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Abstract

A word–graph Gω is a digraph represented by a word ω such that
the vertex–set V (Gω) is the alphabet of ω and the edge–set E(Gω) is
determined by non–identical adjacent letter pairs in ω. In this paper
we study the strong–connectivity of word–graphs. Our main result is
that the number of strongly connected word–graphs represented by
ℓ−words of over an n−alphabet can be expressed via the recurrence
relation T (ℓ, n) on the Stirling numbers of the second kind using a
link between word partitions and digraph connectivity.

T (ℓ, n) =

{

ℓ− 1

n

}

+

ℓ−2
∑

j=0

n−2
∑

m=0

{

j

m

}

T (ℓ− j − 1, n −m)(n−m− 1)

1 Introduction

A digraph D is representable if D can be mapped to a word in some manner.
In this paper we study a particular form of edge–set encoding for word–
representable digraphs that has close links with discrete stochastic processes.
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Definition 1. A word–graph Gω is a simple digraph associated with an
ℓ−word ω over an n−alphabet for ℓ > n > 0 such that the vertex set of
Gω, V (Gω), is the alphabet of ω and the directed edge–set of Gω, E(Gω), is
encoded from ω using the set of non–identical adjacent letter pairs:

V (Gω) = A(ω)

E(Gω) = E(ω) = {(ω1, ω2), (ω2, ω3), . . . , (ωℓ−1, ωℓ)}

such that for {ωi, ωi+1} ∈ E(Gω) it holds that ωi 6= ωi+1

The edge–set encoding in Definition 1 is of particular note due to its close
links with a range of stochastic word–based processes such as language, music,
DNA and protein sequences. This form of edge–set encoding is also closely re-
lated to the concept of digraph path decomposition[1]. Other forms of edge–
set encoding have been used in the literature for both word–representable
graphs[4, 7] and word–representable digraphs[5]. These existing encodings
are used for very specific applications (such as semigroup or DNA sequence
analysis) whilst word–graphs have a wide range of general applications.

The focus of this paper is on determining the criteria required for a
word to represent a strongly–connected digraph and how many words, out
of all ℓ−words over an n−alphabet, represent strongly–connected digraphs.
Strong–connectivity is an vital concept for word–graph theory because ev-
ery strongly–connected word–graph, or component, can be represented by a
single word[3].

Definition 2. A digraph D is strongly–connected if there exists a path from
every vi ∈ V (D) to every vj ∈ V (D).

This paper is organised into four sections. The remainder of the first
section details previous results and the notation used in this paper. The
second section describes our results and the third section contains proofs of
these results. Future work is detailed in the final section.

1.1 Previous results

We say a digraph D is representable, i.e. is a word–graph, if there exists
a word ω that encodes D in the manner specified by Definition 1. Theo-
rem 1 provides the criterion to be satisfied for a digraph to be representable
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although there are other ways to characterise representability such as forbid-
den substructures or condensation forms[3].

Theorem 1. A digraph D is a word–graph (representable) if there exists
a directed path P from vi ∈ V (D) to vj ∈ V (D) such that P transverses
each edge of D at least once. The sequence of vertices visited by P is a
representational word of D.

Corollary 1. Representable digraphs are weakly–connected.

Corollary 2. Strongly–connected digraphs are representable.

In the same manner that digraphs are characterised by vertex and edge
set cardinality, word–graphs are characterised by word length and alphabet
cardinality. The number of word–graphs represented by words of length ℓ
over an alphabet of cardinality n can be expressed using Stirling numbers of
the second kind[2].

Theorem 2. The set of ℓ−words over an n−alphabet is of cardinality n!
{

ℓ

n

}

.

The term
{

ℓ

n

}

is a Stirling number of the second kind, or the number of
ways of partitioning a set of cardinality ℓ into n subsets. If p is an n−partition
of ℓ then the word corresponding to p would be: ω = p1p2 . . . pn, for some
ordering (i.e. lexicographical) of the partition members. The n! term in
Theorem 2 accounts for the permutation of the partitions to reflect the order
in which they can occur in a word. We refer to the set of ℓ−words over an
n−alphabet as a word–graph familyW(ℓ, n). By Corollary 2, every strongly–
connected digraph is represented by a word in some word–graph family.

Finally we define Menger’s Theorem[6] which is used in the proofs in
Section 3.

Theorem 3. The edge–connectivity of a digraph is equal to the minimum
number of edge–disjoint paths between any vertex pair.

1.2 Notation and terminology

An ℓ−word ω over an n−alphabet is an ordered sequence of symbols of length
ℓ = |ω|: ω = ω1 . . . ωℓ such that ωi ∈ A(ω) for |A(ω)| = n where A(ω) is the
alphabet of ω. A circular word is one for which ω1 = ωℓ and a trivial word
is one for which |A(ω)| = 1.
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A factor of a word ω is any ωj . . . ωk contiguous subword. A partition,
or a factorisation, p of a word ω is a k−tuple for 1 ≤ k ≤ ℓ of factors
such that ω = p1p2 . . . pk. A disjoint partition of ω is a partition such that,
for each pi 6= pj pair of partitions, the alphabets of pi and pj are disjoint:
A(pi)∩A(pj) = ∅. A minimal disjoint partition of ω is a partition of ω with
the smallest cardinality such that the partitions remain disjoint.

The edge–connectivity of a word–graph is λ(Gω) where λ(Gω) is the car-
dinality of the edge–cut set S ⊂ E(Gω) such that S is the smallest set of
edges that disconnects Gω when removed.

2 Results

The initial results in this paper take the form of three lemmas concerning
the structure of words that represent strongly–connected digraphs. The three
lemmas build upon one another. The final lemma is used to prove a theorem
on the number of words that represent strongly–connected word–graphs in
a word–graph family. The three lemmas are based upon the link between
word–graph strong–connectivity and edge–connectivity.

Lemma 1. Iff λ(Gω) > 1 then Gω is strongly–connected.

A bridge is an unidirectional edge in Gω that when removed disconnects
Gω. When such a bridge exists in Gω we say Gω is 1–edge-connected or
that λ(Gω) = 1. Lemma 1 proves that word–graphs with bridges are the
only word–graph which are not strongly–connected. This edge–connectivity
property holds due to the way in which edges are encoded from the represen-
tational word (Definition 1). Using Lemma 1 we prove Lemma 2 which char-
acterises the structural properties of words that represent strongly–connected
digraphs.

Lemma 2. Iff λ(Gω) > 1 then ω cannot be partitioned into disjoint factors.

See Subsection 1.2 for a definition of disjoint factors. Lemma 2 is re-
stated by Lemma 3 in a manner that facilitates the enumeration of strongly–
connected word–graphs.

Lemma 3. The number of ℓ−words over an n−alphabet, with a unique fac-
torisation, that represent word–graphs with λ(Gω) > 1 is the number of
n−partitions of an ℓ−set such that no proper subset of parts has a union
equal to the subset {1, 2, . . . , j} for j < ℓ.
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Via the three structural lemmas, the main enumerative result is proved
in Theorem 4 using a recurrence relation on Stirling numbers of the second
kind.

Theorem 4. There exist ϕ(ℓ, n) strongly–connected word–graph members of
the family W(ℓ, n) where:

ϕ(ℓ, n) = n!T (ℓ, n)

T (ℓ, n) =

{

ℓ− 1

n

}

+
ℓ−2
∑

j=0

n−2
∑

m=0

{

j

m

}

T (ℓ− j − 1, n−m)(n−m− 1)

The recurrence in Theorem 4 was originally derived by Zabrocki[8] for an
algebraic problem but, as yet, no formal proof has been published.

3 Proofs of results

In this section we use the previous results from Subsection 1.1 to prove the
theorems and lemmas introduced in Section 2. We start with a charac-
terisation of the structure of strongly–connected word–graphs using edge–
connectivity.

Lemma 1. Iff λ(Gω) > 1 then Gω is strongly–connected.

Proof. A strongly–connected digraph D, by Definition 2, has two edge–
disjoint paths between every vertex pair thus, by Menger’s Theorem[6], D
is always 2–edge–connected. The remainder of this proof is dedicated to
showing that if λ(Gω) > 1 then Gω is strongly–connected.

Let Kn be the complete digraph of order n such that its vertices are
labelled with the first n integers. Let ω be a walk on Kn and let Gω be the
word–graph represented by ω. We take bidirectional edges in Gω to be pairs
of unidirectional edges with opposing orientations. If the walk ω resides in
vertex vj ∈ V (Kn) then the walk can take one of two actions:

i. transition from vj to vj+k for j + k ≤ n

ii. transition from vj to vj−k for j − k ≥ 1

Assume, without loss of generality, that ω starts on v1 and, for the first
n− 1 steps, uses action i so that Gω is weakly–connected (Corollary 1) and,
by Menger’s Theorem[6], is 1–edge–connected (Figure 1).
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1 · · · n

Figure 1: Gω after n− 1 steps on Kn

To ensure Gω is 2–edge–connected, the walk ω must continue. The walk
cannot use action i because it already resides in vn therefore it must use
action ii to make the transition from vn to vn−j (Figure 2).

1 · · · n− j · · · n

Figure 2: Gω after n steps on Kn

Gω now contains the strongly–connected component C = {vn, . . . , vn−j}.
By Menger’s Theorem[6], C is 2–edge–connected. To ensure the entirety of
Gω is 2–edge–connected, ω must again make the transition outside C so that
C becomes larger still. If C does not encompass all nodes in Kn then Gω

cannot be 2–edge–connected because Gω contains a bridge. Therefore the
walk ω must continue in this manner until the strong–component C encom-
passed all vertices so that Gω is 2–edge–connected and strongly–connected
(Figure 3).

1 · · · n− j · · · n

Figure 3: Gω after n+ k steps on Kn

Thus we have shown that 2–edge–connectivity is a necessary and sufficient
condition for the strong–connectivity of word–graphs.

Next we show that the structure of words that represent strongly–connected
digraphs is characterised by the digraph’s bridgelessness (2–edge–connectedness).

Lemma 2. Iff λ(Gω) > 1 then ω cannot be partitioned into disjoint factors.

Proof. Let p be a k−partition of the ℓ−word ω. If p is a disjoint partition
then 2 ≤ k ≤ n. If k > n then, by the pigeon-hole principle, there must
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be some pair of non–disjoint partitions because |A(ω)| = n. If k = 1 then
p1 = ω and thus cannot be disjoint.

Assume p is a disjoint k−partition of ω for 2 ≤ k ≤ n. For any pi, pi+1

partition pair, contiguous in ω, of length u and v respectively, there exists an
edge between the vertices pi,u and pi+1,v in Gω. Given that all pi partitions
are disjoint, vertex pi,u occurs in no other partition but pi and vertex pi+1,v

occurs in no other partition but pi+1. Therefore there exists only a single
unidirectional edge between pi,u and pi+1,v (Figure 4).

pi pi+1· · · · · ·u

v

Figure 4: A word–graph represented by a contiguous disjoint partition

Furthermore, because every pi−j,pi+1+m partition pair is disjoint, there
can be no path between pi,u and pi+1,v except the {pi,u, pi+1,v} edge. If that
edge were to be removed then Gω would become disconnected. As such, if ω
can be partitioned into k > 1 disjoint factors then Gω contains a bridge and
λ(Gω) = 1. If ω cannot be partitioned into disjoint factors then Gω cannot
contain a bridge and λ(Gω) > 1.

Corollary 3. If a word ω can be minimally partitioned into k disjoint factors
then Gω contains k − 1 bridges.

Lemmas 1 and 2 show that words that represent strongly–connected di-
graphs cannot be partitioned into disjoint factors. Lemma 3 restates these
results in a manner that facilitates the enumeration of strongly–connected
word–graphs.

In Theorem 2, the n! term of n!
{

ℓ

n

}

accounts for factor permutation. In
Lemma 3 the n! term will be temporary ignored to make the proof simpler
such that we only deal with the set of ℓ−words over an n−alphabet with
a unique factorisation, i.e. we are not concerned with the order of those
factors.

Lemma 3. The number of ℓ−words over an n−alphabet, with a unique fac-
torisation, that represent word–graphs with λ(Gω) > 1 is the number of
n−partitions of an ℓ−set such that no proper subset of parts has a union
equal to the subset {1, 2, . . . , j} for j < ℓ.
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Proof. Let p be an n−partition of an ℓ−set with members equal to the first ℓ
non–zero integers. Let each pi be mapped to an alphabet member ai ∈ A(ω)
of some word ω. Let the j−th integer member of pi be the index of letter
ai ∈ A(ω) in ω. This construction gives an ℓ−word over an n−alphabet:

ωpij = h(pi) = ai (3.1)

The number of n−partitions of an ℓ-set is
{

ℓ

n

}

, which is the same as the
number of ℓ−words over an n−alphabet with a unique factorisation.

If a proper 0 < k < ℓ subset of p has a union equal to the subset
{1, 2, . . . , j} for j < ℓ then p is deemed reducible. A word constructed from
a reducible partition is called partition–reducible. For a partition–reducible
ℓ−word, the factor ω1 . . . ωj is over the alphabet {a1, . . . , ak} and the factor
ωj+1 . . . ωℓ is over the alphabet {ak+1, . . . , an}. Therefore there exists a dis-
joint partition of ω between ωj and ωj+1. Thus partition–reducible words
cannot represent strongly–connected word–graphs because the word–graphs
are 1–edge–connected (Lemmas 1 and 2).

If a partition is not reducible, it is irreducible. Let ω be a partition–
irreducible word formed from the partition p as described by Equation 3.1.
Assume 1 ∈ p1 and because p is irreducible, the union of p1 with any proper
subset of p − {p1} cannot be equal to {1, . . . , j}. Therefore there exists no
disjoint partition of ω. Thus partition–irreducible words always represent
strongly–connected word–graphs because the word–graphs are at least 2–
edge–connected (Lemmas 1 and 2).

Via Lemma 3, a restatement of Lemma 2, we can count the number of
strongly–connected word–graphs in W(ℓ, n).

Theorem 4. There exist ϕ(ℓ, n) strongly–connected word–graph members of
the family W(ℓ, n) where:

ϕ(ℓ, n) = n!T (ℓ, n)

T (ℓ, n) =

{

ℓ− 1

n

}

+

ℓ−2
∑

j=0

n−2
∑

m=0

{

j

m

}

T (ℓ− j − 1, n−m)(n−m− 1)

Proof. There are two ways to construct an irreducible ℓ−set n−partition.
First, let p be a partition of {1, 2, . . . , ℓ − 1} into n subsets. Assume that
1 ∈ p1 and add ℓ to p1. If p were a reducible partition then the union of, at
maximum, n − 1 subsets of p would form the set {1, . . . , ℓ}. Besides 1 and
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ℓ there exist ℓ − 2 members of the ℓ−set distributed amongst the subsets
of p. No subset can be empty thus in order to form the union {1, . . . , ℓ},
p1 and all remaining ℓ − 2 elements must be in the union. Such a partition
cannot be reducible because the union is not formed from a proper subset of
the partition. Thus partitions constructed in such a manner are irreducible.
There exist:

{

ℓ− 1

n

}

(3.2)

partitions of this type.
For the second type, let p be an irreducible partition of ℓ − j − 1 into

n − m and let p̂ be a partition of j into m. Let pp̂ be the union of the
two partitions. The previous irreducible partition type counted all partitions
with ℓ ∈ p1 such that 1 ∈ p1. Putting ℓ ∈ p̂i makes pp̂ reducible because
⋃

pi = {1, 2, . . . , ℓ− j−1}. The only remaining option is to put ℓ into pi ∈ p
such that 1 /∈ p1, which ensures pp̂ is irreducible because:

⋃

pi = {1, 2, . . . , ℓ− j − 1, ℓ}

⋃

p̂i =
(

⋃

pi

)∁

= {ℓ− j, . . . , ℓ− 1}
⋃

pp̂i = {1, . . . , ℓ} (3.3)

Such a partition is irreducible because the only possible union equal to
{1, . . . , j} is not formed from a proper subset of pp̂ (Equation 3.3).

For some fixed j and m, there exist T (ℓ − j − 1, n − m) irreducible
{1, . . . , ℓ− j − 1} partitions into n−m;

{

j

m

}

partitions of {ℓ− j, . . . , ℓ− 1}
into m; and n − m − 1 ways of placing element ℓ into pi ∈ p such that p
remains irreducible:

{

j

m

}

T (ℓ− j − 1, n−m)(n−m− 1) (3.4)

To count all such partitions, equation 3.4 has to be summed over all
0 ≤ m ≤ n−2 because n−m−1 < 1 for m > n−2 and over all 0 ≤ j ≤ ℓ−2
because ℓ− j − 1 < 1 for j > ℓ− 2.

These two types of irreducible partition constructions must be disjoint
because, for the first type, ℓ and 1 are always in the same subset whilst,
for the second type, ℓ and 1 are never in the same subset. Likewise, all
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irreducible partitions are of one of these two types. If ℓ and 1 are in the
same subset of p then p is irreducible and must be of the first type because
Equation 3.2 counts all such partitions. If 1 ∈ p1 and ℓ ∈ pi for i > 1 and p
is irreducible then p is a partition of type two. If p were not of type two then
ℓ must be in its own subset or in a subset with members of {j+1, · · · , ℓ−1}
thus the union of a subset of {p1, . . . , pi−1} would be equal to {1, . . . , j} and
so p would be reducible.

Combining Equations 3.2 and 3.4 gives the required recurrence relation.

T (ℓ, n) =

{

ℓ− 1

n

}

+

ℓ−2
∑

j=0

n−2
∑

m=0

{

j

m

}

T (ℓ− j − 1, n−m)(n−m− 1)

The base cases for T (ℓ, n) are:

T (ℓ, n) = 0 for ℓ ≤ 0 and ℓ ≤ n (3.5)

T (ℓ, 1) = 1 (3.6)

The base cases in Equation 3.5 come from Definition 1. The base case in
Equation 3.6 comes from the fact that the trivial ℓ−word ω with |A(ω)| = 1
represents the singleton digraph which is strongly–connected. Including the
n! term, to account for factor permutation (see Theorem 2), gives the function
ϕ(ℓ, n) = n!T (ℓ, n) which is the number of strongly–connected word–graphs
in W(ℓ, n).

4 Future work

We have shown how many members of a word–graph family, defined by a
particular edge–set encoding with links to stochastic processes, are strongly–
connected. Similar reasoning could be used for the number of word–graph
with k strong–components.

Conjecture 1. The number of ℓ−words over an n−alphabet, with a unique
factorisation, that represent word–graphs with k strong–components is the
number of n−partitions of an ℓ−set with k disjoint proper subsets of parts
which have a union equal to the subset {j, j+1, . . . , j+m}. Each such union
is an alphabet–disjoint partition in the corresponding representational word
and is a strong–component in the corresponding word–graph.
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The word–graph family W(ℓ, n) includes isomorphic digraphs. The set of
ℓ−words over an n−alphabet that represent non–isomorphic words–graphs
can be thought of as a fundamental word–graph family. A standing question
is: what is the cardinality of an arbitrary fundamental word–graph family
and for what ℓ, when n is fixed, is the cardinality maximised? These topics
are related to the concept of minimal representational word length[3].
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