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Susceptibility of the transverse field Ising model on the square lattice
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Bogolyubov Institute for Theoretical Physics, 14-b Metrolohichna, Kiev 03680 Ukraine

Susceptibility of the transverse field Ising model on the square lattice is calculated numerically
in the paramagnetic phase in a wide range of temperatures and transverse fields. An expression
with one constant π, that determines both the critical exponent γ and the critical transverse field,
compellingly represents the data asymptotically near the quantum critical point, except for a narrow
classical region close to the phase transition line, and shows two crossovers as temperature varies.

PACS numbers: 05.30.Rt, 64.60.-i, 75.40.Mg

Quantum field theory having been derived from an ex-
plicitly Lorentz invariant model encounters divergences
when imposing quantum mechanics. Alternatively, quan-
tum models defined on lattices explicitly obey the quan-
tum mechanics but the Lorentz invariance, the conformal
symmetry as well as other symmetries emerge, if at all,
only in the long wavelength limit [1]. This continuum
limit can be found either in special massless phases, such
as quantum antiferromagnets, or in the vicinity of a phase
transition known as a quantum critical point at zero tem-
perature. Novel emergent phenomena near quantum crit-
ical points is of great interest in condensed matter physics
[2]. Phase diagrams near quantum critical points show
abundant characteristic crossovers [3] like a pseudogap
phenomenon in the high-temperature superconductors.
Symmetry brings in simplicity. First demonstrated by
Maldacena [4], quantitative description of quantum lat-
tice models governed by a symmetry may correspond to
a solution of the classical Einstein equation for gravi-
tational fields in special settings representing the same
symmetry. It is plausible that such a solution in the case
of the quantum critical point would be given in terms
of a simple, ’school-curriculum’ function. Provided this
simplicity, underpinned by unknown symmetry, precise
numerical simulations may be sufficient to guess the an-
swer for some physical questions. This paper, based on
numerical data, reveals that in the case of the transverse
field Ising model on the square lattice the magnetic sus-
ceptibility can be represented as a simple expression in a
wide range of temperatures and transverse fields around
the quantum critical point. In particular, both the posi-
tion of the quantum critical point and the critical expo-
nent of the magnetic susceptibility is specified. There are
two crossovers at T ∗

1 = 1/π and T ∗
2 = π in the expression

for magnetic susceptibility.
The spin-half transverse field Ising model [5] on the

square lattice is anisotropic in the spin space with two
distinct axis, longitudinal x and transverse z. The Hamil-
tonian includes the exchange interaction between nearest
neighbors 〈xy〉, the Zeeman energy in the transverse field
H and the external longitudinal magnetic field h:

Ĥ = −J
∑

〈xy〉

σx
x
σx
y
−H

∑

x

σz
x
− h

∑

x

σx
x
, (1)

where spin-half ~σx resides on sites x of the square lattice.
We set the exchange coupling to unity, J = 1, leaving
a single parameter, the strength of the transverse field
H , in the Hamiltonian eq.(1). Without an external field
the Hamiltonian does commute with the parity operator:
P̂ =

∏

x
σz
x
. Accordingly, all eigenstates of this model

are divided into even and odd states of equal number.
Available experimental realizations of the transverse field
Ising model either include long range interactions [6] or
are one-dimensional magnetic chains [7].

Phase diagram (H,T ) of the transverse field Ising
model on the square lattice is shown schematically on
Fig.1. There are two phases, a paramagnetic phase at
high temperatures and high transverse fields and a mag-
netically ordered along the longitudinal direction phase
at low temperatures and low transverse fields. There is
always a non-vanishing magnetization in the transverse
direction that grows with H . A line of phase transi-
tions (H,Tc(H)), not found in this paper, separates these
two phases. On the right, it ends in a quantum criti-
cal point, (Hc, 0), and, on the left, in a classical critical
point, (0, Tc(0)), the phase transition of the classical two-
dimensional Ising model at T0 = 2/asinh(1) = 2.269185.
At the approaches to the phase transition line the longi-
tudinal susceptibility diverges according to a power law:

χ(H,T ) = C+

cl (H)

(

T

Tc(H)
− 1

)−7/4

, (2)

corresponding to the universality class of the classical
two-dimensional Ising model [8]. On the line T = 0, the
quantum two-dimensional transverse field Ising model is
equivalent to the classical three-dimensional Ising model
[9, 10]. At the approaches to the quantum critical point
along the line T = 0 the longitudinal susceptibility di-
verges as

χ(H) = C+

Q

(

H

Hc
− 1

)−γ

, (3)

where γ, found to lie in the interval γ = 1.23...1.24
in many studies both quantum and classical [11–14], is
a critical exponent of the susceptibility in the classical
three-dimensional Ising model.
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FIG. 1: Phase diagram (H,T ) of the transverse field Ising
model. Inside the green box the susceptibility data have been
collected. Red, lower, line is the Ising phase transition Tc(H)
ending in the quantum critical point Hc. Blue, middle, line is
a spurious quantum transition TQ(H) [singularity in eq.(11)]
ending before reaching H = 0 axis. Black, upper, line is a
concept of the quantum-to-classical crossover T ∗(H).

We calculate numerically the longitudinal susceptibil-
ity using Nickel’s linked cluster expansion method [15]
called as a graph expansion below. It applies to all quan-
tum lattice models with the Hamiltonian being a uniform
sum over lattice edges:

Ĥ =
∑

e

Ĥe =
∑

〈xy〉

[

−H

4

(

σz
x
+ σz

y

)

− σx
x
σx
y

]

, (4)

and to the transverse field Ising model in particular. The
transverse field Zeeman term as well as the longitudinal
magnetization operator:

M̂ =
∑

〈xy〉

1

4

(

σx
x
+ σx

y

)

, (5)

for each site can be split into four equal parts assigned
to the four incident edges. Our algorithm would not re-
quire it but in derivation we assume the validity of the
perturbation theory, for the transverse field Ising model
in the limit H → ∞. The transverse field Zeeman term
is the unperturbed Hamiltonian whereas the Ising term,
residing on edges, is the perturbation. Usually, pertur-
bation terms are arranged by the power. Instead, we
assign a footprint i.e. a set of connected edges involved
in the given perturbation process. Different footprints
specify classes of perturbation terms. In general, some
perturbation terms are equal while having different foot-
prints. Such footprints are different embedding of the
same graph into the lattice. Truly distinct classes are
represented by graphs embeddable into the lattice. The
result of summing up the perturbative series on a graph
is alternatively found using the matrix quantum mechan-
ics. The Hamiltonian Ĥg and a longitudinal magnetiza-

tion M̂g of a graph g are uniquely defined as restriction of

the lattice Hamiltonian eq.(4) and the longitudinal mag-
netization eq.(5) onto one embedding of this graph into
the lattice. Both Ĥg and M̂g do not depend on the par-

ticular embedding. The operator M̂g connects even and

odd states. The even and odd blocks of Ĥg as well as M̂g

have all equal dimension.
We arrive at the following algorithm. We enumerate all

graphs embeddable into the square lattice. There are in
total 1, 1, 2, 4, 6, 14, 28, 68, 156, 399, 1012 graphs embed-
dable into the square lattice with the number of edges
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 correspondingly [16]. For each
graph g the graph Hamiltonian Ĥg =

∑

i |i〉Eg(i)〈i| is
diagonalized numerically whereas the graph magnetiza-
tion 〈i|M̂g|j〉 is rotated into the new basis. The Gibbs
thermodynamic average of the graph susceptibility reads:

χg =
∑

i,j

〈i|M̂g|j〉〈j|M̂g|i〉
Eg(j)− Eg(i)

e−Eg(i)/T /
∑

i

e−Eg(i)/T

(6)
The Gibbs thermodynamic average of the magnetic sus-
ceptibility on the lattice per one site in the thermody-
namic limit is a sum of the graph susceptibilities:

χ =
∑

g

Z(g)



χg −
∑

f∈g

Zg(f)χf



 , (7)

where Z(g) is the number of different embeddings of the
graph g into the lattice. f is the sub-graph of the graph
g, hence, also embeddable into the lattice. Zg(f) is the
number of different embeddings of the sub-graph f into
the graph g considered on the lattice.
The graph expansion alters in the structure of the

Feynman diagrams method where one sums up ’geom-
etry’ in terms of propagators and interaction points first
and gives the result in powers of the coupling. In the
graph expansion one sums up the interaction in all pow-
ers of the coupling first and gives the result in geometrical
patterns, footprints. Also, the graph expansion counts
largely the same processes as the Lanczos method on the
regular 6× 6 cluster albeit on many thousands of graphs
bended and turned in many thousands ways with observ-
ables being given in the thermodynamic limit.
Graphs are classified according to the number of edges,

referred to here as a weight w. The sum eq.(7) restricted
all graphs g with the weight w defines a partial suscep-
tibility χw. For each point (H,T ) on the phase diagram
the susceptibility is given by a sum of partial susceptibil-
ities, χ(H,T ) =

∑

w χw(H,T ). A sequence of numbers
χw(H,T ) for w = 1...11 is calculated numerically. In the
paramagnetic phase a typical sequence |χw| seems to be
convergent. In the magnetically ordered phase a typical
sequence |χw| seems to be divergent. At H < Hc the
sign of χw is positive whereas at H > Hc the sign of χw

shows typically an irregular pattern. To extrapolate to
w = ∞ while allowing for a one change in the pattern, the
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FIG. 2: Longitudinal susceptibility sorted out into five quality
grade baskets, dark blue 281 points, blue 73 points, pink 100
points, green 102 points and red 46 points vs (H,T ). The
eqs.(10,11,14) is shown as the black surface.

available sequence is split in the middle at some weight
w∗. Then, χw for w < w∗ is summed up whereas χw for
w ≥ w∗ is augmented by a variable z into a polynomial:

χ(H,T ) =

w∗−1
∑

w=1

χw(H,T ) +

wmax
∑

w=w∗

χw(H,T ) zw−w∗

(8)

where wmax = 11. This polynomial is extrapolated us-
ing the Pade approximation. Selecting all middle weights
in the interval 2 ≤ w∗ ≤ 9 and all degrees of the poly-
nomial in the nominator of the Pade approximant while
sending z to one gives us forty or so different extrapola-
tions χi for one point χ(H,T ). Their distribution ρ(χ)
has a maximum corresponding, probably, to the correct
extrapolation χ(H,T ), and a tail of those χi that are
gone astray when z = 1 comes close to a pole. We dec-
imate the extrapolations most distant from the average
〈χi〉, one by one, and stop when four extrapolations re-
main. Their average gives us χ(H,T ). For a measure
of quality of thus calculated datum the above procedure
is repeated twice for wmax = 10 and wmax = 11. The
absolute difference between the two to the datum value
ratio defines a quality of the datum, δ(H,T ) = |∆χ|/χ.
Fig.2 shows the longitudinal susceptibility of the trans-

verse field Ising model on the square lattice calculated
numerically in the range 0.1 ≤ T ≤ 4 and 2 ≤ H ≤ 4.2
with a step ∆H = ∆T = 0.1. The data with a poor qual-
ity δ(H,T ) > 3.2% are not shown. χ0 = 1/(2Hc) = 0.165
sets an atomic scale for the susceptibility. We sort out
our data, six hundred points in total, into five quality
baskets: δ ≤ 0.05% ≤ δ ≤ 0.1% ≤ δ ≤ 0.4% ≤ δ ≤
1.6% ≤ δ ≤ 3.2%, shown in dark blue, blue, pink, green
and red colors correspondingly on the Fig.2. The closer

one approaches the Ising phase transition line and espe-
cially the line T = 0 the worse is the quality of the data.
The graph expansion, relying on discreet energy spectra
of small graphs, is expected to become problematic in the
limit T → 0.
In the paramagnetic phase the longitudinal suscepti-

bility is given by the Kubo equation:

χ(H,T ) =
∑

r

∫ ∞

0

〈[σx(0,0), σx(t, r)]−〉dt =
∫ ∞

0

dχ

dξ
dξ

(9)
where in the spirit of the renormalization group [1] at
large distance |r| ≫ 1 the sum proceeds in a scale-wise
manner, with the scale ξ = log |r|. In classical statisti-
cal physics the susceptibility density dχ/dξ is determined
by a running renormalization group energy, Hamiltonian,
HRG(ξ). As ξ grows it approaches the fixed-point Hamil-
tonian HFP and, near a critical point, stays in the fixed-
point, HRG(ξ) = HFP , for a long interval of ξ. Here
a critical part of the susceptibility χC develops. At the
initial transient scales as well as at the exit from the fixed-
point a regular part of the susceptibility χreg develops.
Analogously, we write for the quantum model:

χ(H,T ) = χQC(H,T ) + χreg(H,T ) (10)

For the quantum critical part of the susceptibility we use
an expression without adjustable parameters:

χQC(H,T ) =

(

π − 2

γ − 1

)γ

×
((

T

π

)γ (

1−
(

T

π

)γ)

+
T 2γ +H2 −H2

c

1 + (T/π)γ

)−γ

(11)

where the critical transverse field Hc is related to the
critical exponent by two conditions:

Hc =
π − 2γ

γ − 1
,

γ2 + 1

γ2 − 1
= 8−Hc (12)

or explicitly:

γ =
1

18

(

π − 2 +
√

328 + 32π + π2

)

Hc =
4 + 16π − 2

√
328 + 32π + π2

−20 + π +
√
328 + 32π + π2

(13)

Approximately, Hc = 3.03692 and γ = 1.226645. Recent
estimate for Hc is given in ref.[14]. Despite being based
on poor data in this area, the quantum critical suscepti-
bility eq.(11) continues seamlessly onto the line T = 0.
Therefore, γ is the critical exponent of the susceptibility
of the three dimensional Ising model. The quantum crit-
ical susceptibility shows two crossovers as temperature
varies at T ∗

1 = 1/π and at T ∗
2 = π. For the regular part

of the susceptibility we try a polynomial. The best fit
is given by the expression that depends on temperature



4

 0.001

 0.01

 0.001  0.01

FIG. 3: Average deviation of the susceptibility data, sorted
out into five quality baskets, from the fit vs average variation
of the data as the maximum weight increases by one.

sharply above T ∗
2 and explicitly vanishes at the quantum

critical point (Hc, 0):

χreg(H,T ) = a
H2

H2
c

(

H2

H2
c

− 1

)

+ b

(

T

π

)9γ

(14)

where a = 0.00313 and b = 0.000115. This fit promotes
the eq.(11) as the asymptotic susceptibility at the quan-
tum critical point. Probably, it also indicates a hidden
symmetry as though the transverse field Ising Hamilto-
nian eq.(1) is the fixed point from the beginning of the
renormalization flow. The first term in eq.(14), prob-
ably, describes a tail from a crossover at H∗ ∼ 7 where
the receding quantum critical susceptibility eq.(11) trans-
forms into an one-site susceptibility χ(H,T ) = 1/(2H)
at the high transverse fields. There is no evidence of the
quantum-to-classical crossover in the numerical simula-
tions for graphs with weights w ≤ 11.
The quantum critical susceptibility eq.(11) has a sin-

gularity line (H,TQ(H)) on the phase diagram Fig.1. We
prove that this line lies above the Ising phase transi-
tion line (H,Tc(H)). The quantum-to-classical crossover
occurs at some line (H,T ∗(H)), where χQC(T ) eq.(11)
transforms into χcl(T ) eq.(2). Approximating χQC(T )
by a power law like eq.(2) and imposing the two conti-
nuity conditions, χQC = χcl and dχQC/dT = dχcl/dT at
T = T ∗(H), we find that T ∗ − Tc = (7/4γ)(T ∗ − TQ).
Since γ < 7/4, we find Tc(H) < TQ(H).
One objection against the quantum critical suscepti-

bility eq.(11) is that usually the location of the critical
point on the phase diagram is not universal. In the one-
dimensional chain Hc = 1 due to the duality [10]. The
change of the sign in eq.(11) at small H serves as to sep-
arate the quantum from the classical regions whereas it
is problematic at high temperature. Also, crossovers in
eq.(11) differs markedly from the characteristic triangu-
lar quantum criticallity region [2].
The following test demonstrates that there is no

intrinsic contradiction between our data and the fit

eqs.(10,11,14). The quality δ(H,T ) of datum gives us
a crude estimate of how far it may potentially vary
as the maximum weight increases from wmax = 11 to
wmax = ∞. Averaging all data variations over a basket
of points we get a measure for the final potential vari-
ation. On the other hand, we can measure the current
discrepancy between the data and the fit, at wmax = 11,
and average it over the same basket of points. If the cur-
rent discrepancy is exceeding the potential variation by
far it is unlikely that the data and the fit will converge
at w → ∞. Alternatively, when the potential variation is
exceeding the current discrepancy by far, a special pat-
tern of alternating signs is necessary for the data and
the fit to converge that seems also unlikely. The best
chance for the data and the fit to converge is when the
potential variation approximately equals the current dis-
crepancy. Our data and the fit present widely varying
both measures shown in the Fig.3. Remarkably, these
two measures are more or less equal, see Fig.3.

In conclusion, using the graph expansion the longitu-
dinal susceptibility of the transverse field Ising model on
the square lattice has been calculated numerically. The
result has been non-contradictory interpreted in terms of
a simple function. Such interpretation might be useful
when searching for a corresponding settings in the Ein-
stein general relativity. It is quite possible that our in-
terpretation is erroneous. It is also possible that eq.(13)
gives the correct critical exponent of the susceptibility of
the three dimensional Ising model.

I am grateful to SLAC Scientific Computing Services
for providing resources for numerical simulations.
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