28 in [DeLa97]. So, generalizations of HYPn can put those connections in a
more general setting.

For a weighted semimetric (d;w) ∈WMETn, we will use the notation:
Hypb(d;w) = 1

2
Hb(d) + (1− Σb)〈b, w〉 ≥ 0 and

Hyp′b(d;w) = 1
2
Hb(d) + (1 + Σb)〈b, w〉 ≥ 0.

Denote by WHYPn the cone of all weighted hypermetrics, i.e., (d;w) ∈
WMETn with Hypb(d;w) ≥ 0 and Hyp′b(d;w) ≥ 0 for all b with Σb = 1 or
0. Denote by PHYPn the cone of all partial hypermetrics, i.e., p ∈ wPMETn

with Hypb(P
−1(p)) ≥ 0 for all b with Σb = 1 or 0. For p = P (d;w) and

(q, w) = Q(d;w), we have

Hypb(d;w) = Hb(p) +
n∑
i=1

bipii = Hb(q) + (1− Σb)〈b, w〉.

WHYPn ⊂ dWMETn and PMETn ⊃ PHYPn hold since the needed inequali-
ties wi ≥ 0, (4’) (and (4)) are provided by permutations of Hyp′(1,0,...,0)(d;w) ≥
0 and Hyp(1,−1,0,...,0)(d;w) ≥ 0.

Lemma 2 Besides the cases PMET3 = PHYP3 = 0, 1-PMET3 and 0, 1-
dWMETn = WHYPn for n = 3, 4, 0, 1-dWMETn ⊂ WHYPn ⊂ dWMETn

' PMETn ⊃ PHYPn ⊃ 0, 1-PMETn holds.

Proof.
Denoting 〈b, (1i∈Sh

)〉 by rh, we have r0 = Σb −
∑t

h=1 rh and

Hb(δ(S0, S1, . . . , St)) =
1

2

t∑
h=0

Hb(δ(Sh, Sh)) =
t∑

h=0

rh(rh − Σb).
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Let (d = 2δ(S0, S1, . . . , St) − δ(S0);w = (1i∈S0)) be a generic P−1(p),
where p is 0, 1-valued element of PMET belonging to its extreme ray. Then
1
2
Hb(d) = 1

2
(2
∑t

h=0 rh(rh − Σb)− 2r0(r0 − Σb) =
∑t

h=1 rh(rh − Σb) implies

Hypb(d;w) =
∑t

h=1 rh(rh − 1)− Σb(Σb − 1) ≥ 0 for our Σ = 0, 1.
All 0, 1-valued elements (d;w) of dWMETn belonging to its extreme rays

are (((0)); (1)), (δ(S); (0)), (δ(S, );w′ = (1i∈S)) and (δ(S);w′′ = (1i/∈S)). For
them, Hyp′b(d;w) = (Σb+1)Σb, rS(rS−Σ), rS(rS+1) and (Σb−rS)(Σb−rS+1)
hold, respectively, and so, Hyp′b(d;w) ≥ 0 for our Σ = 0, 1.

Assuming polyhedrality of WHYPn, the cases n = 3, 4 were checked by
computation; see Lemma below. 2

Lemma 3 The following statements hold.
(i) All facets of WHYPn, n ≤ 4, up to Sym(n) and 0-extensions, are Hypb

with b = (1,−1), (1, 1,−1), (1, 1,−1,−1) and Hyp′b with b = (1), (1, 1,−1),
(1, 1, 1,−2), (2, 1,−1,−1).

(ii) Besides wi ≥ 0, among the facets of P−1(PHYPn), n ≤ 5, up to
Sym(n) and 0-extensions, are: Hypb with b = (1,−1), (1, 1,−1), (1, 1,−1,−1),
(1, 1, 1,−1,−1), (1, 1, 1,−1,−2), (2, 1, 1,−1,−1).

Proof.
It was obtained by direct computation. The equality WHYPn = 0, 1-

WMETn for n = 3, 4 holds, because only inequalities which are requested in
WHYPn appeared among those of 0, 1-WMETn.

The facets of PHYP4 were deduced by computation using the tightness of
the inclusions 0, 1-PMET4 ⊂ PHYP4 ⊂ PMET4 (see Table 1): 0, 1-PMET4

contained exactly one facet (orbit F5) different from Hypb and pii ≥ 0, and
PMET4 contained exactly two (orbits R10 and R11) non-0, 1-valued extreme
ray representatives. The 6 rays from R10 are removed by 6 respective Hypb
with b = (1, 1,−1,−1), while the 12 rays from R11 are removed by 12 F5. 2

6 Oriented multicuts and quasi-semimetrics

For an ordered partition (S1, . . . , St) of Vn into non-empty subsets, the ori-
ented multicut (or o-multicut, o-t-cut) δ

′
(S1, . . . , St) on Vn is defined by:

δ
′
ij(S1, . . . , St) =

{
1, if i ∈ Sh, j ∈ Sm,m > h,
0, otherwise.
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Ri Representative p 11 21 22 31 32 33 41 42 43 44 Inc. Adj. |Oi|
R1 γ({1, 2, 3, 4}; ) 1 1 1 1 1 1 1 1 1 1 24 20 1

R2 γ({2}; {2}) 0 1 1 0 1 0 0 1 0 0 21 38 4

R3 γ({3}; {3}) 1 1 1 1 1 0 1 1 1 1 19 17 4

R4 γ(∅; {3}, {3}) 0 0 0 1 1 0 0 0 1 0 19 32 4

R5 γ({1, 2}; {1, 2}) 1 1 1 1 1 0 1 1 0 0 18 31 6

R6 γ(∅; {1, 2}, {1, 2}) 0 0 0 1 1 0 1 1 0 0 16 32 3
R7 γ({1, 4}; {2}, {3}) 1 1 0 1 1 0 1 1 1 1 14 14 6
R8 γ({1}; {2}, {3, 4}) 1 1 0 1 1 0 1 1 0 0 14 20 12
R9 γ({4}; {1}, {2}, {3}) 0 1 0 1 1 0 1 1 1 1 9 9 4
R10 1 1 0 1 1 0 2 1 1 1 10 18 6
R11 0 2 0 1 1 0 2 2 3 2 9 9 12

F1 L11 : p11 ≥ 0 1 0 0 0 0 0 0 0 0 0 29 36 4
F2 Hyp(−1,1,1,0) ≥ 0 -1 1 0 1 -1 0 0 0 0 0 26 24 12

F3 M12 = Hyp(−1,1,0,0) ≥ 0 -1 1 0 0 0 0 0 0 0 0 23 23 12

F4 Hyp(1,1,−1,−1) ≥ 0 0 -1 0 1 1 -1 1 1 -1 -1 16 12 6

F5 H(2,1,−1,−1) − 2p11 ≥ 0 -2 -2 0 2 1 0 2 1 -1 0 9 9 12

Table 1: The orbits of extreme rays in PMET4 and facets in 0, 1-PMET4

The o-2-multicuts δ
′
(S, S) are called o-cuts and denoted by δ

′
(S). Clearly,

δ(S1, . . . , St) =
t∑
i=1

δ
′
(Si) =

t∑
i=1

δ
′
(Si) =

1

2

t∑
i=1

δ(Si).

Denote by OCUTn and OMCUTn the cones generated by 2n − 2 non-zero
o-cuts and Bo(n) − 1 non-zero o-multicuts, respectively. (Here, Bo(n) are
the ordered Bell numbers given by the sequence A000670 in [Sl10].) So,
CUTn = {q + qT : q ∈ OMCUTn}. In general, Z2 × Sym(n) is a symmetry
group of QMETn, OMCUTn, WQMETn, OCUTn; Dutour, 2002, proved that
it is the full group of those cones. The cones QMETn and OMCUTn were
studied in [DDD03]. Clearly, δ

′
ij(S1, . . . , St) ∈WQMETn if and only if t = 2

and then w = (1i/∈S1). So, OCUTn = OMCUTn ∩WQMETn.

Theorem 4 The following statement holds.
OCUTn = Q(CUTn+1 = 0, 1-sWMETn) = Q(0, 1-dWMETn) = 0, 1-

Q(dWMETn).

Proof. Given a representative (d;w) = (δ(S);w′) , (δ(S);w′′), (δ(S); (0)),
(δ(∅); (1)) of an extreme ray of 0, 1-dWMETn, we have Q(q;w) = (δ′(S), w′),
(δ′(S), w′′), (δ(S), (0)), (δ(∅), (1)), respectively. But δ(S) = δ′(S)+δ′(S) and
(((0)), t(1)) are not extreme rays. 2

The above equality OCUTn = Q(0, 1-sWMETn) means that q ∈ OCUTn

are Q(d;w), where (d, w) is a semimetric d′ ∈ CUTn+1 on Vn ∪ {0}. So,
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qij = 1
2
(d′ij − d′0i + d′0j). But CUTn is the set of `1-semimetrics on Vn,

see [DeLa97]. So, q ∈ OCUTn can be seen as `1-quasi-semimetrics; it was
realized in [DDD03, CMM06]. In fact, OCUTn is the set of quasi-semimetrics
q on Vn, for which there is some x1, . . . , xm ∈ Rm with all qij = ||xi−xj||1.or,
where the oriented `1-norm is defined as ||x− y||1.or =

∑m
k=1 max(xk− yk, 0);

the proof is the same as in Proposition 4.2.2 of [DeLa97].

Let C be any cone closed under reversal, i.e., q ∈ C implies qT ∈ C. If
the linear inequality

∑
1≤i,j≤n fijqij = 〈F, q〉 ≥ 0 is valid on C, then F also

defines a face of {q+qT : q ∈ C}. Given a valid inequality G :
∑

1≤i<j≤n gijdij
of {q + qT : q ∈ C} and an oriented Kn (i.e., exactly one arc connects any i
and j) O, let GO = ((gOij)) where gOij = gij if the arc (ij) belongs to O and = 0,
otherwise. Call GO standard if there exists τ ∈ Sym(n) with (ij) ∈ O if and
only if τ(i) < τ(j), and reversal-stable (rs for short) if 〈GO, q〉 = 〈GO, qT 〉.
In general, GO is not valid on C and does not preserve the rank of G.

For example, the standard Tr12,3 : q13 + q23 − q12 ≥ 0 is not valid on
OCUTn, and the standard Lij : qij ≥ 0 defines a facet in OCUTn, while
G : dij ≥ 0 only defines a face in METn. If F = GO is rs, then 〈F, q〉 =
1
2
〈G, q + qT 〉, i.e., F is valid on C if G is valid on {q + qT : q ∈ C}.

Let E be an equality that holds on C, i.e.,
∑

1≤i,j≤n eijqij = 〈E, q〉 = 0
holds for any q ∈ C. If the dimension of the subspace E , spanned by all such
equalities, is greater than zero, and F ≥ 0 is a facet-defining inequality, then
for any E ∈ E , F + E ≥ 0 defines the same facet. We call a facet standard
or rs if one of its defining inequalities is standard or rs. Of all the defining
inequalities we can choose one of them (up to a positive factor) to be the
canonical representative – let it be such a G = F +E, E ∈ E that 〈G,E〉 = 0
holds for all E ∈ E , i.e., G is orthogonal to E .

Lemma 4 Let C be a cone closed under reversal, and E the subspace of its
equalities. Then, the following statements hold.

(i) If C ⊆ WQMETn is of the same dimension as WQMETn, then E is
spanned by the equalities qij + qjk + qki = qji + qkj + qik for i, j, k ∈ Vn and
its dimension is

(
n−1
2

)
.

(ii) For each E ∈ E, E is rs.
(iii) If a facet of C is rs, then all of its defining inequalities are rs.
(iv) A facet is rs iff its canonical representative G is symmetric, e.g.

G = GT holds.
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Proof.
(i). The equalities Eijk = qij + qjk + qki− qji− qkj− qik = 0 for i, j, k ∈ Vn

follow directly from the weightability condition qij + wi = qji + wj. Since
Eijk = Ejki = −Ekji and Ejk` = Eijk − Eij` + Eik` hold, we can choose a
basis of E such that the indices (ijk) of the basis elements Eijk are ordered
triples that all contain a fixed element of Vn (say, n). There are

(
n−1
2

)
such

triples, and since all such Eijk are linearly independent, the subspace E has
dimension

(
n−1
2

)
.

(ii). As C is closed under reversal, each equality E ∈ E holds for both
q, qT ∈ C. Therefore, 0 = 〈E, q〉 = 〈E, qT 〉, so E is rs.

(iii). If F is a defining inequality of a facet and is rs, then for each E ∈ E
and q ∈ C, 〈F +E, qT 〉 = 〈F +E, q〉, so F +E, and by extension any defining
inequality, is also rs.

(iv). Clearly, if G is symmetric, it is also rs and so is the facet it defines.
If a facet is rs, then by (iii), so is its canonical representative G, for which
〈G, q〉 = 〈G, qT 〉 = 〈GT , q〉 holds for all q ∈ C. Therefore, G − GT ∈ E , but
as G−GT is also orthogonal to E , G = GT follows. 2

The facets OTrij,k and Lij (only 1st is rs) of WQMETn are standard
and of the form Hypb where b is a permutation of (1, 1,−1, 0, . . . , 0) or
(1,−1, 0, . . . , 0). OCUT4 has one more orbit: six standard, non-rs facets
of the form Hypb where b is a permutation of (1, 1,−1,−1), or q13 + q14 +
q23 + q24 − (q12 + q34) ≥ 0.

OCUT5 has, up to Sym(n), 3 new (i.e., in addition to 0-extensions of
the facets of OCUT4) such orbits: one standard rs (1, 1, 1,−1,−1) and two
non-standard, non-rs orbits. OCUT6 has, among its 56 new orbits, two non-
standard rs orbits for b = (2, 1, 1,−1,−1,−1) and (1, 1, 1, 1,−1,−2).

The adjacencies of cuts in CUTn are defined only by the facets Trij,k, and
adjacencies of those facets are defined only by cuts. It gives at once

(
n
2

)
− 1

linearly independent facets OTrij,k containing any given pair (δ
′
(S1), δ

′
(S2)),

using that OTrij,k are rs facets. So, only n more facets are needed to get the
adjacencies of o-cuts. It is a way to prove Conjecture 1 (i) below.

Call a tournament (Kn with unique arc between any i, j) admissible if its
arcs can be partitioned into arc-disjoint directed cycles. It does not exists
for even n, because then the number of arcs involving each vertex is odd,
while each cycle provides 0 or 2 such arcs. But for odd n, there are at
least 2

n−3
2 admissible tournaments: take the decomposition of Kn into n−1

2

disjoint Hamiltonian cycles and, fixing the order on one them, all possible
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orders on remaining cycles. For odd n, denote by Oc the canonic admissible
tournament consiting of all (i, i+k) with 1 ≤ i ≤ n−1, 1 ≤ k ≤ dn

2
e+1−i and

(i+k, i) with 1 ≤ i ≤ bn
2
c, dn

2
e ≤ k ≤ n−i, i.e., 0 = C1,2,3,4,5,6,7,...+C1,3,5,7,...+

C1,4,7,... + . . . . The Kelly conjecture state that the arcs of every regular (i.e.,
the vertices have the same outdegree) tournament can be partitioned into
arc-disjoint directed Hamiltonian cycles.

0-extensions of qij ≥ 0 and q13 + q14 + q23 + q24 − (q12 + q34) ≥ 0 can be
seen, as the first instances (for b = (1,−1, 0, . . . , 0), (1, 1,−1,−1, 0, . . . , 0)) of
the oriented negative type inequality ONegb,O(q) = −

∑
1≤i<j≤n bibjqa(ij) ≥ 0,

where for a given b = (b1, . . . , bn) ∈ Zn, Σb = 0, and the arcs a(ij) on the
edges (ij) by some rule defined by a given tournament O.

Denote by OWHYPn the cone consisting of all q ∈WQMETn, satisfying
the two above orbits and all oriented hypermetric inequalities

OHypb,O(q) = −
∑

1≤i<j≤n

bibjqa(ij) ≥ 0,

where b = (b1, . . . , bn) ∈ Zn, Σb = 1, O is an admissible tournament, and the
arc a(ij) on the edge (ij) is the same as in O if bibj ≥ 0, or the opposite one
otherwise. So, OWHYPn = OCUTn for n = 3, 4.

Theorem 5 OCUTn ⊂ OWHYPn ⊂WQMETn holds for n ≥ 5.

Proof.
Without loss of generality, let bi = 1 for 1 ≤ i ≤ bn

2
c and bi = −1, other-

wise. The general case means only that we have sets of |bi| coinciding points.
OHypb,O is rs, because Lemma 4 in [DeDe10] implies that any inequality
on a q ∈ WQMETn is preserved by the reversal of q. So, OHypb,O(q) =
1
2

Hypb(q + qT ). On an o-cut δ
′
(S) it gives, putting r = 〈b, (1i∈S)〉,

1

2
Hypb(δ

′
(S) + δ

′
(S)) = Hypb(δ(S)) = r(r − Σb) ≥ 0.

OWHYP5 has, besides o-cuts, 40 extreme rays in two orbits: Fab, F
′
ab,

having 2 on the position (ab), 1 on ba, 0 on three other (ka) for k 6= b in
Fab, or on three other (bk) for k 6= a in F

′
ab, and ones on other non-diagonal

positions. Also, D(Sk(OWHYP5)) = D(Ri(OWHYP5)) = 2.

The cone QHYPn = {q ∈ QMETn : ((qij + qji)) ∈ HYPn} was con-
sidered in [DDD03]. Clearly, it is polyhedral and coincides with QMETn
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for n = 3, 4; QHYP5 has 90 facets (20 + 60 from QMET5 and those with
b = (1, 1, 1,−1,−1)) and 78810 extreme rays; D(Ri(QHYP5)) = 2.

Besides OCUT3 = 0, 1-WQMET3 = WQMET3 and 0, 1-WQMET4 =
WQMET4, OCUTn ⊂ 0, 1-WQMETn ⊂ WQMETn holds. We conjecture
Sk(OCUTn) ⊂ Sk(0, 1-WQMETn) ⊂ Sk(WQMETn) and Ri(0, 1-WQMETn)
⊃ Ri(WQMETn) ⊃ Ri(METn). 0, 1-WQMET5 has OTrij,k, Lij and 3 other,
all standard, orbits. Those facets give, for permutations of b = (1,−1, 1,−1, 1),
the non-negativity of −

∑
1≤i<j≤5 bibjqij plus q24, q23 or q12 + q45.

The cone {q + qT : q ∈ 0, 1-WQMETn} coincides with METn for n ≤ 5,
but for n = 6 it has 7 orbits of extreme rays (all those of MET6 except
the one, good representatives of which are not 0, 1, 2-valued as required);
its skeleton, excluding another orbit of 90 rays, is an induced subgraph of
Sk(MET6). It has 3 orbits of facets including Trij,k (forming Ri(MET6) in its
ridge graph) and the orbit of

∑
(ij)∈C123456

dij +d14+d35−d13−d46−2d25 ≥ 0.

If q ∈ QMETn is 0, 1-valued with S = {i : qi1 = 1}, S ′ = {i : q1i = 1},
then qij = 0 for i, j ∈ S ∩ S ′ (since qi1 + q1j ≥ qij) and qij = qji = 1 for
i ∈ S, j ∈ S ′ (since qij + qj1 ≥ qi1); so, |S ∩ S ′|(|S ∩ S ′| − 1) + |S|(|S| − 1) +
|S ′|(|S ′| − 1)− |S ∩ S ′||S ∩ S ′| elements qij with 2 ≤ i 6= j ≤ n are defined.

7 The cases of 3, 4, 5, 6 points

In Table 2 we summarize the most important numeric information on cones
under consideration for n ≤ 6. The column 2 indicates the dimension of the
cone, the columns 3 and 4 give the number of extreme rays and facets, respec-
tively; in parentheses are given the numbers of their orbits. The columns 5
and 6 give the diameters of the skeleton and the ridge graph. The expanded
version of the data can be found on the third author’s homepage [Vi10].

In the simplest case n = 3 the numbers of extreme rays and facets are:
0, 1-WMET3 = WHYP3 = WMET3 ' wPMET3: (6, 6, simplicial) and

0, 1-wPMET3: (3, 3, simplicial);
0, 1-sWMET3 = sWMET3 = CUT4 = HYP4 = MET4 ' 0, 1-sPMET3 =

sPMET3: (7, 12);
0, 1-PMET3 = PHYP3 = PMET3 (13, 12) and 0, 1-dWMET3: (10, 15);
0, 1-QMET3 = QHYP3 = QMET3: (12, 12, simplicial) and OCUT3 =

0, 1-WQMET3 = WQMET3: (6, 9).
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cone dim. Nr. ext. rays (orbits) Nr. facets (orbits) diam. diam. dual
wPMET3 6 6 (2) 6 (2) 1 1
wPMET4 10 11 (3) 16 (2) 1 2
wPMET5 15 30 (4) 35 (2) 2 2
wPMET6 21 302 (8) 66 (2) 2 2

sPMET3 = 0, 1-sPMET3 6 7 (2) 12 (1) 1 2
sPMET4 10 25 (3) 30 (1) 2 2
sPMET5 15 296 (7) 60 (1) 2 2
sPMET6 21 55226 (46) 105 (1) 3 2

0, 1-sPMET4 10 15 (2) 40 (2) 1 2
0, 1-sPMET5 15 31 (3) 210 (4) 1 3
0, 1-sPMET6 21 63 (3) 38780 (36) 1 3

PMET3 = 0, 1-PMET3 6 13 (5) 12 (3) 3 2
PMET4 10 62 (11) 28 (3) 3 2
PMET5 15 1696 (44) 55 (3) 3 2
PMET6 21 337092 (734) 96 (3) 3 2

PHYP4 10 56 (10) 34 (4) 3 2
0, 1-PMET4 10 44 (9) 46 (5) 3 2
0, 1-PMET5 15 166 (14) 585 (15) 3 3
0, 1-PMET6 21 705 (23) 3
0, 1-dWMET3 6 10 (4) 15 (4) 2 2
0, 1-dWMET4 10 22 (6) 62 (7) 2 3
0, 1-dWMET5 15 46 (7) 1165 (27) 2 3
0, 1-dWMET6 21 94 (9) 369401 (806) 2

WQMET3 = OCUT3 5 6 (2) 9 (2) 1 2
WQMET4 = 0, 1-WQMET4 9 20 (4) 24 (2) 2 2

WQMET5 14 190 (11) 50 (2) 2 2
WQMET6 20 18502 (77) 90 (2) 2

0, 1-WQMET5 14 110 (8) 250 (5) 2 2
0, 1-WQMET6 20 802 (17)

{q + qT : q ∈ 0, 1-WQMET6} 15 206 (7) 510 (3) 2 3
OWHYP5 14 70 (6) 90 (4) 2 2
OCUT4 9 14 (3) 30 (3) 1 2
OCUT5 14 30 (4) 130 (6) 1 3
OCUT6 20 62 (5) 16460 (62) 1

Table 2: Main parameters of cones with n ≤ 6

R(dWMET3) \ R(0, 1-dWMET3) and F (0, 1-dWMET3) \ F (dWMET3)
consist of 3 simplicial elements forming K3 in the graph. But only Ri(0, 1-
dWMET3) is an induced subgraph of Ri(dWMET3).

Recall that 2n−1 − 1 is the Stirling number S(n, 2), Sk(CUTn) = KS(n,2),
and [DeDe94] Ri(METn), n ≥ 4, has diameter 2 with Trij,k � Tri′j′,k′ when-
ever they are conflicting, i.e., have values of different sign on a position (p, q),
p, q ∈ {i, j, k} ∩ {i′, j′, k′}. Clearly, |{i, j, k} ∩ {i′, j′, k′}| should be 3 or 2,
and Trij,k conflicts with 2 and 4(n− 3) Tri′j′,k′ ’s, respectively. The proofs of
the conjectures below should be tedious but easy.
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Ri Representative 11 21 22 31 32 33 Inc. Adj. |Ri|
R1 N γ({1, 2, 3}; ) 1 1 1 1 1 1 9 6 1
R2 ◦ γ({1}; {2, 3}) 1 1 0 1 0 0 8 9 3
R3 • γ({2, 3}; {1}) 0 1 1 1 1 1 7 6 3
R4 � γ(∅; {1}, {2, 3}) 0 1 0 1 0 0 7 8 3
R5 � γ({3}; {1}, {2}) 0 1 0 1 1 1 5 5 3

F1 ◦ L11 : p11 ≥ 0 1 0 0 0 0 0 8 9 3
F2 N Tr12,3 : p13 + p23 − p12 − p33 ≥ 0 0 -1 0 1 1 -1 8 7 3
F3 • M12 : p12 − p11 ≥ 0 -1 1 0 0 0 0 7 6 6

Table 3: The orbits of extreme rays and facets in PMET3 = 0, 1-PMET3

{1, 2, 3}; {2, 3}; {1}

{1, 3}; {2}

{1, 2}; {3}

{1}; {2, 3}

{2}; {1, 3}

{3}; {1, 2}

∅; {1}, {2, 3}

∅; {2}, {1, 3}

∅; {3}, {1, 2}

{1}; {2}, {3}

{2}; {1}, {3}

{3}; {1}, {2}

M12

M13
M23

M21

M31 M32

L11 L22

L33

Tr23,1Tr13,2

Tr12,3

Figure 1: The skeleton and ridge graph of PMET3 = 0, 1-PMET3

Conjecture 1 (i) Sk(OCUTn) = K2S(n,2) and belongs to Sk(WQMETn).

(ii) Sk(0, 1-dWMETn) = K1,S(n,2) + S(n, 2)K2;
Sk(0, 1-dWMETn) has diameter 2, all non-adjacencies are of the form:
(((0)); (1)) � (δ′(S); (0)) and (δ′(S);w′) � (δ′(S);w′).

Conjecture 2 (i) Ri(PMETn) has diameter 2, all non-adjacencies are:
Lii �Mik; Mij �Mji,Mki,Mjk, T rij,k; Trij,k � Tri′j′,k′ if they conflict.
(ii) Ri(WQMETn) has diameter 2; it is Ri(PMETn) without vertices Lii.
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Ri Representative 1 21 2 31 32 3 Inc. Adj. |Ri|
R1 N (δ(∅); (1)) 1 0 1 0 0 1 9 6 1
R2 ◦ (δ({1};w′′) 0 1 1 1 0 1 9 8 3
R3 • (δ({1};w′) 1 1 0 1 0 0 9 8 3
R4 � (δ({1}; (0)) 0 1 0 1 0 0 9 8 3

F1 ◦ L1 : w1 ≥ 0 1 0 0 0 0 0 6 9 3
F2 N Tr12,3 : d13 + d23 − d12 ≥ 0 0 -1 0 1 1 0 7 8 3
F3 • M ′12 : d12 + (w2 − w1) ≥ 0 -1 1 1 0 0 0 6 6 6
F4 4 Tr′12,3 : (d13 + d23 − d12) + 2(w1 + w2 − w3) ≥ 0 2 -1 2 1 1 -2 5 5 3

Table 4: The orbits of extreme rays and facets in 0, 1-dWMET3

∅; (1) {1};w′

{2};w′

{3};w′

{1};w′′

{2};w′′

{3};w′′

{1}; (0)

{2}; (0){3}; (0)

M′
21

M′
31 M′

32

M′
12

M′
13M′

23

Tr23,1Tr13,2

Tr12,3

L1 L2

L3 Tr′23,1Tr′13,2

Tr′12,3

Figure 2: The skeleton and ridge graph of 0, 1-dWMET3
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