DEGENERATE FLAG VARIETIES AND THE MEDIAN GENOCCHI NUMBERS

EVGENY FEIGIN

ABSTRACT. We study the \mathbb{G}_a^M degenerations \mathcal{F}_{λ}^a of the type A flag varieties \mathcal{F}_{λ} . We describe these degenerations explicitly as subvarieties in the products of Grassmanians. We construct cell decompositions of \mathcal{F}_{λ}^a and show that for complete flags the number of cells is equal to the normalized median Genocchi numbers h_n . This leads to a new combinatorial definition of the numbers h_n . We also compute the Poincaré polynomials of the complete degenerate flag varieties via a natural statistics on the set of Dellac's configurations, similar to the length statistics on the set of permutations. We thus obtain a natural q-version of the normalized median Genocchi numbers.

INTRODUCTION

Let $\mathfrak{g} = \mathfrak{sl}_n$, $G = SL_n$. Fix the Cartan decomposition $\mathfrak{g} = \mathfrak{b} \oplus \mathfrak{n}^-$, where \mathfrak{b} is a Borel subalgebra, $\mathfrak{b} = \mathfrak{n} \oplus \mathfrak{h}$. In [Fe3] we considered the degenerate algebra $\mathfrak{g}^a = \mathfrak{b} \oplus (\mathfrak{n}^-)^a$, where $(\mathfrak{n}^-)^a$ is an abelian Lie algebra isomorphic to \mathfrak{n}^- as a vector space. The corresponding Lie group is a semi-direct product $G^a = B \ltimes \mathbb{G}_a^M$, where \mathbb{G}_a is the additive group of the field and $M = \dim \mathfrak{n}$. For a dominant integral weight λ let V_{λ} be the highest weight λ irreducible \mathfrak{g} -module with a highest weight vector v_{λ} . The increasing PBW filtration F_{\bullet} on V_{λ} is defined as follows:

$$F_0 = \mathbb{C}v_\lambda, \ F_{s+1} = \operatorname{span}\{xv: \ x \in \mathfrak{g}, v \in F_s\}, s \ge 0$$

(see [Fe1], [Fe2], [FFoL1], [FFoL2], [K2]). The associated graded space $V_{\lambda}^{a} = F_{0} \oplus F_{1}/F_{0} \oplus F_{2}/F_{1} \oplus \ldots$ can be naturally endowed with the structure of a \mathfrak{g}^{a} - and G^{a} -module. A degenerate flag variety $\mathcal{F}_{\lambda}^{a}$ is a subvariety in $\mathbb{P}(V_{\lambda}^{a})$ defined by $\mathcal{F}_{\lambda}^{a} = \overline{\mathbb{G}_{a}^{M}} \cdot \mathbb{C}v_{\lambda}$. These are the \mathbb{G}_{a}^{M} -degenerations of the classical (generalized) flag varieties \mathcal{F}_{λ} (see [A], [AS], [Fe3], [HT]). For example, $\mathcal{F}_{\omega_{d}}^{a} \simeq Gr(d, n)$ for all fundamental weights. Recall also that in the classical case (for $\mathfrak{g} = \mathfrak{sl}_{n}$) the varieties $\mathcal{F}_{\lambda} = G \cdot \mathbb{C}v_{\lambda} \hookrightarrow \mathbb{P}(V_{\lambda})$ are the usual flag varieties (maybe partial). In particular, if λ is regular, i.e. $(\lambda, \omega_{d}) > 0$ for all d, then \mathcal{F}_{λ} is isomorphic to the variety \mathcal{F}_{n} of complete flags in n-dimensional space V. Fix a basis v_{1}, \ldots, v_{n} of V.

For all weights λ , μ there exists an embedding of G^a -modules $V^a_{\lambda+\mu} \hookrightarrow V^a_{\lambda} \otimes V^a_{\mu}$ sending $v_{\lambda+\mu}$ to $v_{\lambda} \otimes v_{\mu}$ (see [FFoL1], [FFoL2]). This induces the embedding of varieties $\mathcal{F}^a_{\lambda+\mu} \hookrightarrow \mathcal{F}^a_{\lambda} \times \mathcal{F}^a_{\mu}$. Thus for any λ we obtain an embedding of \mathcal{F}^a_{λ} into the product of Grassmanians. Our first result is

an explicit description of this embedding. We state the theorem here for complete flag varieties \mathcal{F}_n^a . For this we need one more piece of notations. Let $pr_d: V \to V$ be the projection along the space $\mathbb{C}v_d$ to the linear span of the vectors $v_i, i \neq d$.

Theorem 0.1. The image of the embedding of the variety \mathcal{F}_n^a in the product $\prod_{d=1}^{n-1} Gr(d,n)$ is equal to the set of chains of subspaces $(V_1,\ldots,V_{n-1}), V_d \in Gr(d,n)$ such that

$$pr_{d+1}(V_d) \hookrightarrow V_{d+1}, \quad 1 \le d \le n-2.$$

Our next goal is to compute the Poincaré polynomial of \mathcal{F}_n^a . Recall that in the classical case the flag variety \mathcal{F}_n can be written as a disjoint union of n!cells, each cell being associated with a torus fixed point. The fixed points are labeled by permutations from S_n . The length statistics $\sigma \to l(\sigma)$ gives the complex dimension of the cells. Therefore, the Poincaré polynomial $P_{\mathcal{F}_n}(t)$ of \mathcal{F}_n is equal to $P_{\mathcal{F}_n}(t) = \sum_{\sigma \in S_n} t^{2l(\sigma)}$. As an immediate corollary of Theorem 0.1 we obtain that the fixed points

As an immediate corollary of Theorem 0.1 we obtain that the fixed points of the torus $T \subset G^a$ action on \mathcal{F}_n^a are labeled by the sequences $I^1, \ldots, I^{n-1}, I^d \subset \{1, \ldots, n\}, \#I^d = d$, satisfying

(0.1)
$$I^d \setminus \{d+1\} \hookrightarrow I^{d+1}, \quad d = 1, \dots, n-2.$$

(Note that this set of sequences has a subset with $I^d \hookrightarrow I^{d+1}$, which can be naturally identified with the permutations S_n). Our first task is to compute the number of such fixed points. To this end, recall the normalized median Genocchi numbers h_n , $n = 1, 2, \ldots$ (also referred to as the normalized Genocchi numbers of second kind). These numbers have several definitions [De], [Du], [DR], [DZ], [G], [Kr], [Vien] (see section 3 for a review). Here we give the Dellac definition, which is the earliest one and which fits our construction in the best way.

Consider a rectangle with n columns and 2n rows. It contains $n \times 2n$ boxes labeled by pairs (l, j), with l = 1, ..., n and j = 1, ..., 2n. A Dellac configuration D is a subset of boxes, subject to the following conditions: first, each column contains exactly two boxes from D and each row contains exactly one box from D, and, second, if the (l, j)-th box is in D, then $l \leq j \leq n + l$. Let DC_n be the set of such configurations. Then h_n is the number of elements in DC_n . The first several median Genocchi numbers (starting from h_1) are as follows: 1, 2, 7, 38, 295. For instance, the two Dellac configurations for n = 2 are as follows: (we specify boxes in a configuration by putting fat dots inside)

	•		•	
	•	•		
٠			•	
٠		٠		

We prove the following theorem:

Theorem 0.2. The number of sequences I^1, \ldots, I^{n-1} as above, satisfying (0.1) is equal to h_n .

We also prove that the Dellac definition [De] is equivalent to the Dumont-Kreweras definition [Du], [Kr] (this fact is known to experts [G],[S] but we were unable to find the proof in the literature).

Recall that the length of a permutation $\sigma \in S_n$ can be defined as the number of pairs $1 \leq l_1 < l_2 \leq n$ satisfying $\sigma(l_1) > \sigma(l_2)$. We define a length l(D) of a Dellac configuration D as the number of squares $(l_1, j_1), (l_2, j_2) \in D$ such that $l_1 < l_2$ and $j_1 > j_2$. We prove the following theorem:

Theorem 0.3. The Poincaré polynomial $P_{\mathfrak{F}_{\mathfrak{a}}^{\mathfrak{a}}}(t)$ is given by $\sum_{D \in DC_{\mathfrak{a}}} t^{2l(D)}$.

Our paper is organized in the following way:

In Section 1 we recall main definitions and theorems from [Fe3],

In Section 2 we describe explicitly the image of the embedding of the varieties \mathcal{F}^a_{λ} into the product of Grassmanians and construct the cell decomposition of \mathcal{F}^a_{λ} .

In Section 3 we study the combinatorics of the median Genocchi numbers and compute the Poincaré polynomials of the complete degenerate flag varieties.

1. PBW DEFORMATION

1.1. **Definitions.** We first recall basic definitions and constructions from [FFoL1] and [Fe3]. Let \mathfrak{g} be a simple Lie algebra with the Cartan decomposition $\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{h} \oplus \mathfrak{n}^-$. We denote by M the number of positive roots of \mathfrak{g} , i.e. $M = \dim \mathfrak{n}$. Let $\mathfrak{b} = \mathfrak{n} \oplus \mathfrak{h}$ be a Borel subalgebra. Then the deformed algebra \mathfrak{g}^a is defined as a sum of two subalgebras $\mathfrak{g}^a = \mathfrak{b} \oplus (\mathfrak{n}^-)^a$, where $(\mathfrak{n}^-)^a$ is an abelian Lie algebra isomorphic to \mathfrak{n}^- as a vector space. The subalgebra $(\mathfrak{n}^-)^a \hookrightarrow \mathfrak{g}^a$ is an abelian ideal and the action of \mathfrak{b} on $(\mathfrak{n}^-)^a$ is induced from the identification $(\mathfrak{n}^-)^a \simeq \mathfrak{g}/\mathfrak{b}$.

Let G be the Lie group of the Lie algebra \mathfrak{g} . Let N, T, N^-, B be the Lie groups of the Lie algebras \mathfrak{n} , \mathfrak{h} , \mathfrak{n}^- , \mathfrak{b} . The deformed Lie group G^a is defined as a semi-direct product of B and the normal subgroup \mathbb{G}_a^M , where \mathbb{G}_a is the additive group of the field (thus \mathbb{G}_a^M is the Lie group of the Lie algebra $(\mathfrak{n}^-)^a$). The Borel group B acts on the vector space $(\mathfrak{n}^-)^a \simeq \mathfrak{g}/\mathfrak{b}$ via the restriction of the adjoint action and therefore there exists a natural homomorphism from B to $Aut(\mathbb{G}_a^M)$, defining the semi-direct product $G^a = B \ltimes \mathbb{G}_a^M$.

For a dominant integral weight λ we denote by V_{λ} the corresponding irreducible highest weight \mathfrak{g} -module with a highest weight vector v_{λ} . The Lie algebra \mathfrak{g}^a and the Lie group G^a act on the deformed representations V_{λ}^a , where λ are dominant integral weights of \mathfrak{g} . The representations V_{λ}^a are defined as associated graded $gr_{\bullet}V_{\lambda}$ of the representation V_{λ} with respect to the PBW filtration F_s :

$$F_s = \operatorname{span}\{x_1 \dots x_l v_\lambda : x_i \in \mathfrak{g}, l \le s\}.$$

So $V_{\lambda}^{a} = \bigoplus_{s \geq 0} V_{\lambda}^{a}(s)$, where $V_{\lambda}^{a}(0) = \mathbb{C}v_{\lambda}$ and $V_{\lambda}^{a}(s) = F_{s}/F_{s-1}$ for s > 0. It is easy to see that the action of \mathfrak{n}^{-} on V_{λ} becomes abelian on V_{λ}^{a} (i.e. it

induces the action of $(\mathfrak{n}^-)^a$) and the action of the Borel subalgebra induces the action of (the same algebra) \mathfrak{b} . The actions of $(\mathfrak{n}^-)^a$ and \mathfrak{b} glue together to the action of \mathfrak{g}^a .

Remark 1.1. Let $\tilde{\mathfrak{g}}^a = \mathfrak{g}^a \oplus \mathbb{C}p$ be the central, extension of \mathfrak{g}^a with a single element p subject to the relations $[p, \mathfrak{b}] = 0$, $[p, f_\alpha] = f_\alpha$ for any positive root α and the corresponding weight element $f_\alpha \in (\mathfrak{n}^-)^a$. Thus the Cartan subalgebra of $\tilde{\mathfrak{g}}^a$ has one extra dimension. We note that the \mathfrak{g}^a -module structure of V^a_λ naturally lifts to the structure of representation of $\tilde{\mathfrak{g}}^a$ by setting $pv_\lambda = 0$ (in general, $p|_{V^a_\lambda(s)} = s$). An eigenvalue of the operator p is sometimes referred to as a PBW degree. The character of V^a_λ with respect to $\mathfrak{h} \oplus \mathbb{C}p$ was computed in [FFoL1] for \mathfrak{sl}_n and in [FFoL2] for symplectic Lie algebras. We denote the Lie group of $\tilde{\mathfrak{g}}^a$ by \tilde{G}^a , which differs from G^a by an additional \mathbb{C}^* .

Consider the action of G^a on the projective space $\mathbb{P}(V_{\lambda}^a)$. Recall that in the classical situation the (generalized) flag varieties are defined as $\mathcal{F}_{\lambda} = G \cdot \mathbb{C}v_{\lambda} \hookrightarrow \mathbb{P}(V_{\lambda})$ (see [K1]). The degenerate flag varieties $\mathcal{F}_{\lambda}^a \hookrightarrow \mathbb{P}(V_{\lambda}^a)$ are defined as the closures of the G^a orbit (or, equivalently, of the \mathbb{G}_a^M orbit) of the line $\mathbb{C}v_{\lambda}$. We note that in the classical case the orbit $G \cdot \mathbb{C}v_{\lambda}$ already covers the whole flag variety. This is not true in the degenerate case: the orbit $G^a \cdot \mathbb{C}v_{\lambda}$ is an affine cell, whose closure gives a projective singular variety \mathcal{F}_{λ}^a .

1.2. The type A case. From now on we assume that $\mathfrak{g} = \mathfrak{sl}_n$ and $G = SL_n$. Then all positive roots are of the form

$$\alpha_{i,j} = \alpha_i + \dots + \alpha_j, \ 1 \le i \le j \le n-1$$

(for instance, $\alpha_{i,i} = \alpha_i$ are the simple roots). We denote by $f_{i,j} = f_{\alpha_{i,j}} \in \mathfrak{n}^$ and $e_{i,j} = e_{\alpha_{i,j}} \in \mathfrak{n}$ the corresponding root elements. We have $\mathcal{F}^a_{\omega_d} \simeq \mathcal{F}_{\omega_d} \simeq Gr(d, n)$. The reason why the degenerate flag varieties are isomorphic to the non-degenerate ones for fundamental weights is that the radicals in \mathfrak{sl}_n , corresponding to ω_d , are abelian. In other words, define the set of positive roots

 $R_d = \{ \alpha_{i,j} : 1 \le i \le d \le j \le n - 1 \}.$

Define the subalgebra $\mathfrak{u}_d^- = \operatorname{span}\{f_\alpha : \alpha \in R_d\}$. Then \mathfrak{u}_d^- is abelian and $V_{\omega_d} = U(\mathfrak{u}_d^-) \cdot v_\lambda$.

Remark 1.2. Let us explain the difference between the structure of \mathfrak{g} -module on V_{ω_d} and the structure of \mathfrak{g}^a -module on $V^a_{\omega_d}$. The operators f_α act trivially on $V^a_{\omega_d}$ unless $\alpha \in R_d$. Also, e_α act trivially on $V^a_{\omega_d}$ if $\alpha \in R_d$. Therefore, \mathfrak{g}^a acts on $V^a_{\omega_d}$ via the projection to the subalgebra

(1.1)
$$\mathfrak{g}_d^a = \mathfrak{u}_d^- \oplus \mathfrak{h} \oplus \operatorname{span} \{ e_\alpha : \ \alpha \notin R_d \}.$$

Similarly, the group G^a acts on Gr(d, n) via the surjection to the Lie group of \mathfrak{g}_d^a . In particular, the group G^a does not act transitively on the deformed flag varieties even in the case of Grassmanians.

Remark 1.3. We note that though $\mathcal{F}^a_{\omega_d} \simeq \mathcal{F}_{\omega_d} \simeq Gr(d, n)$, the actions of the Borel groups $B \subset G$ and $B \subset G^a$ are very different. Let us consider the case $G = SL_2$. Then \mathfrak{g}^a is spanned by three elements e^a , h^a and f^a subject to the relations

$$[h^a, e^a] = 2e^a, \ [h^a, f^a] = -2f^a, \ [e^a, f^a] = 0.$$

Let λ be a dominant weight of \mathfrak{sl}_2 , $\lambda \in \mathbb{Z}_{\geq 0}$. Then V_{λ}^a is the direct sum of one-dimensional subspaces spanned by vectors v_l , $l = \lambda, \lambda - 2, \ldots, -\lambda$ such that

$$h^a v_l = l v_l, \ f^a v_l = v_{l-2}, \ e^a v_l = 0.$$

Therefore, the Borel subgroup B acts trivially on $\mathcal{F}^a_{\lambda} \simeq \mathbb{P}^1$. For instance, there exists one point of \mathbb{P}^1 , which is fixed by the action of the whole group G^a .

Let us now recall the Plücker relations for \mathcal{F}_{λ} [Fu] and the deformed Plücker relations for $\mathcal{F}_{\lambda}^{a}$ [Fe3].

Let $1 \leq d_1 < \cdots < d_s \leq n-1$ be a sequence of increasing numbers. Then for any positive integers a_1, \ldots, a_s the variety $\mathcal{F}_{a_1\omega_{d_1}+\cdots+a_s\omega_{d_s}}$ is isomorphic to the partial flag variety

$$\mathfrak{F}(d_1,\ldots,d_s)=\{V_1\hookrightarrow V_2\hookrightarrow\ldots\hookrightarrow V_s\hookrightarrow\mathbb{C}^n:\ \dim V_i=d_i\}.$$

In particular, if s = 1, then $\mathcal{F}(d)$ is the Grassmanian Gr(d, n) and for $s = n - 1 \mathcal{F}(1, \ldots, n - 1)$ is the variety of the complete flags. We recall that

$$V_{\omega_d} = \Lambda^d(V_{\omega_1}) = \Lambda^d(\mathbb{C}^n)$$

and the embedding $Gr(d, n) \hookrightarrow \mathbb{P}(\Lambda^d V_{\omega_1})$ is defined as follows: a subspace with a basis w_1, \ldots, w_d maps to $\mathbb{C}w_1 \land \cdots \land w_d$. For general sequence d_1, \ldots, d_s one has embeddings:

$$\mathcal{F}(d_1,\ldots,d_s) \hookrightarrow Gr(d_1,n) \times \cdots \times Gr(d_s,n) \hookrightarrow \mathbb{P}(V_{\omega_{d_1}}) \times \cdots \times \mathbb{P}(V_{\omega_{d_s}}).$$

The composition of these embeddings is called the Plücker embedding. The image is described explicitly in terms of Plücker relations. Namely, let v_1, \ldots, v_n be a basis of $\mathbb{C}^n = V_{\omega_1}$. Then one gets a basis v_J of $V_{\omega_d} v_J = v_{j_1} \wedge \cdots \wedge v_{j_d}$ labeled by sequences $J = (1 \leq j_1 < j_2 < \cdots < j_d \leq n)$. Let $X_J \in V_{\omega_d}^*$ be the dual basis. We denote by the same symbols the coordinates of a vector $v \in V_{\omega_d}$: $X_J = X_J(v)$. The image of the embedding

$$\mathcal{F}(d_1,\ldots,d_s) \hookrightarrow \times_{i=1}^s \mathbb{P}(V_{\omega_{d_i}})$$

is defined by the Plücker relations. These relations are labeled by a pair of numbers $p \ge q$, $p,q \in \{d_1,\ldots,d_s\}$, by a number $k, 1 \le k \le q$ and by a pair of sequences $L = (l_1,\ldots,l_p), J = (j_1,\ldots,j_q), 1 \le l_\alpha, j_\beta \le n$. The corresponding relation is denoted by $R_{L,J}^k$ and is given by

(1.2)
$$R_{L,J}^{k} = X_{L}X_{J} - \sum_{1 \le r_{1} < \dots < r_{k} \le p} X_{L'}X_{J'},$$

where L', J' are obtained from L, J by interchanging k-tuples $(l_{r_1}, \ldots, l_{r_k})$ and (j_1, \ldots, j_k) in L and J respectively, i.e.

$$J' = (l_{r_1}, \dots, l_{r_k}, j_{k+1}, \dots, j_q),$$

$$L' = (l_1, \dots, l_{r_1-1}, j_1, l_{r_1+1}, \dots, l_{r_2-1}, j_2, \dots, l_p).$$

We note that for any $\sigma \in S_d$ the equality

$$X_{j_{\sigma(1)},\dots,j_{\sigma(d)}} = (-1)^{\sigma} X_{j_1,\dots,j_d}$$

is assumed in (1.2). We denote the ideal generated by all $R_{L,J}^k$ by $I(d_1, \ldots, d_s)$. We introduce the notation

$$\mathcal{F}^a(d_1, \dots, d_s) = \mathcal{F}^a_{\omega_{d_1} + \dots + \omega_{d_s}}, \ 1 \le d_1 < \dots < d_s < n.$$

Definition 1.4. Let $I^a(d_1, \ldots, d_s)$ be an ideal in the polynomial ring in variables $X^a_{j_1,\ldots,j_d}$, $d = d_1, \ldots, d_s$, $1 \leq j_1 < \cdots < j_d < n$, generated by the elements $R^{k;a}_{L,J}$ given below. These elements are labeled by a pair of numbers $p \geq q, p, q \in \{d_1, \ldots, d_s\}$, by an integer $k, 1 \leq k \leq q$ and by sequences $L = (l_1, \ldots, l_p), J = (j_1, \ldots, j_q)$, which are arbitrary subsets of the set $\{1, \ldots, n\}$. The generating elements are given by the formulas

(1.3)
$$R_{L,J}^{k;a} = X_{l_1,\dots,l_p}^a X_{j_1,\dots,j_q}^a - \sum_{1 \le r_1 < \dots < r_k \le p} X_{l'_1,\dots,l'_p}^a X_{j'_1,\dots,j'_q}^a$$

where the terms of $R_{L,J}^{k;a}$ are the terms of $R_{L,J}^k$ (1.2) (with a superscript a, to be precise) such that

(1.4)
$$\{l_{r_1},\ldots,l_{r_k}\} \cap \{q+1,\ldots,p\} = \emptyset.$$

Remark 1.5. The initial term $X_{l_1,\ldots,l_p}^a X_{j_1,\ldots,j_q}^a$ is also subject to the condition (1.4), i.e. it is not present in $R_{L,J}^{k;a}$ if $\{j_1,\ldots,j_k\} \cap \{q+1,\ldots,p\} \neq \emptyset$.

Example 1.6. Let s = 1. Then $I^a(d) = I(d)$, since there are no numbers l such that $d + 1 \leq l \leq d$ and thus $R_{L,J}^{k;a} = R_{L,J}^k$ (up to a superscript a in the notations of variables X_J). Hence $\mathcal{F}_{\omega_d}^a \simeq \mathcal{F}_{\omega_d}$.

The following theorem is proved in [Fe3].

Theorem 1.7. The variety $\mathcal{F}^a(d_1, \ldots, d_s) \hookrightarrow \times_{i=1}^s \mathbb{P}(\Lambda^{d_i} \mathbb{C}^n)$ is defined by the ideal $I^a(d_1, \ldots, d_s)$.

Example 1.8. Let s = 2, $d_1 = 1$, $d_2 = n - 1$. Then the classical flag variety $\mathcal{F}(1, n - 1)$ is a subvariety in $\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}$ defined by a single relation

$$\sum_{i=1}^{n} (-1)^{i-1} X_i X_{1,\dots,i-1,i+1,\dots,n} = 0.$$

The degenerate variety $\mathcal{F}(1, n-1)$ is also a subvariety in $\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}$, defined by a "degenerate" relation

$$X_1^a X_{2,\dots,n}^a + (-1)^{n-1} X_n^a X_{1,\dots,n-1}^a = 0.$$

2. Cell decomposition

In this section we describe explicitly the image of \mathcal{F}^a_{λ} inside the product of Grassmanians and construct the cell decomposition of the degenerate flag varieties. We start with the case of $\lambda = \omega_d$.

2.1. Cell decomposition for Grassmanians. Recall that $\mathcal{F}^a_{\omega_d} \simeq \mathcal{F}_{\omega_d} \simeq Gr(d, n)$. Given an increasing tuple $L = (l_1 < \cdots < l_d)$ we set

$$p_L = \operatorname{span}(v_{l_1}, \dots, v_{l_d}) \in Gr(d, n).$$

The subspace p_L is *T*-invariant. Let *k* be a number such that $l_k \leq d < l_{k+1}$.

Proposition 2.1. The orbit $G^a \cdot p_L$ is an affine cell and Gr(d,n) is the disjoint union of all such cells.

Proof. Recall that G^a acts on Gr(d, n) via the projection to the Lie group of \mathfrak{g}_d (see (1.1)). Therefore the elements of $G^a \cdot p_L$ are exactly the subspaces of V having a basis e_1, \ldots, e_d of the form

(2.1)
$$e_j = v_{l_j} + \sum_{i=1}^{l_j-1} a_{i,j} v_i + \sum_{i=d+1}^n a_{i,j} v_i, \ j = 1, \dots, k$$

(2.2)
$$e_j = v_{l_j} + \sum_{i=d+1}^{l_j-1} a_{i,j} v_i, \ j = k+1, \dots, d.$$

Such elements in Gr(d, n) obviously form an affine cell and one has a decomposition $Gr(d, n) = \sqcup_L G^a \cdot p_L$.

Remark 2.2. Formulas (2.1) and (2.2) can be combined together as follows. Let $[k]_+ = k$ if k > 0 and $[k]_+ = k + n$ if $k \le 0$. Then each element of $G^a \cdot p_L$ has a basis e_1, \ldots, e_d of the form

(2.3)
$$e_j = v_{l_j} + \sum_{i=1}^{[l_j - d]_+ - 1} a_{i,j} v_{[l_j - i]_+}$$

Remark 2.3. The orbit $G^a \cdot p_L$ can be identified with a certain cell $B \cdot p_J$ in the usual cell decomposition of Gr(d, n). Namely, define J as follows:

$$J = (l_{k+1} - d, l_{k+2} - d, \dots, l_d - d, l_1 - d + n, l_2 - d + n, \dots, l_k - d + n).$$

Then the map

$$\psi: V \to V, \ \psi(v_i) = v_{[i-d]_+}, i = 1, \dots, n$$

sends $G^a \cdot p_L$ to $B \cdot p_i$ (this is clear from the explicit description (2.1), (2.2)).

Example 2.4. Let n = 9, d = 4 and L = (2, 3, 6, 7) (thus k = 2). Then the elements of $G^a \cdot p_L$ can be identified with the following matrices (the columns of a matrix form a basis of the corresponding subspace):

$$\begin{pmatrix} * & * & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ * & * & * & * \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ * & * & 0 & 0 \\ * & * & * & * \end{pmatrix}$$

Here * denotes arbitrary entries and hence the number of stars coincides with the dimension of the cell.

2.2. Chains of subspaces. In this section we fix the numbers d_1, \ldots, d_s and write \mathcal{F}^a for $\mathcal{F}^a(d_1, \ldots, d_s)$. Let v_1, \ldots, v_n be some basis of $V \simeq \mathbb{C}^n$. For $1 \leq i < j \leq n$ we define the projections $pr_{i+1,j} : V \to V$ by the formula

$$pr_{i+1,j}(\sum_{l=1}^{n} c_l v_l) = \sum_{l=1}^{i} c_l v_l + \sum_{l=j+1}^{n} c_l v_l.$$

The goal of this subsection is to prove the following theorem.

Theorem 2.5. The variety $\mathfrak{F}^a \hookrightarrow Gr(d_1, n) \times \cdots \times Gr(d_s, n)$ is formed by all sequences V_1, \ldots, V_s , $V_l \in Gr(d_l, n)$ such that for all $1 \leq l < m \leq s$

$$(2.4) pr_{d_l+1,d_m} V_l \hookrightarrow V_m.$$

Remark 2.6. It is easy to see that the set of conditions (2.4) is equivalent to the subset with m = l + 1, i.e. to the set of conditions

(2.5)
$$pr_{d_l+1,d_{l+1}}V_l \hookrightarrow V_{l+1}, \quad l = 1, \dots, s-1.$$

Lemma 2.7. Let $(V_1, \ldots, V_s) \in \mathcal{F}^a$. Then conditions (2.4) are satisfied.

Proof. Let us first look at the big cell $\mathbb{G}_a^M \cdot \mathbb{C}v_\lambda \subset \mathcal{F}^a$. Note that the line $\mathbb{C}v_\lambda$ is represented by the point

$$\times_{i=1}^{s} \operatorname{span}(v_1, \dots, v_{d_i}) \in \times_{i=1}^{s} Gr(d_i, n).$$

Take an element $g = \exp(\sum s_{i,j} f_{i,j}) \in \mathbb{G}_a^M \subset G^a$. Then one has

$$g \cdot \operatorname{span}(v_1, \dots, v_d) = \operatorname{span}(v_1 + \sum_{j=d}^{n-1} s_{1,j} v_{j+1}, \dots, v_d + \sum_{j=d}^{n-1} s_{d,j} v_{j+1}).$$

Therefore conditions (2.4) hold for all points from the big cell of the degenerate flag varieties. Since \mathcal{F}^a_{λ} is the closure of the big cell, the lemma is proved.

Proposition 2.8. Let V_1, \ldots, V_s be a set of subspaces of V satisfying (2.4) with dim $V_l = d_l$. Then $(V_1, \ldots, V_s) \in \mathcal{F}^a$.

Proof. We know that the image of the embedding

$$\mathfrak{F}^a \hookrightarrow \times_{i=1}^s Gr(d_i, n) \hookrightarrow \times_{i=1}^s \mathbb{P}(\Lambda^{d_i} V)$$

is defined by the set of relations $R_{J,I}^{k;a} = 0$. Our goal is to prove that (2.4) implies that all the relations $R_{J,I}^{k;a}$ vanish. Fix a pair $1 \le l \le m \le s$. In what follows we denote the projection pr_{d_l+1,d_m} simply by pr.

Let (V_1, \ldots, V_s) be a collection of subspaces satisfying (2.4). Fix tuples $I = (i_1, \ldots, i_l)$ and $J = (j_1, \ldots, j_m)$ and a number k. We prove that the relation $R_{J,I}^{k;a}$ vanishes on (V_1, \ldots, V_s) . Without loss of generality we assume that $i_1, \ldots, i_k \notin [d_l + 1, d_m]$. We also rearrange the entries of I in such a way that the elements from $I \cap [d_l + 1, d_m]$ are concentrated at the end of I, i.e. there exists a number b such that

$$i_1, \ldots, i_b \notin [d_l + 1, d_m], \quad i_{b+1}, \ldots, i_l \in [d_l + 1, d_m].$$

Obviously, $b \ge k$. Let $l - c = \dim(\ker pr \cap V_l)$. We fix a basis e_1, \ldots, e_l of V_l such that pre_1, \ldots, pre_c is a basis of prV_l and e_{c+1}, \ldots, e_l form a basis of $\ker pr \cap V_l$. We denote by $a_{s,t}$ the coefficients of the expansion of e_s in terms of v_t :

$$e_q = \sum_{r=1}^l a_{r,q} v_r.$$

The idea of the proof is to use the following decomposition of a Plücker coordinate X_I :

(2.6)
$$X_{I} = \sum_{1 \le \alpha_{1} < \dots < \alpha_{l-b} \le l} \pm a_{i_{b+1},\alpha_{1}} \dots a_{i_{l},\alpha_{l-b}} X_{i_{1},\dots,i_{b}}.$$

Here X_{i_1,\ldots,i_b} is the (i_1,\ldots,i_b) -th Plücker coordinate of the vector space span $(e_{\beta_1},\ldots,e_{\beta_b})$, where the set of β 's is complementary to the set of α 's, i.e.

$$\{\beta_1,\ldots,\beta_b\}\cup\{\alpha_1,\ldots,\alpha_{l-b}\}=\{i_1,\ldots,i_l\}.$$

The decomposition (2.6) induces the decomposition of the relation $R_{J,I}^{k;a}$, such that each term can be shown to vanish. Note that if b > c then X_I vanishes on V_l . We thus assume that $b \leq c$.

Define the subspace

$$E_{\beta} = pr(\operatorname{span}(e_{\beta_1}, \dots, e_{\beta_h})).$$

We know that $E_{\beta} \hookrightarrow V_m$. In addition, the coordinates $X_{(i_1,\ldots,i_b)}$ of the space span $(e_{\beta_1},\ldots,e_{\beta_b})$ coincide with the Plücker coordinates $Y_{(i_1,\ldots,i_b)}$ of E_{β} , because $i_1,\ldots,i_b \notin [d_l+1,d_m]$ (we are using the notations Y_I to distinguish between Plücker coordinated of different spaces). Since $E_{\beta} \hookrightarrow V_m$, the classical relations $R^k_{J,(i_1,\ldots,i_b)}$ vanish on the pair (E_{β},V_m) . Since

$$E_{\beta} \hookrightarrow \operatorname{span}(v_1, \ldots, v_{d_l}, v_{d_m+1}, \ldots, v_n),$$

a Plücker coordinate Y_{q_1,\ldots,q_b} of E_β vanishes unless non of the indices q_{\bullet} are between $d_l + 1$ and d_m . Hence the degenerate Plücker relation $R_{J,(i_1,\ldots,i_b)}^{k:a}$

also vanishes on (E_{β}, V_m) . Note also that the decomposition (2.6) induces the decomposition

$$R_{J,I}^{k;a} = \sum_{1 \le \alpha_1 < \dots < \alpha_{l-b} \le l} \pm a_{i_{b+1},\alpha_1} \dots a_{i_l,\alpha_{l-b}} R_{J,(i_{\beta_1},\dots,i_{\beta_b})}^{k;a}.$$

But as we have shown above, each of the relations $R_{J,(i_{\beta_1},\ldots,i_{\beta_b})}^{k;a}$ vanishes on (V_l, V_m) . Hence so does $R_{J,I}^{k;a}$.

Example 2.9. Let $\lambda = \omega_1 + \omega_{n-1}$, i.e. $s = 2, d_1 = 1, d_2 = n - 1$. Then the image of $\mathcal{F}^a(1, n - 1)$ inside $Gr(1, n) \times Gr(n - 1, n)$ is formed by all pairs V_1, V_2 such that $pr_{2,n-1}V_1 \hookrightarrow V_2$. Since $pr_{2,n-1}V_1 \hookrightarrow \text{span}(v_1, v_n)$, the image of the embedding $\mathcal{F}^a(1, n - 1) \hookrightarrow \mathbb{P}^{n-1} \times \mathbb{P}^{n-1}$ is defined by a single relation

$$X_1^a X_{2,\dots,n}^a + (-1)^{n-1} X_n^a X_{1,\dots,n-1}^a = 0,$$

which agrees with Example 1.8.

Corollary 2.10. Theorem 2.5 is true.

Corollary 2.11. Let I^1, \ldots, I^s , $I^l \subset \{1, \ldots, n\}$ be a collection of tuples such that the cardinality of I^l is d_l . Then a point $p_{I^1} \times \cdots \times p_{I^s}$ belongs to \mathcal{F}^a if and only if

(2.7)
$$I^l \setminus \{d_l + 1, \dots, d_{l+1}\} \subset I^{l+1}.$$

Example 2.12. Consider the case of the complete flags: s = n - 1, $d_l = l$. Set $pr_l = pr_{l,l}$. Then the embedding of \mathcal{F}^a into the product of Grassmanians is defined by the conditions

$$(2.8) pr_{l+1}V_l \hookrightarrow V_{l+1}, \ l = 1, \dots, n-2$$

and the conditions (2.7) read as $I^l \setminus \{l+1\} \subset I^{l+1}$ for $l = 1, \ldots, n-2$.

2.3. Cells for \mathcal{F}^a . Recall that the cell decomposition for a Grassmanian is given by the G^a -orbits of the torus fixed points. However this is not true for the case of general \mathcal{F}^a_{λ} . Moreover, the number of G^a -orbits can be infinite. The simplest example is as follows.

Example 2.13. Let n = 4, $\lambda = \omega_1 + \omega_3$. Then \mathcal{F}^a_{λ} is embedded into $\mathbb{P}^3 \times \mathbb{P}^3$ (two Grassmanians for \mathfrak{sl}_4) with the coordinates $(x_1 : x_2 : x_3 : x_4)$ and $(x_{123} : x_{124} : x_{133} : x_{234})$. The variety $\mathcal{F}^a_{\omega_1+\omega_3}$ is defined by a single relation $x_1x_{234} - x_4x_{123} = 0$. Therefore, $\mathcal{F}^a_{\omega_1+\omega_3}$ contains the product $\mathbb{P}^2 \times \mathbb{P}^2$ defined by $x_1 = x_{123} = 0$. We note that the subgroup \mathbb{G}^6_a of G^a acts trivially on this $\mathbb{P}^2 \times \mathbb{P}^2$ (the PBW-degree in both V_{ω_1} and V_{ω_3} is at most one). Therefore, we are left with an action of the Borel subgroup. Let w_1, w_2, w_3, w_4 and $w_{123}, w_{124}, w_{134}, w_{234}$ be the standard bases for V_{ω_1} and V_{ω_3} . The group Bacts on the span of w_2, w_3, w_4 (resp. on the span of $w_{124}, w_{134}, w_{234}$) as on the quotient of the vector representation (resp. the dual vector representation) by $\mathbb{C}w_1$ (resp. $\mathbb{C}w_{123}$). It is easy to see that the corresponding B-action on $\mathbb{P}^2 \times \mathbb{P}^2$ has infinitely many orbits.

In the following proposition we describe the cell decomposition for $\mathcal{F}^a = \mathcal{F}^a(d_1,\ldots,d_s)$.

Proposition 2.14. Let $\mathbf{I} = (I^1, \ldots, I^s)$ be a set of sequences satisfying the condition (2.7). Then there exists a cell decomposition $\mathcal{F}^a = \sqcup_{\mathbf{I}} C_{\mathbf{I}}$, where

$$C_{\mathbf{I}} = (G^a \cdot p_{I^1} \times \cdots \times G^a \cdot p_{I^s}) \cap \mathcal{F}^a.$$

In other words, a cell is given by the intersection of the degenerate flag variety, embedded into the product of Grassmanians, with the product of the corresponding cells in $Gr(d_i, n)$.

Proof. In Theorem 3.6 we compute the dimensions of $C_{\mathbf{I}}$. In the proof we construct explicitly the coordinates on $C_{\mathbf{I}}$ thus showing that $C_{\mathbf{I}}$ is a cell. \Box

3. The median Genocchi numbers

3.1. Combinatorics. Let h_n be the normalized Genocchi numbers of the second kind. They are also referred to as the normalized median Genocchi numbers. These numbers have several definitions (see [De], [Du], [Kr], [S]). The first several h_n 's are as follows: 1,2,7,38,295,3098. We first briefly recall definitions of these numbers.

We start with the Dellac definition (see [De]). Consider a rectangle with n columns and 2n rows. It contains $n \times 2n$ boxes labeled by pairs (l, j), where l = 1, ..., n is the number of a column and j = 1, ..., 2n is the number of a row. A Dellac configuration D is a subset of boxes, subject to the following conditions:

- each column contains exactly two boxes from D,
- each row contains exactly one box from D,

(3.1)

• if the (l, j)-th box is in D, then $l \le j \le n + l$.

Let DC_n be the set of such configurations. Then the number of elements in DC_n is equal to h_n .

We list all Dellac's configurations for n = 3. We specify boxes in a configuration by putting fat dots inside.

		•			•			٠			•			•			\bullet			\bullet	
		•		•			٠				٠		٠				•		٠		
	•				•		•			•				•	•			٠			
	٠			٠				٠	٠			•				•				•	
•			٠			•				•			•			•			٠		
•			•			•			•			•			•			٠			Į.

The Dellac definition is the earliest one, but the most well-known definition is via the Seidel triangle. The Seidel triangle is of the form

By definition, the triangle is formed by the numbers $G_{k,n}$ (*n* is the number of a row and *k* is the number of a column) with n = 1, 2, ... and $1 \le k \le \frac{n+1}{2}$, subject to the relations $G_{1,1} = 1$ and

$$G_{k,2n} = \sum_{i \ge k} G_{i,2n-1}, \ G_{k,2n+1} = \sum_{i \le k} G_{i,2n}.$$

The numbers $G_{n,2n-1}$ are called the Genocchi numbers of the first kind and the numbers $G_{1,2n}$ are called the Genocchi numbers of the second kind (or the median Genocchi numbers). Barsky [Ba] and then Dumont [Du] proved that the number $G_{1,2n+2}$ is divisible by 2^n . The normalized median Genocchi numbers h_n are defined as the corresponding ratios: $h_n = G_{1,2n+2}/2^n$.

In [Kr] Kreweras suggested another description of the numbers h_n . Namely, a permutation $\sigma \in S_{2n+2}$ is called a normalized Dumont permutation of the second kind if the following conditions are satisfied:

- $\sigma(k) < k$ if k is even,
- $\sigma(k) > k$ if k is odd,
- $\sigma^{-1}(2k) < \sigma^{-1}(2k+1)$ for k = 1, ..., n.

The set of such permutations is denoted by $PD2N_n$ (P for permutations, D for Dumont, 2 for the second kind and N for normalized). According to Kreweras, the number of elements of $PD2N_n$ is equal to h_n . In Proposition 3.3 we show that the definitions of Dellac and Kreweras are equivalent (this seems to be known to expert – see [G], [S], but we were not able to find a proof in the literature).

In the following proposition we show that the conditions from Example 2.12 give rise to a new definition of the numbers h_n .

Proposition 3.1. The number of tuples I^1, \ldots, I^{n-1} , with $I^l \subset \{1, \ldots, n\}$, $\#I^l = l$ subject to the condition

(3.2)
$$I^{l-1} \setminus \{l\} \subset I^l, \ l = 2, \dots, n-1$$

is equal to h_n .

Proof. Let \bar{h}_n be the number of tuples as above. We compare h_n with the Dellac definition of h_n . Given a set I^1, \ldots, I^{n-1} subject to the condition

(3.2), we construct the corresponding Dellac's configuration D and then prove that this map is one-to-one. The rule is as follows. Let us explain what are the boxes of D in the *l*-th column.

First, suppose $l \notin I^{l-1}$. Then because of the condition (3.2) the difference $I^l \setminus I^{l-1}$ contains exactly one number j. There are two cases:

• If j > l, then D contains boxes (l, l) and (l, j).

• If $j \leq l$, then D contains boxes (l, l) and (l, j + n).

Now, suppose $l \in I^{l-1}$. Then either $l \in I^l$, or $L \notin I^l$. If $l \in I^l$, then $I^l \setminus I^{l-1}$ contains exactly one number j. There are two cases:

- If j > l, then D contains boxes (l, l + n) and (l, j).
- If $j \leq l$, then D contains boxes (l, l+n) and (l, j+n).

Finally, let $l \in I^{l-1}$ and $l \notin I^l$. Then $I^l \setminus I^{l-1}$ contains exactly two numbers j_1 and j_2 . There are four variants:

- If $j_1 > l$ and $j_2 > l$, then D contains boxes (l, j_1) and (l, j_2) .
- If $j_1 > l$ and $j_2 \le l$, then D contains boxes (l, j_1) and $(l, n + j_2)$.
- If $j_1 \leq l$ and $j_2 > l$, then D contains boxes $(l, j_1 + n)$ and (l, j_2) .
- If $j_1 \leq l$ and $j_2 \leq l$, then D contains boxes $(l, j_1 + n)$ and $(l, j_2 + n)$.

This rule explains how to pick boxes in columns from 1 to n-1. To complete the configuration we simply pick two boxes in the last column in the unique way to make D a configuration.

In order to prove that this map is a bijection, we construct the inverse map. Let D be a Dellac configuration. We define I^l inductively. First, let l = 1. Then the box (1,1) necessarily belongs to D. Let j > 1 and D contains (1,j). Then if j = n + 1, then $I^1 = (1)$. Otherwise $I^1 = (j)$.

Now assume that I^{l-1} is already defined. First, suppose that the (l, l)-th box belongs to D. Then there exists one more box (l, j) in D with $n + l \ge j > l$. If $j \le n$ we set $I^l = I^{l-1} \cup \{j\}$. Otherwise, we set $I^l = I^{l-1} \cup \{j - n\}$. Second, suppose that the (l, l)-th box does not belong to D. Since the l-th row of D contains exactly one box, there exists $l_1 < l$ such that the (l_1, l) -th box belongs to D. Therefore, $l \subset I^{l-1}$. There exist exactly two boxes (l, j_1) and (l, j_2) in D in the l-th column. Then we set $I^l = I^{l-1} \setminus \{l\} \cup \{\bar{j}_1, \bar{j}_2\}$, where $\bar{j} = j$, if $j \le n$ and $\bar{j} = j - n$ otherwise.

Example 3.2. Let n = 3. The pairs I^1, I^2 , corresponding to the Dellac configurations (3.1) are as follows (the order is the same as on picture (3.1)):

 $\{(2), (13)\}, \{(2), (23)\}, \{(2), (12)\}, \{(3), (13)\}, \\ \{(3), (23)\}, \{(1), (13)\}, \{(1), (12)\}.$

We now compare the definitions by Dellac and by Kreweras.

Proposition 3.3. The number of elements in $PD2N_n$ is equal to the number of elements in DC_n .

Proof. We construct a bijection $A : PD2N_n \to DC_n$. Let $\sigma \in PD2N_n$. We determine the boxes in the k-th column of $A(\sigma)$ using the values of $\sigma^{-1}(2k)$ and $\sigma^{-1}(2k+1)$.

Let us start with k = 1. We note that $\sigma(2) = 1$, $\sigma(4)$ is equal to 2 or to 3. In addition, $\sigma^{-1}(2) = 1$ or 4 and the possible values of $\sigma^{-1}(3)$ are $4, 6, \ldots, 2n + 2$. Therefore, all possible values of the pair $(\sigma^{-1}(2), \sigma^{-1}(3))$ are as follows:

$$(1,4), (4,6), (4,8), \ldots, (4,2n+2).$$

If the first possibility occurs, then by definition the first column of $A(\sigma)$ contains boxes (1,1) (as any Dellac's configuration) and (1, n+1). If $\sigma^{-1}(2) = 4$ and $\sigma^{-1}(3) = 2l+2$, then the first column of $A(\sigma)$ contains boxes (1,1) and (1,l).

Now let us consider the case k = n. We note that $\sigma(2n + 1) = 2n$, $\sigma(2n - 1)$ is equal to 2n or to 2n + 1. In addition, $\sigma^{-1}(2n + 1) = 2n + 2$ or 2n - 1 and the possible values of $\sigma^{-1}(2n)$ are $1, 3, \ldots, 2n - 1$. Therefore, all possible values of the pair $(\sigma^{-1}(2n), \sigma^{-1}(2n + 1))$ are as follows:

$$(2n-1, 2n+2), (1, 2n-1), (3, 2n-1), \dots, (2n-3, 2n-1).$$

If the first possibility occurs, then by definition the *n*-th column of $A(\sigma)$ contains boxes (n, 2n) (as any Dellac's configuration) and (n, n). If

$$(\sigma^{-1}(2n), \sigma^{-1}(2n+1)) = (2l-1, 2n-1),$$

then the first column of $A(\sigma)$ contains boxes (n, 2n) and (n, n+l).

Finally, take k = 2, ..., n-1. We note that the possible values of $\sigma^{-1}(2k)$ are 1, 3, ..., 2k - 1, 2k + 2, ..., 2n. Also, the possible values of $\sigma^{-1}(2k+1)$ are 3, 5, ..., 2k - 1, 2k + 2, ..., 2n, 2n + 2. We now define the k-th column of $A(\sigma)$ as follows:

- (i) If the pair $(\sigma^{-1}(2k), \sigma^{-1}(2k+1))$ contains $2l-1, l=1, \ldots, k$, then the k-th column of $A(\sigma)$ contains a box (k, n+l).
- (ii) If the pair $(\sigma^{-1}(2k), \sigma^{-1}(2k+1))$ contains $2l+2, l=k, \ldots, n$, then the k-th column of $A(\sigma)$ contains a box (k, l).

We note that $A(\sigma) \in DC_n$. In fact, by definition any column of $A(\sigma)$ contains exactly two boxes and every row contains exactly one box (this follows from the definition above and because σ is one-to-one). In order to prove that A is a bijection it suffices to note that formulas (i) and (ii) allow to construct explicitly the map A^{-1} .

Example 3.4. Let n = 3. The elements of $PD2N_3$ corresponding to the Dellac configurations on picture (3.1) are as follows (the order is the same as on picture (3.1)):

$$\begin{array}{cccc} (41627385), & (61427385), & (41526387), & (41627583), \\ & (61427583), & (21637485), & (21436587). \end{array}$$

We recall that the main ingredient for the Kreweras construction of $PD2N_n$ is the following triangle:

The rule is as follows: denote the numbers in the *n*-th line by $h_{n,1}, \ldots, h_{n,n}$. For example, $h_{4,2} = 12$. Then the Kreweras triangle is defined by

$$h_{n,1} = h_{n-1,1} + \dots + h_{n-1,n-1}, \ h_{n,2} = 2h_{n,1} - h_{n-1,1}, h_{n,k} = 2h_{n,k-1} - h_{n,k-2} - h_{n-1,k-2} - h_{n-1,k-1}, \ k \ge 3.$$

Kreweras proved that $h_{n+1,1}$ is the *n*-th Genocchi number h_n and in general $h_{n+1,k}$ is the number of the normalized Dumont permutations $\sigma \in S_{2n+2}$ of the second kind such that $\sigma(1) = 2k$. The following is an immediate corollary from the explicit bijections above.

Corollary 3.5. The number of the Dellac configurations $D \in DC_n$ such that $\min\{i : (i, n + 1) \in D\} = k$ is equal to $h_{n,k}$. The number of tuples I^1, \ldots, I^{n-1} subject to the condition $I^{l-1} \setminus \{l\} \subset I^l$ with an extra condition $\min\{j : 1 \in I^j\} = k$ is equal to $h_{n,k}$.

3.2. The Poincaré polynomials. For a tuple $\mathbf{I} = (I^1, \ldots, I^{n-1})$ subject to the relation $I^{l-1} \setminus \{l\} \subset I^l$ we denote by $D_{\mathbf{I}}$ the corresponding Dellac configuration. For a Dellac configuration $D \in DC_n$ we define the length l(D) of D as the number of pairs $(l_1, j_1), (l_2, j_2)$ such that the boxes (l_1, j_1) and (l_2, j_2) are both in D and $l_1 < l_2, j_1 > j_2$. We call such a pair of boxes $(l_1, j_1), (l_2, j_2)$ a disorder. This definition resembles the definition of the length of a permutation. We note that in the classical case the dimension of a cell attached to a permutation σ in a flag variety is equal to the number of pairs $j_1 < j_2$ such that $\sigma(j_1) > \sigma(j_2)$ (which equals to the length of σ).

Theorem 3.6. The dimension of a cell $C_{\mathbf{I}}$ is equal to $l(D_{\mathbf{I}})$.

Proof. We prove the dimension formula by constructing explicitly the coordinates on the cell $C_{\mathbf{I}}$. Let

$$\mathbf{I} = (I^1, \dots, I^{n-1}), \ I^d = (i_1^d < \dots < i_d^d).$$

Recall the description of the cells $C_{I^d} \subset Gr(d, n)$ from Proposition 2.1. Using this description we construct the coordinates on $C_{\mathbf{I}}$ inductively on d. Let $(V_1, \ldots, V_{n-1}) \in C_{\mathbf{I}}$. For a number k we set $[k]_+ = k$ if k > 0 and $[k]_+ = k + n$ if $k \leq 0$.

We start with d = 1. An element $V_1 \in C_{I^1}$ is of the form $\mathbb{C}e_1^1$ with

$$e_1^1 = v_{i_1^1} + a_1^1 v_{[i_1^1 - 1]_+} + \dots + a_{[i_1^1 - 1]_+ - 1}^1 v_2$$

(see Remark 2.2). We state that $[i_1^1 - 1]_+ - 1$ (which is exactly the number of the degrees of freedom we have so far) is exactly the number of boxes $(l, j) \in D_{\mathbf{I}}$ such that l > 1 and $j < i_1^1$ (note that the box (1, 1) is necessarily in $D_{\mathbf{I}}$, but it does not add anything to the length of $D_{\mathbf{I}}$, since for any $(l.j) \in D_{\mathbf{I}}$ with l > 1 we have j > 1). In fact, the first column of $D_{\mathbf{I}}$ contains boxes in the first row and in the $([i_1^1 - 1]_+ + 1)$ -st row (see the proof of Proposition 3.1). Since any row of $D_{\mathbf{I}}$ contains exactly one box, the rows number $2, \ldots, [i_1^1 - 1]_+$ are occupied by boxes in the columns from 2 to n. Therefore, the box $(1, [i_1^1 - 1]_+ + 1)$ produces exactly $[i_1^1 - 1]_+ - 1$ disorders.

The second step is to construct the coordinates on those subspaces from C_{I^2} which contain pr_2V_1 . There are two possibilities: either $i_1^1 = 2$ or $i_1^1 \neq 2$. In the first case the condition $pr_2V_1 \hookrightarrow V_2$ is empty. Therefore, we have to choose two basis vectors e_1^2, e_2^2 of $V_2 \in C_{I^2}$, with the coordinates

$$e_1^2 = v_{i_1^2} + a_1^1 v_{[i_1^2 - 1]_+} + \dots + a_{[i_1^2 - 2]_+ - 1}^1 v_3,$$

$$e_2^2 = v_{i_2^2} + a_1^2 v_{[i_2^2 - 1]_+} + \dots + a_{[i_2^2 - 2]_+ - 2}^2 v_3.$$

We note that the number of coefficients of e_2^2 is $[i_2^2 - 2]_+ - 2$, because $i_1^2 < i_2^2$ and hence adding appropriately normalized vector e_1^2 one can vanish the coefficient of e_2^2 in front of $v_{i_1^2}$. We note that since $i_1^1 = 2$, the second column of $D_{\mathbf{I}}$ contains boxes in the rows $([i_1^2 - 2]_+ + 2)$ and $([i_1^2 - 2]_+ + 2)$ (see the proof of Proposition 3.1). We state that $[i_1^2 - 2]_+ - 1 + [i_2^2 - 2]_+ - 2$ (the number of degrees of freedom we have fixing the vectors e_1^2 and e_2^2) is exactly the number of boxes in the columns $3, 4, \ldots, n$, having disorders with boxes in the second column. In fact, each row from 3 to $[i_1^2 - 2]_+ - 1$ contains one box in the columns 3 and greater (recall $i_1^1 = 2$). This produces $[i_1^2 - 2]_+ - 1$ disorders with the box $(2, [i_1^2 - 2]_+ - 1)$. Similarly, we obtain $[i_2^2 - 2]_+ - 2$ disorders with the second box in the second column.

Now assume $i_1^1 \neq 2$. Then the space pr_2V_1 is nontrivial and spanned by a single vector $e_1^2 = pr_2e_1^1$. Therefore in order to specify V_2 we need to fix one more vector e_2^2 such that $\operatorname{span}(e_1^2, e_2^2) \in C_{I^2}$. Recall that since $i_1^1 \neq 2$ we have $I^2 \setminus I^1 = \{j\}$. Also, the second column of $D_{\mathbf{I}}$ contains boxes in the second row and in the row number $[j-2]_+ + 2$ (see the proof of Proposition 3.1). The box (2, 2) does not produce any disorder with boxes in the columns greater than 2. As for the box $(2, [j-2]_+ + 2)$, the number of disorders it produces is equal to the number of degrees of freedom of choosing the vector e_2^2 (the argument is very similar to the ones above in the case $i_1^1 = 2$).

Now let us consider the general induction step. Assume that we have already computed the number of degrees of freedom while fixing the subspaces V_1, \ldots, V_{d-1} . Our goal is to show that the number of degrees of freedom of V_d is equal to the number of disorders produced by the boxes in the d'th column with the boxes in columns l with l > d. As in the previous case, one has to consider two cases: $d \in I^{d-1}$ and $d \notin I^{d-1}$. The proof is very similar to the one in the case d = 2 and we omit it. **Corollary 3.7.** The Poincaré polynomial $P_n(t) = P_{\mathcal{F}^a}(t)$ is given by

$$P_n(t) = \sum_{D \in DC_n} t^{2l(D)}$$

Let $q = t^2$. Then P_n are polynomials in q with $P_n(1) = h_n$. Thus the Poincaré polynomials of the degenerate flag varieties provide a natural qversion of the normalized median Genocchi numbers (it would be interesting to compare our q-version with the one in [HZ]).

Example 3.8. The first four polynomials $P_n(q)$ are as follows:

$$P_1(q) = 1, \qquad P_2(q) = 1 + q,$$

$$P_3(q) = 1 + 2q + 3q^2 + q^3,$$

$$P_4(q) = 1 + 3q + 7q^2 + 10q^3 + 10q^4 + 6q^5 + q^6.$$

Acknowledgments

This work was partially supported by the Russian President Grant MK-281.2009.1, RFBR Grant 09-01-00058, by grant Scientific Schools 6501.2010.2 and by the Dynasty Foundation.

References

- [A] I. Arzhantsev, Flag varieties as equivariant compactifications of \mathbb{G}_a^n , arXiv:1003.2358.
- [AS] I. Arzhantsev, E. Sharoiko, Hassett-Tschinkel correspondence: modality and projective hypersurfaces, arXiv:0912.1474.
- [Ba] D. Barsky, Congruences pour les nombres de Genocchi de 2e espèce, Groupe d'étude d'Analyse ultramétrique, 8e année, no. 34, 1980/81, 13 pp.
- [De] H. Dellac, Problem 1735, L'Intermédiaire des Mathématiciens, 7 (1900), 9–10.
- [Du] D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305–318.
- [DR] D. Dumont and A. Randrianarivony, Dérangements et nombres de Genocchi, Discrete Math. 132 (1994), 37–49.
- [DZ] D. Dumont and J. Zeng, Further results on Euler and Genocchi numbers, Aequationes Mathemicae 47 (1994), 31–42.
- [Fe1] E. Feigin, The PBW filtration, Represent. Theory 13 (2009), 165-181.
- [Fe2] E. Feigin, The PBW filtration, Demazure modules and toroidal current algebras, SIGMA, 4 (2008), 070, 21 p.
- [Fe3] E. Feigin, \mathbb{G}_a^M degeneration of flag varieties, arXiv:1007.0646,
- [Fu] W. Fulton, Young tableaux, with applications to representation theory and geometry. Cambridge University Press, 1997.
- [FFL] B. Feigin, E. Feigin, P. Littelmann, Zhu's algebras, C₂-algebras and abelian radicals, arXiv:0907.3962.
- [FFoL1] E. Feigin, G. Fourier, P. Littelmann, PBW filtration and bases for irreducible modules in type A_n , arXiv:1002.0674.
- [FFoL2] E. Feigin, G. Fourier, P. Littelmann, PBW filtration and bases for symplectic Lie algebras, arXiv:1010.2321.
- [FL] E. Feigin, P. Littelmann, Zhu's algebra and the C_2 -algebra in the symplectic and the orthogonal cases, 2010 J. Phys. A: Math. Theor. 43 135206.
- [G] I.Gessel Applications of the classical umbral calculus, Algebra Universalis 49 (2003), 397–434.

- [HZ] G.-N. Han and J. Zeng, On a q-sequence that generalizes the median Genocchi numbers, Ann. Sci. Math. Québec 23 (1999), 63–72.
- [HT] B. Hassett, Yu. Tschinkel, Geometry of equivariant compactifications of \mathbb{G}_a^n , Int. Math. Res. Notices 20 (1999), 1211-1230.
- [Kr] G. Kreweras, Sur les permutations comptées par les nombres de Genocchi de 1-ière et 2-ième espèce, Europ. J. Combinatorics 18 (1997), 49–58.
- [K1] S. Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics vol. 204, Birkhauser, Boston, 606 (2002).
- [K2] S. Kumar, The nil Hecke ring and singularity of Schubert varieties, Inventiones Math. 123, 471-506 (1996).
- [S] N. J. A. Sloane, Sequence A000366, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
- [Vien] G. Viennot, Interprétations combinatoires des nombres d'Euler et de Genocchi, Seminar on Number Theory, 1981/1982, No. 11, 94 pp., Univ. Bordeaux I, Talence, 1982.

EVGENY FEIGIN:

MATHEMATICAL DEPARTMENT, UNIVERSITY HISGER SCHOOL OF ECONOMICS,

20 Myasnitskaya St, 101000, Moscow, Russia

and

- TAMM THEORY DIVISION, LEBEDEV PHYSICS INSTITUTE,
- LENINISKY PROSPECT, 53, 119991, MOSCOW, RUSSIA

E-mail address: evgfeig@gmail.com