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Abstract

In this paper, we study the occurrence of patterns in the cycle structures of permutations.

1 Introduction

The notion of patterns in permutations and words has proved to be a useful language in a
variety of seemingly unrelated problems including the theory of Kazhdan-Lusztig polynomials,
singularities of Schubert varieties, Chebyshev polynomials, rook polynomials for Ferrers boards,
and various sorting algorithm including sorting stacks and sortable permutations. The study
of occurrences of patterns in words and permutations is a new, but rapidly growing, branch of
combinatorics which has its roots in the works by Rotem, Rogers, and Knuth in the 1970s and
early 1980s. The first systematic study of permutation patterns was not undertaken until the
paper by Simion and Schmidt [23] which appeared in 1985. The field has experienced explosive
growth since 1992.

The goal of this paper is to initiate the study pattern matching conditions in the cycle
structure of a permutation. First we recall the basic definitions for pattern matching in permu-
tations. Given a sequence σ = σ1 . . . σn of distinct integers, let red(σ) be the permutation found
by replacing the ith largest integer that appears in σ by i. For example, if σ = 2 7 5 4, then
red(σ) = 1 4 3 2. Given a permutation τ = τ1 . . . τj in the symmetric group Sj, we say a permu-
tation σ = σ1 . . . σn ∈ Sn has a τ -match starting at position i provided red(σi . . . σi+j−1) = τ .
Let τ -mch(σ) be the number of τ -matches in the permutation σ. Similarly, we say that τ occurs

in σ if there exist 1 ≤ i1 < · · · < ij ≤ n such that red(σi1 · · · σij) = τ . We say that σ avoids τ if
there are no occurrences of τ in σ.

These definitions can naturally be extended to sets of permutations. That is, given a set
of permutations Υ in the symmetric group Sj, define a permutation σ = σ1 . . . σn ∈ Sn to
have a Υ-match starting at position i provided red(σi . . . σi+j−1) ∈ Υ. Let Υ-mch(σ) be the
number of Υ-matches in the permutation σ. Similarly, we say that Υ occurs in σ if there exist
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1 ≤ i1 < · · · < ij ≤ n such that red(σi1 · · · σij) ∈ Υ. We say that σ avoids Υ if there are no
occurrences of Υ in σ.

In this paper, we want to study matching conditions within the cycle structure of a permu-
tation. Suppose that τ = τ1 . . . τj is a permutation in Sj and σ is a permutation in Sn with k
cycles C1 . . . Ck. We shall always write cycles in the form Ci = (c0,i, . . . , cpi−1,i) where c0,i is
the smallest element in Ci and pi is the length of Ci and we arrange the cycles by increasing
smallest elements. That is, we arrange the cycles of σ so that c0,1 < · · · < c0,k. Then we say
that σ has a cycle τ -match (c-τ -match) if there is an i such that Ci = (c0,i, . . . , cpi−1,i) where
pi ≥ j and an r such that red(cr,icr+1,i . . . cr+j−1,i) = τ where we take indices of the form r + s
modulo pi. Let c-τ -mch(σ) be the number of cycle τ -matches in the permutation σ. For ex-
ample, if τ = 2 1 3 and σ = (1, 10, 9)(2, 3)(4, 7, 5, 8, 6), then 9 1 10 is a cycle τ -match in the
first cycle and 7 5 8 and 6 4 7 are cycle τ -matches in the third cycle so that c-τ -mch(σ) = 3.
Similarly, we say that τ cycle occurs in σ if there exists an i such that Ci = (c0,i, . . . , cpi−1,i)
where pi ≥ j and there is an r with 0 ≤ r ≤ pi − 1 and indices 0 ≤ i1 < · · · < ij−1 ≤ pi − 1
such that red(cr,icr+i1,i . . . cr+ij−1,i) = τ where the indices r+ is are taken mod pi. We say that
σ cycle avoids τ if there are no cycle occurrences of τ in σ. For example, if τ = 1 2 3 and
σ = (1, 10, 9)(2, 3)(4, 8, 5, 7, 6), then 4 5 7, 4 5 6, and 5 6 8 are cycle occurrences of τ in the third
cycle.

We can extend of the notion of cycle matches and cycle occurrences to sets of permutations in
the obvious fashion. That is, suppose that Υ is a set of permutations in Sj and σ is a permutation
in Sn with k cycles C1 . . . Ck. Then we say that σ has a cycle Υ-match (c-Υ-match) if there is
an i such that Ci = (c0,i, . . . , cpi−1,i) where pi ≥ j and an r such that red(cr,i . . . cr+j−1,i) ∈ Υ
where we take indices of the form r + s modulo pi. Let c-Υ-mch(σ) be the number of cycle
Υ-matches in the permutation σ. Similarly, we say that Υ cycle occurs in σ if there exists an i
such that Ci = (c0,i, . . . , cpi−1,i) where pi ≥ j and there is an r with 0 ≤ r ≤ pi − 1 and indices
0 ≤ i1 < · · · < ij−1 ≤ pi − 1 such that red(cr,icr+i1,i . . . cr+ij−1,i) ∈ Υ where the indices r + is
are taken mod pi. We say that σ cycle avoids Υ if there are no cycle occurrences of Υ in σ.

Given Υ ⊆ Sj, we let ASn(Υ) (CASn(Υ)) denote the set of permutations of Sn which
avoid (cycle avoid) Υ and aSn(Υ) = |ASn(Υ)| (caSn(Υ) = |CASn(Υ)|). Similarly, we let
NMSn(Υ) (NCMSn(Υ)) denote the set of permutations of Sn which have no Υ-matches (no
cycle Υ-matches) Υ and nmSn(Υ) = |NMSn(Υ)| (ncmSn(Υ) = |NCMSn(Υ)|). Throughout
this paper, when Υ = {τ} is a singleton, we shall just write the τ rather than {τ}. Thus for
example, we shall write ASn(τ) for ASn(Υ) when Υ = {τ}.

Given α and β in Sj , we say that α and β are Wilf equivalent if aSn(α) = aSn(β) for all n.
We say that α and β are matching Wilf equivalent (m-Wilf equivalent) if nmSn(α) = nmSn(β)
for all n. For any permutation σ = σ1 . . . σn, we let σr be the reverse of σ and σc be the
complement of σ. That is, σr = σn . . . σ1 and σc = (n + 1 − σ1) . . . (n + 1 − σn). It is well
known that Wilf equivalence classes and m-Wilf equivalence classes are closed under reverse and
complementation. We say that α and β are cycle avoidance Wilf equivalent (ca-Wilf equivalent)
if caSn(α) = caSn(β) for all n and we say that α and β are cycle matching Wilf equivalent

(cm-Wilf equivalent) if ncmSn(α) = ncmSn(β) for all n. If α and β are cycle avoidance Wilf
equivalent, we shall write α ∼ca β. If α and β are cycle matching Wilf equivalent, we shall write
α ∼cm β. Similarly, for sets of permutations Γ and ∆ in Sj , we say that Γ and ∆ are cycle
avoidance Wilf equivalent (ca-Wilf equivalent) if caSn(Γ) = caSn(∆) for all n and we say that
Γ and ∆ are cycle matching Wilf equivalent (cm-Wilf equivalent) if ncmSn(Γ) = ncmSn(∆) for
all n.
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If σ is a permutation in Sn with k cycles C1 . . . Ck, then we let the cycle reverse of σ, denoted
by σcr, be the permutation which arises from σ by replacing each cycle Ci = (c0,i, c1,i, . . . , cpi−1,i)
by its reverse cycle Ccr

i = (c0,i, cpi−1,i, . . . c1,i). For example, if σ = (1, 10, 9)(2, 3)(4, 7, 5, 8, 6),
then σcr = (1, 9, 10)(2, 3)(4, 6, 8, 5, 7). We let the cycle complement of σ, denoted by σcc, be
the permutation that results from σ by replacing each element i in the cycle structure of σ by
n+1− i. For example, if σ = (1, 10, 9)(2, 3)(4, 7, 5, 8, 6), then σcr = (10, 1, 2)(9, 8)(7, 4, 6, 3, 5) =
(1, 2, 10)(3, 5, 7, 4, 6)(8, 9). Note that in general σr, σc, σcr and σcc are all distinct. For example,
σ = 2 3 1 5 4 so that it cycle structure is (1, 2, 3)(4, 5), then

σr = 4 5 1 3 2,

σc = 4 3 5 1 2,

σcr = (1, 3, 2)(4, 5) = 3 1 2 5 4, and

σcc = (5, 4, 3)(2, 1) = 2 1 5 3 4.

It is easy to see that for any permutation σ ∈ Sn,

1. σ has a cycle τ -match if and only if σcr has a cycle τ r-match,

2. σ has a cycle τ -match if and only if σcc has a cycle τ c-match,

3. σ has a cycle τ occurrence if and only if σcr has a cycle τ r occurrence, and

4. σ has a cycle τ occurrence if and only if σcc has a cycle τ c occurrence.

It then easily follows that for all permutations τ , ncmSn(τ) = ncmSn(τ
r) = ncmSn(τ

c) so that
τ , τ r, and τ c are all cycle matching Wilf equivalent. Similarly, caSn(τ) = caSn(τ

r) = caSn(τ
c) so

that τ , τ r, and τ c are all cycle avoidance Wilf equivalent. Finally we observe that our definitions
also ensure that for any τ = τ1 . . . τj ∈ Sj, any cyclic rearrangement of τ , τ (i) = τi . . . τjτ1 . . . τi−1

also has the property that for any σ ∈ Sn, τ cycle occurs in σ if and only if τ (i) cycle occurs in σ.
Thus for all 1 ≤ j, caSn(τ) = caSn(τ

(i)) so that τ and τ (i) are cycle avoidance Wilf equivalent.
Given a permutation σ = σ1 . . . σn ∈ Sn, we let des(σ) = |{i : σi > σi+1}|. We say that σj

is a left-to-right minima of σ if σj < σi for all i < j. We let LtRMin(σ) denote the number of
left-to-right minma of σ. Given a cycle C = (c0, . . . , cp−1) where c0 is the smallest element in the
cycle, we let cdes(C) = 1+des(c0 . . . cp−1). Thus cdes(C) counts the number of descent pairs as
we traverse once around the cycle because the extra factor of 1 counts the descent pair cp−1 > c0.
For example if C = (1, 5, 3, 7, 2), then cdes(C) = 3 which counts the descent pairs 53, 72, and
21 as we traverse once around C. By convention, if C = (c0) is one-cycle, we let cdes(C) = 1. If
σ is a permutation in Sn with k cycles C1 . . . Ck, then we define cdes(σ) =

∑k
i=1 cdes(Ci). We

let cyc(σ) denote the number of cycles of σ.
The main goal of this paper is to study the generating functions

CAΥ(t) = 1 +
∑

n≥1

caSn(Υ)
tn

n!
, (1)

and

NCMΥ(t) = 1 +
∑

n≥1

ncmSn(Υ)
tn

n!
(2)
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for Υ ⊆ Sj as well as refinements of such generating functions such as

CAΥ(t, x) = 1 +
∑

n≥1

tn

n!

∑

σ∈CASn(Υ)

xcyc(σ),

CAΥ(t, x, y) = 1 +
∑

n≥1

tn

n!

∑

σ∈CASn(Υ)

xcyc(σ)ycdes(σ),

NCMΥ(t, x) = 1 +
∑

n≥1

tn

n!

∑

σ∈NCMSn(Υ)

xcyc(σ), and

NCMΥ(t, x, y) = 1 +
∑

n≥1

tn

n!

∑

σ∈NCMSn(Υ)

xcyc(σ)ycdes(σ).

We know of several ways to approach the this problem. The most direct way is to use the
theory of exponential structures to reduce the problem down to studying pattern matching in
n-cycles. That is, let Lm denote the set m-cycles in Sm. Suppose that R is a ring and for
each m ≥ 1, we have a weight function Wm : Lm → R. We let W (Lm) =

∑

C∈Lm
Wm(C).

Now suppose that σ ∈ Sn and the cycles of σ are C1, . . . , Ck. If Ci is of size m, then we
let W (Ci) = Wm(red(Ci)) where red(Ci) is the m-cycle in Sm that results by replacing j-
th smallest element in Ci by j for j = 1, . . . ,m. For example, if Ci = (1, 5, 7, 10, 4), then
red(Ci) = (1, 3, 4, 5, 2). Then we define the weight of σ, W (σ), by

W (σ) =

k
∏

i=1

W (Ci).

We let Cn,k denote the set of all permutations of Sn with k cycles. This given, the following
theorem easily follows from the theory of exponential structures, see [24].

Theorem 1.

1 +

∞
∑

n=1

tn

n!

n
∑

k=1

xk
∑

σ∈Cn,k

W (σ) = ex
∑

m≥1
W (Lm)tm

m! . (3)

Let Υ ⊆ Sj. Then we will be most interested in the special case of weight functions Wm

where Wm(C) = 1 if C cycle avoids a set of permutations and Wm(C) = 0 otherwise or where
Wm(C) = 1 if C has no cycle Υ-matches and Wm(C) = 0 otherwise. We let CASn,k(Υ)
denote the set of permutations σ of Sn with k cycles such that σ cycle avoids Υ and we let
caSn,k(Υ) = |CASn,k(Υ)|. We let NCMSn,k(Υ) denote the set of permutations σ of Sn with
k cycles such that σ has no cycle Υ-matches and ncmSn,k(Υ) = |NCMSn,k(Υ)|. Similarly, we
let Lca

m(Υ) be the set of m cycles γ in Sm such γ cycle avoids Υ, Lca
m(Υ) = |Lca

m(Υ)|, Lncm
m (Υ)

denote the set of m cycles γ in Sm such γ has no cycle Υ-matches, and Lncm
m (Υ) = |Lncm

m (Υ)|.
Then a special case of Theorem 1 is the following theorem.

Theorem 2.

CAΥ(t, x) = 1 +
∑

n≥1

tn

n!

n
∑

k=1

caSn,k(Υ)xk = ex
∑

m≥1 L
ca
m (Υ) t

m

m! , (4)

NCMΥ(t, x) = 1 +
∑

n≥1

tn

n!

n
∑

k=1

ncmSn,k(Υ)xk = ex
∑

m≥1 L
ncm
m (Υ) t

m

m! , (5)
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CAΥ(t, x, y) = 1 +
∑

n≥1

tn

n!

n
∑

k=1

xk
∑

σ∈CASn,k(Υ)

ycdes(σ) = ex
∑

m≥1
tm

m!

∑

C∈Lca
m (Υ) y

cdes(C)

, (6)

and

NCMΥ(t, x, y) = 1 +
∑

n≥1

tn

n!

n
∑

k=1

xk
∑

σ∈NCMSn,k(Υ)

ycdes(σ) = ex
∑

m≥1
tm

m!

∑

C∈Lncm
m (Υ) y

cdes(C)

. (7)

For example, suppose that τ = 1 2. It is clear that any cycle of length k where k ≥ 2 has
both a cycle occurrence of τ and a cycle τ -match so that Lca

m(12) = Lncm
m (12) = 0 if m ≥ 2.

Since 1-cycles can not have any cycle occurrences of τ or any cycle τ -matches by definition, it
follows that

y =
∑

C∈Lca
1 (12)

ycdes(C) =
∑

C∈Lncm
1 (12)

ycdes(C).

Thus
CA12(t, x, y) = NCM12(t, x, y) = exyt.

Next consider τ = 1 2 3. It is easy to see that for k ≥ 3, the only k-cycle which cycle avoids τ
is the cycle (1, k, k − 1, . . . , 2). Let

Am(y) =
∑

C∈Lca
m (123)

ycdes(C),

then clearly A1(y) = y since cdes((1)) = 1, A2(y) = y since cdes((1, 2)) = 1, and for k ≥ 3,
Ak(y) = yk−1 since cdes((1, k, . . . , 2)) = k − 1. Thus

CA123(t, x, y) = e
x

(

yt+
∑

m≥2
ym−1tm

m!

)

= e
x
(

yt+ 1
y
(eyt−1−yt)

)

.

It turns out that if τ ∈ Sj is a permutation that starts with 1, then we can reduce the problem
of findingNCMτ (t, x) andNCMτ (t, x, y) to the usual problem of finding the generating function
of permutations that have no τ -matches. That is, suppose we are given a permutation σ ∈ Sn

with k-cycles C1 · · ·Ck. Assume we have arranged the cycles so that the smallest element in
each cycle is on the left and we arrange the cycles by decreasing smallest elements. Then we let
σ̄ be the permutation that arise from C1 · · ·Ck by erasing all the parenthesis and commas. For
example, if σ = (7, 10, 9, 11) (4, 8, 6) (1, 5, 3, 2), then σ̄ = 7 10 9 11 4 8 6 1 5 3 2. It is easy to
see that the minimal elements of the cycles correspond to left-to-right minima in σ̄. It is also
easy to see that under our bijection σ → σ̄, that cdes(σ) = des(σ̄) + 1 since every left-to-right
minima is part of a descent pair in σ̄. For example, if σ = (7, 10, 9, 11) (4, 8, 6) (1, 5, 3, 2) so that
σ̄ = 7 10 9 11 4 8 6 1 5 3 2, cdes((7, 10, 9, 11)) = 2, cdes((4, 8, 6)) = 2, and cdes((1, 5, 3, 2)) = 4
so that cdes(σ) = 2 + 2 + 4 = 8 while des(σ̄) = 7. This given, we have the following lemma.

Lemma 3. If τ ∈ Sj and τ starts with 1, then for any σ ∈ Sn,

1. σ has k cycles if and only if σ̄ has k left-to-right minima,

2. cdes(σ) = 1 + des(σ̄), and

3. σ has no cycle-τ -matches if and only if σ̄ has no τ -matches.
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Proof. For (3), suppose that σ̄ = σ̄1 . . . σ̄n and σ̄i = 1. Since τ starts with 1, it is easy to see
that any τ -match in σ̄ must either occur weakly to the right of σ̄i or strictly to left of σ̄i. That
is, 1 can be part of τ -match in σ̄ only if the τ -match starts at position i. If a τ -match occurred
weakly to the right of σ̄i, then that τ -match would correspond to a cycle-τ -match in Ck in σ.

Next suppose that the τ -match occurred strictly to the left of σ̄i = 1. Then we claim that we
can make a similar argument with respect to the cycles C1 · · ·Ck−1. That is, suppose that Ck−1

starts with m. Then m must be the smallest element among σ̄1 . . . σ̄j−1. Suppose that σ̄s = m
where 1 ≤ s < j. Then again we can argue that any τ -match in σ̄1 . . . σ̄j−1 must occur either
weakly to the right of σ̄s or strictly to left of σ̄s. If the τ -match in σ̄1 . . . σ̄j−1 occurs weakly to
the right of σ̄s, then it would correspond to a cycle-τ -match in Ck−1. Continuing on in this way,
we see that any τ -match in σ̄ must correspond to a cycle τ -match in Ci for some i.

Vice versa, it is easy to see that since τ starts with 1, the only way that a cycle-τ -match in
Ci can involve the smallest element c0,i in the cycle Ci is if c0,i corresponds to the 1 in τ in cycle
match. But this easily implies that any τ -cycle match in Ci must also correspond to a τ -match
in the elements of σ̄ corresponding to Ci.

Thus we have proved that for any σ, σ has cycle-τ -match if only if σ̄ has a τ -match.

We should note that if a permutation τ does not start with 1, then it may be that case that
ncmSn(τ) 6= nmSn(τ). For example, τ = 3 1 4 2 is the smallest permutation such that neither
τ , τ r, τ c, nor (τ r)c starts with one. For example, even though we do not know how to compute
closed forms for NCM(t) and NM(t), we have computed the following table.

n Lncm
n (3142) NCMn(3142) NMn(3142)

1 1 1 1

2 1 2 2

3 2 6 6

4 5 23 23

5 20 110 110

6 92 632 632

7 532 4236 4237

8 3565 32448 32465

One consequence of Lemma 3 is that we can automatically obtain refinements of generating
functions for the number of permutations with no τ -matches when τ starts with 1. That is, let

NMτ (t, x) =
∑

n≥0

tn

n!

∑

σ∈NMSn(τ)

xLtRMin(σ) and

NMτ (t, x, y) =
∑

n≥0

tn

n!

∑

σ∈NMSn(τ)

xLtRMin(σ)y1+des(σ).

Then we have the following corollary of Lemma 3.

Corollary 4. If τ ∈ Sj and τ starts with 1, then

NCMτ (t, x) = NMτ (t, x) and (8)

NCMτ (t, x, y) = NMτ (t, x, y). (9)

6



Then by Theorem 2 and Lemma 3, if τ ∈ Sj and τ starts with 1, we have that

NMτ (t, 1) =
∑

n≥0

NMn(τ)
tn

n!

= NCM(t, 1)

= e
∑

m≥1 L
ncm
m (τ) t

m

m!

so that

ln(NMτ (t, 1)) =
∑

m≥1

Lncm
m (τ)

tm

m!
. (10)

But then

NM(t, x) = NCM(t, x) (11)

= ex
∑

m≥1 L
ncm
m (τ) t

m

m!

= ex ln(NMτ (t,1)) = (NMτ (t, 1))
x (12)

Thus if we can compute NMτ (t, 1) for a permutation τ ∈ Sj that starts with 1, we automatically
can compute NMτ (t, x). For example, Goulden and Jackson [8] proved that when τ = 1 2 . . . k,
then

NMτ (t) =
1

∑

i≥0
tki

(ki)! − tki+1

(ki+1)!

. (13)

Hence, we automatically have the following refinement of Goulden and Jackson’s result.

Theorem 5. If τ = 12 . . . k where k ≥ 2, then

NMj...2 1(t, x) =

(

1
∑

i≥0
tki

(ki)! − tki+1

(ki+1)!

)x

. (14)

An example, where one can use the full power of Theorem 1 is the following. In section 2,
we shall show that

∑

n≥1

tn

n!

∑

C∈Lncm
n (132)

ycdes(C) = ln





1

1− y
∫ t
0 e

(1−y)s−y s2

2 ds



 . (15)

Then it follows that

NCM(t, x, y) =
∑

n≥0

tn

n!

∑

σ∈Sn

xcyc(σ)ycdes(σ) (16)

=
∑

n≥0

tn

n!

n
∑

k=1

xk
∑

σ∈NCMSn,k(τ)

ycdes(σ)

= e

x ln





1

1−y
∫ t
0 e

(1−y)s−y s2
2 ds





=





1

1− y
∫ t
0 e

(1−y)s−y s2

2 ds





x

.
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The outline of this paper is as follows. In Section 2, we determine the generating function
CAτ (t, x, y) and NCMτ (t, x, y) for all τ ∈ S3 as well as compute CAΥ(t, x, y) andNCMΥ(t, x, y)
for certain subsets Υ ⊆ S3. In section 3, we shall compute NCMτ (t, x, y) for all τ = τ1 . . . τj ∈ Sj

where τ1 = and τj = 2 and for all τ = τ1 . . . τj+p ∈ Sj+p of the form τ = 1 2 . . . J − 1 γ j where
j ≥ 3 and γ is a permutation of j + 1, . . . , j + p. Finally, in Section 4, we shall briefly describe
two other approaches to computing the generating function NCMτ (t, x, y).

2 Patterns of length 3

In this section, we study CAτ (t, x, y) and NCMτ (t, x, y) for τ ∈ S3.
First we consider CAτ (t, x) for τ ∈ S3. It follows from our remarks in the introduction that

both cycle avoidance Wilf equivalence and cycle matching Wilf equivalence are closed under the
operation of reverse and complement. Thus

1. 1 2 3 ∼ca 3 2 1 and 1 2 3 ∼cm 3 2 1 and

2. 1 3 2 ∼ca 2 3 1 ∼ca 2 1 3 ∼ca 3 1 2 and 1 3 2 ∼cm 2 3 1 ∼cm 2 1 3 ∼cm 3 1 2.

Now since cycle avoidance Wilf equivalence is closed under cycle rearrangements, it follows that
1 2 3 ∼ca 2 3 1 which means that all permutations of length three are cycle avoidance Wilf
equivalent. Thus for all permutations τ of length three, we have

CAτ (t) = CA123(t) = ee
t−1.

But since
CAτ (t) = e

∑

m≥1 L
ca
m (τ) t

m

m!

for all τ ∈ S3, it must be the case that

∑

m≥1

Lca
m(τ)

tm

m!
= et − 1

for all τ ∈ S3 and, hence,

CAτ (t, x) = ex
∑

m≥1 L
ca
m (τ) t

m

m! = ex(e
t−1)

for all τ ∈ S3. However it is not the case that the generating functions CAτ (t, x, y) are equal for
all τ ∈ S3. That is, suppose that α is a cyclic rearrangement of β. Then it is easy to see that
Lca
m(α) = Lca

m(β) for all m ≥ 1 so that

∑

C∈Lca
m (α)

ycdes(C) =
∑

C∈Lca
m (β)

ycdes(C). (17)

But then it follows from Theorem 2 that we must have CAα(t, x, y) = CAβ(t, x, y). It thus
follows that from our results in the introduction that

CA123(t, x, y) = CA312(t, x, y) = CA231(t, x, y) = e
x
(

yt+ 1
y
(eyt−1−yt)

)

.

8



Next consider τ = 1 3 2. It is easy to see that for k ≥ 3, the only k-cycle which cycle avoids
τ is the cycle (1, 2, . . . , k). Thus

∑

C∈Lca
m (132)

ycdes(C) = y,

for all k ≥ 1. Hence

CA132(t, x, y) = CA213(t, x, y) = CA321(t, x, y) = e
x
(

∑

m≥1
ytm

m!

)

= exy(e
t−1).

Next we shall consider the generating functions NCMτ (t, x, y) for τ ∈ S3. We claim that is
enough to compute NCM123(t, x, y) and NCM132(t, x, y). That is, for any j ≥ 2 and τ ∈ Sj ,
we can compute NCMτr(t, x, y) and NCMτc(t, x, y) from NCMτ (t, x, y). Note that it follows
from Theorem 2 that

∑

n≥1

tn

n!

∑

C∈Lncm
n (tau)

ycdes(C) = ln (NCMτ (t, 1, y)) . (18)

Since
∑

C∈Lncm
1 (123) y

cdes(C) = y, it follows that

∑

n≥2

tn

n!

∑

C∈Lncm
n (τ)

ycdes(C) = ln (NCMτ (t, 1, y)) − yt. (19)

Given any n-cycle C in Sn, let C
cr denotes its cycle-reverse and Ccc denotes its cycle-complement.

Then C ∈ Lncm
n (τ) if and only if Ccr ∈ Lncm

n (τ r) and C ∈ Lncm
n (τ) if and only if Ccc ∈ Lncm

n (τ c)
Now if n ≥ 2, then it is easy to see that n − cdes(C) = cdes(Ccr) = cdes(Ccc). That is, each
descent as we read once around the cycle C becomes a rise as we read around the cycles of Ccr

and Ccc and each rise as we read once around the cycle C becomes a descent as we read around
the cycles of Ccr and Ccc. Note, however, that if C is a one-cycle, then Ccr = Ccc = C and
cdes(C) = cdes(Ccr) = cdes(Ccc) = 1 so that it is not the case that cdes(Ccr) = cdes(Ccr) =
1− cdes(C). Thus we have to treat the one-cycles separately. Thus we have that

∑

n≥2

tn

n!

∑

C∈Lncm
n (τ)

yn−cdes(C) =
∑

n≥2

tn

n!

∑

C∈Lncm
n (τr)

ycdes(C)

=
∑

n≥2

tn

n!

∑

C∈Lncm
n (τc)

ycdes(C).

It follows that if τ ∈ Sj where j ≥ 2 and

G(t, y) =
∑

n≥2

tn

n!

∑

C∈Lncm
n (τ)

ycdes(C), (20)

then

G(ty, y−1) =
∑

n≥2

tn

n!

∑

C∈Lncm
n (τr)

ycdes(C) =
∑

n≥2

tn

n!

∑

C∈Lncm
n (τc)

ycdes(C). (21)
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Thus by (19), we have that

ln
(

NCMτ (ty, 1, y
−1)
)

− t =
∑

n≥2

tn

n!

∑

C∈Lncm
n (τr)

ycdes(C)

=
∑

n≥2

tn

n!

∑

C∈Lncm
n (τc)

ycdes(C)

so that

ty − t+ ln
(

NCMτ (ty, 1, y
−1)
)

=
∑

n≥1

tn

n!

∑

C∈Lncm
n (τr)

ycdes(C)

=
∑

n≥1

tn

n!

∑

C∈Lncm
n (τc)

ycdes(C)

Then we can apply Theorem 2 to obtain the following result.

Theorem 6. Let τ ∈ Sj where j ≥ 2. Then

NCMτr(t, x, y) = NCMτc(t, x, y) = ex(yt−t+ln(NCMτ (ty,1,y−1))). (22)

Next we shall show that we can find an explicit expression NCM123(t, x, y) using some results
of Mendes and Remmel [16]. Suppose that we want to compute the generating function

NCMτ (t, x, y) =
∑

n≥0

tn

n!

∑

σ∈NCMSn(τ)

xcyc(σ)ycdes(σ) (23)

= ex
∑

n≥1
tn

n!

∑

C∈Lncm
n (τ) y

cdes(σ)

in the case where τ starts with 1. Then by Corollary 4, we know that

NCMτ (t, x, y) = NMτ (t, x, y) =
∑

n≥0

tn

n!

∑

σ∈NMSn(τ)

xLtRMin(σ)y1+des(σ). (24)

Now suppose that we can compute

NMτ (t, 1, y) =
∑

n≥0

tn

n!

∑

σ∈NMSn(τ)

y1+des(σ). (25)

Then we know that

NMτ (t, 1, y) = e
∑

n≥1
tn

n!

∑

C∈Lncm
n (τ) y

cdes(σ)

so that
∑

n≥1

tn

n!

∑

C∈Lncm
n (τ)

ycdes(σ) = ln (NMτ (t, 1, y)) .

But then it follows that

NCMτ (t, x, y) = NMτ (t, x, y) = ex ln(NMτ (t,1,y)). (26)

Thus we need only compute (25). However, Mendes and Remmel [16] proved the following
theorem.

10



Theorem 7. If τ = j . . . 2 1 where j ≥ 2, then

∑

n≥0

tn

n!

∑

σ∈NMSn(τ)

ydes(σ) =





∑

n≥0

tn

n!

∑

i≥0

(−1)iRn−1,i,j−1y
i





−1

(27)

where Rn,i,j is the number of rearrangements of i zeroes and n− i ones such that j zeroes never

appear consecutively.

Replacing y by 1/y and then replacing t by yt in (27) yields

∑

n≥0

tn

n!

∑

σ∈NMSn(τ)

yn−des(σ) =





∑

n≥0

tn

n!

∑

i≥0

(−1)iRn−1,i,j−1y
n−i





−1

. (28)

It is easy to see that if σ ∈ Sn has no j . . . 2 1-matches, then the reverse of σ, σr has no
1 2 . . . j-matches and that n − des(σ) equals 1 + des(σr). Thus it follows that if α = 1 2 . . . j,
then

∑

n≥0

tn

n!

∑

σ∈NMSn(α)

y1+des(σ) =





∑

n≥0

tn

n!

∑

i≥0

(−1)iRn−1,i,j−1y
n−i





−1

. (29)

Thus we have the following theorem.

Theorem 8. For j ≥ 2 and τ = 12 . . . j,

NCMτ (t, x, y) =
∑

n≥0

tn

n!

∑

σ∈NCMSn(τ)

xcyc(σ)ycdes(σ) (30)

= e
x ln

(

1
∑

n≥0
tn
n!

∑

i≥0(−1)iRn−1,i,j−1y
n−i

)

=

(

1
∑

n≥0
tn

n!

∑

i≥0(−1)iRn−1,i,j−1yn−i

)x

.

where Rn,i,j is the number of rearrangements of i zeroes and n− i ones such that j zeroes never

appear consecutively.

Now if τ = 123, then we can obtain a more explicit formula for NCMτ (t, x, y) using the
following observations of Mendes and Remmel [16]. That is, suppose that we start with a word
w = w1 . . . wn which is a sequence in {0, 1}∗ with no two consecutive zeros. Then we can uniquely
factor w by cutting the word before each 0. For example, if w = 11110110111010101110 then
we would factor w as

1111|011|0111|01|01|0111|0.
It is easy to see that each such word w is of the form

{1}∗{01i : i ≥ 1}∗(ǫ+ 0)

where ǫ is the empty word. Thus if U is the set of a words in {0, 1}∗ with no two consecutive
zeros and we weight each word in w ∈ U by WT (w) = y1(w)z0(w)t|w| where 1(w) is the number
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of 1’s in w, 0(w) is the number of 0’s in w, and |w| is the length of w, then it follows that

U(t, y, z) =
∑

w∈U
WT (w)

=
1

1− yt

1

1−∑n≥2 y
n−1ztn

(1 + zt)

=
1 + zt

(1− yt− yzt2)
. (31)

But then it is easy to see that
∑

i≥0

(−1)iRn−1,i,j−1y
n−i = yU(t, y,−1)|tn−1 . (32)

Thus we have the following corollary of Theorem 8.

Corollary 9.

NCM123(t, x, y) =
∑

n≥0

tn

n!

∑

σ∈NCMSn(123)

xcyc(σ)ycdes(σ) (33)

= e

x ln





1
∑

n≥0
tn
n!

(

y(1−t)

1−yt+yt2
|
tn−1

)





=





1
∑

n≥0
tn

n!

(

y(1−t)
1−yt+yt2

|tn−1

)





x

(34)

One can use our generating functions for NCM123(t, x, y) to compute the initial values of
Lncm
n (123) and NCMn(123).

n Lncm
n (123) NCMn(123)

1 1 1

2 1 2

3 1 5

4 3 17

5 9 70

6 39 349

7 189 2017

8 1107 13358

9 7281 99377

10 54351 822041

If one looks in the OEIS, one will see that both sequences occur. That is, the sequence of
Lncm
n (123) is sequence A080635 and counts the number of permutations on n letters without

double falls and without an initial fall. The sequence for NCMn(123) counts the number of
permutations in Sn which have no 123-matches as expected.

Next we will compute NCM132(t, x, y). In this case, we will directly compute

L132(t, y) =
∑

m≥1

tm

m!

∑

C∈Lncm
m

ycdes(C). (35)
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We start with a general observation. Suppose τ = τ1 . . . τj ∈ Sj where τ1 = 1. We can write
any n-cycle C in the form C = (α1, . . . , αn) where α1 = 1. It is easy to see that the only cycle
τ -match in C that can involve α1 = 1 is α1 α2 . . . αj . This means that the only possible cycle
τ -matches in C must be of the form αi αi+1 . . . αi+j−1 where i ≤ n − j + 1. Thus the problem
of finding n-cycles with no cycle τ -matches is equivalent to the problem of finding permutations
σ = σ1 . . . σn where σ1 = 1 and σ has no τ -matches. Let S1

n denote the set of all permutations
σ = σ1 . . . σn ∈ Sn such that σ1 = 1 and let S1

n,τ = S1
n ∩ NMSn(τ) be the set of permutations

of S1
n with no τ -matches. Then

An,τ (y) =
∑

σ∈S1
n,τ

y1+des(σ) =
∑

C∈Lncm
n

ycdes(C). (36)

It turns out that in many cases we can find recurrences for An,τ (y) by classifying the permutations
σ = σ1 . . . σn ∈ Sn such that σ1 = 1 according the position of 2 in σ. Let En,k,τ denote the set
of permutations σ = σ1 . . . σn ∈ S1

n(τ) such that σk = 2.
Now fix τ = 1 3 2 and let Am(y) = Am,τ (y) and En,k = En,k,τ . Our goal is compute

A(t, y) =
∑

m≥1
Am(y)tm

m! . Now A1(y) = A2(y) = y since the permutation 1 has no τ -matches
and 1+des(1) = 1 and the permutation 1 2 has no τ -matches and 1+des(12) = 1. There are two
permutations in S3 that start with 1, namely, 1 2 3 and 1 3 2 and only 1 2 3 has no τ -matches so
that A3(y) = y since 1+des(123) = 1. Now suppose that n ≥ 4. Every permutation in En,2 is of
the form 1 2 σ3 . . . σn. Clearly, the only τ -matches must be of the form σi σi+1 σi+2 where i ≥ 2
so that En,2 contributes An−1(y) to An(y). Every permutation in En,3 is of the form 1 σ2 2 . . . σn
where σ2 ≥ 3. Thus all such permutations have a τ -match so that En,3 contributes nothing to
An(y). For 4 ≤ k ≤ n, the elements of the En,k are of the form

1 σ2 . . . σk−1 2 σk+1 . . . σn.

In such a case, the only way that 2 can be part of τ -match is if the τ -match is 2 σk+1 σk+2. It
follows that an element of En,k contributes to An(y) only if there is no τ -match in σ1 . . . σk−1

and there is no τ -match in 2 σk+1 . . . σn. Note that since σk−12 is adescent pair,

1 + des(1 σ2 . . . σk−1 2 σk+1 . . . σn) = 1 + des(1 σ2 . . . σk−1) + 1 + des(2 σk+1 . . . σn).

Hence the contribution of En,k to An(y) is just
(

n−2
k−2

)

Ak−1(y)An−k+1(y) since there are
(

n−2
k−2

)

to
choose the elements which make up σ2, . . . , σk−1. Thus for n ≥ 4,

An(y) = An−1(y) +
n
∑

k=4

(

n− 2

k − 2

)

Ak−1(y)An−k+1(y). (37)

Dividing both sides of (37) by (n − 2)!, we obtain that for all n ≥ 4,

An(y)

(n− 2)!
=

An−1(y)

(n − 2)!
+

n−2
∑

k=2

Ak+1(y)

k!

An−k−1(y)

(n− 2− k)!
. (38)

If we multiply both sides of (38) by tn−2 and sum, we obtain the differential equation

∂2A(t, y)

∂t2
− y − yt =

∂A(t, y)

∂t
− y − yt+

(

∂A(t, y)

∂t
− y − yt

)

∂A(t, y)

∂t

13



so that A(t, y) satisfies the second order partial differential equation

∂2A(t, y)

∂t2
=

∂A(t, y)

∂t
(1− y − yt) +

(

∂A(t, y)

∂t

)

(39)

with initial conditions A0(y) = 0 and A1(y) = y. One can check that the solution to (39) is

A(t, y) = ln

(

1

1− y
∫ t
0 e

(1−y)s−ys2/2ds

)

(40)

Hence

L132(t, y) =
∑

m≥1

tm

m!

∑

C∈Lncm
m (132)

ycdes(C).

= ln

(

1

1− y
∫ t
0 e

(1−y)s−ys2/2ds

)

(41)

Thus we have the following theorem.

Theorem 10.

NCM132(t, x, y) = e
x ln

(

1

1−y
∫ t
0 e(1−y)s−ys2/2ds

)

=
1

(

1− y
∫ t
0 e

(1−y)s−ys2/2ds
)x . (42)

We note that specialization

NCM132(t, 1, 1) =
1

1−
∫ t
0 e

−s2/2ds

has been proved by Elizalde and Noy [6].
One can use our generating functions for NCM132(t, x, y) to compute the initial values of

Lncm
n (132) and NCMn(132).

n Lncm
n (132) NCMn(132)

1 1 1

2 1 2

3 1 5

4 2 16

5 7 63

6 28 296

7 131 1623

8 720 10176

9 4513 71793

10 31824 562848
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If one looks in the OEIS, then both the sequences for Lncm
n (132) and NCMn(132) occur.

The sequence for Lncm
n (132) is sequence A052319 which counts the number of increasing rooted

trimmed trees with n nodes. Here an increasing tree is a tree labeled with 1, . . . , n where the
numbers increase as you move away from the root. A tree with a forbidden limb of length k is a
tree where the path from any leaf inward hits a branching node or another leaf within k steps.
A trimmed tree is a tree with a forbidden limb of length 2. The sequence for NCMn(132) is the
number of permutations that have no 132-matches as expected.

We end this section with some results on CAΥ(t, x, y) and NCMΥ(t, x, y) where Υ ⊆ S3.
For certain Υ’s, this problem is uninteresting. For example, if Υ contains both 1 2 3 and 1 3 2,
then any k-cycle C = (σ1, σ2, . . . , σk) where σ1 = 1 and k ≥ 3 will have a cycle Υ-match
since σ1 σ2 σ3 must be either a cycle 1 2 3-match or a cycle 1 3 2-match. Thus in this case
Lca
1 (Υ) = Lncm

1 (Υ) = {(1)}, Lca
2 (Υ) = Lncm

2 (Υ) = {(1, 2)}, and Lca
k (Υ) = Lncm

k (Υ) = ∅ for
k ≥ 3. It then follows from Theorem 2 that

CAΥ(t, x, y) = NCMΥ(t, x, y) = e
x

(

yt+ yt2

2

)

A more interesting case is when Υ = {123, 321}. First observe that since any cycle contains
a cycle occurrence of 1 3 2 if and only if it contains a cycle occurrence of 3 2 1, then it is the
case that any k-cycle C where k ≥ 3 must have a cycle occurrence of either 1 2 3 or 3 2 1. Thus

CAΥ(t, x, y) = e
x

(

yt+ yt2

2

)

Let C = (σ1, . . . , σn) be an n-cycle such that σ1 = 1. If n ≥ 3, then we must have σ2 > σ3
since otherwise there will be a cycle 1 2 3-match. But then we must have σ3 < σ4 since otherwise
there would be cycle 3 2 1-match. Continuing on in this way, we see that σ2 . . . σn must be an
alternating permutation. That is, we must have

σ2 > σ3 < σ4 > σ5 < σ6 > σ7 · · · .

However, this means if n = 2k+1 ≥ 3, then there are no n cycles which have no cycle Υ-matches
since since we are forced to have σ2k > σ2k+1 > σ1 which is a cycle 3 2 1-match. If n = 2k and
σ2 . . . σn is alternating, then C will have no cycle Υ-matches. For such σ it is easy to see that
1 + des(σ) = k. Thus in this case, Lncm

2k+1(Υ) = 0 for k ≥ 1 and Lncm
2k (Υ) is just the number of

odd alternating permuations of length 2k − 1 for k ≥ 1.
If we let Altn denote the number of Alternating permutations of length n, then André [1, 2]

proved that
∑

n≥0

Alt2n+1
t2n+1

(2n + 1)!
=

sin(t)

cos(t)
. (43)

Thus

∑

n≥1

Lncm
2n (Υ)

t2n

(2n)!
=

∑

n≥1

Alt2n−1
t2n

(2n)!

=

∫ t

0

sin(z)

cos(z)
dz = −ln(|cos(t)|.
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Hence,

∑

n≥1

t2n

(2n)!

∑

C∈Lncm
2n (Υ)

ycdes(C) =
∑

n≥1

ynLncm
2n (Υ)

t2n

(2n)!

= −ln(|cos(t√y)|.

and
∑

n≥1

tn

(n)!

∑

C∈Lncm
n (Υ)

ycdes(C) = ty − ln(|cos(t√y)|. (44)

It follows that

NCMΥ(t, x, y) = ex(ty−ln(|cos(t√y)|) =
exyt

cos(t
√
y)x

= exytsec(t
√
y)x. (45)

Thus we have proved the following theorem.

Theorem 11.
∑

n≥1

tn

(n)!

∑

C∈Lncm
n ({123,321}

ycdes(C) = ty − ln(|cos(t√y)| (46)

and

NCM{123,321}(t, x, y) = exyt(sec(t
√
y))x. (47)

3 General results

In this section, we shall describe how we can compute NCMτ (t, x, y) for certain general classes
of permutations τ . We start by considering permutations τ = τ1 . . . τj where τ1 = 1 and τj = 2.
In that case, we have the following theorem.

Theorem 12. Let τ = τ1 . . . τj ∈ Sj where j ≥ 3 and τ1 = 1 and τj = 2. Then

NCMτ (t, x, y) =
1

(1−
∫ t
0 e

(y−1)s− ydes(τ)sj−1

(j−1)! ds)x
(48)

Proof. Note that in the special case where j = 3, the only permutation satisfying the hypothesis
of the theorem is τ = 1 3 2. Thus in this special case, the result follows from Theorem 10. Thus
assume that we fix a τ = τ1 . . . τj ∈ Sj where τ1 = 1 and τj = 2 and j ≥ 4.

Our first goal is to compute

A(t, y) =
∑

n≥1

An(y)
tn

n!
(49)

where An(y) =
∑

σ∈S1
n,τ

ydes(σ)+1. Now it is easy to see that An(y) =
∑

σ∈S1
n
ydes(σ)+1 for

1 ≤ n ≤ j − 1. Thus

A(t, y) = yt+ y
t2

2
+ (y + y2)

t3

3!
+ · · ·

∂A(t, y)

∂t
= y + yt+ (y + y2)

t2

2!
+ · · · and

∂2A(t, y)

∂t2
= y + (y + y2)t+ · · · .
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For n ≥ j, we shall prove a recursive formula for An(y). We consider three cases for σ =
σ1 . . . σn ∈ S1

n,τ depending on the position of 2 in σ.

Case 1. σ2 = 2.
In this case because j ≥ 4, the only possible τ -matches in σ must occur in σ2 . . . σn. Since
des(σ) + 1 = des(σ2 . . . σn) + 1, it follows that the contribution of the permutations in this case
to An(y) is just An−1(y).

Case 2. σk = 2 where k /∈ {2, j}.
In this case, we have

(n−2
k−2

)

ways to choose the elements Dk that will constitute σ2 . . . σk−1. Once
we have chosen Dk, we have to consider the ways in which we can arange the elements of Dk to
form σ2 . . . σk1 and the ways that we can arrange [n]− (Dk ∪ {1, 2}) to form σk+1 . . . σn so that

σ = 1 σ2 . . . σk−1 2 σk+1 . . . σn (50)

has no τ -matches. However it is easy to see that since k /∈ {2, j} that the only τ -matches for σ of
the form (50) can occur in either entirely in 1 σ2 . . . σk−1 or entirely in 2 σk+1 . . . σn. Moreover
it is the case that

des(σ) + 1 = des(1 σ2 . . . σk−1) + 1 + des(2 σk+1 . . . σn) + 1

since σk−1 > 2. Thus the contribution to An(y) of the permutations in this case is
(

n− 2

k − 2

)

Ak−1(y)An−k+1(y).

Case 3. σj = 2.
In this case, we have

(n−2
j−2

)

ways to choose the elements Dj that will constitute σ2 . . . σj−1. Once
we have chosen Dj , we have to consider the ways in which we can arange the elements of Dj to
form σ2 . . . σj1 and we can arrange [n]− (Dj ∪ {1, 2}) to form σj+1 . . . σnσk+1 . . . σn so that

σ = 1 σ2 . . . σj−1 2 σj+1 . . . σn (51)

has no τ -matches. Unlike Case 2, it is not enough just to ensure that 1 σ2 . . . σj−1 and
2 σj+1 . . . σn have no τ -matches. That is, we must also ensure that red(σ2 . . . σj−1) 6= red(τ2 . . . τj−1)
since otherwise 1 σ2 . . . σj−1 2 would be τ -match. Note that in such a situation des(1 σ2 . . . σj−1)+
1 = des(τ). Thus the contributions to An(y) of the permutations in this case is

(

n− 2

j − 2

)

(Aj−1(y)− ydes(τ))An−j+1(y).

It follows that for n ≥ j,

An(y) = An−1(y) +

n
∑

k=3

(

n− 2

k − 2

)

Ak−1(y)An−k+1(y)−
(

n− 2

j − 2

)

ydes(τ)An−j+1(y) (52)

or, equivalently,

An(y)

(n− 2)!
=

An−1(y)

(n− 2)!
+

(

n
∑

k=3

Ak−1(y)

(k − 2)!

An−k+1(y)

(n− k)!

)

− ydes(τ)

(j − 2)!

An−j+1(y)

(n − j)!
. (53)
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Now for any formal power series f(t) =
∑

n≥1 fnt
n, we let f(t)|t≤j denote f0+f1t+· · ·+fjt

j. We

then then multiple both sides of (53) by tn−2 and sum and we will get the differential equation

∂2A(t, y)

∂t2
−
(

∂2A(t, y)

∂t2
|t≤j−3

)

=
∂A(t, y)

∂t
−
(

∂A(t, y)

∂t
|t≤j−3

)

+

(

∂A(t, y)

∂t
− y

)

∂A(t, y)

∂t
−
((

∂A(t, y)

∂t
− y

)

∂A(t, y)

∂t
|t≤j−3

)

−

ydes(τ)

(j − 2)!

∂A(t, y)

∂t
.

Thus

∂2A(t, y)

∂t2
= (1− y − ydes(τ))

∂A(t, y)

∂t
+

(

∂A(t, y)

∂t

)2

+

(

∂2A(t, y)

∂t2
|t≤j−3

)

−
(

∂A(t, y)

∂t
|t≤j−3

)

−
((

∂A(t, y)

∂t
− y

)

∂A(t, y)

∂t
|t≤j−3

)

.

We claim that

0 =

(

∂2A(t, y)

∂t2
|t≤j−3

)

−
(

∂A(t, y)

∂t
|t≤j−3

)

−
((

∂A(t, y)

∂t
− y

)

∂A(t, y)

∂t
|t≤j−3

)

or, equivalently, that

∂2A(t, y)

∂t2
|t≤j−3 =

(

∂A(t, y)

∂t
+

(

∂A(t, y)

∂t
− y

)

∂A(t, y)

∂t

)

|t≤j−3 . (54)

If we take the coefficient of ts where 0 ≤ s ≤ tj−3 on both sides of (54), then we must show that

As+2(y)

s!
=

As+1(y)

s!
+

s
∑

k=1

Ak+1(y)

k!

As−k+1(y)

(s − k)!

=
As+1(y)

s!
+

s+2
∑

k=3

Ak−1(y)

(k − 2)!

As+2−(k−1)(y)

(s+ 2− k)!
.

Thus if we multiply both sides by s!, we see that we must show that for 0 ≤ s ≤ j − 3,

As+2(y) = As+1(y) +
s+2
∑

k=3

(

s+ 2

k − 2

)

Ak−1(y)As+2−(k−1)(y). (55)

However this follows from our analysis of Cases 1, 2, and 3 above for the recursion of As+2(y).
That is, since s + 2 ≤ j − 1, Case 2 does not apply so that we only get the contributions from
Cases 1 and 3 which is exactly (55).

Thus we have shown that A(y, t) satisfies the partial differential equation where

∂2A(t, y)

∂t2
= (1− y − ydes(τ))

∂A(t, y)

∂t
+

(

∂A(t, y)

∂t

)2

(56)
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with intial conditions that A(y, 0) = 0, A(y, t)|t = y, and A(y, t)| t2
2!

= y. It is then easy to check

that the solution to this PDE is

A(y, t) = ln





1

1−
∫ t
0 e

(1−y)s+ydes(τ) sj−1

(j−1)! ds



 . (57)

Thus

A(y, t) =
∑

n≥1

tn

n!

∑

C∈Lncm
n (τ)

ycdes(C)

= ln





1

1−
∫ t
0 e

(1−y)s+ydes(τ) sj−1

(j−1)! ds



 . (58)

But then we know by Theorem 2, that

NCMτ (t, x, y) = ex
∑

n≥1
tn

n!

∑

C∈Lncm
n (τ) y

cdes(C)

= e

xln







1

1−
∫ t
0 e

(1−y)s+ydes(τ) sj−1

(j−1)! ds







=





1

1−
∫ t
0 e

(1−y)s+ydes(τ) sj−1

(j−1)! ds





x

which is what we wanted to prove.

We end this section by showing how one can compute NCMτ (t, x, y) where τ ∈ Sm is of
the form τ = 1 2 . . . (j − 1) γ j where γ is a permutation of the elements j + 1, . . . ,m where
m ≥ j + 1. We let p = m − j so that red(γ) ∈ Sp. We shall assume that j ≥ 3 since we have
already dealt with permutations that start with 1 and end with 2.

Using our previous theorems as a guide, we shall assume that NCMτ (t, x, y) is of the form

NCMτ (t, x, y) = ex
∑

n≥1
tn

n!

∑

C∈Lncm
n (τ) y

cdes(C)

=
1

(Uτ (t, y))x

where

Uτ (t, y) =
∑

n≥0

Un,τ
tn

n!
. (59)

We have been unable to find a closed form for Uτ (t, y). However, we can show that the coefficients
of Un,τ (y) satisfy a simple recursion. That is, we shall prove the following.

Theorem 13. Suppose that τ = 1 2 . . . j − 1 γ j where γ is a permutation of j + 1, . . . , j + p
and j ≥ 3. Then

NCMτ (t, x, y) =
1

(Uτ (t, y))x

where

Uτ (t, y) =
∑

n≥0

Un,τ (y)
tn

n!
(60)
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and

Un+j,τ (y) = (1− y)Un+j−1,τ (y)− ydes(τ)
(

n

p

)

Un−p+1,τ (y). (61)

Proof. Taking the natural logarithm of both sides (59) and using (36), we see

− ln(Uτ (t, y)) =
∑

n≥1

tn

n!

∑

σ∈Lncm
n (τ)

ydes(σ)+1
∑

n≥1

∑

σ∈S1
n,τ

ydes(σ)+1. (62)

Before proceeding, we need to establish some notation. Fix τ of the form 1 2 . . . j − 1γj
where j ≥ 3. For any σ ∈ S1

n, we let τ -imch(σ) be the indicator function that the initial segment
of size m in σ is a τ -match. Thus τ -imch(σ) = 1 if red(σ1 . . . σm) = τ and we let τ -imch(σ) = 0
otherwise. For i = 1, . . . , j − 1, we let τ (i) = red(i i + 1 . . . j − 1 γ j). Our first goal is to
compute

A(t, y) =
∑

n≥1

An(y)
tn

n!
(63)

where
An(y) =

∑

σ∈S1
n,τ

y1+des(σ).

For i = 2, . . . , k − 1, we shall also need the following functions

Bi(t, y) = 1 +
∑

n≥1

Bi,n(y)
tn

n!
(64)

where
Bi,n(y) =

∑

σ∈S1
n

τ -mch(σ)=0

τ (2)imch(σ)=0

τ (3)imch(σ)=0

...
τ (i)imch(σ)=0

y1+des(σ).

Thus Bi,n(y) is the sum of y1+(des)(σ) over all permutation σ in S1
n such that σ has no τ -matches

and σ does not start with a τ (j)-match for j = 2, . . . , i.
First we develop recursions for An(y) for n ≥ 2. Let En,k,τ denote the set of all σ = σ1 . . . σn ∈

S1
n,τ such that σk = 2. We then consider two cases for σ ∈ S1

n,τ depending on which En,k,τ con-
tains σ.

Case 1. σ ∈ En,2,τ .
Thus σ = 1 2 σ3 . . . σn. To ensure that σ has no τ -matches, we must ensure that there are no τ
matches in 2 σ3 . . . σn and that σ does not start with a τ -match which is equivalent to ensuring
that 2 σ3 . . . σn does not start with τ (2)-match. Thus in this case, the permtuations of En,2,τ
contribute B2,n−1(y) to An(y).

Case 2 σ ∈ En,k,τ where 3 ≤ k ≤ n.
In this case, it is easy to see that the only possible τ -matches must occur in σk . . . σn or in
σ1 . . . σk−1. Thus we have

(

n−2
k−2

)

ways to choose that elements that will constitute σ2 . . . σk−1
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and Ak−1(1) ways to order them so that there are no τ -matches in σ1 . . . σk−1. Once we have
picked σ2 . . . σk−1, there are An−k+1(1) ways to order the remaining elements so that there are
no τ -matches in σk . . . σn. Having picked σ, we have that

des(σ) + 1 = des(σ1 . . . σk−1) + 1 + des(σk . . . σn) + 1

since σk−1 > 2. Hence in this case, the permutations in En,k,τ where will contribute
(n−2
k−2

)

Ak−1(y)An−k+1(y)
elements to An(y).

It follows that for n ≥ 2,

An(y) = B2,n−1(y) +
n
∑

k=3

(

n− 2

k − 2

)

Ak−1(y)An−k+1(y). (65)

We can develop similar recursions for B2,n(y) for n ≥ 2. However we have to consider the
cases j = 3 and j > 3 separately.

First consider, the case where j = 3. Note in this case τ (2) = red(2 γ 3) = 1 α 2 where α
is a permutation of 3, . . . , p + 2 such that red(α) = red(γ). We then consider three cases for
σ ∈ S1

n,τ depending on which En,k,τ contains σ.

Case 1. σ ∈ En,2,τ .
Thus σ = 1 2 σ3 . . . σn. To ensure that σ has no τ -matches, we must ensure that there are
no τ matches in 2 σ3 . . . σn and that σ does not start with a τ -match which is equivalent to
ensuring that 2 σ3 . . . σn does not start with τ (2)-match. It might seem that to ensure that σ
does not start with a τ (2)-match that we must ensure that 2 σ3 . . . σn does start with τ (3)-match.
However, in this case τ (3) = red(γ 3) does not start with 1 so that is automatically true that
2 σ3 . . . σn does start with τ (3)-match. Thus the permutations in En,2,τ contribute B2,n−1(y) to
B2,n(y).

Case 2. σ ∈ En,p+2,τ .
In this case, it is easy to see that the only possible τ -matches must occur in σp+1 . . . σn or in
σ1 . . . σp. Now we have

(

n−2
p

)

ways to choose that elements that will constitute σ2 . . . σp+1. We
can order these elements in any way that we want except that we cannot have red(σ2 . . . σp+1) =
red(γ) since otherwise σ would start with at τ (2) match. Note that B2,p+1(y) =

∑

β∈S1
p+1

ydes(β)+1

since no permutation of length p+ 1 can contain a τ -match or start with τ (2)-match. Since

des(1 σ2 . . . σp+1) + 1 + des(2 σp+2 . . . σn) + 1 = des(σ)

and des(1 γ) + 1 = des(τ), the permutations in En,p+2,τ will contribute
(n−2

p

)

(B2,p+1(y)− ydes(τ))An−p−1(y) to B2,n(y).

Case 3. σ ∈ En,k,τ where 3 ≤ k ≤ n and k /∈ {2, p + 2}.
In this case, it is easy to see that the only possible τ -matches must occur in σk . . . σn or in
σ1 . . . σk−1. Thus we have

(n−2
k−2

)

ways to choose that elements that will constitute σ2 . . . σk−1

and B2,k−1(1) ways to order them so that there are no τ -matches in σ1 . . . σk−1 and σ1 . . . σk−1

does not start with a τ (2) match and An−k+1(1) ways to order σk . . . σn that it contains no
τ -match. It follows that the permutations in En,k,τ will contribute

(

n−2
k−2

)

B2,k−1(y)An−k+1(y) to
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B2,n(y).

Thus if n ≥ p+ 2, we have the recursion

B2,n(y) = B2,n−1(y) +

(

n
∑

k=3

(

n− 2

p− 2

)

B2,k−1(y)An−k+1(y)

)

−
(

n− 2

p

)

ydes(τ)An−p−1(y). (66)

For 2 ≤ n ≤ p+ 1, Case 2 does not apply so that we have the recursion

B2,n(y) = B2,n−1(y) +

(

n
∑

k=3

(

n− 2

p− 2

)

B2,k−1(y)An−k+1(y)

)

. (67)

Before considering the case where j > 3, we shall show how we can derive a recursion (61)
for the Un,τ (y)s in this case. We have shown that for all n ≥ 2,

An(y) = B2,n−1(y) +

n
∑

k=3

(

n− 2

k − 2

)

Ak−1(y)An−k+1(y) and

B2,n(y) = B2,n−1(y) +

(

n
∑

k=3

(

n− 2

p− 2

)

B2,k−1(y)An−k+1(y)

)

−

χ(n ≥ p+ 2)ydes(τ)
(

n− 2

p

)

An−p−1(y)

where for any statement A, we let χ(A) equal 1 if A is true and equal 0 if A is false. Thus we
have that for all n ≥ 2,

An(y)

(n− 2)!
=

B2,n−1(y)

(n− 2)!
+

n
∑

k=3

Ak−1(y)

(k − 2)!

An−k+1(y)

(n− k)!
and

B2,n(y)

(n− 2)!
=

B2,n−1(y)

(n− 2)!
+

(

n
∑

k=3

B2,k−1(y)

(k − 2)!

An−k+1(y)

(n− k)!

)

− χ(n ≥ p+ 2)
ydes(τ)

p!

An−p−1(y)

(n− p)!
.

Multiplying by tn−2 and summing, we obtain the following differential equations when we think
of A = A(t, y) and B2 = B2(t, y) as just functions of t:

A′′ = B′
2 + (A′ − y)A′ and

B′′
2 = B′

2 + (B′
2 − y)A′ − ydes(τ)tp

p!
A′.

Now if U = U(t, y) = Uτ (t, y), then A = −ln(U). Thus

A′ =
−U ′

U
and (68)

A′′ =
−U ′′

U
+

(

U ′

U

)2

. (69)

Making these substititions in our first differential equation and solving for B′
2, we see that

B′
2 = −U ′′ + yU ′

U
. (70)
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Thus

B′′
2 = −U ′′′ + yU ′′

U
+

(U ′′ + yU ′)U ′

U2
. (71)

Substituting these expressions into our second differential equation and simplifying, we obtain
the following differential equation for U ,

U ′′′ = (1− y)U ′′ − ydes(τ)tp

p!
U ′. (72)

Taking the coefficient of tn

n! on both sides of (72), we set that

Un+3,τ (y) = (1− y)Un+2(y)−
(

n

p

)

ydes(τ)Un−p+1(y). (73)

in the case where τ = 12γ3 and γ is permutation of 4, . . . , 3 + p.
Now consider the recursion for B2,n(y) where j > 3. We then consider two cases for σ ∈ S1

n,τ

depending on which set En,k,τ contains σ.

Case 1. σ ∈ En,2,τ .
Thus σ = 1 2 σ3 . . . σn. To ensure that σ has no τ -matches, we must ensure that there are no τ
matches in 2 σ3 . . . σn and that σ does not start with a τ -match which is equivalent to ensuring
that 2 σ3 . . . σn does not start with τ (2)-match. However in this case, we must also ensure that
σ does not start with at τ (2) which means that 2 σ3 . . . σn must not start with τ (3)-match. Thus
in this case, the σ ∈ En,2,τ contribute B3,n−1(y) to B2,n(y).

Case 2 σ ∈ En,k,τ where 3 ≤ k ≤ n.
In this case, it is easy to see that the only possible τ -matches must occur in σk . . . σn or in
σ1 . . . σk−1. Thus we have

(n−2
k−2

)

ways to choose that elements that will constitute σ2 . . . σk−1

and B2,k−1(1) ways to order them so that there are no τ -matches in σ1 . . . σk−1 and σ1 . . . σk−1

does not start with a τ (2) match and there are An−k+1(1) ways to order σk . . . σn so that there
is no τ -match. It follows that the permutations in En,k will contribute

(

n−2
k−2

)

B2,k−1(y)An−k+1(y)
elements to B2,n(y).

It follows that if j ≥ 3, then for n ≥ 2,

B2,n(y) = B3,n−1(y) +
n
∑

k=3

(

n− 2

k − 2

)

B2,k−1(y)An−k+1(y). (74)

One can repeat this type of argument to show that in general, for 2 ≤ i ≤ j − 2

Bi,n(y) = Bi+1,n−1(y) +
n
∑

k=3

(

n− 2

k − 2

)

Bi,k−1(y)An−k+1(y). (75)

The recursion for Bj−1,n(y) is similar to the recursion for B2,n(y) when j = 3. That is,
τ (j−1) = red(j − 1 γ j) = 1 α 2, where α is a permutation of 3, . . . , p + 2 and red(γ) = red(α).
Then we have to consider three cases depending on which set En,k,τ contains σ.

Case 1. σ ∈ En,2,τ .
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Thus σ = 1 2 σ3 . . . σn. To ensure that σ has no τ -matches and does not start with τ (i)-match
for i = 2, . . . , j − 1, we clearly have to ensure that 2 σ3 . . . σn has no τ -matches and does not
start with τ (i)-match for i = 2, . . . , j − 1. However, we do not have to worry about 2 σ3 . . . σn
starting with τ (j) = red(σ j) since τ (j) does not start with its least element. Thus in this case,
the permutations in En,2,τ contribute Bj−1,n−1(y) to Bj−1,n(y).

Case 2. σ ∈ En,p+2,τ In this case, it is easy to see that the only possible τ -matches must
occur in σp+1 . . . σn or in σ1 . . . σp. Now we have

(n−2
p

)

ways to choose that elements that will
constitute σ2 . . . σp+1. We can order these elements in any way that we want except that we
cannot have red(σ2 . . . σp+1) = red(γ) since otherwise σ would start with at τ (j−1) match. Note
that Bj−1,p+1(y) =

∑

β∈S1
p+1

ydes(β)+1 since no permutation of length p+1 can contain a τ -match

or start with τ (i)-match for i = 2, . . . j − 1. Thus since

des(1 σ2 . . . σp+1) + 1 + des(2 σp+2 . . . σn) + 1 = des(σ)

and des(1 γ) + 1 = des(τ), the permutations in En,p+2,τ will contribute
(n−2

p

)

(Bj−1,p+1(y)− ydes(τ))An−p+1(y) to Bj−1,n(y).

Case 3. σ ∈ En,k,τ where 3 ≤ k ≤ n and k /∈ {2, p + 2}.
In this case, it is easy to see that the only possible τ -matches must occur in σk . . . σn or in
σ1 . . . σk−1. Thus we have

(n−2
k−2

)

ways to choose that elements that will constitute σ2 . . . σk−1

and Bj−1,k−1(1) ways to order them so that there are no τ -matches in σ1 . . . σk−1 and σ1 . . . σk−1

does not start with a τ (i)-match for i = 2, . . . , j − 1 and there are An−k+1(1) ways to or-
der σk . . . σn so that there is no τ -match. Thus the permutations in En,k,τ will contribute
(

n−2
k−2

)

Bj−1,k−1(y)An−k+1(y) to Bj−1,n(y).

It follows that for n ≥ 2,

Bj−1,n(y) = Bj−1,n−1(y) +
n
∑

k=3

(

n− 2

k − 2

)

Bj−1,k−1(y)An−k+1(y)− (76)

χ(n ≥ p+ 2)

(

n− 2

p

)

ydes(τ)An−p−1(y).

Thus for all n ≥ 2, we have proved that in general
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An(y) = B2,n−1(y) +
n
∑

k=3

(

n− 2

k − 2

)

Ak−1(y)An−k+1(y)

B2,n(y) = B3,n−1(y) +
n
∑

k=3

(

n− 2

k − 2

)

B2,k−1(y)An−k+1(y)

B3,n(y) = B4,n−1(y) +
n
∑

k=3

(

n− 2

k − 2

)

B3,k−1(y)An−k+1(y)

...

Bj−2,n(y) = Bj−1,n−1(y) +

n
∑

k=3

(

n− 2

k − 2

)

Bj−2,k−1(y)An−k+1(y)

Bj−1,n(y) = Bj−1,n−1(y) +

(

n
∑

k=3

(

n− 2

k − 2

)

Bj−1,k−1(y)An−k+1(y)

)

−

χ(n ≥ p+ 2)

(

n− 2

p

)

ydes(τ)An−p−1(y)

As in the case for j = 3, if we multiply everything by tn

n! and then sum over n we get the
following system of differential equations where we think of A(t, y) and Bi(t, y) for i = 2, . . . , j−1
as functions of t.

(D1) A′′ = B′
2 +A′2 − yA′

(D2) B′′
2 = B′

3 +B′
2A

′ − yA′

(D3) B′′
3 = B′

4 +B′
3A

′ − yA′

...

(Dj−2) B
′′
j−2 = B′

j−1 +B′
j−2A

′ − yA′

(Dj−1) B
′′
j−1 = B′

j−1 +B′
j−1A

′ − yA′ − tp

(p)!
ydes(τ)A′

As in the case j = 3, we let A(t, y) = − log(U(t, y)) so that A′ = −U ′

U and A′′ = −U ′′

U + U ′2

U2 .
Thus under this substitution, the first differential equations becomes

−U ′′

U
+

U ′2

U2
= B′

2 +
U ′2

U2
+ y

U ′

U

so that

B′
2 =

−U ′′ − yU ′

U
(77)

In fact, we have the following lemma.

Lemma 14. For 2 ≤ i ≤ j − 1,

B′
i =

−U (i) − y
∑i−1

k=1 U
(k)

U
. (78)
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Proof. We proceed by induction on i. We have already shown that (78) in the case where i = 2.
Now suppose that

B′
i =

−U (i) − y
∑i−1

k=1 U
(k)

U
. (79)

Then we must show that

B′
i+1 =

−U (i+1) − y
∑i

k=1 U
(k)

U
. (80)

Taking the derivative of both sides of (79) with respect to t, we see that

B′′
i =

−U (i+1) − y
∑i

k=2 U
(k)

U
+ (

U (i) + y
∑i−1

k U (k)

U
)(
U ′

U
).

Pluggin our expression for B′′
i and B′

i into the differential equation (Di), we see that

−U (i+1) − y
∑i

k=2 U
(k)

U
+ (

U (i) + y
∑i−1

k U (k)

U
)(
U ′

U
)

= B′
i+1 + (

−U (i) − y
∑i−1

k=1 U
(k)

U
)(
−U ′

U
)− y(

−U ′

U
).

Solving for B′
i+1 we see that

B′
i+1 =

−U (i+1) − y
∑i

k=1 U
(k)

U
.

By the Lemma, we know that

B′
j−1 =

−U (j−1) − y
∑j−2

k=1 U
(k)

U
,

and, hence,

B′′
j−1 =

−U (j) − y
∑j−1

k=2 U
(k)

U
+ (

U (j−1) + y
∑j−2

k U (k)

U
)(
U ′

U
).

Thus plugging these expressions into the differential equation (Dj−1), we obtain that

−U (j) − y
∑j−1

k=2 U
(k)

U
+ (

U (j−1) + y
∑j−2

k U (k)

U
)(
U ′

U
)

=
−U (j−1) − y

∑j−2
k=1 U

(k)

U
+

(
−U (j−1) − y

∑j−2
k=1U

(k)

U
)(
−U ′

U
)− y(

−U ′

U
)− tp

p!
ydes(τ)(

−U ′

U
).

Simplifying this expression yields that

U (j) = (1− y)U (j−1) − tp

p!
ydes(τ)U ′. (81)

Then taking the coefficient of tn

n! on both side of (81) gives that

Un+j = (1− y)Un+j−1 + ydes(τ)
(

n

p

)

Un−p+1

which is what we wanted to prove.
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We end this section with an example of the use of Theorem 13. Let τ = 1243 and

An,τ (t, y) =
∑

n≥1

An,τ (y)
tn

n!
=
∑

n≥1

tn

n!

∑

σ∈S1
n,τ

ydes(σ)+1 =
∑

n≥1

tn

n!

∑

C∈Lncm
n (τ)

.

Thus it is easy to check that A1,τ (y) = y, A2,τ (y) = y, A3,τ (y) = y+y2, and A4,τ (y) = y+3y2+y3.
Now

Uτ (t, y) =
∑

n≥0

Un,τ (y) = e−Aτ (t,y)

so that one can use Mathematica to compute that U0,τ (y) = 1, U1,τ (y) = −y,
U2,τ (y) = −y + y2y, U3,τ (y) = −y + 2y2 − y3, and U4,τ (y) = −y + 4y2 − 3y3 + y4.

By Theorem 13, we know that we have the recursion that

Un+3,τ (y) = (1− y)Un+2,τ (y)− yUn,τ (y).

Thus we can use this recursion to compute that
U5,τ (y) = −y + 6y2 − 8y3 + 4y4 − y5,
U6,τ (y) = −y + 8y2 − 16y3 + 13y4 − 5y5 + y6,
U7,τ (y) = −y + 10y2 − 28y3 + 32y4 − 19y5 + 6y6 − y7, and
U8,τ (y) = −y + 12y2 − 44y3 + 68y4 − 55y5 + 26y6 − 7y7 + y8.

But then we know that NCMτ (t, x, y) = 1
(Uτ (t,y))x

. Thus one can use Mathematica to show
that

NCMτ (t, x, y) =
∑

n≥0

Sncm
n,τ (x, y)

tn

n!
,

where Sncm
0,τ (x, y) = 1, Sncm

1,τ (x, y) = xy, Sncm
2,τ (x, y) = xy + x2y2,

Sncm
3,τ (x, y) = xy + xy2 + 3x2y2 + x3y3,

Sncm
4,τ (x, y) = xy + 3xy2 + 7x2y2 + xy3 + 4x2y3 + 6x3y3 + x4y4,

Sncm
5,τ (x, y) = xy+9xy2+15x2y2+8xy3+25x2y3+25x3y3+xy4+5x2y4+10x3y4+10x4y4+x5y5,

Sncm
6,τ (x, y) = xy + 23xy2 + 31x2y2 + 45xy3 + 119x2y3 + 90x3y3 + 20xy4 + 73x2y4 + 105x3y4 +

65x4y4 + xy5 + 6x2y5 + 15x3y5 + 20x4y5 + 15x5y5 + x6y6,

Sncm
7,τ (x, y) = xy+53xy2+63x2y2+217xy3+490x2y3+301x3y3+192xy4+623x2y4+749x3y4+

350x4y4 + 47xy5 + 196x2y5 + 343x3y5 + 315x4y5 + 140x5y5 + xy6 + 7x2y6 + 21x3y6 + 35x4y6 +
35x5y6 + 21x6y6 + x7y7, and

Sncm
8,τ (x, y) = xy + 115xy2 + 127x2y2 + 916xy3 + 1838x2y3 + 966x3y3 + 1500xy4 + 4333x2y4 +

4466x3y4+1701x4y4+765xy5+2810x2y5+4214x3y5+3164x4y5+1050x5y5+105xy6+495x2y6+
1008x3y6+1148x4y6+770x5y6+266x6y6+xy7+8x2y7+28x3y7+56x4y7+70x5y7 +56x6y7+
28x7y7 + x8y8.
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4 Conclusions

As mentioned in the introduction, we know of two other ways to compute NCMτ (t, x, y) and
NCMΥ(t, y) for various τ ’s and Υ’s.

Our second approach again uses the function Uτ (t, x, y) as defined in the previous section
where

NCMτ (t, x, y) =
∑

n≥0

ncmSn,τ (x, y)
tn

n!
=

1

(Uτ (t, y))x
.

It follows that

Uτ (t, y) =
1

NCMτ (t, 1, y)
=

1
∑

n≥0 ncmSn,τ (x, y)
tn

n!

. (82)

Remmel and his coathors [3, 12, 15, 16, 17, 18, 21, 26] developed a method called the homomor-
phism method to show that many generating functions involving permutation statistics can be
applied to simple symmetric function identities such as

H(t) = 1/E(−t) (83)

where

H(t) =
∑

n≥0

hnt
n =

∏

i≥1

1

1− xit

is the generating function of the homogeneous symmetric functions hn in infinitely many variables
x1, x2, . . . and

E(t) =
∑

n≥0

ent
n =

∏

i≥1

1 + xit

is the generating function of the elementary symmetric functions en in infinitely many variables
x1, x2, . . .. Now if we define a homomorphism θ and the ring of symmetric function so that

θ(en) =
(−1)n

n!
ncmSn,τ (1, y),

then

θ(E(−t)) =
1

∑

n≥0 ncmSn,τ (1, y)
tn

n!

.

Thus θ(H(t)) should equal Uτ (t, y). One can then use the combinatorial methods associated
with the homomorphism method to develop recursions for the coefficient of Uτ (t, y) much like
we did in Theorem 13. For example, we can show that

Un,1324(y) = (1− y)Un−1,1324(y) +

⌊n/2⌋
∑

k=2

(−y)k−1Ck−1Un−2k+1,1324(y)

where Ck is k-th Catalan number and

Un,1423(y) = (1− y)Un−1,1423(y) +

⌊n/2⌋
∑

k=2

(−y)k−1

(

n− k − 1

k − 1

)

Un−2k+1,1423(y).

The second author has developed a third way to approach the problem of computingNCMΥ(t)
which is completely different from the other two approaches. That method involves defining a
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certain bijection between the set of derangements and certain fillings of brick tabloids. That bi-
jection allows one to compute generating functions the number derangements that have no cycle
Υ-matches by applying an appropriate ring homomorphism defined on the ring of symmetric
functions Λ in infinitely many variables x1, x2, . . . to certain simple symmetric function identities
as described above. One can then multiply the resulting generating function by et to obtain
generating for ncmSn(τ). This approach is generally much more complicated than the first two
approaches. However, it allows us to compute NCMΥ(t) for a number of sets of permutations
Υ which seem beyond the either the techniques employed in this paper or the second approach
described above. For example, one can show that

NCMΥ(t) =
et

1−∑n≥3
2(−t)n

n!

where Υ is the set of permutations that contain 1234 and all permutations σ = σ1σ2σ3σ4σ5 such
such that σ1 < σ2 > σ3 < σ4 > σ5. This approach will be described in a forth coming paper.
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