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The fine structure of the sets of involutions

avoiding 4321 or 3412.

Piera Manara ∗and Claudio Perelli Cippo †.

Abstract. We study the fine structure of the sets of involutions avoiding
either 4312 (I(4321)) or 3412 (I(3412)), connecting the point of view of the
decomposition theorems with the one of the associated labelled Motzkin paths.
The algebraic generating function of the simple involutions in I(4321) is given,
together with other generating functions, while the set I(3412) is shown con-
taining no simple involutions of length n > 2.
The reverse-complement bijection maintains the fine structures of I(4321) and
trivially of I(3412).

AMS Classification: 05A15, 05A05,

Keywords : pattern avoiding involution, Motzkin path, simple permutation.

1 Introduction.

Pursuing the study of the fine structure of I(321) given in [1], we analyze
the fine structure of the sets of involutions avoiding 4312 (I(4321)), or 3412
(I(3412)), connecting the use of the decomposition theorems, for which we refer
to [1] and [3], with the ideas attaining to associated labelled Motzkin paths, as
contained in [2], to which we refer for the motivation and the literature on the
subject.

We recall here only the following notions.
SS denotes the set of all permutations, SSn the set of permutations of length
n.
An involution is a permutation π such that π(π(i)) = i for all i = 1, . . . , n.
I denotes the set of all involutions, In the set of involutions of length n.

A permutation π ∈ SSn avoids the pattern sk ∈ SSk (with k ≤ n) if π does
not contain a subsequence order-isomorphic to sk.

An interval in the permutation π is a set of contiguous indices I = [a, b],
such that the set of values π(I) = {π(i) : i ∈ I} is also contiguous. A permuta-
tion π ∈ Sn is said to be simple if it contains only the intervals 0, 1, [1, . . . ,n].

Given a permutation π ∈ SSn, the set {1, 2, . . . , n} can be partitioned into
intervals A1, . . . , At such that π(Ai) = Ai, ∀i. The restrictions of π to the in-
tervals in the finest of these decompositions are called connected components of
π. A permutation π with a single connected component is called connected.

∗Università di Parma (piera.manara@fis.unipr.it)
†Politecnico di Milano (claudio.perelli cippo@polimi.it
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Let σ ∈ SSk, α1, . . . , αk ∈ SS: inflation of σ by α1, . . . , αk is the permuta-
tion σ [α1, . . . , αk] obtained by replacing each element si of σ by a block whose
pattern is αi.
We note that permutation π ∈ SS is connected (or sum undecomposable) if and
only if it is not an inflation of 12.

An involution π can be decomposed into disjoint cycles

π = (m1,M1)(m2,M2) . . . (mm,Mm),

whith mi ≤ Mi, and the mi written in increasing order. We recall that a per-
mutation π has an excedance at position i if π(i) > i, a deficiency at position
i if π(i) < i and a fixed point if π(i) = i. Thus we say that at the position mi

there is a fixed point if mi = Mi, while for mi < Mi at the positions mi there
are the excedances (or maxima) Mi, and that at the positions Mi there are the
deficiencies (or minima) mi.

AMotzkin path of length n is a lattice path starting at (0, 0), ending at (n, 0),
and never going below the x-axis, consisting of up steps U = (1, 1), horizontal
steps H = (1, 0), and down steps D = (1,−1).

A Dyck path is a Motzkin path containing no horizontal steps.
An irreducible Motzkin path is a Motzkin path that does not touch the x-axis

except for the origin and the final destination. A labelling of a Motzkin path
M is a map associating with every down step D at height h an integer λ(D),
such that 1 ≤ λ(D) ≤ h. A labelled Motzkin path is a pair (M,λ) where M is a
Motzkin path and λ a labelling of M .

The labelling assigning the label 1 to every down step D of M is called
unitary; the one assigning the label µ, µ(D) = h(D) is called maximal.

A labelled Motzkin path (M,λ) associated with π ∈ I is obtained as follows.
For every i = 1, . . . , n,
- if i is a fixed point for π, take a horizontal step in the path;
- if i is the first element of a transposition, take an up step in the path;
- if i is the second element af a transposition, take a down step in the path,
labelled with h, if i is in the h-th position among integers greater than or equal
to i in the cycle decomposition of π.

Remark 1 Looking at the graph of an involution π, one sees that l + 1 is
the label of a deficiency m in the place i, with symmetric excedance M , where
l is the number of excedances preceding M in the graph and greater than M
(see figures 1 and 2).

In [2] it is shown how associated labelled Motzkin paths with unitary la-
belling characterize the involutions of I(4321), with a consequence in particular
for I(321), while the maximal labelling characterizes I(3412).
The graphic interpretation given in Remark 1 allows to see very nicely this last
property (see Appendix 2).

Remark 2 An involution σ is connected if and only if its associated labelled
Motzkin path is irreducible.
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Figure 1: Plot and labelled Motzkin path of π = 468152937
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Figure 2: Plot and labelled Motzkin path of π = 932857641

2 Involutions in I(4321).

We note that an involution in I(321) is the merge of two increasing sequences
of integers, the one of its maxima (or excedances) and the one of its minima (or
deficiencies), while an involution in I(4321), containing 321, is obtained by in-
terlacing three ascending sequences of integers: the excedances, the deficiencies
and the fixed points.

The characterization of the simple involutions in I(321), exposed in [1], The-
orem 8.2, can be generalized to a characterization of the involutions in I(4321).
We must briefly recall some definition we use, as in [1].

Consider the graph of an involution π ∈ I(4321). Let’s connect the points
of the graph in the order their ordinates possess in the permutation π. We call
plot of the involution the drawing so obtained.
Define two excedances (or two deficiencies) to be up-connected (respectively
down-connected) when connected through a step of the drawing neither cross-
ing or touching the line y = x nor containing another excedance (or deficiency),
therefore consecutive in the permutation. In this case, we also say that the plot
has an upper connection (or a lower connection).
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Proposition 2.1 Let π ∈ I(4321), π = (m1,M1)(m2,M2) · · · (mm,Mm).
If two deficiencies, mi, mi+1, are down-connected, then the corresponding ex-
cedances, Mi, Mi+1, are consecutive integers.
Conversely, if two excedances, Mi, Mi+1, are consecutive integers, then the cor-
responding deficiencies, mi, mi+1, are down-connected.
(The same holds with excedance replaced by deficiency, and up by down.)

Proof. Let mi, mi+1 be down-connected. If Mi+1 6= Mi+1, another integer
M would exist, with Mi < M < Mi+1, and the involution π cannot have at M
an excedance or a fixed point, since mi and mi+1 are down connected; π cannot
have a deficiency because mi and mi+1 are consecutive.
Conversely, if Mi + 1 = Mi+1, then mi and mi+1 are down-connected, because
otherwise another excedance or fixed point M should exist, with Mi+1 < M <
Mi+1. 2

See the involution of Figure 1, satisfying the hypothesis and the claim. On
the contrary the involution of Figure 2 contains the pattern 4321 and the claim
of Proposition 2.1 is not true.

The following properties of the simple involutions in I(4321) are immedi-
ately obtained:

Proposition 2.2 A simple involution π ∈ I(4321) has no consecutive fixed
points.

Proposition 2.3 Let π ∈ I(4321), π simple. Then the plot of π has no couples
of upper and lower connections symmetric with respect to y = x, therefore if
two excedances are up-connected, the corresponding deficiencies are not down-
connected.

For the inflations of 21 we have

Proposition 2.4 Let π ∈ I(4321) be an involution, inflation of 21. Then
π = 21[α1, α2], where α1 = α2 = 1 2 . . . n, or π = 321[α1, α2, α3], where
α1 = α3 = 1 2 . . . n, and α2 = 1 2 . . .m.
Proof. It is immediate to see that otherwise π would contain a descending
sequence of length 4. 2

Looking at the associated Motzkin paths, the involutions in I(4321) which
are inflation of 21 can be obtained by expanding the involutions in I(321) in-
flation of 21, through any number of fixed points at the maximum height, see
Figure 4.
For sake of simplicity the unitary labelling will be omitted in the pictures. The
involution corresponding to a given Motkin path has as fixed points the hori-
zontal steps and commutes every up step with the first successive down step.

We then derive the following property:

4
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Figure 3: 456123 ∈ I6(321), 5674123 ∈ I7(4321)\ I7(321), τ ∈ I(4321)\ I(321)

Theorem 2.5 If the plot of an involution π ∈ I(4321) has no couples of sym-
metric connections and no consecutive fixed points, then either π is a simple
involution, or π is an involution of type 12, with π = 12[α1, α2], where α1 is
simple.

Proof. If π were inflation of 21, by Proposition 2.4, its plot would have
at least a couple of symmetric upper and lower connections. If π were an
inflation of a simple involution σ 6= 12, its plot again would have at least a
couple of symmetric upper and lower connections (deriving by the inflation of a
transposition, see [1], Proposition 2.6,), or at least a couple of consecutive fixed
points, or both.
Then either π is simple or it is of type 12. In the last case π = 12[α1, α2] where
α1 must be simple, while α2, satisfying the hypothesis of the theorem, must be
again either simple or of type 12. 2

Through the use of associated labelled Motzkin paths and the characteriza-
tion contained in the next Proposition, we obtain the following Theorem.

Proposition 2.6 (See [2], Theorem 3.) Let πn be an involution with (M,λ) as
the associated labelled Motzkin path of length n. Then πn avoids 4321 if and
only if λ = ν (where ν is the unitary labelling ).
As a consequence, it is shown that πn avoids 321 if and only if λ is the unitary
labelling and all horizontal steps in M are at height 0 (see [2], Proposition 4).

Theorem 2.7 Let πn ∈ I(4321)n with (M, ν) as the associated labelled Motzkin
path of length n (with ν the unitary labelling). Then πn is simple if and only if
all the following three properties hold:
i) (M, ν) is an irreducible Motzkin path;
ii) There are no consecutive horizontal steps;
iii) Let {U1, . . . , Us} and {D1, . . . , Ds} be the sequences of the up and of the
down steps in (M, ν). If two up steps Ui and Ui+1 are consecutive up steps in
(M, ν), then the corresponding Di and Di+1 are never consecutive down steps
in (M, ν).

Proof. Let πn ∈ I(4321)n be simple, so connected: then the Motzkin path
is irreducible, with no adjacent fixed points.
Moreover (M, ν) is such that by construction, the excedances of πn correspond
to the up steps, the deficiencies to the down steps. Hence, by Proposition 2.3,
if Ui, Ui+1 are consecutive in (M, ν), Di, Di+1 cannot be consecutive.
Conversely, if (M, ν) satisfies i), ii) and iii), the involution πn ∈ I(4321)n is con-
nected, so not an inflation of 12, and the plot of πn has no couples of symmetric
connections. It follows from Theorem 2.5 that πn is simple. 2
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Figure 4: Motzkin paths related to 4 6 8 1 5 2 9 3 7 and to 6 2 8 9 5 1 7 3 4

The involution σ = 4 6 8 1 5 2 9 3 7 ∈ I(4321), whose Motzkin path is illus-
trated in Fig.4a, is simple, because the conditions i), ii), iii) are fulfilled. On
the contrary π = 6 2 8 9 5 1 7 3 4 ∈ I(4321) of Fig.4b is not simple, because the
pair of consecutive up steps 8, 9 corresponds to the pair of consecutive down
steps 3, 4 .

Proposition 2.8 The two following properties hold.
i) Starting from a simple involution π2n ∈ I(321)2n, a simple involution σ2n+1 ∈
I(4321)2n+1 can be obtained by adjoining a horizontal step to the Dyck path
(D, ν) representing π2n, in any position different from the first and the last
point.
ii) Starting from a Dyck path (D, ν) associated with an irreducible not simple
involution π ∈ I(321), one obtains a Motzkin path associated with a simple
involution σ ∈ I(4321) by inserting in D all the horizontal steps necessary to
break the consecutiveness of corresponding up and down steps.

Proof. For i), the thesis easily follows remembering that any simple invo-
lution, being irreducible, does generate no horizontal steps at level zero in the
associated Motzkin path, so the simple involutions of Av(4321) generate hori-
zontal steps only at levels different from zero. Adjoining a horizontal step to
the Dyck path (D, ν) (remember Proposition 2.5) associated to π2n ∈ I(321)2n
corresponds to adjoining a fixed point, so generating a simple involution in
Av(4321), as claimed.
While for ii), the thesis immediately follows from Proposition 1.6 and Theorem
1.7 2

For instance, starting from π6 = 351624 with associated Dyck path that we
can describe as usual in the form UUDUDD, if we want to insert a fixed point
in the fourth position, we get the Motzkin path UUDHUDD, and the required
involution is 3614725.
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Figure 5: Motzkin path related to 3614725

In [2], Theorem 6, (i), it is shown that the set In(4321) is closed under
reverse-complement; also, if the involution π corresponds to the labelled Motzkin
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path (M, ν), ν the unitary labelling, the involution πrc corresponds to the path
obtained by reflecting M over the line x/2, ν unitary (see also [2], Proposition
2). Then, through Theorem 2.7, Proposition 2.4 and Remark 2 we obtain im-
mediately:

Theorem 2.9 The reverse-complement bijection preserves the fine structure
of I(4321).

(Let, for instance, σ and π be as in Fig.4: then σrc = 371859246, πrc =
673951284, as illustrated in the following picture.)
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Figure 6: σrc = 371859246 and πrc = 673951284

3 Generating functions of subsets of I(4321).

As we did in [1], Section 3, we consider the following generating functions of
subsets of a set of involutions:
f denotes the generating function of the whole set;
α the generating function of the involutions which are inflation of 12;
β the generating function of the involutions which are inflation of 21;
γ the generating function of simple involutions different from 1, 12 e 21;
δ the generating function of the involutions which are inflation of simple invo-
lution of length n > 2.
It is well known that the generating function f of the whole set I(4321) is

f = −1 +
1− x−

√
1− 2x− 3x2

2x2
,

whose expansion’s coefficients are the Motzkin numbers 1, 2, 4, 9, 21, 51, 127, . . .

Proposition 3.1 The generating function β′ of the involutions in I(4321) in-
flation of 21 is

β =

(

x2

1− x2

)(

1

1− x

)

.

Proof. In fact, the thesis easily follows from the description of these involu-
tions given in Proposition 2.4. 2

Always on the basis of the structure theorems and the properties of involu-
tions, we then write the following relations (1) for the generating functions:
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f = x + α+ β + γ + δ = −1 + 1−x−
√
1−2x−3x2

2x2

β =
(

x2

1−x2

)(

1
1−x

)

α = (x + β + γ + δ)(x + α+ β + γ + δ)

. (1)

¿From (1) we obtain

γ + δ = 1/4

(

2− 2

(−1 + x2)2
− 3

−1 + x
− 2x− 1

1 + x
− 2
√

1− 2x− 3x2

)

=

= (f + 1)x2 − β,

whose expansion is 2x5 + 6x6 + 18x7 + 47x8 + 123x9 + 318x10 + o(x11).
The function γ+ δ counts the simple involutions in I(4321) and their inflations.
It can obviously be obtained directly, from the following considerations.

The function f = −1 + 1−x−
√
1−2x−3x2

2x2 = x+ 2x2 + 4x3 + 9x4 + 21x5 + 51x6 +
127x7 + . . . enumerates all the involutions; by adjoining an up step and a down
step respectively at the beginning and at the end of the Motzkin path one
obtains a path associated to an irreducible involution; all the irreducible involu-
tions are the ones of type 21, the simple and their inflations. Hence the claimed
property.

By Proposition 2.6, involutions in In(4321) with k fixed points are in bi-
jection with Motzkin paths with k horizontal steps; so the expression of the
function f in two variables can be used, enumerating the fixed points of the
involutions (see [2], Proposition 13, and [5], sequence A097610). Precisely:

f(x, y) =
1− xy −

√

1− 2xy + x2y2 − 4x2

2x2
,

whose expansion is 1+yx+(1+y2)x2+(3y+y3)x3+(2+6y2y4)x4+ . . ., where
the coefficient ck,n of ck,ny

kxn indicates the number of involutions of length n
having k fixed points. (Posing y = 1 one obtains the total number of involutions
of length n).
The function β is immediately written in the form

β(x, y) =
x2

(1 − x2)(1 − xy)
,

where the variables have the same interpretation, so giving

(γ + δ)(x, y) =
1− xy −

√

1− 2xy + x2y2 − 4x2

2
− x2

(1− x2)(1− xy)
,

whose expansion is 2yx5 + (1 + 5y2)x6 + (9y + 9y3)x7 + . . .
Through the substitution y/x for y, one obtains

(γ + δ)(x, y) = 1/2
(

1− y −
√

1− 2y + y2 − 4x2
)

− x2

(1− x2)(1− y)
,

whose expansion is x6 + (2x4 + 9x6)y+ (5x4 + 29x6)y2 + (9x4 + 69x6)y3 + . . . ,
where the coefficient cn,k of cn,kx

nyk now indicates the number of involutions
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of length n+ k having k fixed points and n/2 transpositions.
Using the expression of (γ + δ)(x, y) in the last form, one can easily obtain
the function γ enumerating the simple involutions of length greater than 2, by
means of the following theorem.

Theorem 3.2 Let σ ∈ Av(4321) be simple, with k fixed points and n/2 trans-
positions. Then all the inflations of σ belonging to Av(4321) are obtained in
the two following ways:
i) By inflating a fixed point with any number of new fixed points.
ii) By expanding a transposition of σ through αi = α−1

σ−1(i) = α−1
σ(i) = 123 . . .m.

Proof. The assertion i) is easily understood when thinking of the Motzkin
path associated with σ.
As for ii), we observe that by inflating a transposition of σ through a substitution
presenting an inversion, we would definitely obtain an inflation presenting a
descending sequence of length 4, so not belonging to Av(4321). 2

By means of Theorem 3.3, we can affirm that if we had the generating
function γ(x, y) of the simple involutions in Av(4321), where x2 and y count
respectively the transpositions and the fixed points, we could inflate x2 through
x2

1−x2 and y through y

1−y
in order to obtain (γ+δ)(x, y), which counts the simple

involutions and their inflations . Because we have (γ + δ)(x, y), we can go back

to γ(x, y) through the inverse functions x2

1+x2 and y

1+y
. We obtain in fact the

following

Theorem 3.3The generating function γ(x, y) of the simple involutions in Av(4321)
is

γ(x, y) = 1/2

(

1

1 + y
− 2x2(1 + y)−

√

−4 +
4

(1 + x2)
+

1

(1 + y)2

)

,

whose expansion is

(x6+x8+3x10+6x12+. . .)+(2x4+5x6+13x8+. . .)y+(3x4+14x6+54x8+. . .)y2+

(x4 + 18x6 + . . .)y3 + (10x6 + 145x8 + . . .)y4 + . . .

By substituting x for y in γ(x, y), we obtain the generating function in one
variable:

γ(x) = 1/2

(

1

1 + x
− 2x2(1 + x)−

√

−4 +
4

(1 + x2)
+

1

(1 + x)2

)

,

whose expansion is:
2x5+4x6+6x7+15x8+31x9+67x10+155x11+343x12+787x13+1829x14+ . . .
The sequence of the coefficients is not in Sloane [5].
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4 Generating functions for I(4321, 132) and for
I(4321, 312).

In [2], Theorem 6 and Corollary 7, the Motzkin paths associated with I(4321,
132) and with I(4321, 312) are characterized and enumerative results are given.
We show here how the enumerative results can be obtained through the struc-
ture theorems, and the analysis of the form of the involutions in I(4321).

As usual we denote by f the generating function of the whole set, by α the
one of the involutions inflation of 12, by β he one of the involutions inflation of
21. Moreover it is easy to see that there is no simple involution of length greater
than 2 neither in I(4321, 132) nor in I(4321, 312).
Always on the basis of the structure theorems and the involutions’ properties,
we write the following relations (2) for the generating functions of subsets of
I(4321, 132):















f = x + α+ β

β =
(

x2

1−x2

)(

1
1−x

)

α = (x + β′) x
1−x

. (2)

In fact, any involution inflation of 21 in I(4321), being of the form described in
Proposition 2.4, avoids 132, and β is the same of Proposition 3.1.
The third equation says that in any involution π of type 12, π = 12[σ1, σ2], the
component σ2 must be the increasing sequence 1 2 3 · · · .
¿From (2) we derive

f = − x− x3 + x4

(−1 + x)3(1 + x)
= x+ 2x2 + 3x3 + 5x4 + . . . ,

and the sequence 1, 2, 3, 5, 7, 10, 13, 17, ..., 1+ ⌈n
2 ⌉ ⌊n

2 ⌋, ... as in the cited paper.

Now for I(4321, 312) we obtain the following relations (3):











f = x + α+ β

β = x2 + x3

α = (x + β)(f)

. (3)

In fact there is no simple involution in I(4321, 312), because 1 is never a fixed
point in a simple involution, so we always have a sequence of the form Mi1mi,
isomorphic to 312. Moreover, by Proposition 2.4, the only involutions inflation of
21 in I(4321) avoiding 312 are 21 and 321. Finally, for any σ1, σ2 ∈ I(4321, 321)
the involution π = 12[σ1, σ2] avoids these two patterns; thus the structure the-
orems provide the third equation.
¿From (3) we obtain

f =
−x− x2 − x3

−1 + x+ x2 + x3
,

whose expansion gives the coefficients 0, 1, 2, 4, 7, 13, 24, 44, 81..., (Tribonacci
numbers), as in the cited paper.
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5 Generating functions for subsets of I(3412).

For the involutions in I(3412), it is well known that they are enumerated

by the same function f = −1 + 1−x−
√
1−2x−3x2

2x2 enumerating the involutions
in I(4321). Through the characterization given in [2], we are able to show the
following properties.

Theorem 5.1 (See [2], Theorem 9.) Let πn be an involution with (M,λ) as the
associated labelled Motzkin path of length n. Then πn avoids 3412 if and only if
λ is the maximal labelling.

It is then immediate to see that the irreducible involutions in I(3412) are
enumerated by the same function (f +1)x2 enumerating the irreducible ones in
I(4321).
Also, it is easy to deduce the following useful property:

Proposition 5.2 Let πn be an irreducible involution with (M,λ) as the as-
sociated labelled Motzkin path of length n, λ being the maximal labelling. Then
one has πn = n (πn−2) 1.

Proof. In fact, 1 is a deficiency of weight 1; no other deficiency may have
weight 1, so the corresponding excedance must be n. 2

It is immediately deduced from Proposition 5.2 that every irreducible invo-
lution satisfying the hypothesis of the Proposition is an involution inflation of
321: πn = 321[1, πn−2, 1]. So, it is easy to derive by induction the sufficient
condition of Theorem 5.1. Moreover one can state the property

Theorem 5.3 The set I(3412) has no simple involutions of length n > 2.

Also for Motzkin paths with maximal labelling we can omit the labelling: in
this case the corresponding involution has as fixed points the horizontal steps
and commutes any up step with the first successive down step at the same height.
We can still consider the reverse-complement bijection, and in this case a claim
analogous to Theorem 2.9 is trivial, because of Theorem 5.3.
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Figure 7: σ = 932857641 and σrc = 964352871

For sake of completeness, we reobtain some results given in [2] and in Egge
[4], again from the synthetic point of view of the structure theorems and the invo-
lutions’ properties. We write the following relations for the generating functions,
with the convention that f, α, β indicate the generating functions respectively
of the whole considered set, of the involutions inflation of 12, of the involutions
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inflation of 21. Recall that I(3412) has no simple involutions.

In I(3412, 123):










f = x + α+ β

β = x2 f + x2

α = (x + x2

1−x
)( x

1−x
)

, (4)

obtaining the generating function f = − x−x3+x4

(−1+x)3(1+x) = x+x2+3x3+5x4+ . . . ,

the same of I(4321, 132).
In fact, the involutions inflation of 21, avoiding the pattern 123, are precisely
21 and 321[1, σ, 1], σ ∈ Av(3412, 123). While the involutions inflation of 12,
avoiding the pattern 123, must be inflations of involutions showing no ascending
sequences, hence the thesis.

In I(3412, 1234), we have














f = x + α+ β

β = x2f + x2

α =
(

− x−x3+x4

(−1+x)3(1+x)x
2 + x2 − x2

1−x

)

x
1−x

+ x
1−x

−x+x3−x4

(−1+x)3(1+x)

, (5)

obtaining the generating function

f = −x(−1 + x+ x2 − 3x3 − x4 + 2x5 − x6

(−1 + x)5(1 + x)2
= x+2x2+4x3+8x4+16x5+29x6+51x7+. . .

In fact, the involutions inflation of 21, avoiding the pattern 1234, are precisely
21 and 321[1, σ, 1], σ ∈ I(3412, 1234). While the involutions inflation of 12,
avoiding the pattern 1234, of length n > 2, must be the following inflations:
a) 12[σ1, σ2], where σ1, involution inflation of 21, avoids 123 and contains 12,
while the involution σ2 avoids 12;
b) 12[σ1, σ2], where the involution σ1, inflation of 21, avoids 12, while σ2 avoids
123, hence the thesis.

In I(3412, 132), we have










f = x + α+ β

β = x2f + x2

α = (x + β) x
1−x

, (6)

obtaining the generating function

f =
x(1 + x)

1− x− x2
,

which generates the Fibonacci numbers 1, 2, 3, 5, 8, . . .
In fact, from [2], Theorem 10, (i), one deduces that in I(3412, 132) the only
reducible involutions of length greater than 2 are of the type 12[σ1, σ2] where
σ2 is the increasing sequence σ2 = 1 2 · · · , hence the thesis.
Analogously for I(3412, 213), the only reducible involutions of length greater
than 2 have σ1 = 1 2 · · · , hence again one easily obtains the same equations
(6).
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6 Appendix. Patterns for the simple involutions

of I(4321), for n = 5, 6, 7, 8, 9, 10.

Using γ′(x, y), remembering Proposition 7 we give the following description
for the patterns of the simple involutions of I(4321).

For n = 5: one has 2 involutions with 1 fixed point, obtained through
β4 = 3412 ∈ Av(321), expanding β through a fixed point in such a way as to
break the consecutiveness of up steps and corresponding down steps:
42513
35142

For n = 6: there are the involution σ6 = 351624 ∈ Av(321) and 3 involutions
with 2 fixed points, obtained through β4 ∈ Av(321) :
426153
526413
463152

For n = 7: there are 5 involutions with 1 fixed point, obtained through
351624 inserting a single fixed point, (remember Theorem 6), and 1 involution
with 3 fixed points, obtained through β4 ∈ Av(321) :
4261735
4631725
3614725
3617524
3517264, and
5274163

For n = 8: one has σ8 = 35172846 ∈ Av(321) and 14 involutions with 2
fixed points, of whom 10 obtained through 351624, inserting 2 fixed points, and
4 obtained through β6 = 456123 ∈ Av(321), always inserting the fixed points
in such a way as to break the consecutiveness: for example
52741836
.........
62748135

For n = 9: 13 involutions with 1 fixed point, of whom 7 obtained through
the simple 35172846, and 6 through the 3 inflations of 351624 of length 8 (2
for each inflation), the insertion of a fixed point breaking the consecutiveness:
for example
426183957
..........
while through the inflation 45712836 we obtain 526813947 and 468152937
.........

18 involutions with 3 fixed points, of whom 10 obtained through 351624,
and 8 through β6 ∈ Av(321) : for example
5 27419386
..........
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6 28491735 and 62 74913 85
..........

For n = 10: one has the 3 simple involutions belonging to Av(321);

54 involutions with 2 fixed points, of whom 21 obtained through 35172846,
and 33 through the 3 inflations of 351624 of length 8 (11 for each inflation):
for example
5274193(10)68
..............
while through the inflation 45712836 we obtain
6274913(10)58, 6279513(10)48,.............................

10 involutions with 4 fixed points, of whom 5 obtained through 351624, and
5 through β6 ∈ Av(321) : for example
529416(10)837
..............
6284(10)17395
...............

7 Appendix 2. An easy graphic interpretation
of Theorem 5.1.

We want to show that π ∈ I(3412) has the associated Motzkin path (M,λ)
with λ maximal label.
We recall that the height h(D) of a down step D, associated with a deficiency
m, is the difference between the number of excedances and the number of defi-
ciencies preceding m in the permutation.

If (M,λ) had a down step D, corresponding to the deficiency m of symmetric
excedance M , with λ(D) < h(D), then there would be in π an excedance M1

necessarily following M in the permutation and preceding m, with M < M1.
The deficiency m1 then necessarily follows m, with m1 < M , otherwise m
would precede M1 in the permutation. We so deduce the sequence M M1mm1,
isomorphic to 3412.

Conversely, let the involution π contain a pattern abcd isomorphic to 3412 ,
so satisfying the inequalities

{

c < d < a < b ,

π−1(a) < π−1(b) < π−1(c) < π−1(d),

from which we can always obtain a new isomorphic pattern of the form
M1M2m1m2 with (m1,M1) , (m2,M2) transpositions. The deficiency m1 does
not have maximum label because its symmetric M1 is followed by the excedance
M2, whose deficiency m2 follows m1.
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