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Abstract

We show that the Eulerian-Catalan numbers enumerate Dyck permutations. We provide two

proofs for this fact, the first using the geometry of alcoved polytopes and the second a direct

combinatorial proof via an Eulerian-Catalan analogue of the Chung-Feller theorem.
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1. Introduction

Let Am,n denote the Eulerian numbers, which count the number of permutations on n letters
with m descents. The Eulerian-Catalan numbers are defined by

ECn =
1

n+ 1
An,2n+1.

We choose to attach the name Catalan to these numbers since An,2n+1 is the central Eulerian
number, and for their connection to the Catalan numbers, which will become apparent shortly. The
Eulerian-Catalan numbers appear in the Online Encyclopedia of Integer Sequences [2], however,
no combinatorial interpretation appears there and we could not find one in the literature.
The Eulerian-Catalan number is clearly always an integer since the Eulerian numbers satisfy the

following relations

Am,n = (n−m)Am−1,n−1 + (m+ 1)Am,n−1 and Am,n = An−m−1,n for all m,n

which imply that ECn = An−1,2n +An,2n = 2An,2n. Given a permutation w of [n], we associate a
0/1 sequence of length n− 1, ad(w), where ad(w)i = 0 if wi < wi+1 and ad(w)i = 1 if wi > wi+1.
We call ad(w) the ascent/descent vector of w. A 0/1 sequence is called a ballot sequence if every
initial string has at least as many zeroes as ones.
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Alternately, the permutation w defines a lattice path L(w) starting from (0, 0) and with step
(1, 0) if i is an ascent, and with step (0, 1) for a descent. Writing the entries of w along the vertices
of the path produces a standard young tableau of a border strip. We call a permutation w ∈ S2n+1

a Dyck permutation if and only if L(w) is a lattice path from (0, 0) to (n, n), with all points on the
path satisfying y ≤ x. By the usual correspondence between ballot sequences and Dyck paths (see,
[9, Ex. 6.19]), a permutation w is a Dyck permutation if and only if ad(w) is a ballot sequence.
Let L be a lattice path from (0, 0) to (n, n) using steps of (0, 1) and (1, 0). The exceedance of

L, denoted exc(L) is defined to be the number of i ∈ {0, . . . , n} such that there is a point (i, i′) in
L with i < i′. Hence, the Dyck paths are the lattice paths with exceedance 0. The main results of
this paper is the following:

Theorem 1.1. Fix j = 0, . . . , n. The number of permutations w ∈ S2n+1 with n descents such
that exc(L(w)) = j does not depend on j. As a consequence the number of Dyck permutations
w ∈ S2n+1 is the Eulerian-Catalan number ECn.

We provide a direct combinatorial proof of Theorem 1.1 in Section 4. We also provide a geometric
proof of the fact that the number of Dyck permutations w ∈ S2n+1 is the Eulerian-Catalan number
ECn. We define a polytope P2,n and we show that its normalized volume is the Eulerian-Catalan
number. This is proved in Section 2. The polytope P2,n turns out to be an alcoved polytope [6],
and hence its volume can also be interpreted as counting permutations with certain restrictions on
its descent positions, which is explained in Section 3. Combining these two arguments yields the
result that the number of Dyck permutations w ∈ S2n+1 is the Eulerian-Catalan number ECn. We
prove these results in a Fuss-Catalan generality which gives a combinatorial interpretation for the
numbers 1

n+1An,kn+k−1 as the number of (k − 1)-Dyck permutations.

2. Subdividing the Hypersimplex

The hypersimplex ∆(k, n) is the polytope

∆(k, n) =

{
(x1, . . . , xn) ∈ [0, 1]n :

n∑

i=1

xi = k

}
.

It is well-known that the normalized volume of the hypersimplex is the Eulerian number Ak−1,n−1.
Stanley [8] provides a combinatorial proof of this fact by triangulating the hypersimplex.
Fix k, n ∈ N, and consider the hypersimplex ∆(n + 1, k(n + 1)). We define the polytope Pk,n

with the following inequalities:

Pk,n =

{
(x1, . . . , xk(n+1)) ∈ ∆(n+ 1, k(n+ 1)) :

kt∑

s=1

xs ≤ t, t = 1, . . . , n

}
.

Remark 2.1. A 0/1 sequence is called a k-ballot sequence if every initial string has at least k-times
as many 0’s as 1’s. Note that a 1-ballot sequence is an ordinary ballot sequence. The polytope
Pk,n is equal to the convex hull of the (k− 1)-ballot sequences of length k(n+2). This is shown in
work of the first author [3], where these polytopes are studied in the larger context of lattice path
matroid polytopes. Lattice path matroids were introduced in [4] and the Catalan matroid [1] is a
special case. The polytope P2,n is the Catalan matroid polytope. Corollary 2.3 below implies that
the normalized volume of the Catalan matroid polytope is the Eulerian-Catalan number. We do
not need these details here, and refer the reader to [3].

For each i ∈ {0, . . . , n} define the polytope Pk,n,i ⊆ ∆(n+ 1, k(n+ 1)) by the inequalities
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Pk,n,i =

{
(x1, . . . , xk(n+1)) ∈ ∆(n+ 1, k(n+ 1)) :

kt∑

s=1

xki+s ≤ t, t = 1, . . . , n

}

where the indices are considered modulo k(n + 1). For example, with k = 2 and n = 2, we get
three polytopes:

P2,2,0 = {(x1, . . . , x6) ∈ ∆(3, 6) : x1 + x2 ≤ 1, x1 + x2 + x3 + x4 ≤ 2}

P2,2,1 = {(x1, . . . , x6) ∈ ∆(3, 6) : x3 + x4 ≤ 1, x3 + x4 + x5 + x6 ≤ 2}

P2,2,2 = {(x1, . . . , x6) ∈ ∆(3, 6) : x5 + x6 ≤ 1, x5 + x6 + x1 + x2 ≤ 2}.

Note that Pk,n,0 = Pk,n.

Theorem 2.2. Fix k, n ∈ N. The interiors of the polytopes Pk,n,i and Pk,n,j are disjoint if i 6= j,
and ∆(n+ 1, k(n+ 1)) = ∪n

i=0Pk,n,i.

Proof. Since the Pk,n,i are all affinely isomorphic via a transformation that permutes coordinates,
it suffices to show that an x ∈ intPk,n,0 does not belong to any other Pk,n,i. Since x ∈ intPk,n,0 it
satisfies the inequality

x1 + · · ·+ xki < i.

Since we are in the hypersimplex, we always have

x1 + · · ·+ xk(n+1) = n+ 1.

Combining these, we deduce that

xki+1 + · · ·+ xk(n+1) > n+ 1− i

which implies x /∈ Pk,n,i.

To prove that ∆(n+1, k(n+1)) = ∪n+1
i=1 Pk,n,i, we must show that any point x ∈ ∆(n+1, k(n+1))

belongs to one of the Pk,n,i. To do this, we consider the linear transformation

φ : Rk(n+1) → R
n+1

such that yi = −1 +
∑k(i+1)

s=ki+1 xs where the coordinates on R
n+1 are y0, . . . , yn. The image of the

hypersimplex ∆(k(n+ 1), n+ 1) is the polytope

Q(k, n) = {y ∈ [−1, k − 1]n+1 : y0 + · · ·+ yn = 0}

and the image of Pk,n,i is the polytope

Rk,n,i = {y ∈ Q(k, n) : yi + · · ·+ yi+t ≤ 0, t = 0, n− 1}.

Note that a point x ∈ ∆(n+1, k(n+1)) belongs to Pk,n,i if and only if its image in Q(k, n) belongs
to Rk,n,i. Furthermore, the argument in the preceding paragraph implies that the R(n, k, i) have
disjoint interiors. Hence, it suffices to show that Q(k, n) = ∪n

i=0Rk,n,i. Since the inequalities −1 ≤
yi ≤ k − 1 are common to all the polytopes, it suffices to show that the plane

H(n) = {y ∈ R
n+1 : y0 + · · ·+ yn = 0}

can be decomposed is the union of the cones

C(n, i) = {y ∈ H(n) : yi + · · ·+ yi+t ≤ 0, t = 0, n− 1}.

For i = 0, . . . , n, let vi = −ei−1 + ei. The cones C(n, i) are simplicial, and it is straightforward to
see that the generators of C(n, i) are {v0, . . . , vn} \ {vi}. The vectors v0, . . . , vn also span H(n),
and v0 + · · ·+ vn = 0. This implies that the union of the cones spanned by the sub-collections of
n vectors is all of H(n), which is what we needed to show.
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Corollary 2.3. The normalized volume of Pk,n,i is
1

n+1An,kn+k−1.

Proof. Since ∆(n+ 1, k(n+ 1)) = ∪n
i=0Pk,n,i and their relative interiors are disjoint, we have that

vol(∆(n+ 1, k(n+ 1))) =
n∑

i=0

volPk,n,i.

As the cyclic shift of coordinates which sends Pk,n,0 to Pk,n,i is volume preserving, and vol (∆(n+
1, k(n+ 1))) = An,kn+k−1, we deduce the desired formula.

3. Alcoved Polytopes

Fix integers k, n ∈ N. For 0 ≤ i < j ≤ n, let bij , cij be integers, with bij ≤ cij . The alcoved
polytope defined by this data is:

P (k, n,b, c) :=

{
(x1, . . . , xn) ∈ R

n :

n∑

i=1

xi = k, bij ≤ xi+1 + · · ·+ xj ≤ cij , 0 ≤ i < j ≤ n

}
.

Alcoved polytopes were studied in detail by Lam and Postnikov [6]. Alcoved polytopes have natural
triangulations into unimodular simplices which are themselves alcoved polytopes and which are in-
dexed by permutations; these simplices are called alcoves. In the special case, where P (k, n,b, c) ⊆
∆(k, n), Lam and Postnikov give an explicit description of the simplices involved in the alcove
triangulation, and hence a combinatorial formula for the volume of these alcoved polytopes.
Let W (k, n,b, c) ⊂ Sn−1 be the set of permutations w = w1w2 · · ·wn−1 ∈ Sn−1 satisfying the

following conditions:
(i) w has k − 1 descents.
(ii) The sequence wi · · ·wj has at least bij descents. Furthermore, if wi · · ·wj has exactly bij

descents, then wi < wj .
(iii) The sequence wi · · ·wj has at most cij descents. Furthermore, if wi · · ·wj has exactly cij

descents, then we must have that wi > wj .
In the above conditions we assume that w0 = 0.

Theorem 3.1. [6] The normalized volume of P (k, n,b, c) ⊆ ∆(k, n) is equal to |W (k, n,b, c)|.

We apply Theorem 3.1 to give a combinatorial formula for the volume of the polytope Pk,n. As
discussed previously, a lattice path from (0, 0) to (nk, n) using (0, 1) and (1, 0) steps is called a
k-Dyck path if every point on the path satisfies y ≤ 1

k
x. When L(w) is a k-Dyck path, w is called

a k-Dyck permutation. A 0/1 sequence is called a k-ballot sequence if each initial string has at
least k times as many 0’s as 1’s. Note that w is a k-Dyck permutation precisely where ad(w) is a
k-ballot sequence.

Proposition 3.2. The normalized volume of Pk,n is equal to the number of permutations w ∈
Skn+k−1 such that L(w) is a (k − 1)-Dyck path. Equivalently, the volume equals the number of
permutations w ∈ Skn+k−1 such that ad(w) is a (k − 1)-ballot sequence.

Proof. The polytope Pk,n ⊂ ∆(n+1, k(n+1)) is an alcoved polytope since its defining inequalities
are 0 ≤ xi ≤ 1, x1 + · · ·+ xk(n+1) = n+ 1 and

kt∑

s=1

xs ≤ t, t = 1, . . . , n.
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Applying Theorem 3.1, we see that the volume of Pk,n is the number of permutations w =
w1 · · ·wkn+k−1 ∈ Skn+k−1 satisfying the following conditions:
(i) w has n descents.
(ii) w1 · · ·wik has at most i− 1 descents, for 1 ≤ i ≤ n.

These conditions are satisfied if and only if ad(w) is a (k − 1)-ballot sequence.

Combining Corollary 2.3 and Proposition 3.2 we deduce:

Theorem 3.3. The number of permutations w ∈ Skn+k−1 such that L(w) is a (k−1)-Dyck path is
1

n+1An,kn+k−1. In particular, the number of Dyck permutations in S2n+1 is the Eulerian-Catalan
number ECn.

4. Exceedances of Lattice Paths and Eulerian-Catalan Numbers

In this section we prove Theorem 1.1 which gives us a combinatorial interpretation of Eulerian-
Catalan number in terms of certain permutation statistics. This result is related to a classic proof
that the Catalan numbers enumerate Dyck paths [5]. First we provide a combinatorial proof of
Theorem 1.1. Later, we give a geometric proof of Theorem 1.1 for the case j = 1 (and hence also
for j = n− 1). In Sections 2 and 3, we saw a geometric proof for the cases j = 0 (and hence also
for j = n). It is an interesting problem to provide geometric proofs for other cases.

Proof of Theorem 1.1. Consider a lattice path P with (0, 1) and (1, 0) steps from (0, 0) to (n, n).
Define c(P ) = (c0, . . . , cn), where ci is the number of horizontal steps of P at height y = i. The
cyclic permutations Cj = (cj , . . . , cj−1) of c(P ) are all distinct, and for each there is a unique path
Pj from (0, 0) to (n, n) so that c(Pj) = Cj . The number of exceedances of the paths P0, . . . , Pn are
the numbers 0, 1, . . . , n in some order. These results are known as the Chung-Feller Theorem [5].
Consider a permutation W = w1 · · ·w2n+1 with n descents. We have one of the following cases:
(i) The cyclic permutation (w1 · · ·w2n+1) has n cyclic descents.
(ii) The cyclic permutation (w1 · · ·w2n+1) has n+ 1 cyclic descents.

The cyclic descents of a (cyclic) permutation also include the possibility of a descent at the last
position w2n+1, which occurs when w1 < w2n+1.
In the case (w1 · · ·w2n+1) has n cyclic descents, we consider distinct indexes 1 = i0 < · · · <

in ≤ 2n + 1 so that wik−1wik is not a cyclic descent in the cyclic permutation (w1 · · ·w2n+1).
Now, consider the n + 1 permutations obtain by cyclic shifting the permutation W , starting at
wi0 , . . . , win . We denote these permutations by W0, . . . ,Wn. The permutationsW0, . . . ,Wn all have
n descents, whereas all other cyclic shiftings of W have n − 1 descents. As in the Chung-Feller
theorem, we define c(L(W0)) = (c0, . . . , cn) where ci is the number of horizontal steps at height i
for a lattice path L(W0). The cyclic shiftings of c(L(W0)), Cj = (cj , . . . , cj−1) are all distinct, and
for each there is a unique path Pj from (0, 0) to (n, n) so that c(Pj) = Cj . It is easy to see that
Pj = L(Wj). By the Chung-Feller theorem, the lattice path associated to these permutations have
different number of exceedance 0, . . . , n. This shows that the n+ 1 cyclic shiftings of permutation
W which have n descents, have 0, . . . , n number of exceedances in some order.

Now, consider the case where the cyclic permutation (w1 · · ·w2n+1) has n + 1 cyclic descents.

For any permutation W = w1 · · ·w2n+1, we define: Ŵ = (ŵ1 · · · , ŵ2n+1) = (2n+ 2−w1) · · · (2n+

2 − w2n+1). If W has k exceedances, Ŵ has n − k exceedances, and if W has k cyclic descents,

Ŵ has 2n+ 1− k cyclic descents. We consider i0, . . . , in so that wik−1wik is a cyclic descent in W

and therefore Ŵ does not have a cyclic descent at ŵik−1ŵik . We consider the n+ 1 permutations
obtained by cyclic shifting the permutation W , starting with wi0 , . . . , win . We denote them by
W0, . . . ,Wn. As above, these are the only permutations obtained by cyclic shifting W that have n
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descents, all other shiftings having n + 1 descents. As we see in the first case, we know that the
lattice path associated to L(Ŵj) have different number of exceedance for j = 0, . . . , n. Therefore,
Pj = L(Wj) for j = 0, . . . , n have all different numbers of exceedances from 0, . . . , n in some order.
Combining the above two results, we know that among the 2n+1 cyclic shifts of a permutation

w with n descents, exactly n+ 1 of them have n descents, and their associated lattice paths have
different numbers of exceedances 0, . . . , n. Therefore, the number of permutations w ∈ S2n+1 with
n descent and exc(L(w)) = j are the same for j = 0, . . . , n. As the total number of permutations
w ∈ S2n+1 with n descents is An,2n+1, we see that the number of permutations w ∈ S2n+1 with n
descent and exc(L(w)) = j is the Eulerian-Catalan number.

Note that the proof of Theorem 1.1 also gives a direct combinatorial proof for the fact that the
number of Dyck permutations in S2n+1 is An−1,2n +An,2n. Indeed, the Dyck permutations are in
bijective correspondence with the set of cyclic permutation with either n or n+ 1 cyclic descents.
Cycling such a permutation until 2n+ 1 is at the end and deleting 2n+ 1 yields a bijection with
permutations in S2n with either n− 1 or n descents.
To conclude this section, we provide a geometric proof of Theorem 1.1 in the case of j = 1, in

the spirit of the proofs from Sections 2 and 3.

Proof of Theorem 1.1 with j = 1. Consider the polytope P2,n, which is given by inequalities:

P2,n =

{
(x1, . . . , x2(n+1)) ∈ ∆(n+ 1, 2(n+ 1)) :

2t∑

s=1

xs ≤ t, t = 1, . . . , n

}
.

We call the inequality
∑2t

s=1 xs ≤ t the t-th inequality. Let T ⊆ [n] and consider the polytope
defined by flipping the t-th inequalities for t ∈ T :

P2,n(T ) =

{
(x1, . . . , x2(n+1)) ∈ ∆(n+ 1, 2(n+ 1)) :

2t∑

s=1

xs ≥ t, t ∈ T,

2t∑

s=1

xs ≤ t, t ∈ [n] \ T

}
.

Applying Theorem 3.1, we see that the volume of P2,n(T ) is the number of permutations w ∈ S2n+1

such that L(w) has an exceedance in position t − 1 if and only if t ∈ T (that is, there is a point
(t− 1, s) in L(w) with s > t− 1). Thus, to prove Theorem 1.1 it suffices to show that

ECn =
∑

T⊆[n]:|T |=j

vol(P2,n(T )). (4.1)

We prove Eq.(4.1) in the case j = 1.
To do this, we consider the linear transformation

φ : R2(n+1) → R
n+1

such that yi = −1 +
∑2(i+1)

s=2i+1 xs where the coordinates on R
n+1 are y0, . . . , yn. The image of the

hypersimplex ∆(n+ 1, 2(n+ 1)) is the following polytope

Q(2, n) = {y ∈ [−1, 1]n+1 : y0 + · · ·+ yn = 0}

and the image of P2,n(T ) is the polytope

R2,n(T ) = {y ∈ Q(2, n) : y0 + · · ·+ yt−1 ≥ 0, t ∈ T, y0 + · · ·+ yt−1 ≤ 0, t ∈ [n] \ T }.

Note that a point x ∈ ∆(n + 1, 2(n + 1)) belongs to P2,n(T ) if and only if its image in Q(2, n)
belongs to R2,n(T ). Furthermore, all the P2,n(T ) and Q2,n(T ) are disjoint. If we can find a collection
of volume preserving linear transformations τ1, . . . , τn such that τ1(R2,n({1})), . . . , τn(R2,n({n}))
have disjoint interiors and such that

R2,n(∅) = ∪i∈[n]τi(R2,n({i})),
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we will prove the theorem. This follows because it is straightforward to lift the linear transforma-
tions τi to R

2(n+1) in a way that will yield a similar result for the P2,n. All our linear transformations
will be coordinate permutations. Thus, we can ignore the common inequalities, −1 ≤ yi ≤ 1, and
consider the same questions in the plane

H(n) = {y ∈ R
n+1 : y0 + · · ·+ yn = 0}

for the cones

Cn(T ) = {y ∈ H(n) : y0 + · · · yt−1 ≥ 0, t ∈ T, y0 + · · · yt−1 ≤ 0, t ∈ [n] \ T }.

Each of the cones Cn(T ) is simplicial, generated by the set of rays

et−1 − et : t ∈ T,−et−1 + et : t ∈ [n] \ T,

where ei denotes a standard unit vector.
For t ∈ [n], consider the linear transformation τt which sends yi 7→ yn−t+1+i, where indices are

considered modulo n + 1. This volume preserving linear transformation sends the generators of
Cn({t}) to the vectors

−e0 + en and − et−1 + et : t ∈ [n] \ T.

All of these rays belong to Cn(∅), hence τt(Cn({t})) ⊆ Cn(∅). Furthermore, each of the cones
τt(Cn({t})) is generated by a facet of Cn(∅) together with the same interior ray −e0 + en. Hence,
the set of cones {τt(Cn({t})), t = 1, . . . , n} form the facets of a polyhedral subdivision of Cn(∅)
which completes the proof.

5. Further Directions

Our results on Eulerian-Catalan numbers suggest a number of interesting problems.
(i) Both the Catalan numbers and the Eulerian numbers have numerous combinatorial inter-

pretations. Are there other interpretations of the Eulerian-Catalan numbers as enumerating
objects that are counted by the Eulerian numbers where a certain statistic is a Catalan
object?

(ii) Both the Catalan numbers and Eulerian numbers have q (and q, t) analogues. Do these extend
to the Eulerian-Catalan numbers?

(iii) Catalan numbers and Eulerian numbers have natural generalizations beyond the symmetric
group (i.e. to other types). Can these be extended to Eulerian-Catalan numbers?

(iv) Generalizing the geometric proof of Theorem 1.1 to arbitrary j suggests the existence of
interesting polyhedral decompositions of the cone of positive roots of a Weyl group.
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