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Abstract. We refine Catalan numbers and Fuß–Catalan numbers by introducing
colour statistics for triangulations of polygons and d-dimensional generalisations there-
of which we call Fuß–Catalan complexes. Our refinements consist in showing that the
number of triangulations, respectively Fuß–Catalan complexes, with a given colour
distribution of its vertices is given by closed product formulae. The crucial ingredient
in the proof is the Lagrange–Good inversion formula.

1. Introduction

1.1. Catalan and Fuß–Catalan numbers. The sequence (Cn)n≥0 of Catalan num-
bers

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, . . . ,

see [11, sequence A108], defined by

Cn :=
1

n+ 1

(

2n

n

)

=
1

n

(

2n

n− 1

)

, (1.1)

is ubiquitous in enumerative combinatorics. Exercise 6.19 in [13] contains a list of
66 sequences of sets enumerated by Catalan numbers, with many more in the addendum
[14]. In particular, there are 1

n+1

(

2n
n

)

triangulations of a convex polygon1 with n + 2
vertices (see [13, Ex. 6.19.a]).
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1As is common, when we speak of a “convex polygon,” we always tacitly assume that all its angles
are less than 180 degrees.
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Even many years before Catalan’s paper [4], Fuß [6] enumerated the dissections of a
convex ((d− 1)n+ 2)-gon into (d+ 1)-gons (obviously, any such dissection will consist
of n (d+ 1)-gons) and found that there are

1

n

(

dn

n− 1

)

(1.2)

of those. These numbers are now commonly known as Fuß–Catalan numbers (cf. [1,
pp. 59–60]). A perhaps (geometrically) more natural generalisation of triangulations of a
convex polygon (albeit more difficult to visualise) is to consider d-dimensional simplicial
complexes on n+d vertices homeomorphic to a d-ball that consist of n maximal faces all
of dimension d, with the additional property that all faces of dimension up to d− 2 lie
in the boundary of the complex. (See Section 2 for the precise definition. We call these
complexes Fuß–Catalan complexes.) Again, the number of these complexes is given by
the Fuß–Catalan number (1.2). The reader is referred to [5, paragraph after (8.9)] for
further combinatorial occurrences of the Fuß–Catalan numbers.

1.2. Coloured refinements: short outline of this paper. The main theorems of
our paper present “coloured” refinements of the above classical results. More precisely,
to each triangulation (respectively, more generally, Fuß–Catalan complex) we shall as-
sociate a colouring of its vertices. In a certain sense, this colouring measures whether
or not a large number of triangles (respectively maximal faces) meets in single vertices.
We show that the number of triangulations of a convex (n + 2)-gon (respectively of
d-dimensional Fuß–Catalan complexes on n + d vertices) with a fixed distribution of
colours of its vertices is given by closed formulae (see Theorems 1.1, 1.2, 2.1, and 2.2),
thus refining the Catalan numbers (1.1) (respectively the Fuß–Catalan numbers (1.2)).

In order to give a clearer idea of what we have in mind, we shall use the remain-
der of this introduction to define precisely the colouring scheme for the case of tri-
angulations, and we shall present the corresponding refined enumeration results (see
Theorems 1.1 and 1.2). Subsequently, in Section 2 we generalise this setting by in-
troducing d-dimensional Fuß–Catalan complexes for arbitrary positive integers d. The
corresponding enumeration results generalising Theorems 1.1 and 1.2 are presented in
Theorems 2.1 and 2.2. Section 3 is then devoted to the proof of Theorem 2.1, thus
also establishing Theorem 1.1. Crucial in this proof is the Lagrange–Good inversion
formula [7]. Finally, Section 4 is devoted to the proof of Theorem 2.2, and thus also of
Theorem 1.2, which it generalises.

1.3. 3-Coloured triangulations. In the sequel, Pn stands for a convex polygon with
n vertices. Since we are only interested in the combinatorics of triangulations of Pn+2,
we can consider a unique polygon Pn+2 for each integer n ≥ 0. A triangulation of Pn+2

has exactly n triangles. We shall always use the Greek letter τ to denote triangulations.
We call a triangulation τ of Pn+2 3-coloured if the n + 2 vertices of Pn+2 are coloured
with 3 colours in such a way that the three vertices of every triangle in τ have different
colours. (Using a graph-theoretic term, we call a colouring with the latter property a
proper colouring.) An easy induction on n shows the existence of such a colouring, and
that it is unique up to permutations of all three colours.

A rooted polygon is, by definition, a (convex) polygon containing a marked oriented
edge −→e , the “root edge” (borrowing terminology from the theory of combinatorial maps;
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cf. [16]) in its boundary. In the illustrations in Figure 1, the marked oriented edge is
always indicated by an arrow. We write P→

n+2 for a rooted polygon with n+ 2 vertices.
In the sequel, we omit a separate discussion of the degenerate case n = 0, where the
rooted “polygon” P→

2 essentially only consists of the marked oriented edge −→e . We
agree once and for all that there is one triangulation in this case.

For n ≥ 1, a triangulation τ of P→
n+2 has a unique triangle ∆∗ that contains the

marked oriented edge −→e . We consider this “root triangle” as a triangle with totally
ordered vertices v0 < v1 < v2, where

−→e starts at v1 and ends at v2. The n+2 vertices of
a triangulation τ of P→

n+2 can then be uniquely coloured with three colours {a,b,c} such
that −→e starts at a vertex of colour b, ends at a vertex of colour c, and vertices of every
triangle ∆ ∈ τ have different colours. Figure 1 shows all such 3-coloured triangulations
of P→

n+2 for n = 0, 1, 2, 3.

b

c
b c

b c

a c

b

a a

b c

b

b b b ccc b c b c

b

caaa

cc

abab

a

c a

Figure 1. All 3-coloured triangulations for n = 0, 1, 2, 3.

Our first result provides a closed formula for the number of triangulations with a
fixed colour distribution of its vertices.

Theorem 1.1. Let n be a non-negative integer and α, β, γ non-negative integers with

α + β + γ = n + 2. Then the number of triangulations of the rooted polygon P→
n+2

with α vertices of colour a, β vertices of colour b, and γ vertices of colour c in the

uniquely determined colouring induced by a triangulation, in which the starting vertex

of the marked oriented edge −→e has colour b, its ending vertex has colour c, and the

three vertices in each triangle have different colours, is equal to

α(α+ β + γ − 2)

(β + γ − 1)(α + γ − 1)(α + β − 1)

(

β + γ − 1

α

)(

α + γ − 1

β − 1

)(

α + β − 1

γ − 1

)

. (1.3)

In the case where α = 0, this has to be interpreted as the limit α → 0, that is, it is 1 if

(α, β, γ) = (0, 1, 1) and 0 otherwise.

As we already announced, we shall generalise this theorem in Theorem 2.1 from
triangulations to simplicial complexes. Its proof (given in Section 3) shows that the
corresponding generating function, that is, the series

C = C(a, b, c) =
∑

α,β,γ≥0

Cα,β,γa
αbβcγ,
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where Cα,β,γ is the number of triangulations in Theorem 1.1, is algebraic. To be precise,
from the equations given in Section 3 (specialised to d = 2), one can extract that

(bc)3(1 + a) + (bc)2((b+ c)a− 1)C + (bc)2(a− 2)C2 + 2bcC3 + bcC4 − C5 = 0 . (1.4)

Next we identify two of the three colours. In other words, we now consider improper

colourings of triangulations of P→
n+2 by two colours, say black and white, such that

every triangle has exactly one black vertex and two white vertices. There are then two
possibilities to colour the marked oriented edge −→e : either both of its incident vertices
are coloured white, or one is coloured white and the other black (for the purpose of
enumeration, it does not matter which of the two is white respectively black in the
latter case). Remarkably, in both cases there exist again closed enumeration formulae
for the number of triangulations with a given colour distribution.

Theorem 1.2. Let n, b, w be non-negative integers with b+ w = n+ 2.

(i) The number of triangulations of the rooted polygon P→
n+2 with b black vertices and

w white vertices in the uniquely determined colouring induced by a triangulation, in

which both vertices of the marked oriented edge −→e are coloured white, and, in each

triangle, exactly two of the three vertices are coloured white, is equal to

2b

(w − 1)(2b+ w − 2)

(

2b+ w − 2

w − 2

)(

w − 1

b

)

.

(ii) The number of triangulations of the rooted polygon P→
n+2 with b black vertices and

w white vertices in the uniquely determined colouring induced by a triangulation, in

which the starting vertex of the marked oriented edge −→e is coloured white, its ending

vertex is coloured black, and, in each triangle, exactly two of the three vertices are

coloured white, is equal to

1

2b+ w − 2

(

2b+ w − 2

w − 1

)(

w − 1

b− 1

)

.

Obviously, the generating functions corresponding to the numbers in the above theo-
rem must be algebraic. To be precise, it follows from (1.4) that the series Y = C(x, y, y)
(the generating function for the numbers in item (i) of Theorem 1.2) and the series
Z = C(x, x, y) (the generating function for the numbers in item (ii) of Theorem 1.2)
satisfy the algebraic equations

(1 + x)y4 − y2(1 + 2y)Y + y(2 + y)Y 2 − Y 3 = 0 (1.5)

and
x2y2 + xy(x− 1)Z + Z3 = 0 , (1.6)

respectively. As we announced, Theorem 1.2 will be generalised from triangulations to
simplicial complexes in Theorem 2.2.

Clearly, if we identify all three colours, then we are back to counting all triangulations
of the polygon Pn+2, of which there are Cn = 1

n+1

(

2n
n

)

.

We end this introduction by mentioning that checkerboard colourings of triangula-
tions (obtained by colouring adjacent triangles with different colours chosen in a set
of two colours) encode winding properties of the corresponding 3-vertex colouring. In-
deed, a 3-coloured triangulation τ of Pn+2 induces a unique piecewise affine map ϕ from
Pn+2 onto a vertex-coloured triangle ∆ such that ϕ is colour-preserving on vertices and
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induces affine bijections between triangles of τ and ∆. The map ϕ is orientation-
preserving, respectively orientation reverting, on black, respectively white, triangles of
τ endowed with a suitable black-white checkerboard colouring. Restricting ϕ to the
oriented boundary of Pn+2 we get a closed oriented path contained in the boundary of
∆. The winding number of this path with respect to an interior point of ∆ is given
by the difference of black and white triangles in the checkerboard colouring mentioned
above. The resulting statistics for Catalan numbers (and the obvious generalization to
Fuß–Catalan numbers obtained by replacing winding numbers with the corresponding
homology classes) have been studied by Callan in [2].

2. Refinements of Fuß–Catalan numbers

2.1. Fuß–Catalan complexes. Given an integer d ≥ 2, we define a d-dimensional

Fuß–Catalan complex of index n ≥ 1 to be a simplicial complex Σ such that:

(i) Σ is a d-dimensional simplicial complex homeomorphic to a closed d-dimensional
ball having n simplices of maximal dimension d.

(ii) All simplices of dimension up to d − 2 of Σ are contained in the boundary
∂Σ (homeomorphic to a (d − 1)-dimensional sphere) of Σ. (Equivalently, the
(d− 2)-skeleton of Σ is contained in its boundary ∂Σ).

Such a complex Σ is rooted if its boundary ∂Σ contains a marked (d − 1)-simplex,
∆∗ say, with totally ordered vertices. We denote a rooted d-dimensional Fuß–Catalan
complex by the pair (Σ,∆∗). By convention, a rooted d-dimensional Fuß–Catalan
complex of index 0 is given by (∆∗,∆∗), where ∆∗ is a simplex of dimension d− 1 with
totally ordered vertices.

Rooted d-dimensional Fuß–Catalan complexes are generalisations of rooted triangula-
tions of polygons. In particular, a rooted 2-dimensional Fuß–Catalan complex of index
n is a triangulation of the rooted polygon P→

n+2 with n+ 2 vertices.

2.2. (d+1)-colourings of d-dimensional Fuß–Catalan complexes. Let C be a set
of colours. A proper colouring of a simplicial complex Σ with vertex set V by colours
from C is a map γ : V −→ C such that γ(v) 6= γ(w) for any pair of vertices v, w defining
a 1-simplex of Σ. Equivalently, a proper colouring of a simplicial complex Σ is a proper
colouring of the graph defined by the 1-skeleton of Σ.

Every rooted d-dimensional Fuß–Catalan complex (Σ,∆∗) has a unique colouring by
(d + 1) totally ordered colours c0 < c1 < · · · < cd such that the i-th vertex of ∆∗ (in
the given total order of the vertices of ∆∗) has colour ci, i = 1, 2, . . . , d. The following
theorem presents a closed formula for the number of Fuß–Catalan complexes of index
n with a given colour distribution.

Theorem 2.1. Let d, n, γ0, γ1, . . . , γd be non-negative integers with d ≥ 2 and γ0+γ1+
· · ·+ γd = n+ d. Then the number of d-dimensional Fuß–Catalan complexes (Σ,∆∗) of
index n with γi vertices of colour ci, i = 0, 1, . . . , d, in the uniquely determined proper

colouring by the colours c0, c1, . . . , cd in which the i-th vertex of the root simplex ∆∗ has

colour ci, i = 1, 2, . . . , d, is equal to

sd−1 γ0

s− γ0 + 1

(

s− γ0 + 1

γ0

) d
∏

j=1

1

s− γj + 1

(

s− γj + 1

γj − 1

)

, (2.1)
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where s = −d +
∑d

j=0 γj. In the case where γ0 = 0, this has to be interpreted as the

limit γ0 → 0, that is, it is 1 if (γ0, γ1, . . . , γd) = (0, 1, 1, . . . , 1) and 0 otherwise.

Formula (2.1) generalises Formula (1.3), the latter corresponding to the case d = 2
of the former.

2.3. Specialisations obtained by identifying colours. Generalising the scenario
in Theorem 1.2, we now identify some of the colours. Namely, given a non-negative
integer k and k+1 positive integers β0, β1, β2, . . . , βk with β0+β1+β2+ · · ·+βk = d+1,
we set

c0 = · · · = cβ0−1 = c′0

cβ0
= · · · = cβ0+β1−1 = c′1

...

cβ0+β1+···+βi−1
= · · · = cβ0+β1+···+βi−1 = c′i

...

cβ0+β1+···+βk−1
= · · · = cd = c′k.

Given a rooted Fuß–Catalan complex (Σ,∆∗) with its uniquely determined colouring as
in Theorem 2.1, after this identification we obtain a colouring of the simplices of (Σ,∆∗)
in which each d-dimensional simplex has βi vertices of colour c′i, i = 0, 1, . . . , k. Our
next theorem presents a closed formula for the number of d-dimensional Fuß–Catalan
complexes of index n with a given colour distribution after this identification of colours.

Theorem 2.2. Let d, k, n, β0, β1, . . . , βk, γ0, γ1, . . . , γk be non-negative integers with

d ≥ 2, β0 + β1 + β2 + · · · + βk = d + 1, and γ0 + γ1 + · · · + γk = n + d. Then the

number of d-dimensional Fuß–Catalan complexes (Σ,∆∗) of index n with γi vertices of

colour c′i, i = 0, 1, . . . , k, in the uniquely determined colouring in which the first β0 − 1
vertices of the root simplex ∆∗ have colour c′0, the next β1 vertices have colour c′1, the

next β2 vertices have colour c′2, . . . , the last βk vertices have colour c′k, and in which

each d-dimensional simplex has βi vertices of colour c′i, i = 0, 1, . . . , k, is equal to

sk−1 γ0 − β0 + 1

β0s+ β0 − γ0

(

β0s+ β0 − γ0

γ0 − β0 + 1

) k
∏

j=1

βj

βjs+ βj − γj

(

βjs+ βj − γj

γj − βj

)

,

where s = −d +
∑k

j=0 γj.

This theorem contains all the afore-mentioned results as special cases. Clearly, The-
orem 2.1 is the special case of Theorem 2.2 where k = d and β0 = β1 = · · · = βd = 1
(and Theorem 1.1 is the further special case in which d = 2). Item (i) of Theorem 1.2
results for d = 2, k = 1, β0 = 1, β1 = 2, while item (ii) results for d = 2, k = 1,
β0 = 2, β1 = 1. Moreover, upon setting k = 0 and β0 = d+1 in Theorem 2.2, we obtain
Formula (1.2) (and (1.1) in the further special case where d = 2).
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3. Generating functions and the Lagrange–Good inversion formula

In this section we provide the proof of Theorem 2.1. It makes use of generating func-
tion calculus, which serves to reach a situation in which the Lagrange–Good inversion
formula [7] (see also [9, Sec. 5] and the references cited therein) can be applied to com-
pute the numbers that we are interested in. The proof requires as well a determinant
evaluation, which we state and establish separately at the end of this section.

Proof of Theorem 2.1. Let

Cd(x0, x1, . . . , xd) :=
∑

(Σ,∆∗)

x
γ0(Σ,∆∗)
0 x

γ1(Σ,∆∗)
1 · · ·x

γd(Σ,∆∗)
d ,

where the sum is over all d-dimensional Fuß–Catalan complexes (Σ,∆∗) (of any index,
including the (d − 1)-dimensional complex (∆∗,∆∗) of index 0), and where γi(Σ,∆∗)
denotes the number of vertices of colour ci in the unique colouring of (Σ,∆∗) described in
the statement of Theorem 2.1. It is our task to compute the coefficient of xγ0

0 x
γ1
1 · · ·xγd

d

in the series Cd(x0, x1, . . . , xd).
Starting from our generating function Cd(x0, x1, . . . , xd), we define d + 1 series by

cyclically permuting the variables,

C{0}(x0, x1, . . . , xd) = Cd(x0, x1, . . . , xd),

C{1}(x0, x1, . . . , xd) = Cd(x1, x2, . . . , xd, x0),

...

C{d}(x0, x1, . . . , xd) = Cd(xd, x0, x1, . . . , xd−1).

By the usual decomposition of rooted d-dimensional Fuß–Catalan complexes (Σ,∆∗)
determined by the unique d-dimensional simplex containing ∆∗, we shall set up a system
of equations relating these d+ 1 series.

To be precise, let (Σ,∆∗) be a rooted d-dimensional Fuß–Catalan complex of index
n ≥ 1, and let ∆d

∗ be its unique d-dimensional simplex containing ∆∗. It intersects
Σ\∆d

∗ along d rooted sub-Fuß–Catalan complexes, with their marked (d−1)-dimensional
simplices defined by their intersection with the boundary of ∆d

∗. These sub-complexes
define a decomposition of (Σ,∆∗). It shows that

Cd(x0, x1, . . . , xd) = x1 · · ·xd +
1

x0(x0x1 · · ·xd)d−2

d
∏

j=1

C{j}(x0, x1, . . . , xd),

and, more generally,

C{i}(x0, x1, . . . , xd) =
x0x1 · · ·xd

xi

+
1

xi(x0x1 · · ·xd)d−2

d
∏

j=0

j 6=i

C{j}(x0, x1, . . . , xd),

i = 0, 1, . . . , d. (3.1)
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In order to simplify this system of equations, we define d+ 1 series g0, g1, . . . , gd by the
equations

C{i}(x0, x1, . . . , xd) =
1

xi

(1 + gi(x0, x1, . . . , xd))

d
∏

j=0

xj , i = 0, 1, . . . , d. (3.2)

The reader should keep in mind that we want to compute the coefficient of xγ0
0 x

γ1
1 · · ·xγd

d

in the series Cd(x0, x1, . . . , xd), that is, in terms of the new series, the coefficient of
x
γ0
0 x

γ1−1
1 x

γ2−1
2 · · ·xγd−1

d in the series g0(x0, x1, . . . , xd).
From now on, we suppress the arguments of series for the sake of better readability;

that is, we write gi instead of gi(x0, x1, . . . , xd), etc., for short. With this notation, the
system (3.1) becomes

gi =
xi

(1 + gi)

d
∏

j=0

(1 + gj), i = 0, 1, . . . , d,

or, equivalently,

xi =
gi(1 + gi)
∏d

j=0(1 + gj)
, i = 0, 1, . . . , d.

By a straightforward application of the Lagrange–Good inversion formula [7], we have

〈xγ〉 g0 =
〈

x−1
〉

x0 det(Jd+1)

d
∏

j=0

(1 + xj)
d+|γ|−γj

x
γj+1
j

,

where 〈xγ〉 g0 denotes the coefficient of xγ0
0 x

γ1
1 · · ·xγd

d in the series g0, 〈x
−1〉 f denotes

the coefficient of x−1
0 x−1

1 · · ·x−1
d in the series f , |γ| stands for

∑d

j=0 γj, and Jd+1 is the

Jacobian of the map (x0, x1, . . . , xd) 7−→ (y0, y1, . . . , yd) defined by

yi =
xi(1 + xi)
∏d

j=0(1 + xj)
, i = 0, 1, . . . , d.

A simple computation yields that the entries of Jd+1 are given by

(Jd+1)i,j = −
xi(1 + xi)

(1 + xj)
∏d

k=0(1 + xk)
, if i 6= j,

(Jd+1)i,i =
1 + xi

∏d

k=0(1 + xk)
.

By Proposition 3.1 at the end of this section, it follows that

〈xγ〉 g0 =
〈

x−1
〉

x0

( d
∏

j=0

(1 + xj)
|γ|−γj−1(1 + 2xj)

x
γj+1
j

)(

1−
d
∑

k=0

xk

1 + 2xk

)

= 〈xγ〉x0

( d
∏

j=0

(1 + xj)
|γ|−γj−1(1 + 2xj)

)(

1−

d
∑

k=0

xk

1 + 2xk

)

.



CHROMATIC STATISTICS FOR CATALAN AND FUSS–CATALAN NUMBERS 9

Consequently, we get

〈xγ〉 g0

=

((

|γ| − γ0 − 1

γ0 − 1

)

+ 2

(

|γ| − γ0 − 1

γ0 − 2

)) d
∏

j=1

((

|γ| − γj − 1

γj

)

+ 2

(

|γ| − γj − 1

γj − 1

))

−

(

|γ| − γ0 − 1

γ0 − 2

) d
∏

j=1

((

|γ| − γj − 1

γj

)

+ 2

(

|γ| − γj − 1

γj − 1

))

−

((

|γ| − γ0 − 1

γ0 − 1

)

+ 2

(

|γ| − γ0 − 1

γ0 − 2

))

×

d
∑

k=1

(

|γ| − γk − 1

γk − 1

) d
∏

j=1

j 6=k

((

|γ| − γj − 1

γj

)

+ 2

(

|γ| − γj − 1

γj − 1

))

.

Setting

P =
d
∏

j=1

((

|γ| − γj − 1

γj

)

+ 2

(

|γ| − γj − 1

γj − 1

))

= |γ|d
d
∏

j=1

(|γ| − γj − 1)!

γj ! (|γ| − 2γj)!
,

we can rewrite this as

〈xγ〉 g0 =

((

|γ| − γ0 − 1

γ0 − 1

)

+

(

|γ| − γ0 − 1

γ0 − 2

))

P

−

((

|γ| − γ0 − 1

γ0 − 1

)

+ 2

(

|γ| − γ0 − 1

γ0 − 2

))

P

d
∑

k=1

(

|γ|−γk−1
γk−1

)

(

|γ|−γk−1
γk

)

+ 2
(

|γ|−γk−1
γk−1

)

=

(

|γ| − γ0

γ0 − 1

)

P −
|γ| − 1

|γ| − γ0

(

|γ| − γ0

γ0 − 1

)

P

d
∑

k=1

γk

|γ|

=
1

|γ|

(

|γ| − γ0

γ0 − 1

)

P .

This shows that

〈xγ〉 g0 =
|γ|d−1(|γ| − γ0)!

(γ0 − 1)! (|γ|+ 1− 2γ0)!

d
∏

j=1

(|γ| − γj − 1)!

γj! (|γ| − 2γj)!
. (3.3)

Now we should remember that we actually wanted to compute the coefficient of
x
γ0
0 x

γ1−1
1 x

γ2−1
2 · · ·xγd−1

d in the series g0(x0, x1, . . . , xd). So, we have to replace γi by

γi− 1 for i = 1, 2, . . . , d and, thus, |γ| by s = −d+
∑d

j=0 γj in (3.3). If we do this, then

we arrive at (2.1) upon little rewriting. �
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Proposition 3.1. Let d be a non-negative integer and Jd+1 be the (d + 1) × (d + 1)
matrix

({

1+xi∏d
k=0

(1+xk)
i = j

− xi(1+xi)

(1+xj)
∏d

k=0
(1+xk)

i 6= j

)

0≤i,j≤d

.

Then we have

det(Jd+1) =

(

1−
d
∑

k=0

xk

1 + 2xk

) d
∏

j=0

1 + 2xj

(1 + xj)d+1
. (3.4)

Proof. By factoring terms that only depend on the row index or only on the column
index, we see that

det(Jd+1) =
d
∏

j=0

1

(1 + xj)d+1
det

({

1 + xi i = j

−xi i 6= j

)

0≤i,j≤d

. (3.5)

The above determinant equals the sum over all principal minors of the matrix
({

xi i = j

−xi i 6= j

)

0≤i,j≤d

,

where, as usual, a principal minor is by definition the determinant of a submatrix with
rows and columns indexed by a common subset of {0, 1, . . . , d}. Again factoring terms
that only depend on the row index, we may write the principal minor corresponding to
the submatrix indexed by i1, i2, . . . , ik in the form

xi1xi2 · · ·xik det

({

1 i = j

−1 i 6= j

)

1≤i,j≤k

. (3.6)

The determinant in this expression occurs frequently. In fact, we have

det(λIk −Ak) = λk−1(λ− k),

where Ik is the k×k identity matrix and Ak the k×k all-1’s-matrix. (This is easily seen
by observing that the matrix Ak has an eigenvector (1, 1, . . . , 1) with eigenvalue k and
that the space orthogonal to (1, 1, . . . , 1) is the kernel of Ak.) By using this observation
with λ = 2, it follows that the expression (3.6) simplifies to

xi1xi2 · · ·xik2
k−1(2− k).

If this is substituted in (3.5), we obtain

det(Jd+1) =

d
∏

j=0

1

(1 + xj)d+1

d+1
∑

k=0

2k−1(2− k)ek(x0, x1, . . . , xd) , (3.7)

where ek(x0, x1, . . . , xd) =
∑

0≤i1<···<ik≤d xi1xi2 · · ·xik denotes the k-th elementary sym-
metric function. As is well-known, these polynomials satisfy the generating function
identity

d+1
∑

k=0

ek(x0, x1, . . . , xd) t
k =

d
∏

j=0

(1 + xjt) . (3.8)
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By differentiating this identity with respect to t, we obtain the further equation

d+1
∑

k=1

k ek(x0, x1, . . . , xd) t
k−1 =

d
∑

k=0

xk

1 + xkt

d
∏

j=0

(1 + xjt) .

Using both with t = 2 in (3.7), we arrive exactly at the right-hand side of (3.4). �

4. Proof of Theorem 2.2

We perform a reverse induction on k. For the start of the induction, we remember
that Theorem 2.2 is nothing but Theorem 2.1 (which we established in the previous
section) if k = d and β0 = β1 = β2 = · · · = βd = 1.

For the induction step, we have to distinguish two cases. Suppose first that β0 = 1
and that Theorem 2.2 holds for all (suitable) sequences β0 = 1, β1, β2, . . . , βk+1. Then
Theorem 2.2 holds for β0 = 1, β1 + β2, β3, . . . , βk+1 if and only if

s

γ−β2
∑

k=β1

β1

β1s+ β1 − k

(

β1s+ β1 − k

k − β1

)

β2

β2s+ β2 − (γ − k)

(

β2s + β2 − (γ − k)

γ − k − β2

)

=
(β1 + β2)

(β1 + β2)(s+ 1)− γ

(

(β1 + β2)(s+ 1)− γ

γ − β1 − β2

)

for all γ ≥ β1 + β2. (Without loss if generality, it suffices to consider the addition of
β1 and β2, since all other combinations lead to analogous and equivalent statements.)
This is a special case of an identity commonly attributed to Rothe [12] (to be precise,
it is the case α → β1s, β → −1, γ → β2s + β1 + β2, n → γ − β1 − β2 of [8, Eq. (4)];
see [15] for historical comments and more on this kind of identities, although, for some
reason, it misses [3]), which establishes the induction step in this case.

Suppose now that Theorem 2.2 holds for all (suitable) sequences β0, β1, β2, . . . , βk+1.
Then Theorem 2.2 holds for β0 + β1, β2, β3, . . . , βk+1 if and only if

γ−β1
∑

k=β0

β1s

β0s+ β0 − k

(

β0s+ β0 − k

k − β0

)(

β1s+ β1 − 1− (γ − k)

γ − k − β1

)

=

(

(β0 + β1)(s+ 1)− 1− γ

γ − β0 − β1

)

for all γ ≥ β0+β1. (Again, without loss if generality, it suffices to consider the addition
of β0 and β1.) This is a special case of another identity commonly attributed to Rothe
[12] (to be precise, it is the case α → β0s, β → −1, γ → β1s+β0+β1−1, n → γ−β0−β1

of [8, Eq. (11)]), establishing the induction step in this case also. �
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