THE MÉNAGE PROBLEM WITH A KNOWN MATHEMATICIAN

VLADIMIR SHEVELEV

Abstract

We give a solution of the following combinatorial problem: "A known mathematician N found himself with his wife among the guests, which were $n(\geq 3)$ married couples. After seating the ladies on every other chair at a circular table, N was the first offered to choose an arbitrary chair but not side by side with his wife. To find the number of ways of seating of other men after N chose a chair (under the condition that no husband is beside his wife)." We discuss also the problem: "For which values of n the number of ways of seating of other men does not depend on a choice by N his chair?"

1. Introduction

In 1891, Lucas [2] formulated the following "ménage problem":
Problem 1. To find the number M_{n} of ways of seating n married couples at a circular table, men and women in alternate positions, so that no husband is next to his wife.

After seating the ladies by $2 n$! ways we have

$$
\begin{equation*}
M_{n}=2 n!U_{n}, \tag{1.1}
\end{equation*}
$$

where U_{n} is the number of ways of seating men.
Earlier Muir [4] solved a problem posed by Tait (cf. [4]): to find the number H_{n} of permutations π of $\{1, \ldots, n\}$ for which $\pi(i) \neq i$ and $\pi(i) \neq i+1$ $(\bmod n), \quad i=1, \ldots, n$. By a modern language, $H_{n}=\operatorname{per}\left(J_{n}-I-P\right)$, where J_{n} is $n \times n$ matrix composed by 1 's only, $I=I_{n}$ is the identity matrix and $P=P_{n}$ is the incidence matrix corresponding to the cycle $(1,2, \ldots, n)$ (cf. [3]). Simplifying Muir's solution, Cayley [1] found a very simple recursion for $H_{n}: H_{2}=0, H_{3}=1$, and for $n \geq 4$,

$$
\begin{equation*}
(n-2) H_{n}=n(n-2) H_{n-1}+n H_{n-2}+4(-1)^{n+1} \tag{1.2}
\end{equation*}
$$

Only in 1934 due to celebrated research by Touchard [9, it became clear that

$$
\begin{equation*}
H_{n}=U_{n} \tag{1.3}
\end{equation*}
$$

[^0]and thus formulas (1.1)-(1.2) give a recursion solution of the ménage problem. Moreover, Touchard gave a remarkable explicit formula
\[

$$
\begin{equation*}
U_{n}=\sum_{k=0}^{n}(-1)^{k} \frac{2 n}{2 n-k}\binom{2 n-k}{k}(n-k)! \tag{1.4}
\end{equation*}
$$

\]

A beautiful proof of (1.4 with help of the rook technique one can find in [5].
The first terms of the sequence $\left\{U_{n}\right\}$, for $n \geq 2$, are (cf. [8])

$$
\begin{equation*}
0,1,2,13,80,579,4738,43387,439792,4890741,59216642, \ldots \tag{1.5}
\end{equation*}
$$

Note that formulas for U_{n} in other forms are given by Wayman and Moser [10] and Shevelev [6].
In the present paper we study the following problem.
Problem 2. A known mathematician N found himself with his wife among the guests, which were $n(>=3)$ married couples. After seating the ladies on every other chair at a circular table, N was the first offered to choose an arbitrary chair but not side by side with his wife. To find the number of ways of seating of other men, after N chose a chair, under the condition that no husband is beside his wife.

We also discuss a close problem:
Problem 3. For which values of n the number of ways of seating of other men in Problem 圆 does not depend on a choice by mathematician N his chair?

2. A comment to representation of solution of Problem 1 by $\operatorname{per}\left(J_{n}-I-P\right)$ in connection with Problem 2

Denote $2 n$ chairs at a circular table by the symbols

$$
\begin{equation*}
1, \overline{1}, 2, \overline{2}, \ldots, n, \bar{n} \tag{2.1}
\end{equation*}
$$

over clockwise. Ladies occupy either chairs $\{1, \ldots, n\}$ or chairs $\{\overline{1}, \ldots, \bar{n}\}$. Let they occupy, say, chairs $\{\overline{1}, \ldots, \bar{n}\}$. Then to every man we give a number i, if his wife occupies the chair \bar{i}. Now the i-th man, for $i=1, \ldots, n-1$, can occupy every chair except of chairs $i, i+1$, while the n-th man cannot occupy chairs n and 1 . Denoting in the corresponding $n \times n$ incidence matrix the prohibited positions by 0's and other positions by 1's, we obtain the matrix $J_{n}-I-P$. Now, evidently, to every seating the men corresponds a diagonal of 1's in this matrix. This means that

$$
\begin{equation*}
U_{n}=\operatorname{per}\left(J_{n}-I-P\right) \tag{2.2}
\end{equation*}
$$

Let in Problem 2 the wife of mathematician N occupy, say, chair $\overline{1}$.

Let us measure the distance between N and his wife via the number of spaces between the separating them chairs over clockwise. Now, if N occupies the r-th chair, then the distance equals to $r-1$. In the incidence matrix, the r-th chair of the first man corresponds to position $(1, r)$. Denote the matrix obtained by the removing the first row and the r-th column of the matrix $J_{n}-I-P$ by $\left(J_{n}-I-P\right)[1 \mid r]$. Then, we obtain the following lemma.

Lemma 1. If N chose a chair at the distance $r-1$ from his wife, then the number of seating of other men equals to $\operatorname{per}\left(\left(J_{n}-I-P\right)[1 \mid r]\right)$.

Note that, if to consider numeration 2.1 over counterclockwise, then we obtain a quite symmetric result in which r corresponds to $n-r+3, r=$ $3, \ldots, n$, such that as a corollary of Lemma 1 we have

$$
\begin{equation*}
\operatorname{per}\left(\left(J_{n}-I-P\right)[1 \mid r]\right)=\operatorname{per}\left(\left(J_{n}-I-P\right)[1 \mid n-r+3]\right), \quad r=3, \ldots, n \tag{2.3}
\end{equation*}
$$

3. Rook lemmas

Here we place several results of the classic Kaplansky-Riordan rook theory (cf. [5], Ch. 7-8).

Let M be a rectangle (quadratic) $(0,1)$-matrix M.
Definition 1. The polynomial

$$
\begin{equation*}
R_{M}(x)=\sum_{j=0}^{n} \nu_{j}(M) x^{j} \tag{3.1}
\end{equation*}
$$

where $\nu_{0}=1$ and ν_{j} is the number of ways of putting j non-taking rooks on positions 1's of M, is called rook polynomial.

Note that n is the maximal number for which there exists at least one possibility to put n non-taking rooks on positions 1's of M.

Lemma 2. If M is a quadratic matrix with the rook polynomial (3.1), then

$$
\begin{equation*}
\operatorname{per}\left(J_{n}-M\right)=\sum_{j=0}^{n}(-1)^{j} \nu_{j}(M)(n-j)! \tag{3.2}
\end{equation*}
$$

Definition 2. Two submatrices M_{1} and M_{2} of $(0,1)$-matrix M are called disjunct if no 1's of M_{1} in the same row or column as those of M_{2}.

From Definition 1 the following lemma evidently follows.
Lemma 3. If $(0,1)$-matrix M consists of two disjunct submatrices M_{1} and M_{2}, then

$$
\begin{equation*}
R_{M}(x)=R_{M_{1}}(x) R_{M_{2}}(x) \tag{3.3}
\end{equation*}
$$

Consider a position (i, j) of 1 in matrix M. Denote $M^{(0(i, j))}$ the matrix obtained from M after replacing 1 in position (i, j) by 0 . Denote $M^{(i, j)}$ the matrix obtained from M by removing the i-th row and j-column.

Lemma 4. We have

$$
\begin{equation*}
R_{M}(x)=x R_{M^{(i, j)}}+R_{M^{(0(i, j))}} . \tag{3.4}
\end{equation*}
$$

Consider so-called simplest connected staircase (0,1)-matrices. Such matrix is called k-staircase, if the number of its 1 's equals to k. For example, the following several matrices are 5 -staircase:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right),\left(\begin{array}{lllll}
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

and the following matrices are 6 -staircase:

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lllll}
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Lemma 5. For every $k \geq 1$, all k-staircase matrices M have the same rook polynomial

$$
\begin{equation*}
R_{M}(x)=\sum_{i=0}^{\left\lfloor\frac{k+1}{2}\right\rfloor}\binom{k-i+1}{i} x^{i} \tag{3.5}
\end{equation*}
$$

4. Solution of Problem 2

According to Lemma 2, in order to calculate permanent of matrix $\left(J_{n}-\right.$ $I-P)[1 \mid r]$, we can find rook polynomial of matrix $J_{n-1}-\left(J_{n}-I-P\right)[1 \mid r]$. We use an evident equation

$$
\begin{equation*}
J_{n-1}-\left(J_{n}-I-P\right)[1 \mid r]=\left(I_{n}+P\right)[1 \mid r] \tag{4.1}
\end{equation*}
$$

Pass from matrix $\left(I_{n}+P\right)$ to matrix $\left(I_{n}+P\right)[1 \mid r]$. We have (here $n=$ $10, r=5$)

$$
\left(\begin{array}{llllllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{4.2}\\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Now we use Lemma 4 to the latter matrix in case $i=n, j=1$. Denote

$$
\begin{equation*}
A=\left(\left(I_{n}+P\right)[1 \mid r]\right)^{(n-1,1)}, \quad B=\left(\left(I_{n}+P\right)[1 \mid r]\right)^{(0(n-1,1))} . \tag{4.3}
\end{equation*}
$$

According to (3.4), we have

$$
\begin{equation*}
R_{\left(I_{n}+P\right)[1 \mid r]}(x)=x R_{A}(x)+R_{B}(x) . \tag{4.4}
\end{equation*}
$$

Note that matrix A has the form (here $n=10, r=5$)

$$
A=\left(\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \tag{4.5}\\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

which is $(n-2) \times(n-2)$ matrix with $2 n-61$'s. This matrix consists of two disjunct matrices: $(r-2) \times(r-2)$ matrix A_{1} of the form (here $r=5$)

$$
A_{1}=\left(\begin{array}{lll}
1 & 1 & 0 \tag{4.6}\\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

which is $2 r-5$-staircase matrix, and $(n-r) \times(n-r)$ matrix (here $n=$ $10, r=5$)

$$
A_{2}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \tag{4.7}\\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

which is $2(n-r)-1$-staircase matrix.
Thus, by Lemmas 3 and 5, we have

$$
\begin{align*}
& R_{A}(x)=\sum_{i=0}^{r-2}\binom{2 r-i-4}{i} x^{i} \sum_{i=0}^{n-r}\binom{2(n-r)-i}{i} x^{i} \\
& =\sum_{i=0}^{r-2}\binom{2 r-i-4}{i} x^{i} \sum_{j=0}^{n-r+1}\binom{2(n-r)-j+1}{j-1} x^{j-1} . \tag{4.8}
\end{align*}
$$

Note that, since $\binom{n}{-1}=0$, then we write formally the lower limit in interior sum $j=0$. Furthermore, matrix B has the form (here $n=10, r=5$)

$$
B=\left(\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \tag{4.9}\\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

which is $(n-1) \times(n-1)$ matrix with $2 n-51$'s. This matrix consists of two disjunct matrices: $(r-2) \times(r-1)$ matrix B_{1} of the form (here $r=5$)

$$
B_{1}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \tag{4.10}\\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

which is $2 r-5$-staircase matrix, and $(n-r+1) \times(n-r)$ matrix (here $n=10, r=5$)

$$
B_{2}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \tag{4.11}\\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

which is $2(n-r)$-staircase matrix.
Thus, by Lemmas 3 and 5, we have

$$
\begin{equation*}
R_{B}(x)=\sum_{i=0}^{r-2}\binom{2 r-i-4}{i} x^{i} \sum_{j=0}^{n-r+1}\binom{2(n-r)-j+1}{j} x^{j} \tag{4.12}
\end{equation*}
$$

Note that, since $\binom{n-r}{n-r+1}=0$, then we write formally the upper limit in interior sum $j=n-r+1$. Now, using Lemma 4 for $M=\left(I_{n}+P\right)[1 \mid r]$, from (4.7) and (4.11) we find

$$
\begin{align*}
& R_{\left(I_{n}+P\right)[1 \mid r]}(x)=\sum_{i=0}^{r-2}\binom{2 r-i-4}{i} x^{i} \sum_{j=0}^{n-r+1}\binom{2(n-r)-j+2}{j} x^{j} \\
& \quad=\sum_{k=0}^{n-1} x^{k} \sum_{i=0}^{\min (k, r-2)}\binom{2 r-i-4}{i}\binom{2(n-r)-k+i+2}{k-i} . \tag{4.13}
\end{align*}
$$

Note that in the interior sum in (4.13) it is sufficient to take summation over interval $[\max (r+k-n-1,0), \min (k, r-2)]$. Thus, by Lemma 2 and
(4.1), we have

$$
\begin{equation*}
\sum_{k=0}^{n-1}(-1)^{k}(n-k-1)!\sum_{i=\max (r+k-n-1, \quad 0)}^{\min (k, r-2)}\binom{2 r-i-4}{i}\binom{2(n-r)-k+i+2}{k-i} \tag{4.14}
\end{equation*}
$$

By Lemma 1 , formula (4.14) solves Problem 2 ,
Remark 1. It is well known ([5],Ch.8), that if in Problem 1 to replace a circular table by a straight one, than the incidence matrix of the problem is obtained from $J_{n}-I-P$ by removing 1 in position ($n, 1$). Therefore, a solution of the corresponding problem to Problem 园, for a fixed $r \geq 3$, is given by per $\left(J_{n-1}-B\right)$, where B is the matrix (4.9). Thus, by Lemma 圆 and (4.12), we analogously have

$$
\begin{equation*}
=\sum_{k=0}^{n-2}(-1)^{k}(n-k-1)!\sum_{i=\max (r+k-n, 0)}^{\min (k, r-2)}\binom{2 r-i-4}{i}\binom{2(n-r)-k+i+1}{k-i} . \tag{4.15}
\end{equation*}
$$

5. Discussion of Problem 3

Expanding $U_{n}=\operatorname{per}\left(J_{n}-I-P\right)$ over the first row, we have

$$
\begin{equation*}
U_{n}=\sum_{r=3}^{n} \operatorname{per}\left(\left(J_{n}-I-P\right)[1 \mid r]\right) \tag{5.1}
\end{equation*}
$$

According to Lemma 1, in conditions of Problem 3, a value of $\operatorname{per}\left(\left(J_{n}-I-\right.\right.$ $P)[1 \mid r])$ does not depend on r. This means that, by (5.1), we have

$$
\begin{equation*}
\operatorname{per}\left(\left(J_{n}-I-P\right)[1 \mid r]\right)=\frac{U_{n}}{n-2}, \quad r=3, \ldots, n . \tag{5.2}
\end{equation*}
$$

Note that, in view of (2.3), it is sufficient to consider in (5.2) $r=3, \ldots,\left\lfloor\frac{n+3}{2}\right\rfloor$.
For the first time, Problem 3 was announced by the author in [7] with conjecture that the solution supplies the set of those n for which $n-2 \mid U_{n}$. Such solutions were verified for $n=3,4,6$. Let us show that this conjecture is not true. Reducing (4.14) for $r=3$, let us find a necessary condition for the suitable n.

Lemma 6. If, for a given n, Problem 3 is solved in affirmative, then we have

$$
\begin{equation*}
\sum_{k=0}^{n-3}(-1)^{k}\binom{2 n-k-4}{k}(n-k-2)!(n-k-2)=\frac{U_{n}}{n-2} \tag{5.3}
\end{equation*}
$$

Proof. By (5.2) and (4.14) for $r=3$, we have

$$
\begin{gather*}
\frac{U_{n}}{n-2}=\operatorname{per}\left(\left(J_{n}-I-P\right)[1 \mid 3]\right)= \\
\sum_{k=0}^{n-1}(-1)^{k}(n-k-1)!B_{n, k}, \tag{5.4}
\end{gather*}
$$

where

$$
\begin{equation*}
B_{n, k}=\sum_{i=\max (k-n+2,0)}^{\min (k, 1)}\binom{2-i}{i}\binom{2 n-4-k+i}{k-i}, \quad k=0, \ldots, n-1 . \tag{5.5}
\end{equation*}
$$

It is easy to see that

$$
\begin{gathered}
B_{n, 0}=B_{n, n-1}=1 \\
B_{n, k}=\binom{2 n-4-k}{k}+\binom{2 n-3-k}{k-1}, \quad k=1, \ldots, n-2
\end{gathered}
$$

Therefore, by (5.4), we have

$$
\begin{gathered}
\frac{U_{n}}{n-2}=(n-1)!+(-1)^{n-1}+ \\
\sum_{k=1}^{n-2}(-1)^{k}\left(\binom{2 n-4-k}{k}+\binom{2 n-3-k}{k-1}\right)(n-k-1)!= \\
(n-1)!+(-1)^{n-1}+ \\
\sum_{k=1}^{n-2}(-1)^{k}\binom{2 n-4-k}{k}(n-k-1)!-\sum_{k=0}^{n-3}(-1)^{k}\binom{2 n-4-k}{k}(n-k-2)!= \\
(n-1)!-(n-2)!+
\end{gathered}
$$

$$
\sum_{k=1}^{n-3}(-1)^{k}\binom{2 n-4-k}{k}((n-k-1)!-(n-k-2)!)
$$

and (5.3) follows.
However, for $n=10, \frac{U_{n}}{n-2}=54974$, but the left hand side of (5.3) equals to 54888 .

Conjecture 1. Set $\{3,4,6\}$ contains only solutions of Problem 3 .

References

[1] A. Cayley, Note on Mr. Muir's solution of a problem of arrangements, Proc. Royal Soc. Edinburg, 9 (1878), 388-391.
[2] E. Lucas, Théorie des nombres, Paris, 1891.
[3] H. Minc, Permanents. Addison-Wesley, 1978.
[4] T. Muir, On Professor Tait's problem of arrangements, Proc. Royal Soc. Edinburg, 9 (1878), 382-387.
[5] J. Riordan, An introduction to combinatorial analysis, Wiley, Fourth printing, 1967.
[6] V. S. Shevelev, On a method of constructing of rook polynomials and some its applications, Combin. Analysis, MSU, 8 (1989), 124-138 (in Russian).
[7] V. S. Shevelev, A problem and conjecture which are connected with the probléme des ménages, Dep. VINITI, no.3480-B91, Moscow, 1991 (in Russian).
[8] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences http://oeis.org
[9] J. Touchard, Sur un probléme de permutations, C. R. Acad. Sci. Paris, 198 (1934), 631-633.
[10] M. Wayman, L. Moser, On the probléme des ménages, Canad. of Math., 10, (1958), no.3, 468-480.

Department of Mathematics, Ben-Gurion University of the Negev, BeerSheva 84105, Israel. e-mall:Shevelev@bgu.ac.il

[^0]: 1991 Mathematics Subject Classification. 05A15; Key words and phrases: ménage

