ON THE SEMIGROUP OF ORDER-DECREASING PARTIAL ISOMETRIES OF A FINITE CHAIN

R. Kehinde, S. O. Makanjuola and A. Umar

Abstract

Let \mathcal{I}_{n} be the symmetric inverse semigroup on $X_{n}=\{1,2, \cdots, n\}$ and let $\mathcal{D D P}_{n}$ and $\mathcal{O D D P}{ }_{n}$ be its subsemigroups of order-decreasing partial isometries and of order-preserving order-decreasing partial isometries of X_{n}, respectively. In this paper we investigate the cycle structure of order-decreasing partial isometry and characterize the Green's relations on $\mathcal{D D} \mathcal{P}_{n}$ and $\mathcal{O D D P}{ }_{n}$. We show that $\mathcal{O D D} \mathcal{P}_{n}$ is a $0-E$ - unitary ample semigroup. We also investigate the cardinalities of some equivalences on $\mathcal{D D P}_{n}$ and $\mathcal{O D D P}_{n}$ which lead naturally to obtaining the order of the semigroups $1^{1} \mathbb{L}^{2}$

MSC2010: 20M18, 20M20, 05A10, 05A15.

1 Introduction and Preliminaries

Let $X_{n}=\{1,2, \cdots, n\}$ and \mathcal{I}_{n} be the partial one-to-one transformation semigroup on X_{n} under composition of mappings. Then \mathcal{I}_{n} is an inverse semigroup (that is, for all $\alpha \in \mathcal{I}_{n}$ there exists a unique $\alpha^{\prime} \in \mathcal{I}_{n}$ such that $\alpha=$ $\alpha \alpha^{\prime} \alpha$ and $\left.\alpha^{\prime}=\alpha^{\prime} \alpha \alpha^{\prime}\right)$. The importance of \mathcal{I}_{n} (more commonly known as the symmetric inverse semigroup or monoid) to inverse semigroup theory may be likened to that of the symmetric group \mathcal{S}_{n} to group theory. Every finite inverse semigroup S is embeddable in \mathcal{I}_{n}, the analogue of Cayley's theorem for finite groups, and to the regular representation of finite semigroups. Thus, just as the study of symmetric, alternating and dihedral groups has made a significant contribution to group theory, so has the study of various subsemigroups of \mathcal{I}_{n}, see for example [1, 4, 5, 8, 9, 19].
A transformation $\alpha \in \mathcal{I}_{n}$ is said to be a partial isometry if (for all $x, y \in$ Dom α) $|x-y|=|x \alpha-y \alpha|$; order-preserving (order-reversing) if (for all $x, y \in D o m \alpha) x \leq y \Longrightarrow x \alpha \leq y \alpha(x \alpha \geq y \alpha)$; and, is said to be order-decreasing if (for all $x \in \operatorname{Dom} \alpha$) $x \alpha \leq x$. Semigroups of partial isometries on more restrictive but richer mathematical structures have been studied [2, 21]. Recently, the authors in [12] studied the semigroup of partial isometries of a finite chain, $\mathcal{D} \mathcal{P}_{n}$ and its subsemigroup of order-preserving partial isometries $\mathcal{O D} \mathcal{P}_{n}$. Ealier, one of the authors studied the semigroup of partial one-to-one order-decreasing(order-increasing) transformations of

[^0]a finite chain, \mathcal{I}_{n}^{-}[19]. This paper investigates the algebraic and combinatorial properties of $\mathcal{D D} \mathcal{P}_{n}$ and $\mathcal{O D \mathcal { D }}{ }_{n}$, the semigroups of order-decreasing partial isometries and of order-preserving order-decreasing partial isometries of an n-chain, respectively.

In this section we introduce basic terminologies and some preliminary results concerning the cycle structure of a partial order-decreasing isometry of X_{n}. In the next section, (Section 2) we characterize the classical Green's relations and their starred analogues, where we show that $\mathcal{O D D P}{ }_{n}$ is a (nonregular) 0-E-unitary ample semigroup. We also show that certain Rees factor semigroups of $\mathcal{O D D} \mathcal{P}_{n}$ are 0 -E-unitary and categorical ample semigroups. In Section 3 we obtain the cardinalities of two equivalences defined on $\mathcal{D D} \mathcal{P}_{n}$ and $\mathcal{O D D P}{ }_{n}$. These equivalences lead to formulae for the order of $\mathcal{D D P}{ }_{n}$ and $\mathcal{O D D P}{ }_{n}$ as well as new triangles of numbers not yet recorded in [17].

For standard concepts in semigroup and symmetric inverse semigroup theory, see for example [11, 16, 14]. In particular $\mathrm{E}(\mathrm{S})$ denotes the set of idempotents of S. Let

$$
\begin{equation*}
\mathcal{D D P}_{n}=\left\{\alpha \in \mathcal{D} \mathcal{P}_{n}:(\forall x \in \operatorname{Dom} \alpha) x \alpha \leq x\right\} \tag{1}
\end{equation*}
$$

be the subsemigroup of \mathcal{I}_{n} consisting of all order-decreasing partial isometries of X_{n}. Also let
(2) $\mathcal{O D D P}_{n}=\left\{\alpha \in \mathcal{D D P}_{n}:(\forall x, y \in \operatorname{Dom} \alpha) x \leq y \Longrightarrow x \alpha \leq y \alpha\right\}$
be the subsemigroup of $\mathcal{D D} \mathcal{P}_{n}$ consisting of all order-preserving orderdecreasing partial isometries of X_{n}. Then we have the following result.

Lemma $1.1 \mathcal{D D P}_{n}$ and $\mathcal{O D D P}_{n}$ are subsemigroups of \mathcal{I}_{n}.
Remark $1.2 \mathcal{D D P}_{n}=\mathcal{D P}_{n} \cap \mathcal{I}_{n}^{-}$and $\mathcal{O D D P}_{n}=\mathcal{O D P}{ }_{n} \cap \mathcal{I}_{n}^{-}$, where \mathcal{I}_{n}^{-}is a semigroup of partial one-to-one order-decreasing transformations of X_{n}.

As in [12], we prove a sequence of lemmas that help us understand the cycle structure of order-decreasing partial isometries. These lemmas also seem to be useful in investigating the combinatorial questions in Section 3. First, let α be in \mathcal{I}_{n}. Then the height of α is $h(\alpha)=|\operatorname{Im} \alpha|$, the right [left] waist of α is $w^{+}(\alpha)=\max (\operatorname{Im} \alpha)\left[w^{-}(\alpha)=\min (\operatorname{Im} \alpha)\right]$, the right [left] shoulder of α is $\varpi^{+}(\alpha)=\max (\operatorname{Dom} \alpha)\left[\varpi^{-}(\alpha)=\min (\operatorname{Dom} \alpha)\right]$, and fix of α is denoted by $f(\alpha)$, and defined by $f(\alpha)=|F(\alpha)|$, where

$$
F(\alpha)=\left\{x \in X_{n}: x \alpha=x\right\} .
$$

Lemma 1.3 [12, Lemma 1.2] Let $\alpha \in \mathcal{D P}_{n}$ be such that $h(\alpha)=p$. Then $f(\alpha)=0$ or 1 or p.

Corollary 1.4 [12, Corollary 1.3] Let $\alpha \in \mathcal{D} \mathcal{P}_{n}$. If $f(\alpha)=p>1$ then $f(\alpha)=h(\alpha)$. Equivalently, if $f(\alpha)>1$ then α is an idempotent.

Lemma 1.5 Let $\alpha \in \mathcal{D D P}_{n}$. If $i \in F(\alpha)(1 \leq i \leq n)$ then for all $x \in$ Dom α, such that $x<i$ we have $x \alpha=x$.

Proof. Note that for all $x \in \operatorname{Dom} \alpha$ we have $x \alpha \leq x<i$ and so $i-x=$ $|i \alpha-x \alpha|=|i-x \alpha|=i-x \alpha \Longrightarrow x=x \alpha$.

Corollary 1.6 Let $\alpha \in \mathcal{D D P}{ }_{n}$. If $F(\alpha)=\{i\}$ then Dom $\alpha \subseteq$ $\{i, i+1, \cdots, n\}$.

Lemma 1.7 [12, Lemma 1.4] Let $\alpha \in \mathcal{D} \mathcal{P}_{n}$. If $1 \in F(\alpha)$ or $n \in F(\alpha)$ then for all $x \in$ Dom α, we have $x \alpha=x$. Equivalently, if $1 \in F(\alpha)$ or $n \in F(\alpha)$ then α is a partial identity.

Lemma 1.8 [12, Lemma 1.5] Let $\alpha \in \mathcal{O D} \mathcal{P}_{n}$ and $n \in \operatorname{Dom} \alpha \cap \operatorname{Im} \alpha$. Then $n \alpha=n$.

Lemma 1.9 [12, Lemma 1.6] Let $\alpha \in \mathcal{O D P}{ }_{n}$ and $f(\alpha) \geq 1$. Then α is an idempotent.

Lemma 1.10 Let $\alpha \in \mathcal{O D D P}_{n}$. Then $x-x \alpha=y-y \alpha$ for all $x, y \in$ Dom α.

Proof. let $x, y \in \operatorname{Dom} \alpha$ be such that $x>y$. Then by the order-preserving and isometry properties we see that $|x-y|=|x \alpha-y \alpha| \Longrightarrow x-y=$ $x \alpha-y \alpha \Longrightarrow x-x \alpha=y-y \alpha$. The case $x<y$ is similar.

2 Green's relations and their starred analogues

For the definitions of Green's relations we refer the reader to Howie [?, Chapter 2]. First we have

Theorem 2.1 Let $\mathcal{D D} \mathcal{P}_{n}$ and $\mathcal{O D D P}{ }_{n}$ be as defined in (1) and (2) respectively. Then $\mathcal{D D} \mathcal{P}_{n}$ and $\mathcal{O D \mathcal { D }} \mathcal{P}_{n}$ are \mathcal{J}-trivial.

Proof. It follows from [19, Lemma 2.2] and Remark 1.2 ,
Now since $\mathcal{O D D} \mathcal{P}_{n}$ contains some nonidempotent elements:

$$
\binom{x}{y}(x>y)
$$

it follows immediately that

Corollary 2.2 For $n>1, \mathcal{D D P}_{n}$ and $\mathcal{O D D \mathcal { P }}{ }_{n}$ are non-regular semigroups.

On the semigroup S the relation $\mathcal{L}^{*}\left(\mathcal{R}^{*}\right)$ is defined by the rule that $(a, b) \in \mathcal{L}^{*}\left(\mathcal{R}^{*}\right)$ if and only if the elements a, b are related by the Green's relation $\mathcal{L}(\mathcal{R})$ in some oversemigroup of S. The join of the equivalences \mathcal{L}^{*} and \mathcal{R}^{*} is denoted by \mathcal{D}^{*} and their intersection by \mathcal{H}^{*}. For the definition of the starred analogue of the Green's relation \mathcal{J}, see [7] or [19].

A semigroup S in which each \mathcal{L}^{*}-class and each \mathcal{R}^{*}-class contains an idempotent is called abundant [7].

By [3, Lemma1.6] and [?, Proposition 2.4.2 \& Ex. 5.11.2] we deduce the following lemma.

Lemma 2.3 Let $\alpha, \beta \in \mathcal{D D} \mathcal{D}_{n}$. Then
(1) $\alpha \leq_{\mathcal{R}^{*}} \beta$ if and only if $\operatorname{Dom} \alpha \subseteq \operatorname{Dom} \beta$;
(2) $\alpha \leq_{\mathcal{L}^{*}} \beta$ if and only if $\operatorname{Im} \alpha \subseteq \operatorname{Im} \beta$;
(3) $\alpha \leq_{\mathcal{H}^{*}} \beta$ if and only if $\operatorname{Dom} \alpha \subseteq \operatorname{Dom} \beta$ and $\operatorname{Im} \alpha \subseteq \operatorname{Im} \beta$.

Proof. It is enough to observe that $\mathcal{O D D} \mathcal{P}_{n}$ and $\mathcal{D D} \mathcal{P}_{n}$ are full subsemigroups of \mathcal{I}_{n} in the sense that $E\left(\mathcal{O D D \mathcal { P }}{ }_{n}\right)=E\left(\mathcal{D D} \mathcal{P}_{n}\right)=E\left(\mathcal{I}_{n}\right)$.

An abundant semigroup S in which $E(S)$ is a semilattice is called adequate [6]. Of course inverse semigroups are adequate since in this case $\mathcal{L}^{*}=\mathcal{L}$ and $\mathcal{R}^{*}=\mathcal{R}$.

As in [6], for an element a of an adequate semigroup S, the (unique) idempotent in the \mathcal{L}^{*}-class $\left(\mathcal{R}^{*}\right.$-class) containing a will be denoted by $a^{*}\left(a^{+}\right)$. An adequate semigroup S is said to be ample if $e a=a(e a)^{*}$ and $a e=(a e)^{+} a$ for all elements a in S and all idempotents e in S. Ample semigroups were known as type A semigroups.

Theorem 2.4 Let $\mathcal{D D} \mathcal{P}_{n}$ and $\mathcal{O D D P}_{n}$ be as defined in (1) and (2) respectively. Then $\mathcal{D D P}{ }_{n}$ and $\mathcal{O D D P}{ }_{n}$ are non-regular ample semigroups.

Proof. The proofs are similar to that of [19, theorem 2.6].

Theorem 2.5 Let $S=\mathcal{O D D P}_{n}$ be as defined in (2). Then $\alpha \leq_{\mathcal{D}^{*}} \beta$ if and only if there exists an order-preserving isometry $\theta: \operatorname{Dom} \alpha \rightarrow \operatorname{Im} \beta$.

Let $E^{\prime}=E \backslash 0$. A semigroup S is said to be $0-E$ - unitary if $(\forall e \in$ $\left.E^{\prime}\right)(\forall s \in S)$ es $\in E^{\prime} \Longrightarrow s \in E^{\prime}$. The structure theorem for 0-E-unitary inverse semigroup was given by Lawson [15], see also Szendrei [18] and Gomes and Howie [10].

Theorem 2.6 $\mathcal{O D D P}{ }_{n}$ is a $0-E$ - unitary ample subsemigroup of \mathcal{I}_{n}.

Proof. It follows from [12, Theorem 2.4].

Remark 2.7 Note that $\mathcal{D D} \mathcal{P}_{n}$ is not 0-E-unitary:

$$
\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right)=\binom{2}{2} \in E\left(\mathcal{D D}_{n}\right) \text { but }\left(\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right) \notin E\left(\mathcal{D} \mathcal{D} \mathcal{P}_{n}\right)
$$

For natural numbers n, p with $n \geq p \geq 0$, let

$$
\begin{equation*}
L(n, p)=\left\{\alpha \in \mathcal{O D D P}_{n}: h(\alpha) \leq p\right\} \tag{3}
\end{equation*}
$$

be a two-sided ideal of $\mathcal{O D D P}_{n}$, and for $p>0$, let

$$
\begin{equation*}
Q(n, p)=L(n, p) / L(n, p-1) \tag{4}
\end{equation*}
$$

be its Rees quotient semigroup. Then $Q(n, p)$ is a 0-E-unitary semigroup whose nonzero elements may be thought of as the elements of $\mathcal{O D D} \mathcal{P}_{n}$ of height p. The product of two elements of $Q(n, p)$ is 0 whenever their product in $\mathcal{O D D P}{ }_{n}$ is of height less than p.
A semigroup S is said to be categorical [10] if

$$
(\forall a, b, c \in S), a b c=0 \Longrightarrow a b=0 \text { or } b c=0
$$

Theorem 2.8 Let $Q(n, p)$ be as defined in (4). Then $Q(n, p)$ is a $0-E-$ unitary categorical semigroup.

Proof. It follows from [12, thrm2.6].

Remark 2.9 Note that $\mathcal{O D D P}_{n}$ is not categorical:

$$
\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 3 \\
2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
1 & 3
\end{array}\right)=0
$$

but

$$
\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 3 \\
2 & 3
\end{array}\right)=\binom{2}{2} \neq 0 \text { and }\left(\begin{array}{ll}
2 & 3 \\
2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
1 & 3
\end{array}\right)=\binom{3}{3} \neq 0
$$

3 Combinatorial results

For a nice survey article concerning combinatorial problems in the symmetric inverse semigroup and some of its subsemigroups we refer the reader to Umar [20].
Now recall the definitions of height and fix of $\alpha \in \mathcal{I}_{n}$ from the paragraph after Lemma 1.1. As in Umar [20], for natural numbers $n \geq p \geq m \geq 0$ we define

$$
\begin{gather*}
F(n ; p)=|\{\alpha \in S: h(\alpha)=|\operatorname{Im} \alpha|=p\}|, \tag{5}\\
F(n ; m)=|\{\alpha \in S: f(\alpha)=m\}|
\end{gather*}
$$

where S is any subsemigroup of \mathcal{I}_{n}. Also, let $i=a_{i}=a$, for all $a \in\{p, m\}$, and $0 \leq i \leq n$.

Lemma 3.1 Let $S=\mathcal{O D} \mathcal{D} \mathcal{P}_{n}$. Then $F\left(n ; p_{1}\right)=F(n ; 1)=\binom{n+1}{2}$ and $F\left(n ; p_{n}\right)=F(n ; n)=1$, for all $n \geq 1$.

Proof. Consider $\alpha=\binom{x}{x \alpha}$, where $x \geq x \alpha$. If $x \alpha=i$ then $x \in\{i, i+1, \cdots, n\}$ and so x has $n-i+1$ degrees of freedom. Hence there are $\sum_{i=1}^{n}(n-i+1)=$ $\frac{n(n+1)}{2}=\binom{n+1}{2}$, order-decreasing partial isometries of height 1 . For the second statement, it is not difficult to see that there is exactly one orderdecreasing partial isometry of height $n:\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ 1 & 2 & \ldots & n\end{array}\right)$ (the identity).

Lemma 3.2 Let $S=\mathcal{O} \mathcal{D D} \mathcal{P}_{n}$. Then $F(n ; p)=F(n-1 ; p-1)+F(n-1 ; p)$, for all $n \geq p \geq 2$.

Proof. Let $\alpha \in \mathcal{O D D P}{ }_{n}$ and $h(\alpha)=p$. Then it is clear that $F(n ; p)=$ $|A|+|B|$, where $A=\left\{\alpha \in \mathcal{O D D P}{ }_{n}: h(\alpha)=p\right.$ and $\left.n \notin \operatorname{Dom} \alpha \cup \operatorname{Im} \alpha\right\}$ and $B=\left\{\alpha \in \mathcal{O D D P}{ }_{n}: h(\alpha)=p\right.$ and $\left.n \in \operatorname{Dom} \alpha \cup \operatorname{Im} \alpha\right\}$. Define a map $\theta:\left\{\alpha \in \mathcal{O D D} \mathcal{P}_{n-1}: h(\alpha)=p\right\} \rightarrow A$ by $(\alpha) \theta=\alpha^{\prime}$ where $x \alpha^{\prime}=x \alpha(x \in$ $\operatorname{Dom} \alpha$. This is clearly a bijection since $n \notin \operatorname{Dom} \alpha \cup \operatorname{Im} \alpha$. Next, recall the definitions of $\varpi^{+}(\alpha)$ and $w^{+}(\alpha)$ from the paragraph after Lemma 1.1. Now, define a map $\Phi:\left\{\alpha \in \mathcal{O D D P}_{n-1}: h(\alpha)=p-1\right\} \rightarrow B$ by $(\alpha) \Phi=\alpha^{\prime}$ where
(i) $x \alpha^{\prime}=x \alpha(x \in D o m \alpha)$ and $n \alpha^{\prime}=n$ (if $\left.\varpi^{+}(\alpha)=w^{+}(\alpha)\right)$;
(ii) $x \alpha^{\prime}=x \alpha(x \in \operatorname{Dom} \alpha)$ and $n \alpha^{\prime}=n-\varpi^{+}(\alpha)+w^{+}(\alpha)<n$ (if $\varpi^{+}(\alpha)>$ $\left.w^{+}(\alpha)\right)$.

In all cases $h\left(\alpha^{\prime}\right)=p$ ，and case（i）coincides with $n \in \operatorname{Dom} \alpha^{\prime} \cap \operatorname{Im} \alpha^{\prime}$ ；and case（ii）coincides with $n \in \operatorname{Dom} \alpha^{\prime} \backslash \operatorname{Im} \alpha^{\prime}$ ．Note that $\varpi^{+}(\alpha) \geq w^{+}(\alpha)$ ，by the order－decreasing property．Thus Φ is onto．Moreover，it is not difficult to see that Φ is one－to－one．Hence Φ is a bijection，as required．This establishes the statement of the lemma．

Proposition 3．3 Let $S=\mathcal{O D D \mathcal { P }}{ }_{n}$ and $F(n ; p)$ be as defined in（⿴囗⿱一兀心）and （5），respectively．Then $F(n ; p)=\binom{n+1}{p+1}$ ，where $n \geq p \geq 1$ ．

Proof．（By Induction）．
Basis Step：$F(n ; 1)=\binom{n+1}{1+1}=\binom{n+1}{2}$ and $F(n ; n)=1$ are true by Lemma 3.1

Inductive Step：Suppose $F(n ; p)$ is true for all $n \geq p \geq 1$ ．
Consider $F(n+1 ; p)=F(n ; p-1)+F(n ; p)=\binom{n+1}{p}+\binom{n+1}{p+1}$
$=\binom{n+2}{p+1}=\binom{(n+1)+1}{p+1}$ ，which is the formula for $F(n+1 ; p)$ ．Hence the statement is true for all $n \geq p \geq 1$ ．

Theorem 3．4 Let $\mathcal{O D D P}{ }_{n}$ be as defined in（⿴囗⿱一兀 ）．Then

$$
\left|\mathcal{O D D P}_{n}\right|=2^{n+1}-(n+1)
$$

Proof．It is enough to observe that $\left|\mathcal{O D D P}{ }_{n}\right|=\sum_{p=0}^{n} F(n ; p)$ ．
Lemma 3．5 Let $S=\mathcal{O D D \mathcal { P }}{ }_{n}$ ．Then $F(n ; m)=\binom{n}{m}$ ，for all $n \geq m \geq 1$ ．
Proof．It follows directly from［12，Lemma 3．7］and the fact that all idem－ potents are necessarily order－decreasing．

Proposition 3．6 Let U_{n} be a subsemigroup of \mathcal{I}_{n}^{-}and $F(n ; m)$ be as de－ fined in（6）．Then $F(n ; 0)=\left|U_{n-1}\right|$ ．

Proof．First，we define a map $\theta: U_{n-1} \longrightarrow\left\{\alpha \in U_{n}: f(\alpha)=0\right\}$ by $\theta(\alpha)=\alpha^{\prime}$ where for all $i(>1)$ in $\operatorname{Dom} \alpha$,

$$
i \alpha^{\prime}=(i-1) \alpha
$$

Since $n \notin \operatorname{Dom} \alpha$ and $i \alpha^{\prime}=(i-1) \alpha<i$ for all $i>1$ ，it follows that $i \alpha^{\prime}$ has the same degrees of freedom as $(i-1) \alpha$ ，for all $i>1$ ．It is also clear that $f\left(\alpha^{\prime}\right)=0$ ．Thus θ is a bijection onto $\left\{\alpha \in U_{n}: f(\alpha)=0\right\}$ ．

Remark 3.7 The triangles of numbers $F(n ; p)$ and $F(n ; m)$, are as at the time of submitting this paper not in Sloane 17]. However, the sequence $F(n+$ $\left.1 ; m_{0}\right)=\left|\mathcal{O D D P}_{n}\right|$ is [17, A000325]. For some computed values of $F(n ; p)$ and $F(n ; m)$ in $\mathcal{O D D P}{ }_{n}$, see Tables 3.1 and 3.2.

$n \backslash p$	0	1	2	3	4	5	6	7	$\sum F(n ; p)=\left\|\mathcal{O D D P}_{n}\right\|$
0	1								1
1	1	1							2
2	1	3	1						5
3	1	6	4	1					12
4	1	10	10	5	1				27
5	1	15	20	15	6	1			58
6	1	21	35	35	21	7	1		121
7	1	28	56	70	56	28	8	1	248

Table 3.1

$n \backslash m$	0	1	2	3	4	5	6	7	$\sum F(n ; m)=\left\|\mathcal{O D D P}_{n}\right\|$
0	1								1
1	1	1							2
2	2	2	1						5
3	5	3	3	1					12
4	12	4	6	4	1				27
5	27	5	10	10	5	1			58
6	58	6	15	20	15	6	1		121
7	121	7	21	35	35	21	7	1	248

Table 3.2
Lemma 3.8 [12, Lemma 3.11] Let $\alpha \in \mathcal{D} \mathcal{P}_{n}$. Then α is either orderpreserving or order-reversing.

Next, we prove similar results for $\mathcal{D} \mathcal{D} \mathcal{P}_{n}$
Lemma 3.9 Let $\alpha \in \mathcal{D D P}_{n}$. For $1<i<n$, if $F(\alpha)=\{i\}$ then for all $x \in$ Dom α we have that $x+x \alpha=2 i$.

Proof. Let $F(\alpha)=\{i\}$ and suppose $x \in \operatorname{Dom} \alpha$. Obviously, $i+i \alpha=i+i=$ 2i. If $x<i$ then $x \alpha>i$, for otherwise we would have $i-x=|i \alpha-x \alpha|=$ $|i-x \alpha|=i-x \alpha \Longrightarrow x=x \alpha$, which is a contradiction. Thus, $i-x=$ $|i \alpha-x \alpha|=|i-x \alpha|=|x \alpha-i|=x \alpha-i \Longrightarrow x+x \alpha=2 i$. The case $x>i$ is similar.

Lemma 3.10 Let $S=\mathcal{D \mathcal { D } \mathcal { P }}{ }_{n}$. Then $F(n ; m)=\binom{n}{m}$, for all $n \geq m \geq 2$.
Proof. It follows directly from [12, Lemma 3.18] and the fact that all idempotents are necessarily order-decreasing.

Proposition 3.11 Let $S=\mathcal{D} \mathcal{D} \mathcal{P}_{n}$. Then $F\left(2 n ; m_{1}\right)=F(2 n ; 1)=2^{n+1}-2$ and $F\left(2 n-1 ; m_{1}\right)=F(2 n-1 ; 1)=3.2^{n-1}-2$, for all $n \geq 1$.

Proof. Let $F(\alpha)=\{i\}$. Then by Lemma 3.9, for any $x \in \operatorname{Dom} \alpha$ we have $x+x \alpha=2 i$. Thus, by corollary [1.6, there $2 i-2$ possible elements for Dom $\alpha:(x, x \alpha) \in\{(i, i),(i+1, i-1),(i+2, i-2), \cdots(2 i-1,1)\}$. However, (excluding (i, i)) we see that there are $\sum_{j=0}\binom{i-1}{j}=2^{i-1}$, possible partial isometries with $F(\alpha)=\{i\}$, where $2 i-1 \leq n \Longleftrightarrow i \leq(n+1) / 2$. Moreover, by symmetry we see that $F(\alpha)=\{i\}$ and $F(\alpha)=\{n-i+1\}$ give rise to equal number of decreasing partial isometries. Note that if n is odd the equation $i=n-i+1$ has one solution. Hence, if $n=2 a-1$ we have

$$
2 \sum_{i=1}^{a-1} 2^{i-1}+2^{a-1}=2\left(2^{a-1}-1\right)+2^{a-1}=3.2^{n-1}-2
$$

decreasing partial isometries with exactly one fixed point; if $n=2 a$ we have

$$
2 \sum_{i=1}^{a} 2^{i-1}=2\left(2^{a}-1\right)=2^{a+1}-2
$$

decreasing partial isometries with exactly one fixed point.
Theorem 3.12 Let $\mathcal{D D P}_{n}$ be as defined in (11). Then

$$
\left|\mathcal{D} \mathcal{D} \mathcal{P}_{n}\right|=3 a_{n-1}-2 a_{n-2}-2^{\left\lfloor\frac{n}{2}\right\rfloor}+n+1 .
$$

Proof. It follows from Proposition 3.6, Lemma 3.10, Proposition 3.11 and the fact that $\left|\mathcal{D D} \mathcal{P}_{n}\right|=\sum_{m=0}^{n} F(n ; m)$.

Remark 3.13 The triangles of numbers $F(n ; m)$ and the sequences $\left|\mathcal{D D} \mathcal{P}_{n}\right|=$ $F\left(n+1 ; m_{0}\right)$, are as at the time of submitting this paper not in Sloane [17]. For some computed values of $F(n ; m)$ in $\mathcal{D D} \mathcal{P}_{n}$, see Table 3.3.

$n \backslash m$	0	1	2	3	4	5	6	7	$\sum F(n ; m)=\left\|\mathcal{D D} \mathcal{P}_{n}\right\|$
0	1								1
1	1	1							2
2	2	2	1						5
3	5	4	3	1					13
4	13	6	6	4	1				30
5	30	10	10	10	5	1			66
6	66	14	15	20	15	6	1		137
7	137	22	21	35	35	21	7	1	279

Table 3.3

Acknowledgements. The first named author would like to thank Bowen University, Iwo and Sultan Qaboos University for their financial support and hospitality, respectively.

References

[1] Borwein, D., Rankin, S. and Renner, L. Enumeration of injective partial transformations. Discrete Math. 73 (1989), 291-296.
[2] Bracci, L., and Picasso, L. E. Representations of semigroups of partial isometries. Bull. Lond. Math. Soc. 39 (2007), 792-802.
[3] El-Qallali, A., and Fountain, J. B. Idempotent-connected abundant semigroups. Proc. Roy. Soc. Edinburgh Sect. A, 91 (1981), 79-90.
[4] Fernandes, V. H. The monoid of all injective orientation-preserving partial transformations on a finite chain. Comm. Algebra 32 (2000), 3401-3426.
[5] Fernandes, V. H., Gomes, G. M. S. and Jesus, M. M. The cardinal and idempotent number of various monoids of transformations on a finite chain. Algebra Colloquium. (To appear).
[6] Fountain, J. B. Adequate semigroups. Proc. Edinburgh Math. Soc. 22 (1979), 113-125.
[7] Fountain, J. B. Abundant semigroups. Proc. London Math. Soc. (3) 44 (1982), 103-129.
[8] Ganyushkin, O. and Mazorchuk, V. Classical Finite Transformation Semigroups: An Introduction, Springer, London, 2009.
[9] Garba, G. U. Nilpotents in semigroups of partial one-to-one orderpreserving mappings. Semigroup Forum, 48 (1994), 37-49.
[10] Gomes, G. M. S and Howie, J. M. A P-theorem for inverse semigroups with zero. Portugaliae Math. 53 (1996), 257-278.
[11] Howie, J. M. Fundamentals of semigroup theory. Oxford: Clarendon Press, 1995.
[12] Kehinde, R. and Umar, A. On the semigroup of partial isometries of a finite chain. (Submitted).
[13] Laradji, A. and Umar, A. On certain finite semigroups of orderdecreasing transformations I. Semigroup Forum, 69 (2004), 184-200.
[14] Lawson, M. V. Inverse semigroups: the theory of partial symmetries, Singapore: World Scientific, 1998.
[15] Lawson, M. V. The structure of 0-E-unitary inverse semigroups I: the monoid case Proc. Edinb. Math. Soc., 42 (1999), 497-520.
[16] Limpscomb, S. Symmetric Inverse Semigroups, Mathematical Surveys of The American mathematical Society, no. 46, Providence, R. I., 1996.
[17] Sloane, N. J. A. - The On-Line Encyclopedia of Integer Sequences, @http://www.research.att.com/~njas/sequences/.
[18] Szendrei, M. B. A generalization of McAlister's P-theorem for E-unitary regular semigroups, Acta Sci Math (Szeged) 57 (1987), 229-249.
[19] Umar, A. On the semigroups of partial one-to-one order-decreasing finite transformations, Proc. Roy. Soc. Edinburgh, 123A (1993), 355-363.
[20] Umar, A. Some combinatorial problems in the theory of symmetric inverse semigroups, Algebra and Discrete Math. 9 (2010), 115-126.
[21] Wallen, Lawrence J. Semigroups of partial isometries. Bull. Amer. Math. Soc. 75 (1969), 763-764.

R. Kehinde
Department of Mathematics and Statistics
Bowen University
P. M. B. 284,Iwo, Osun State
Nigeria.
E-mail:kennyrot2000@yahoo.com
S.Ø. Makanjuola
Department of Mathematics
University of Ilorin
P. M. B. 1515,Ilorin, Kwara State
Nigeria.
E-mail:somakanjuola@unilorin.edu.ng
A. Umar
Department of Mathematics and Statistics
Sultan Qaboos University
Al-Khod, PC 123 - OMAN
E-mail:aumarh@squ.edu.om

[^0]: ${ }^{1}$ Key Words: partial one-one transformation, partial isometries, height, right (left) waist, right (left) shoulder and fix of a transformation, idempotents and nilpotents.
 ${ }^{2}$ This work was carried out when the first named author was visiting Sultan Qaboos University for a 3-month research visit in Fall 2010.

