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Abstract: A perfect number is a number whose divisors add up to twice the number itself. The existence of odd perfect 
numbers is a millennia-old unsolved problem. This note proposes a proof of the nonexistence of odd perfect numbers. 
More generally, the same analysis seems to generalize to a proof of the nonexistence of odd multiperfect numbers. 
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1. INTRODUCTION 

An integer N ∈ � = { 0, 1, 2, 3, … } is said to be a perfect number if the sum of its aliquot divisors (proper divisors) is 
equal to the number itself. For the first perfect number N = 6, this description translates to 1 + 2 + 3 = 6. Usually, this is 

written in terms of the sum of divisors function ∑=
Np

dN
|

)(σ  as 626321)6( ⋅=+++=σ . Elementary introductions 

to the theory of perfect number appear in [WK], [MW], [SP], [VT], [PK], and other sources. The history of these 
numbers is given in [DN, Vol. I], and other. 
 
Perfect numbers have been around since ancient times. The basic algorithm for constructing even perfect numbers is 
recorded in Euclid’s Elements. The complete existence result for even perfect numbers was established by Euler about 
two millenniums later, see Theorem 25. In contrast, the odd perfect number problem is one of the oldest unsolved 
problems in Mathematics. 
 
The theory of odd perfect numbers spans a wide web of interesting partial results. A few new results on the current state 
of the theory of odd perfect numbers state the followings. 
 

Theorem 1.   ([LP])  The radical rad(N) = p
p | N

∏  of a perfect number N ≥ 1 satisfies rad(N) < 2N
17 / 26 . 

 
Theorem 2.   ([NP])  (i) An odd perfect number N = 36a + 9 has at least 9 distinct prime divisors.  
(ii) An odd perfect number N = 36a + 1 has at least 12 distinct prime divisors.  
 
The proofs of these results require extensive and delicate works on the prime factorizations of the sum of divisors 
function or the associated cyclotomic polynomials, and intricate integers divisibility criteria, see [HP], [CO], [CS], [IA], 
[JN], [GT], [HR], and other references for recent results. This note proposes a proof of the nonexistence of odd perfect 
numbers.   
 

Theorem 3.   There are no odd perfect numbers. Specifically, σ(N) ≠ 2N for any odd integer N ≥ 1.  
 

The proof of Theorem 3 appears in Section 3.2. This analysis seems to be the first application of the Ramanujan series 
of the sum of divisors function to a divisibility problem. The analytic tools required for this work are developed in 
Section 2. Section 4 attempts a generalization of the previous analysis to odd multiperfect numbers, see Theorem 16. 
The last two sections A and B in the Appendix serve as references. Section A provides some elementary information on 
arithmetic functions, and related concepts. Section B is concerned with the theory of even perfect numbers, it is 
included for completeness.  
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2 POWER SERIES EXPANSIONS OF ARITHMETIC FUNCTIONS 

The Ramanujan series f (n) = ck (n)k−s

k≥1
∑ of an arithmetic function f : � → � is quite similar to the Fourier series 

∑ ≥=
1

2)()(ˆ
k

nki
ekfnf

π of an arithmetic function f(n). One difference is that the basis { ck(n) : k ≥ 1 } of the Ramanujan 

series satisfies several number theoretical properties.  While the basis }1:{ 2 ≥ke
nki π

 of the Fourier series satisfies 

fewer number theoretical properties.  
 

2.1 Properties Of The Ramanujan Sum )(Nck  

The Ramanujan sum is defined by the exponential sum ck (N) = e
i2πNx / k

gcd(k,x )=1
∑ . This is an integer-valued function on 

the set of nonnegative numbers. The Mobius function µ(n) and the totient function ϕ(n), see Section A in the Appendix, 
are intrinsic part of the properties of the Ramanujan sum ck(n), see [AP, p. 160] , [MH] for details. 
 

Lemma 4.   Let N ≥ 1 be an integer. Then 
(1) ckm (N) = ck (N)cm (N) for any pair of relatively prime integers k, m ≥ 1. 

(2) ck (N) = µ(k /d)ϕ(k) /ϕ(k /d)  for any integer k ≥ 1, and d = gcd(k, N). 

(3) ck (N) = µ(k /d)d
d | gcd(k,N )

∑  for any integer k ≥ 1. 

(4) If k | N then ck (N) = ϕ(k) . 

(5) ck (N) = cos(2πNx /k)
gcd(k,x )

∑  for any integer k ≥ 1. 

 
Proof (i): For a pair of relatively prime integers k and m, the subset of integers { mx + ky : gcd(k, x) = gcd(k, x) = 1 }, 
where 0 < x < k, and 0 < y < m, is the same as the subset { x : gcd(km, x) = 1 and 0 < x < km }.  So  
 
 

)()()(
1),gcd(),gcd(

/)(2

1),gcd(

/2

1),gcd(

/2
NceeeNcNc km

ymxk

kmmxkyNi

ym

myNi

xk

kxNi

mk === ∑∑∑
==

+

==

πππ .                                       (1.) 

 

The other verifications are quite similar.                                                                                                                            �                    
 

These properties are very useful in the evaluation of the values ck(N), and the analysis of the power series ∑ ≥

−

1
)(

k

s

k knc .  

 

Example 5.   Compute the value of ck(N) at k = pv , p prime and v ≥ 0. This is done using the formula 

)/(/)()/()( dppdpNc
vvv

p
v ϕϕµ= , Lemma 4-3. The calculation is as follows: 
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where d = gcd(pv, N). Note that pu || N is equivalent to gcd(pu, N) = pu.                                                           
 

Lemma 6.  If m, and N ≥ 1 are integers, then the Dirichlet sum 




=∑
otherwise.       0

,| if          
)(

|

Nmm
Nc

md d   

 

Proof: Let ω = ei2π/m be a primitive the mth root of unity. Because nd
nd

=∑ |
)(ϕ , see Lemma 24-3 in the Appendix,     

summing cd(N) over the divisors of m, id est,  
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=== ∑∑ ∑∑
<≤= ,otherwise       0

,| if          
)(

0| 1),gcd(

/2
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Nnn
eNc

nx

Nx

nd mx
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nd

d ωπ                                                      (3.)                                                       

 

is the same as summing over all the mth roots.                                                                                          � 
                                                                                                              

2.2 Power Series Expansions Of Arithmetic Functions 

The fine details on the derivations, convergence, and other analytic aspects of the power series expansions of the 

functions σ(N) and ϕ(N) appear in [HD], [MH], and similar sources. An effort was made to include as much formal 
technical details and explanations as possible to make the materials accessible to a wider readerships. 
 

Theorem 7. Let N ≥ 1 be an integer, and let ℜe(s) ≥ 2 be a complex number. Then 
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Proof: The Dirichlet convolution of the two power series is  
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where the second line follows from Lemma 6, see also [HW, p. 328] for a different proof.                                           � 
 
The spectrum of the Ramanujan series of the sum of divisors function 
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has large spikes of magnitudes )/1(/)(6 22
kOkNck =π  at the divisors k | N, and the rest of the terms 

)/1(/)(6 222
kOkNck =π  at the nondivisors k � N are essentially noise components. This is analogous to the spectrum of 

the Fourier series of a function. 

Because σ s−1(N) = ζ (s) ⋅ ck (N)k−s

k≥1
∑  is an entire function of the complex number s ∈ �, the power series 

ck (N)k−s

k≥1
∑  has (simple?) poles in the same locations as the zeros of the zeta function ζ (s) = n

−s

n≥1
∑ . Interesting 

enough, the zeros of the analytic continuation of the power series ck (N)k−s

k≥1
∑( )

−1

 contains the zeroes of the zeta 

function on the critical strip. 
 

Lemma 8. Let N ≥ 1 be an integer, and let ℜe(s) > 0 be a complex number, then 

(i) ∑∑
≥

+

−

−
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σ
 is analytic in the half plane { ℜe(s) > 0 : s ∈ � }.   

(ii) If N ≥ 1 a perfect number, then  ∑∑
≥

+−
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Proof: For (i) start with the analytic continuation of ζ(s) and the power series of the sum of divisors function, that is, 
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power series  

∑
≥

+
−− −

−=
1

1
11 )1(

)21()(
k

s

n
s

n
sζ ,     and    ∑

≥
−

− =
1

1

1 )(

)(

)(

k
s

k

s

s

k

Nc

Ns

N

ζ

σ
,                                              (7.) 

 

where ℜe(s) > 0. Taking the Dirichlet product returns 
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For (ii), use the hypothesis σ(N)/N = 2, and evaluate each power series at s = 2.                                                              �  
 

Lemma 9.   Let s ∈ � be a complex number, and let N ≥ 1 be an integer. Then 
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Corollary 10.  If N ≥ 1 is an odd perfect number, then the following hold: 
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Proof: To verify the first claim, assume N is a perfect number and compute the value of the power series in Theorem 7 
at s = 2. To verify the second and third claims, proceed to compute the even component. Specifically  
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Here all the power series vanish but one power series. This phenomenon occurs because )()(2 NcNc mm −= , and  

c
2v m

(N) = µ(2v)cm (N) = 0 for odd N, v ≥ 2, and odd m ∈ �, see Lemma 4-1, and Example 5. Now take s = 2 in (10), 

and substitute it into the following: 
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and solve for the respective values.                                                                                                                                    � 
 
It should be explicated that the first statement (i), which is well known, is valid for both even and odd perfect integers, 
but statements (ii) and (iii) are exclusively properties of odd perfect numbers. For even perfect numbers, equation (10) 
has a different form, and it is nonnegative. 
 
Let rad(N) = p

p | N
∏  be the radical of the integer N, also called squarefree kernel, and put N0 = rad(N)N. 

 

Theorem 11. Let N ≥ 1 be an odd perfect number. Then 
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Proof:  The result of Corollary 10-ii is rearranged as   
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Since the coefficient ck (N) = µ(k) for gcd(k, N) = 1, see Lemma 4-2, the first power series on the right side of (13) 

reduces to the simpler expression  
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since ∏ ≥

− −=
2

22 )/11(6
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pπ . The second power series on the right side of (13) reduces to the simpler expression 
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where gcd(k, N) ≠ 1 was replaced with k = dm, where d | N0, and the integers m ∈ � such that gcd(m, N) = 1.  The 
property cdm(N) = cd(N)cm(N), see Lemma 4-1, is now used to split the power series into two independent components. 
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where the last line follows from (14). Combining these expressions returns 
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Rearranging the last equality proves the assertion.                                                                                                            � 
 

Theorem 12. Let N ≥ 1 be an integer, let rad(N) = p
p | N

∏  be the radical of the integer N, and let N0 = rad(N)N. Then 
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Proof: Put s = 2 in Theorem 7. Then  
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Since gcd(k, N) ≠ 1 implies that k = dm, where d | N0, and the integers m ∈ �, such that gcd(m, N) = 1,  the power series 
is rewritten as 
 











+== ∑ ∑∑∑

= =<

∞

= 1),gcd( 1),gcd(
2

|1
2

2

1
2

2

)(

)()(

6

)(

6

)(

0Nk Nm

dm

Nd

k

k

k

dm

Nc

k

Nc

k

Nc

N

N ππσ
.                                        (20.) 

 
Here the finite sum index d ranges over the divisors of N0 = rad(N)N, which are the nonvanishing terms.  Continuing 
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That follows from property cdm(N) = cd(N)cm(N), see Lemma 4-1, which is used to split the power series into two 
independent components. Next simplify it:  
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Substitute the identity 
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to obtain the asserted formula.                                                                                                                                            � 
 

In the above formula for computing the sum of divisors function σ(N)/N, the divisor d runs over the divisors of the 

integer N0 = rad(N)N. Why is the index d extended from N to N0? The reason is that cd(N) ≠ 0 for all d | N0. However, 

cd(N) = 0 for any d > 1 such that gcd(d, N) ≠ 1, but d � N0, use Lemma 4-3 to verify this. 
   

Formula (18) is valid for any integer N ∈ �, but it is not an efficient method for computing the sum of divisors function 

σ(N)/N. However, it has some nice theoretical properties, which will be used to abridge the proof of Theorem 3. The 
example below is intended to illustrate the mechanic of the calculations.     
 

Example 13. Show that N = 6 is a perfect number. This is done as follows: Put N0 = rad(N)N = (2⋅3)6 = 22⋅32. For d | N0, 

let gcd(d, N) = f, and use )/(/)()/()( fddfdNcd ϕϕµ=  to evaluate the coefficients. In particular, for d = 12, this is: 
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since f = gcd(d, N) = gcd(12, 6) = 6, and so on. This procedure, formula (18), returns 
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In comparison, the standard method is simply .2
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3 ODD PERFECT NUMBERS 

The theory of odd perfect numbers spans a wide web of congruence relations, divisibility conditions, inequalities, 
numerical algorithms, and so on. The research on odd perfect numbers consists of an amalgamation of theory and 
computational analysis. Some of the current research efforts on odd perfect number are focused on the sizes of the large 

prime factors, the number of prime factors counting multiplicities Ω(N) ≥ m, the least number of prime factors ω(N) ≥ k, 

and other related parameters. These works are centered on the Euler normal form kv
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and its cyclotomic polynomials representation  
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all the prime power p
α divisors of N. Any result derive from these identities requires extensive and delicate works 

involving divisibility results and numerical calculations of the factors of the cyclotomic polynomials, see [HG], [GT], 
[IA] and earlier works. 
 
 
3.1 Review of the Literature                

A cursory sample of the papers in the literature is described below. The reader should confer the literature for a 
complete listing. A short survey appears in [RN, p. 98]. 
 
Odd Perfect Number Congruences: A labyrinth of congruence relations has been developed to investigate odd perfect 
numbers. These congruence relations constraint the prime divisors and their exponents to certain specific cases. One of 

the earliest is the Euler normal form kv
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210 L⋅⋅= + , vi ≥ 1, and p0 ≡ 1 mod 4. Touchard congruence claims 

that an odd perfect number satisfies 36mod9,1≡N . The original proof is based on congruences of the power divisor 

functions, not very easy, see [TD]. But a recent proof in [HJ] simplifies it. New congruences are developed in [GR] 
 
Smallest, The Largest, And Total Numbers of Prime Factors: Estimates on the smallest and the largest prime factors of 
an odd perfect numbers if a topic of much interest. Elementary determinations of the upper estimates of the smallest 
prime divisors is given in [BJ], see also [RN, p. 98]. On the other end, there are the estimates of the largest prime 
divisors, see [IA], [NI], [HK], and previous works. 
 
Smallest Odd Perfect Numbers: Several authors have found estimates of the smallest odd perfect number. In [BT], it 
was determined that N > 10300, and there is a new effort claiming to have pushed it to N > 101500, see [PR]. 
 

Density Odd Perfect Numbers: For a fixed ω(N) = k, there is finitely many potential odd perfect numbers, the analysis 
has been sharpened by several authors, see [PK, p. 247] for elaboration. 
 
Number of Primes Factors In Odd Perfect Numbers: 

B. Pierce, 1842?, proved that an odd perfect number has at least four prime factors, specifically, ω(N) ≥ 4. 

J. Sylvester, 1888, proved that ω(N) ≥ 5.    D. Gradstein, 1925, proved that ω(N) ≥ 6.    

N. Robbins, 1972, proved that ω(N) ≥ 7.    C. Pomerance, 1974, proved that ω(N) ≥ 7.   

K. Chien, 1979, proved that ω(N) ≥ 8.    P. Hagis, 1979, proved that ω(N) ≥ 8. 

P. Nielsen, 2008, proved that ω(N) ≥ 9. 
 
 
3.2 Odd Perfect Numbers Theorem: Nullus Equus Numerus Perfectus Theorema 
A different approach to the proof of the nonexistence of odd perfect numbers will be considered here. The proof is 
based on power series representation of the sum of divisors function and other related formulas. This analysis seems to 

be a new direction in the analysis of the divisibility problem N | σ(N).  Surprisingly, only two of the simplest properties 
of odd perfect numbers will be utilized: 
 

(i) N is an odd number.    (ii) σ(N)/N = 2. 
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Theorem 3.    There are no odd perfect numbers. Specifically, σ(N) ≠ 2N for any odd integers N ≥ 1.  
 

Proof: Assume N ≥ 1 is an odd perfect number. Let ∏=
Np

pNrad
|

)(  be the radical of the integer N, and put N0 = 

rad(N)N. By Theorem 12, the inequality 

 ∑∑ <
NdNd

d

dd

Nc

||
2

1)(

0

,                                                                       (28.) 

 

holds for any integer N ∈ �. By hypothesis N is an odd perfect number 2/1/)(
|

== ∑ Nd
dNNσ , so applying the 

previous estimate to Theorem 11 lead to 
 

2
1)(

)/11(
3

8

||
2

|

2

0

=<=− ∑∑∏
NdNd

d

Np dd

Nc
p .                                                           (29.) 

 
Furthermore, since 2 is not a divisor of N, the product satisfies the inequality 
 

∏∏ −≤−=







−<

≥

−

Npp

pp
|

2

3

212

2
)/11(

3

8
)/11(

3

8
)2/11(

6

3

8
2

π
.                                               (30.) 

 
Combining the last two expressions leads to 
  

2
)(

)/11(
3

8
2

0|
2

|

2 <=−< ∑∏
Nd

d

Np d

Nc
p .                                                                    (31.) 

 

Quod Erat Demonstrandum Deo Volente. 
 

 

4. GENERALIZATION 

Let t ≥ 2 be a fixed integer. An integer N ≥ 1 is called t-multiperfect if σ(N) = tN. The same analysis applied to the case t 
= 2 seems to extend to a proof of the nonexistence of odd multiperfect numbers. The required generalized results are 
duplicated here. From another perspective, the power series analysis proposed here applies equally well to the 

divisibility problem N | σ(N). Confer [BN], [LV] for new results, and [MP] and [SL] for numerical data.  
 

The perfect or multiperfect number problem is an integer divisibility problem. It asks for the integers N ∈ � which 

divide the arithmetic function σ(N). Since σ(N) < c0Nlogloglog N for almost every integer N ≥ 1, it is quite possible that 

N | σ(N) can occur infinitely often for small even integers 2 ≤ t < c1logloglog N, where c0, c1, c2 > 0 are constants. On 

the other hand, σ(N) > c1Nloglog N does occur infinitely often, but on a subset of integers of zero density. Therefore, it 

is less likely to have N | σ(N) infinitely often for small even integers t ≥ 2 in the range c1logloglog N  < t < c2loglog N.   
 

As an example, the Nicomachus conjecture claims that the sequence of integers N = 2p − 1, p prime, satisfies N | σ(N) 
for infinitely many integers, see (46) and [PM]. 
 

Since for t > eγloglog N, the equation σ(N) = tN is trivially false, it is assumed that the even integer t ≥ 2 is in the range 

2 ≤ t < c0loglog N for all integers N ≥ 1, where c0 > 0 is a constant.  
 

Corollary 14.  Let t ≥ 2 be a fixed integer. If N ≥ 1 is an odd t-multiperfect number, then the following hold: 

(i) ∑
∞

=

=
1

22

6)(

k

k t

k

Nc

π
.   (ii) ∑

=

=
odd

22

8)(

k

k t

k

Nc

π
.    (iii) ∑

=

−
=

even
22

2)(

k

k t

k

Nc

π
.  
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Proof: Same as the proof of Corollary 10, mutatis mutandis.                                                                                            � 
 

Theorem 15.   Let t ≥ 2 be a fixed integer, and let N ≥ 1 be an odd t-multiperfect number. Then 
 

∑∏ =−
0|

2
|

2 )(
)/11(

3

4

Nd

d

Np d

Nc
p

t
 .                                                                (32.) 

 

Proof: Start with Corollary 14-ii, and implement the needed changes in the proof of Theorem 11.                                 � 
 

Theorem 16.    There are no odd t-multiperfect numbers. Specifically, σ(N) ≠ tN for any odd integers N ≥ 1, and any 

fixed integer t ≥ 2.  
 

Proof: On the contrary, assume N ≥ 1 is an odd t-multiperfect number. Let ∏=
Np

pNrad
|

)(  be the radical of the integer 

N, and put N0 = rad(N)N. By Theorem 12, the inequality 
 

 ∑∑ <
NdNd

d

dd

Nc

||
2

1)(

0

,                                                                       (33.) 

 

holds for any integer N. By hypothesis N is a t-multiperfect number tdNN
Nd

== ∑ |
/1/)(σ , so applying the previous 

estimate to Theorem 15 leads to 
 

t
dd

Nc
p

t

NdNd

d

Np

=<=− ∑∑∏
||

2
|

2 1)(
)/11(

3

4

0

.                                                           (34.) 

 
Furthermore, since 2 is not a divisor of N, the product satisfies the inequality 
 

∏∏ −≤−=







−<

≥

−

Npp

p
t

p
tt

t
|

2

3

212

2
)/11(

3

4
)/11(

3

4
)2/11(

6

3

4

π
.                                      (35.) 

 
Combining the last two expressions leads to 
  

t
d

Nc
pt

Nd

d

Np

<=−< ∑∏
0|

2
|

2 )(
)/11(

3

8
.                                                           (36.) 

 

Is est a reductio ad absurdum, ergo σ(N) ≠ tN.                                                                                                                   � 
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APPENDIX 
Elementary technical materials on a few arithmetic functions are collected as reference for the convenience of the reader 
in Section A. Basic knowledge of these results will be required to establish the analysis of perfect number based on 
these arithmetic functions and related concepts. Section B has information on the theory of even perfect numbers. It is 
included for completeness. 

 

A. SOME ARITHMETIC FUNCTIONS 
The literature on the theory of each of arithmetic functions is a world in itself. For example, an extensive survey of the 
literature on the sum of divisors function appears in [SD, Chapter 3]. And a cornucopia of details on various aspects of 
the divisor function, totient function, and other related open problems are given in [GY, p. 45]. 
 

A.1 Sum of Divisors Function. The sum of divisors function is defined by ∑=
Nd

dN
|

)(σ . Its first few values are  

σ(1) = 1,   σ(4) = 1 + 2 + 4 = 7,   σ(7) = 1 + 7 = 8, 

σ(2) = 1 + 2 = 3,  σ(5) = 1 + 5 = 6,   σ(8) = 1 + 2 + 4 + 8 = 15, 

σ(3) = 1 + 3 = 4,  σ(6) = 1 + 2 + 3 + 6 = 12,  σ(9) = 1 + 3 + 9 = 13, … . 
 

Lemma 17.    Let N ≥ 1 be an integer, and let the symbol pα || N denotes the maximum prime power divisor of N. Then 

(i) )()()( NMMN σσσ =  if gcd(M, N) = 1.     (iii) 
N

N

M

M )()( σσ
≤ , if M | N. 

(ii) ∏
−

−
=

+

Np
p

p
N

||

1

1

1
)(

α

α

σ .      (iv) ∏
−

<
Np p

p

N

N

| 1

)(σ
. 

 

Typical applications of these properties of σ(N) to the theory of odd perfect numbers are as follow. 
 

Lemma 18.    An odd perfect number N ≥ 1 has at least 3 odd prime divisors. 
 

Proof: Assume that an odd perfect number N = pa⋅qb has two odd prime divisors p and q, with a, b ≥ 1. By Lemma 17-
iv, the inequality  
  

2
15

5

13

3

11

)(
<

−−
≤

−−
<

⋅

⋅

q

q

p

p

qp

qp
ba

baσ
                                                                     (37.) 

 

holds. This contradict the hypothesis σ(N) = 2N. Therefore, the integer N = pa⋅qb cannot be an odd perfect number.     � 
 
Following this pattern, the proofs for at least 4 odd prime divisors, et cetera, become exponentially more complicated. 
 

Lemma 19.    An odd perfect number N ≥ 1 is not divisible by 3⋅5⋅7. 
 

Proof: Assume that 3⋅5⋅7 | N. The Euler form of an odd perfect number calls for kv

k

vvv
ppppN

22

2

2

1

14

0
210 L⋅⋅= + , vi ≥ 1, and 

p0 ≡ 1 mod 4. This implies that N is divisible by 32⋅5⋅72. Moreover, by Lemma 17-iii, the inequality  
  

2
49

57

5

6

9

13

753

)753()(
22

22

>⋅⋅=
⋅⋅

⋅⋅
≥

σσ

N

N
                                                                      (38.) 

 

holds. Therefore, an odd perfect integer N cannot be divisible by 3⋅5⋅7.                                                                           � 
 

The integers n ∈ � = { 0, 1, 2, 3, … } are classified as deficient if σ(N) < 2N, or abundant if σ(N) > 2N. The density 
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function { } xxnnnxA //)(:#)( ≥= σ  is a topic of current interest, see [DE] for an estimate of the value .2474 < A(2) < 

.2480. Roughly speaking, this asserts that 1 in 4 integers is an abundant integer.  

A.2 Euler Function. The Euler function is defined by ∏ −=
Np

pNN
|

)/11()(ϕ . Its first few values are  

ϕ(1) = 1,   ϕ(4) = 4(1 − 1/2) = 2,   ϕ(7) = 7(1 − 1/7) = 6, 

ϕ(2) = 2(1 − 1/2) = 1,  ϕ(5) = 5(1 − 1/5) = 4,   ϕ(8) = 8(1 − 1/2) = 4, 

ϕ(3) = 3(1 − 1/3) = 2,  ϕ(6) = 6(1 – 1/2)(1 − 1/3) = 2, ϕ(9) = 9(1 − 1/3) = 6, … . 
 

Lemma 20.    Let N ≥ 1 be an integer. Then 

(i) )()()( NMMN ϕϕϕ =  if gcd(M, N) = 1.    (ii) ( )∏ −=
Np

pNN
|

/11)(ϕ .   

(iii) NNN loglog/2)( <ϕ . 

 
A.3. Mobius Function. The Mobius function is defined by  
 





≠

=−
=

.squarefree if                0

, if          )1(
)( 21

n

pppn
d v

v
L

µ                                                                                (39.)                               

 
A sample of calculations for small integers is shown here:  
 

µ(80) = µ(24⋅5) = 0,    µ(81) = µ(34) = 0,    µ(82) = µ(2⋅41) = (−1)2 = 1, 

µ(83) = (−1)1 = −1,    µ(84) = µ(22⋅3⋅7) = 0,    µ(85) = µ(5⋅17) = (−1)2 = 1. 
 
This is a multiplicative but not completely multiplicative function. More precisely,  
 

(i) µ(mn) = µ(m)µ(n),     if gcd(m, n) =1, 

(ii) µ(p2) ≠ µ(p)µ(p),     if p is a prime.  
 

There is no obvious pattern on the occurrences of 0, 1 or −1. The next two Lemmas provide the mean value of the 
Mobius function and its second (moment) variance.  

Lemma 21.   Let n ≥ 1 be an integer. Then, the Dirichlet sum 




≠

=
=∑

.1 if          0

,1 if          1
)(

|
n

n
d

nd
µ  

 

Proof: Since µ(d) = 0 if d ≥ 1 is not a squarefree integer, it is sufficient to consider only the squarefree divisors d of the 

squarefree kernel rad(n) = p1p2⋅⋅⋅pv, v ≥ 1, of the integer n ≥ 1. So, summing over all the squarefree divisors of n > 1 
yields 
 

 µ(d)
d |n

∑ =
v

k

 

 
 
 

 
 (−1)k = (1−1)v

k≥0

∑ = 0,                                                                     (40.) 

 

because there are (v | k) ways of selecting a subset { q1, q2, …, qk } of k ≥ 0 primes from the set of primes { p1, …, pv }, 

and µ(q1q2⋅⋅⋅qk) = (−1)k.                                                                                                                                                      � 
 

Lemma 22.        Let n ≥ 1 be an integer. Then, the Dirichlet sum )(

|

2 2)( n

nd
d

ωµ =∑ , where ω(n) ≥ 1 is the number of 

prime divisors of the integer n ≥ 1. 
 

Proof: Since µ(d) = 0 if d ≥ 1 is not a squarefree integer, it is sufficient to consider only the squarefree divisors d of the 

squarefree kernel rad(n) = p1p2⋅⋅⋅pv , v ≥ 1, of the integer n ≥ 1. So, summing over all the divisors of d > 1 yields 
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µ2(d)
d |n

∑ =
v

k

 

 
 
 

 
 (−1)2k = (1+1)v

k≥0

∑ = 2v,                                                               (41.) 

 

because there are (v | k) ways of selecting a subset { q1, …, qk } of k ≥ 0 primes from the set of primes { p1, …, pv }, and 

µ2(q1q2⋅⋅⋅qk) = (−1)2k.                                                                                                                                                           � 
 

The large second moment (variance) ∑ nd
d

|

2 )(µ  of the sum ∑ nd
d

|
)(µ  can be used to show that the values of ∑ ≤xd

d )(µ  

have wide variations about the mean value 0.  
 
There are many complicated problems involving sums of the Mobius function. Some of the following finite sums are of 
current research interest:  
 

(i) µ(d)
d |n, d ≤x

∑ ,      (ii) µ(n)
n≤x

∑ ,     (iii) µ(n)
n≤x

∑ ((x /n)) , 

       

where x ≥ 1 is a fixed real number, and (( x )) is the fractional part function. 
 

Lemma 23.   (Inversion Formulae)  Let f, g : �  →  � be complex valued functions, and linearly independent over the 
complex numbers. Then the following inversion formulae hold. 
 

(i) If f (n) = g(d)
d |n

∑  then g(n) = µ(d) f (n /d)
d |n

∑ ,  Additive Inversion. 

 

(ii) If f (n) = g(d)
d |n

∏  then g(n) = f (n /d)
d |n

∏
µ(d )

,  Multiplicative Inversion. 

 
The linear independence condition is required since the inversion formula can fails for linearly dependent functions f(n) 

=  cg(n), c ∈ � constant. 
 

Lemma 24.   For any integer N ≥ 1, the followings are Mobius transform pairs. 

(1a) )(
|

nd
nd

σ=∑ ,    (1b) ndnd
nd

=∑ |
)/()( σµ .    

(2a) )(1
|

nd
nd

=∑ ,    (2b) 1)/()(
|

=∑ nd
dnddµ . 

(3a) nd
nd

=∑ |
)(ϕ ,    (3b) )(/)(

|
nddn

nd
ϕµ =∑ . 

 

where d(n) is the number of divisor function, σ(n) is the sum of divisor function, ϕ(n) is the totient function.  
 

Proof: For the first claim, simply take f(n) = σ(n) and g(n) = n, and apply the inversion formula.                                    � 
 

 

B. EVEN PERFECT NUMBERS 
The basic algorithm for constructing even perfect number is ancient and it is recorded in Euclid’s Elements, Book IX, 
Proposition 36, see [EU]. The procedure is as follows: 
 
Add consecutive powers of 2 until the sum is a prime. Then, the sum times the last power of 2 is an even perfect 
number. Symbolically, this given by 
 

                                       2p−1(1 + 2 + 22 + ⋅⋅⋅ + 2p−1) = 2p−1(2p − 1).                                                                (42.)      
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In ancient time about 3 or 4 perfect numbers were known:  
 

2(22 − 1) = 6,   22(23 − 1) = 28,  24(25 − 1) = 496,  26(27 − 1) = 8128.                          (43.) 
 
The next few even perfect numbers were determined after the 1450’s. The initial theoretical result of Euclid was 
completed by Euler about two millenniums later.   
 

Theorem 25.   (Euclid-Euler)   An even integer N ≥ 1 is a perfect number if and only if )12(2 1 −= − ppN , and 12 −p  is a 

prime.  
 

Proof: Suppose )12(2 1 −= − ppN , with 12 −p  prime. Then 

 

 NN pppppppp 22)12()12()12()12()2())12(2()( 11 =−=−−=−=−= −− σσσσσ .                              (44.) 

 

This implies that N is a perfect number. Conversely, assume )12(2 1 −= − ppN  is a perfect number. Then 

 

)12()12()12()2())12(2()(2 11 −−=−=−== −− ppppppNN σσσσσ .                                          (45.) 

 

Ergo, )12()12()12(22 −−=−= ppppN σ . Idem quod, 2p = σ(2p −1). Now assume k

p
pp L112 =− , pi prime. By 

Fermat Little Theorem, pi = 2pai + 1, for i = 1, 2, …, k. So, k

kkpp
aap L12)12(2 ⋅=−= σ , which is a contradiction 

since p ≠ 2u, u ≥ 1. Therefore, 2p −1 is prime and 2p = σ(2p −1).                                                                                    � 
 

The assumption ke

k

ep
pp L1

112 =−  with ei > 1 leads to the same conclusion. Various versions of this converse second 

part of Theorem ?10 are widely available in the literature. In [VT], six different proofs of the converse second part of 
the above result are given, see also [HW, p. 312]. 
  

An integer N ≥ 1 is called superperfect if NN 2))(( =σσ . For example, N = 16, and 64 are superperfect numbers. 

 

Corollary 26.   An even integer N ≥ 1 is superperfect number if and only if p
N 2=  and 12 −p  is a prime. 

 
The Lucas-Lehmer algorithm is a very efficient and effective algorithm used in the search for both Mersenne primes 
and for even perfect numbers. Extremely large Mersenne primes and perfect numbers have been determined in the last 
few decades. Currently, as of 2011, there are 47 Mersenne primes and the same number of even perfect numbers. The 

largest ones are 243112609 − 1, and N = 243112609(243112609 − 1) respectively. The prime 243112609 − 1 has 12978189 decimal 
digits. 
 

Theorem 27.  (Lucas-Lehmer)  Define the nonlinear sequence 22

1 −= −nn SS , S0 = 4. Let p be a prime. Then the number 

2p − 1 is a prime if and only if 12mod01 −≡−
p

pS . 

 
An elementary proof of this result appears in [BR]. The main research problem on even perfect numbers is whether or 
not there are infinite many even perfect numbers. This is essentially the content of the following statements. 
 

Conjecture 28.  (Gillies)   Let p be a prime and let Mp be a Mersenne number. If 0 < A < B < M p , and both B/A and 

Mp → ∞, then the number of prime divisors of Mp in the interval [A, B] is Poisson distributed with mean 

})2,log(max{/loglog pAB . 
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Confer the literature for the recent refinements of this conjecture. This conjecture appears to be one of the most 
important unsolved problems in the theory of even perfect numbers. A heuristic argument suggests that the number of 
Mersenne primes up to x is given by 
  

{ } )log(logloglog)2(logprime is 12:#)( 1
xoxeMxMxN

p

pp +=−=≤= −γ .                               (46.) 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 


